OMA-TS-REST_NetAPI_UCD-V1_0-20140612505-D
Page 11 V(117)

	[image: image12.jpg]"sOMaQa

Open Mobile Alliance

	

	RESTful Network API for Unified Cloud Disk

	Draft Version 1.0 – 12 Jun 2014

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_UCD-V1_0-20140612-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

91.
Scope

2.
References
10
2.1
Normative References
10
2.2
Informative References
11
3.
Terminology and Conventions
12
3.1
Conventions
12
3.2
Definitions
12
3.3
Abbreviations
13
4.
Introduction
14
4.1
Version 1.0
14
5.
Unified Cloud Disk API definition
15
5.1
Resources Summary
15
5.2
Data Types
19
5.2.1
XML Namespaces
19
5.2.2
Structures
19
5.2.2.1
Type: File
19
5.2.2.2
Type: FileAttributes
20
5.2.2.3
Type: MetadataList
21
5.2.2.4
Type: Metadata
21
5.2.2.5
Type: AccessControlList
21
5.2.2.6
Type: AccessControlEntry
21
5.2.2.7
Type: HashInformation
21
5.2.2.8
Type: Folder
22
5.2.2.9
Type: FolderAttributes
23
5.2.2.10
Type: ReferenceList
23
5.2.2.11
Type: DeleteMode
23
5.2.2.12
Type: Share
24
5.2.2.13
Type: ShareList
24
5.2.2.14
Type: SearchCriteria
24
5.2.2.15
Type: SearchResult
25
5.2.2.16
Type: Result
25
5.2.2.17
Type: FolderList
25
5.2.2.18
Type: FileList
25
5.2.2.19
Type: RecycleBin
26
5.2.2.20
Type: RecycleBinItemList
26
5.2.2.21
Type: RecycleBinItem
26
5.2.2.22
Type: RecycleBinItemAttributes
26
5.2.3
Enumerations
27
5.2.3.1
Enumeration: DeleteModeEnum
27
5.2.3.2
Enumeration: RecycleBinTreatmentEnum
27
5.2.4
Values of the Link “rel” attribute
27
5.3
Sequence Diagrams
27
5.3.1
Folder Operations
27
5.3.2
Folder attributes operations
28
5.3.3
File operations
29
5.3.4
File attributes operations
30
5.3.5
Recycle bin operations
30
5.3.6
Search operation
31
5.3.7
List shared file operation
32
6.
Detailed specification of the resources
33
6.1
Resource: A folder
33
6.1.1
Request URL variables
33
6.1.2
Response Codes and Error Handling
34
6.1.3
GET
34
6.1.3.2
Example 2: Retrieve information about a non-existent folder (Informative)
35
6.1.3.3
Example 3: Retrieve information about a large folder (Informative)
36
6.1.3.4
Example 4: Retrieve information about a large folder (Informative)
36
6.1.4
PUT
37
6.1.4.1
Example 1: Create folder, response with a location of created resource (Informative)
37
6.1.4.1.1
Request
37
6.1.4.1.2
Response
38
6.1.4.2
Example 2: Create folder, response with a copy of created resource (Informative)
38
6.1.4.2.1
Request
38
6.1.4.2.2
Response
38
6.1.5
POST
39
6.1.6
DELETE
39
6.1.6.1
Example 1: Delete a folder to recycle bin, response with “204 No Content” (Informative)
39
6.1.6.1.1
Request
39
6.1.6.1.2
Response
39
6.1.6.2
Example 2: Delete a folder permanently, response with “204 No Content” (Informative)
39
6.1.6.2.1
Request
39
6.1.6.2.2
Response
40
6.2
Resource: Individual folder attributes
40
6.2.1
Request URL variables
40
6.2.2
Response Codes and Error Handling
41
6.2.3
GET
41
6.2.3.1
Example: Retrieve a folder’s attributes (Informative)
41
6.2.3.1.1
Request
41
6.2.3.1.2
Response
41
6.2.4
PUT
41
6.2.5
POST
42
6.2.6
DELETE
42
6.3
Resource: A file
42
6.3.1
Request URL variables
42
6.3.2
Response Codes and Error Handling
43
6.3.3
GET
43
6.3.4
PUT
43
6.3.4.1
Example 1: Uploading a file, response with a location of created resource (Informative)
43
6.3.4.1.1
Request
44
6.3.4.1.2
Response
44
6.3.4.2
Example 2: Uploading a file, response with a copy of created resource (Informative)
44
6.3.4.2.1
Request
44
6.3.4.2.2
Response
44
6.3.4.3
Example 3: Updating file in range, response with a copy of created resource (Informative)
45
6.3.4.3.1
Request
45
6.3.4.3.2
Response
46
6.3.5
POST
46
6.3.6
DELETE
47
6.3.6.1
Example 1: Delete a file to recycle bin, response with “204 No Content” (Informative)
47
6.3.6.1.1
Request
47
6.3.6.1.2
Response
47
6.3.6.2
Example 2: Delete a file permanently, response with “204 No Content” (Informative)
47
6.3.6.2.1
Request
47
6.3.6.2.2
Response
47
6.4
Resource: Individual file attributes
48
6.4.1
Request URL variables
48
6.4.2
Response Codes and Error Handling
48
6.4.3
GET
49
6.4.3.1
Example: Retrieve a file’s attributes (Informative)
49
6.4.3.1.1
Request
49
6.4.3.1.2
Response
49
6.4.4
PUT
50
6.4.5
POST
52
6.4.6
DELETE
53
6.5
Resource: RecycleBin
53
6.5.1
Request URL variables
53
6.5.2
Response Codes and Error Handling
53
6.5.3
GET
53
6.5.4
PUT
54
6.5.4.1
Example 1: Revoking recycle bin items (Informative)
54
6.5.4.1.1
Request
54
6.5.4.1.2
Response
55
6.5.4.2
Example 2: Clean the recycle bin (Informative)
55
6.5.4.2.1
Request
55
6.5.4.2.2
Response
55
6.5.5
POST
55
6.5.6
DELETE
56
6.6
Resource: Search for files or folders
56
6.6.1
Request URL variables
56
6.6.2
Response Codes and Error Handling
56
6.6.3
GET
56
6.6.4
PUT
56
6.6.5
POST
56
6.6.6
DELETE
58
6.7
Resource: List the shared files
59
6.7.1
Request URL variables
59
6.7.2
Response Codes and Error Handling
59
6.7.3
GET
59
6.7.4
PUT
59
6.7.5
POST
59
6.7.6
DELETE
60
7.
Fault definitions
61
7.1
Service Exceptions
61
7.1.1
SVC[code number]: [Text for exception header]
61
7.2
Policy Exceptions
61
7.2.1
POL[code number]: [Text for exception header]
62
7.2.1
POL1003: Refund exceeds original charge amount
62
Appendix A.
Change History (Informative)
63
A.1
Approved Version History
63
A.2
Draft/Candidate Version 1.0 History
63
Appendix B.
Static Conformance Requirements (Normative)
64
B.1
SCR for REST.UCD Server
64
B.1.1
SCR for REST.UCD.Folder Server
64
B.1.2
SCR for REST.UCD.Folder.Attr Server
64
B.1.3
SCR for REST.UCD.File Server
65
B.1.4
SCR for REST.UCD.File.Attr Server
65
B.1.5
SCR for REST.UCD.Recyclebin Server
65
B.1.6
SCR for REST.UCD.Search Server
65
B.1.7
SCR for REST.UCD.ListShare Server
66
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
67
C.1
Search folders or files
67
C.1.1
Example (Informative)
68
C.1.1.1
Request
68
C.1.1.2
Response
68
Appendix D.
JSON examples (Informative)
71
D.1
Retrieve information about a folder (section 6.1.3.1)
71
D.2
Retrieve information about a non-existent folder (section 6.1.3.2)
72
D.3
Retrieve information about a large folder (section 6.1.3.3)
72
D.4
Retrieve information about a large folder (section 6.1.3.4)
73
D.5
Create folder, response with a location of created resource (section 6.1.4.1)
74
D.6
Create folder, response with a copy of created resource (section 6.1.4.2)
74
D.7
Delete a folder to recycle bin, response with “204 No Content” (section 6.1.6.1)
75
D.8
Delete a folder permanently, response with “204 No Content” (section 6.1.6.2)
75
D.9
Retrieve a folder’s attributes (section 6.2.3.1)
76
D.10
Update individual folder ACL information (section 6.2.4.1)
76
D.11
Downloading a file (section 6.3.3.1)
77
D.12
Uploading a file, response with a location of created resource (section 6.3.4.1)
77
D.13
Uploading a file, response with a copy of created resource (section 6.3.4.2)
78
D.14
Updating file in range, response with a copy of created resource (section 6.3.4.3)
79
D.15
Delete a file to recycle bin, response with “204 No Content” (section 6.3.6.1)
80
D.16
Delete a file to permanently, response with “204 No Content” (section 6.3.6.2)
80
D.17
Retrieve a file’s attributes (section 6.4.3.1)
81
D.18
Update individual file’s attribute of fileType (section 6.4.4.1)
82
D.19
Update individual file’s attribute of metadata (section 6.4.4.2)
82
D.20
Update individual file ACL information (section 6.4.4.3)
83
D.21
Update individual file sharing information (section 6.4.4.4)
84
D.22
List recycle bin (section 6.5.3.1)
84
D.23
Revoking recycle bin items (section 6.5.4.1)
85
D.24
Clean all items in recycle bin (section 6.5.4.2)
86
D.25
Search (section 6.6.5.1)
86
D.26
List the shared files (section 6.7.5.1)
88
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
89
Appendix F.
Light-weight Resources (Informative)
90
Appendix G.
Authorization aspects (Normative)
91
G.1
Use with OMA Authorization Framework for Network APIs
91
G.1.1
Scope values
91
G.1.1.1
Definitions
91
G.1.1.2
Downscoping
92
G.1.1.3
Mapping with resources and methods
92
G.1.2
Use of ‘acr:auth’
94

Figures

17Figure 1 UCD-2 Resource structure defined by this specification

29Figure 2 Folder Operations

30Figure 3 Folder attributes operations

30Figure 4 File Operations

31Figure 5 File attributes operations

32Figure 6 Recycle bin operations

32Figure 7 Search operation

33Figure 8 List shared file operation

Tables
93Table 1: Scope values for RESTful UCD API

94Table 2: Required scope values for: managing files

94Table 3: Required scope values for: managing folder

94Table 4: Required scope values for: managing recyclebin

95Table 5: Required scope values for: managing search

95Table 6: Required scope values for: managing listShare

1. Scope

This specification defines RESTful Network API for Unified Cloud Disk using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	Include if the use of ACR is supported, otherwise delete this reference. “The acr URI for anonymous users”, S.Jakobsson, K.Smith, January 2010, URL: http://tools.ietf.org/html/draft-uri-acr-extension-00

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	Include if the use of Notification Channel is supported, otherwise delete this reference. “RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_UCD]
	“XML schema for the RESTful Network API for Unified Cloud Disk Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_ucd-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3530]
	“Network File System (NFS) version 4 Protocol”, S. Shepler, April 2003, URL:http://www.ietf.org/rfc/rfc3530.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H.Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1 [only needed if application/x-www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT]. If the use of Notification Channel and/or Light-weight Resources are supported, include also the definitions below, otherwise delete those that are not applicable.

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Heavy-weight Resource
	A resource which is identified by a resource URL which is then used by HTTP methods to operate on the entire data structure representing the resource. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Light-weight Resource
	A subordinate resource of a Heavy-weight Resource which is identified by its own resource URL which is then used by HTTP methods to operate on a part of the data structure representing the Heavy-weight Resource. The Light-weight Resource URL can be seen as an extension of the Heavy-weight Resource URL.

There could be several levels of Light-weight Resources below the ancestor Heavy-weight Resource, depending on the data structure. Include this definition if Light-weight Resources are supported, otherwise delete it.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. The channel is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

3.3
Abbreviations
	ACE
	Access Control Entries

	ACL
	Access Control List

	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	UCD
	Unified Cloud Disk

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WP
	White Paper

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Unified Cloud Disk contains HTTP protocol bindings for Unified Cloud Disk, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoded).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Folder operations including list folder information, create folder, delete folder, retrieve or update individual folder information
· File operations including download file, upload total file or file in range, delete file, retrieve or update individual file information
· Recyclebin operations including list recycle bin, revoke or clean the recycle bin
· public operations including search file or folder, list all file sharing
The following new functionality has been introduced:

· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:Authorization” as a reserved keyword in an ACR
5. Unified Cloud Disk API definition
This section is organized to support a comprehensive understanding of the Unified Cloud Disk API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP methods, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D.
Section 7 contains fault definition details such as Service Exceptions and Policy Exceptions.
Appendix B provides the Static Conformance Requirements (SCR).
Appendix F provides a list of all Light-weight Resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Unified Cloud Disk.
The "apiVersion" URL variable SHALL have the value “v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.
[image: image1.jpg]«“+OMa

Open Mobile Alliance

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Purpose: To allow client to manage folder or file
	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	A folder

	/{folderName}

Note: folderName is absolute value including path
	Folder (used for GETresponse, PUTresponse)

common:ResourceReference (optional alternative for PUT response)

DeleteMode (used for DELETE request)
	List folder information

	Create folder

	No
	Delete folder to recycle bin or permanently

	Individual folder attributes
	/{folderName}/[ResourceRelPath]

	The data structure corresponds to an element within the Folder structure pointed out by the resource URL.

(used for PUT/GET)
	Retrieve individual folder attributes
	Update individual folder ACL information

	No
	No

	A file
	/{folderName}/{fileName}

Note: folderName is absolute value including path
	File (used for PUTresponse)

common:ResourceReference (optional alternative for PUT response)

DeleteMode (used for DELETE request)
	Download file

	Upload file
Update file in range

	No
	Delete file to recycle bin or permanently

	Individual file attributes
	/{folderName}/{fileName}/[ResourceRelPath]

	The data structure corresponds to an element within the File structure pointed out by the resource URL.

(used for PUT/GET)
	Retrieve individual file attributes

	
Update individual file attributes including fileType, metadatas, ACL information, sharing information

	No
	No

Purpose: To allow client to manage Recycle bin
	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Recycle bin
	/recycleBin

	RecycleBin (used for GET response, PUT request)
	List recycle bin
	Revoke or delete the recycle bin items

	No
	No

Purpose: To allow client to manage public operations for folder or file
	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Search for file or folder
	/operations/search

	SearchCriteria (used for POST request)

SearchResult (used for POST response)
	No
	No
	Search file or folder
	No

	List of shared files
	/operations/listShare
	ShareList (used for POST response)
	No
	No
	List all file sharing
	No

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Unified Cloud Disk data types is:

urn:oma:xml:rest:ucd:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_UCD].
5.2.2 Structures

The subsections of this section define the data structures used in the UCD API.
Some of the structures can be instantiated as so-called root elements.

For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
The subsections of this section define the data structures used in the UCD API.
Some of the structures can be instantiated as so-called root elements, i.e. they define the type of a representation of a so-called Heavy-weight Resource.

The column [ResourceRelPath] in the tables below, if used, includes relative resource paths for Light-weight Resource URLs that are used to access individual elements in the data structure (so-called Light-weight Resources). A string from this column needs to be appended to the corresponding Heavy-weight Resource URL in order to create Light-weight Resource URL for that particular element in the data structure. “Not applicable” means that individual access to that element is not supported. The root element and data type of the resource associated with the [ResourceRelPath] are defined by the Element and Type columns in the row that defines the [ResourceRelPath].

5.2.2.1 Type: File
Individual file
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	fileAttributes
	FileAttributes
	Yes
	fileAttributes
	List of attributes associated with the file

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named file of type File is allowed in response bodies.
Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.2 Type: FileAttributes
File attributes.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	fileType
	xsd:string
	Yes
	fileAttributes/fileType
	The file type, (i.e., jpg, doc, xls, zip).
Which can be set by Update File Attribute operation.

	size
	xsd:string
	Yes
	Not applicable
	The file size.

	createTime
	xsd:dateTimeStamp
	Yes
	Not applicable
	Date and Time at which the file was created.

	modifyTime
	xsd:dateTimeStamp
	Yes
	Not applicable
	Date and Time at which the file was modified.

	accessTime
	xsd:dateTimeStamp
	Yes
	Not applicable
	Date and Time at which the file was accessed.

	owner
	xsd:string
	Yes
	Not applicable
	The owner of the file

	metadataList
	MetadataList
	Yes
	fileAttributes/metadatas
	The user self define metadatas, e.g. department, project, group, publisher, editor.
Which can be set by Update File Attribute operation.

	accessControlList
	AccessControlList
	Yes
	fileAttributes/acl
	The access control list information.
Which can be set by Update File Attribute operation.

	hash
	HashInformation
	Yes
	Not applicable
	The hash information of the file

	share
	Share
	Yes
	fileAttributes/share
	File Sharing information.

Which can be set by Update File Attribute operation.

	revisionList
	ReferenceList
	Yes
	Not applicable
	The file revisions

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.3 Type: MetadataList

The list of metadata information.

	Element
	Type
	Optional
	Description

	metadata
	Metadata [0..unbounded]
	Yes
	A list of metadata.

Type: Metadata
The user self define metadata.
	Element
	Type
	Optional
	Description

	name
	xsd:string
	No
	Metadata name.

	value
	xsd:string
	Yes
	Metadata value. U

5.2.2.4 Type: AccessControlList

Access control comprises the mechanisms by which various types of access to objects are authorized and permitted or denied. UCD uses the well-known mechanism of an Access Control List (ACL) as defined in the NFSv4 standard [RFC 3530]. ACLs are lists of permissions-granting or permissions-denying entries called access control entries (ACEs).
	Element
	Type
	Optional
	Description

	accessControlEntry
	AccessControlEntry [0..unbounded]
	Yes
	A list of resource references

5.2.2.5 Type: AccessControlEntry
The access control entry information.
	Element
	Type
	Optional
	Description

	acetype
	xsd:string
	Yes
	The access control entry types.

	identifier
	xsd:string
	Yes
	The special "who" identifier.

	aceflags
	xsd:string
	Yes
	The semantics of the ACE.

	acemask
	xsd:string
	Yes
	The operations on a file or folder(directory in NFSv4)

5.2.2.6

	
	
	
	

	
	
	
	

5.2.2.7

	
	
	
	

	
	
	
	

5.2.2.8 Type: HashInformation

This type represents the file hash information.

	Element
	Type
	Optional
	Description

	algorithm
	xsd:string
	No
	The hash algorithm used (only "sha-1" currently supported).
See [RFC5547].

	value
	xsd:hexBinary
	No
	The hash value of the file.
See [RFC5547].

5.2.2.9 Type: Folder

Individual folder
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	folderAttributes
	FolderAttributes
	Yes
	folderAttributes
	List of attributes associated with the folder

	cursor
	xsd:string
	Yes
	Not applicable
	If the lists of subfolders and files are both complete, this element is omitted.
If there are more available subfolders and/or files not included in these lists, this element is included. The cursor value encapsulates information on these items. See section 6.1.3.3 for how to use the cursor in a subsequent request.

	subFolders
	ReferenceList
	Yes
	Not applicable
	List of sub-folders under this folder.

The client SHALL NOT include this element in PUT requests.

	files
	ReferenceList
	Yes
	Not applicable
	List of files under this folder.

The client SHALL NOT include this element in PUT requests.

	
	
	
	
	

	resourceURL
	xsd:anyURI
	Yes
	Not applicable
	Self referring URL.

The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named folder of type Folder is allowed in response bodies.
Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].
5.2.2.10 Type: FolderAttributes
Folder attributes.
	Element
	Type
	Optional
	[ResourceRelPath]
	Description

	root
	xsd:boolean
	Yes
	Not applicable
	The value “Yes” denotes the folder is designated as a root folder.

	size
	xsd:string
	Yes
	Not applicable
	The folder size.

	createTime
	xsd:dateTimeStamp
	Yes
	Not applicable
	Date and Time at which the folder was created.

	filesNumber
	xsd:int
	Yes
	Not applicable
	The number of files in this folder.

	subFoldersNumber
	xsd:int
	Yes
	Not applicable
	The number of sub folders in this folder.

	owner
	xsd:string
	Yes
	Not applicable
	The owner of the folder

	accessControlList
	AccessControlList
	Yes
	folderAttributes/acl
	The access control list information.
Which can be set by Update Folder ACL information operation.

Please refer to section 5.2.2 for an explanation of the column [ResourceRelPath].

5.2.2.11 Type: ReferenceList
List of object references

	Element
	Type
	Optional
	Description

	reference
	common:ResourceReference [0..unbounded]
	Yes
	A list of resource references

5.2.2.12 Type: DeleteMode
The delete mode
	Element
	Type
	Optional
	Description

	deleteMode
	DeleteModeEnum
	No
	The delete mode

A root element named deleteMode of type DeleteMode is allowed in request bodies.

5.2.2.13

	
	
	
	

	
	
	
	

	
	
	
	

5.2.2.14

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

5.2.2.15

	
	
	
	

	
	
	
	

5.2.2.16 Type: Share
The file sharing.
	Element
	Type
	Optional
	Description

	isShare
	xsd:boolean
	No
	Whether share file or not. Default is No.

	shareLink
	common: Link
	Yes
	The file share link

	accessCode
	xsd:string
	Yes
	The code to access the file via the link.

5.2.2.17 Type: ShareList
The file sharing list.
	Element
	Type
	Optional
	Description

	share
	Share[0..unbounded]
	Yes
	List of file sharing

A root element named shareList of type ShareList is allowed in response bodies.
5.2.2.18 Type: SearchCriteria

Search criteria.
	Element
	Type
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with the same search selection criteria.

	maxEntries
	xsd:int
	Yes
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	searchKey
	xsd:string
	Yes
	Search key

If there is no search key, the server will retrieval all available elements.

	searchScope
	common:ResourceReference
	Yes
	Reference to folder at which point the search would start.

If searchScope is provided, the scope of the search is limited to the subtree starting at this folder.

If searchScope is not provided, the search is applied to the root folder.

	sortCriterion
	xsd:string
	Yes
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

A root element named searchCriteria of type SearchCriteria is allowed in request bodies.
5.2.2.19 Type: SearchResult
The search result
	Element
	Type
	Optional
	Description

	result
	Result
	Yes
	The search results. Number of results MAY be limited by the server.

	
	
	
	

	cursor
	xsd:string
	Yes
	If the list of results is complete, this element is omitted.

If there are more available results not included in the list, then a cursor value is returned, which encapsulates information on these results. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of results which had not been returned in a previous request.
The cursor encapsulates server state information which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of results returned in subsequent requests. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named searchResult of type SearchResult is allowed in response bodies.

5.2.2.20 Type: Result
The search result information.
	Element
	Type
	Optional
	Description

	folderSearchResult
	FolderList
	Yes
	List of folders.

	fileSearchResult
	FileList
	Yes
	List of files.

5.2.2.21 Type: FolderList

The list of folder information.

	Element
	Type
	Optional
	Description

	folder
	Folder[0..unbounded]
	Yes
	A list of folder.

5.2.2.22 Type: FileList

The list of file information.

	Element
	Type
	Optional
	Description

	file
	File[0..unbounded]
	Yes
	A list of file.

5.2.2.23 Type: RecycleBin
List of Recycle Bin.
	Element
	Type
	Optional
	Description

	recycleBinItemList
	RecycleBinItemList
	Yes
	List of Recycle Bin

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

	
	
	
	

A root element named recycleBin of type RecycleBin is allowed in request and/or response bodies.
5.2.2.24 Type: RecycleBinItemList

The list of metadata information.

	Element
	Type
	Optional
	Description

	recycleBinItem
	RecycleBinItem [0..unbounded]
	Yes
	A list of metadata.

	recycleBinTreatment
	RecycleBinTreatmentEnum
	Yes
	Recycle Bin treatment.

The recycleBinTreatment SHALL NOT be included in GET responses by the Server.

If there is no elements of recycleBinItem in PUT request, it meanings to clean the total Recycle Bin.(recycleBinTreatment value must be “Delete”)

5.2.2.25 Type: RecycleBinItem
The item in Recycle Bin.
	Element
	Type
	Optional
	Description

	type
	String
	No
	The Recycle Bin item type, value=0 meanings folder, value=1 meanings file

	name
	String
	No
	The folder or file name in Recycle Bin.

	originalPath
	String
	Yes
	The original path of folder or file before in Recycle Bin.

	recycleBinItemAttributes
	RecycleBinItemAttributes
	Yes
	Attributes associated with the file or folder in Recycle Bin.

5.2.2.26 Type: RecycleBinItemAttributes
The Recycle Bin item attributes.
	Element
	Type
	Optional
	Description

	fileType
	xsd:string
	Yes
	The file type, (i.e., jpg, doc, xls, zip). It is only used for RecycleBinitem type value=1 meanings file

	size
	xsd:string
	Yes
	The item size.

	deleteTime
	xsd:dateTimeStamp
	Yes
	Date and Time at which the item was deleted.

	createTime
	xsd:dateTimeStamp
	Yes
	Date and Time at which the item was created.

5.2.3 Enumerations

The subsections of this section define the enumerations used in the UCD API.
5.2.3.1 Enumeration: DeleteModeEnum

	Enumeration
	Description

	DeletePermanently
	Remove from server storage and no revoke

	DeleteToRecycleBin
	Temporarily move to Recycle Bin and can revoke

5.2.3.2
	
	

	
	

	
	

	
	

	
	

5.2.3.3 Enumeration: RecycleBinTreatmentEnum

	Enumeration
	Description

	Revoke
	Revoke the Recycle Bin items.

	
	

	Delete
	Delete the Recycle Bin items.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· One

· Two

<< Include a bullet list with possible “rel” string values >>
These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following subsections describe the resources, methods and steps involved in typical scenarios.

5.3.1

·
·

1.
a)
b)
2.
3.

1.
a)
b)
2.
3.
5.3.2 Folder Operations

This figure below shows a scenario for creating, reading and deleting a folder.
The resources:

· To create, read and delete a folder, using resource under
http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}

[image: image5]
Figure 2 Folder Operations
Outline of the flows:

1. The application sends folder creation request using PUT method, the Server responses with the result including folder information .
2. The application retrieves the information of a folder by using a GET method. The Server responses with the result including folder information.

3. The application deletes a folder by using a DELETE method. The Server deletes the folder permanently or to the recycle bin according to the delete mode parameter and responses with the result.

5.3.3 Folder attributes operations

This figure below shows a scenario for reading and updating the attributes.of a folder.

The resources:

· To get the attributes of a folder , the following Light-weight Resource is used http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “folderAttributes”
· To update access control list of a folder , the following Light-weight Resource is used http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “folderAttributes/acl”

[image: image6]
Figure 3 Folder attributes operations
Outline of the flows:

1. The Application updates the access control list of a folder by using a PUT method on the Light-weight Resource for access control list of a folder. The Server responses with the update result.
2. The Application gets the attributes of a folder by using a GET method on the Light-weight Resource for folder attributes . The Server responses with the folder attributes.
5.3.4 File operations

This figure below shows a scenario for creating, reading and deleting a file.
The resources:

· To create, read and delete a file, using the following resource:
http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/{filename}

[image: image7]
Figure 4 File Operations
Outline of the flows:

1. The application sends file creation request using PUT method. The Server responses with the result including file information.
2. The application retrieves the information of a file by using a GET method. The Server responses with the result including file information.

3. The application deletes a filer by using a DELETE method. The Server deletes the file permanently or to the recycle bin according to the delete mode parameter and responses with the result.

5.3.5 File attributes operations

This figure below shows a scenario for reading and updating the attributes of a file.

The resources:

· To get the attributes of a file , the following Light-weight Resource is used http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/{filename}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “fileAttributes”
· To update some attributes of a file, including filetype or user defined metadata or sharing option or access control list, the following Light-weight Resource is used http://{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/{filename}/[ResourceRelPath]
Where [ResourceRelPath] is a light-weight relative resource URL, and in this case it shall be replaced with “fileAttributes/fileType” or “fileAttributes/metadata” or “fileAttributes/share” or “fileAttributes/acl”

[image: image8]
Figure 5 File attributes operations
Outline of the flows:

1. The Application updates an individual attribute,e.g the metadata of a file by using a PUT method on the Light-weight Resource for metadata of a file. The Server responses with the update result.
2. The Application gets the attributes of a file by using a GET method on the Light-weight Resource for file attributes . The Server responses with the filer attributes.
5.3.6 Recycle bin operations

This figure below shows a scenario for listing, revoking or cleaning the recycle bin.

The resources:

· To list,revoke and deletethe recycle bin , the following resource is used http://{serverRoot}/ucd/{apiVersion}/{userId}/{recycleBin}

[image: image9]
Figure 6 Recycle bin operations
Outline of the flows:

1. The Application gets the recycle bin information by using a GET method, the Server responses with the information of the list of files and folders in the recycle bin.
2. The Application revokes/deletes files/folders in the recycle bin by using a PUT method, the Server responses with the result.
5.3.7 Search operation

This figure below shows a scenario for searching files and file folders.

The resources:

· To search files and folders, the following resource is used
http://{serverRoot}/ucd/{apiVersion}/{userId}/operations/search

[image: image10]
Figure 7 Search operation
1. The Application searches the files and folders by using a POST method, with optional search criteria, the Server responses with the search result.
5.3.8 List shared file operation

This figure below shows a scenario for listing the shared files of a user.

The resources:

· To list the shared files of a user, the following resource is used
http://{serverRoot}/ucd/{apiVersion}/{userId}/operations/listShare

[image: image11]
Figure 8 List shared file operation
1. The Application gets the list of shared file by using a POST method,the Server responses with the list of shared files of the user.
6. Detailed specification of the resources
The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):
· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, participantAddress, etc.) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100). The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If an equipment identifier of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· The ACR ‘authorization’ is a supported reserved keyword, and MUST NOT be assigned as an ACR to any particular end user. See G.1.2 for details regarding the use of this reserved keyword.

· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
6.1

6.1.1

	
	

	
	

	
	

	
	

	

6.1.1.1

	
	
	

	
	
	

	

	
	
	

6.1.2

6.1.3

	
	
	
	

	
	
	
	

	

·
·
·
6.1.3.1

·
·
·
·
·
·
·
·
·
·
·
·
·
·
6.1.3.1.1
	

6.1.3.1.2
	

6.1.3.2

6.1.3.2.1
	

6.1.3.2.2
	

6.1.4

6.1.4.1

6.1.4.1.1
	

6.1.4.1.2
	

6.1.4.2

6.1.4.2.1
	

6.1.4.2.2
	

6.1.5

6.1.5.1

6.1.5.1.1
	

6.1.5.1.2
	

6.1.5.2

6.1.5.2.1
	

6.1.5.2.2
	

6.1.6

6.1.6.1

6.1.6.1.1
	

6.1.6.1.2
	

6.1.6.2

6.1.6.2.1
	

6.1.6.2.2
	

6.2 Resource: A folder
The resource used is:
//{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}
This resource is used for managing a folder such as listing folder information, creating folder, deleting a folder to recycle bin or permanently.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

	folderName
	The folder name which is absolute value including path.
It starts from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.2.3 GET
This operation is used for retrieval of a folder’s properties and the list of contained subfolders and files.

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request for the same folder;

	maxEntries
	xsd:int
	Yes
	Specifies maximum number of entries to be returned in the response. The server MAY return fewer entries than this.

Default is provided by server policy.

6.2.3.1 Example 1: Retrieve information about a folder
(Informative)

6.2.3.1.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:folder xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <folderAttributes>

 <root>No</root>

<size>5MB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

<filesNumber>2</filesNumber>

<subFoldersNumber>1</subFoldersNumber>

<owner>George Smith</owner>

 <accessControlList>
 <accessControlEntry>
<acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>
 </accessControlEntry>
</accessControlList>

 </folderAttributes>

 <subfolders>

<reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel</resourceURL>

</reference> </subfolders>

 <files>

<reference>
<resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc</resourceURL>

</reference>

<reference>
<resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL>

</reference> </files>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument</resourceURL>

</ucd:folder>

6.2.3.2 Example 2: Retrieve information about a non-existent folder
 (Informative)

6.2.3.2.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fotherdocument HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.2.3.2.2 Response

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 17 Jan 2014 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:requestError xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <link rel="folder"
 href="http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fotherdocument"/>

 <serviceException>

 <messageId>SVC0004</messageId>

 <text>No valid addresses provided in message part %1</text>

 <variables>Request-URI</variables>

 </serviceException>
</common:requestError>

6.2.3.3 Example 3: Retrieve information about a large folder
 (Informative)

6.2.3.3.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument?maxEntries=1 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.2.3.3.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:folder xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <folderAttributes>

 <root>No</root>

<size>5MB</size>

 <createTime>2014-01-19T08:30:50Z </createTime>

<filesNumber>2</filesNumber>

<subFoldersNumber>1</subFoldersNumber>

<owner>George Smith</owner>

 <accessControlList>
 <accessControlEntry>
<acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>
 </accessControlEntry>
</accessControlList>

 </folderAttributes>
 <cursor>abcdef?cur&194</cursor>

 <subfolders> <reference> <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel</resourceURL> </reference>
</subfolders>
 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument</resourceURL>

</ucd:folder>

6.2.3.4 Example 4: Retrieve information about a large folder
 (Informative)

This example continues the previous one, by passing back the cursor provided by the server.
6.2.3.4.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument?fromCursor=abcdef%3Fcur%38194&maxEntries=2 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.2.3.4.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:folder xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <folderAttributes>

 <root>No</root>

<size>5MB</size>

 <createTime>2014-01-19T08:30:50Z </createTime>

<filesNumber>2</filesNumber>

<subFoldersNumber>1</subFoldersNumber>

<owner>George Smith</owner>

 <accessControlList>
 <accessControlEntry>
<acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>
 </accessControlEntry>
</accessControlList>

 </folderAttributes>
 <files> <reference> <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc</resourceURL> </reference> <reference> <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL> </reference>
</files>
 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument</resourceURL>

</ucd:folder>

6.2.4 PUT

This operation is used for creating a new folder.

6.2.4.1 Example 1: Create folder, response with a location of created resource
(Informative)
The following example shows a request for creating a new folder called “mydocument” to be created under the folder with path “/myfolder”.This example assumes that a folder with path “/myfolder” already exists.
6.2.4.1.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

6.2.4.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:reference xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument</resourceURL>
</ucd:reference>

6.2.4.2 Example 2: Create folder, response with a copy of created resource
(Informative)
The following example shows a request for creating a new folder called “mydocument” to be created under the folder with path “/myfolder”.This example assumes that a folder with path “/myfolder” already exists.
6.2.4.2.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

6.2.4.2.2 Response

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument
Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:folder xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

<folderAttributes>

 <root>No</root>

<size>0KB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

<filesNumber>0</filesNumber>

<subFoldersNumber>0</subFoldersNumber>

<owner>George Smith</owner>

 <accessControlList>
 <accessControlEntry>
<acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>
 </accessControlEntry>
</accessControlList>

 </folderAttributes>
 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument</resourceURL>

</ucd:folder>

6.2.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.2.6 DELETE

This operation is used to delete a folder to recycle bin or permanently. All the contained subfolders and files in the targeted folder SHALL be deleted as well.
The server responds to a DELETE request with an HTTP 204 No Content response.

6.2.6.1 Example 1: Delete a folder to recycle bin, response with “204 No Content”
(Informative)
6.2.6.1.1 Request
	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:deleteMode xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <deleteMode>DeleteToRecycleBin</deleteMode>

</ucd:deleteMode>

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

6.2.6.2 Example 2: Delete a folder permanently, response with “204 No Content”
(Informative)
6.2.6.2.1 Request
	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:deleteMode xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <deleteMode>DeletePermanently</deleteMode>

</ucd:deleteMode>

6.2.6.2.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

6.3 Resource: Individual folder attributes
The resource used is:
//{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/[ResourceRelPath]

This resource is used to retrieve individual folder attributes or update individual folder ACL information.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

	folderName
	The folder name which is absolute value including path.
It starts from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable, see 6.2.1.1.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.1.1 Light-weight relative resource paths

The following table describes the type of Light-weight Resources that can be accessed by using this resource, applicable methods, and the link to a data structure that contains values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	Individual folder attributes
	GET
	Enables retrieve individual folder attributes.

See column [ResourceRelPath] for element “folderAttributes” in section 5.2.2.8 for possible values for the Light-weight relative resource path.

	individual folder ACL information
	PUT
	Enables update individual folder ACL information.

See column [ResourceRelPath] for element “folderAttributes/acl” in section 5.2.2.9 for possible values for the Light-weight relative resource path.

6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.3.3 GET
This operation is used for retrieval individual folder attributes.

6.3.3.1 Example: Retrieve a folder’s attributes
(Informative)
6.3.3.1.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/folderAttributes
HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.3.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<ucd:folderAttributes xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <root>No</root>

<size>5MB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

<filesNumber>2</filesNumber>

<subFoldersNumber>1</subFoldersNumber>

<owner>George Smith</owner>

 <accessControlList>
 <accessControlEntry>
<acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>
 </accessControlEntry>
</accessControlList>

</ucd:folderAttributes>

6.3.4 PUT

This operation is used to update individual folder ACL information.
6.3.4.1 Example 1: Update individual folder ACL information
(Informative)

6.3.4.1.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/folderAttributes/acl HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:accessControlList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1"><accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD</acemask>

 </accessControlEntry>
</ucd:accessControlList>

6.3.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:accessControlList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
<accessControlEntry><acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD</acemask>

 </accessControlEntry>
</ucd:accessControlList>

6.3.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.4 Resource: A file
The resource used is:
//{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/{fileName}
This resource is used for managing a file such as downloading a file, uploading a file, updating file in range, deleting a file to recycle bin or permanently.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

	folderName
	The folder name which is absolute value including path.
It starts from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.

	fileName
	The file name.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.4.3 GET
This operation is used for downloading a file.

6.4.3.1 Example 1: Downloading a file
(Informative)

6.4.3.1.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Length: nnnn

[mydocument1.doc’s content]

6.4.4 PUT

This operation is used for uploading a file or updating file in range.

6.4.4.1 Example 1: Uploading a file, response with a location of created resource
(Informative)
The following example shows a request for uploading a new file called “mydocument2.jpg” to the folder “/myfolder/mydocument”. This example assumes that a folder “/myfolder/mydocument” already exists.
6.4.4.1.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: image/jpg
Content-Length: nnnn

MIME-Version: 1.0

[mydocument2.jpg’s content]

6.4.4.1.2 Response

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:reference xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL>
</ucd:reference>

6.4.4.2 Example 2: Uploading a file, response with a copy of created resource
(Informative)
The following example shows a request for uploading a new file called “mydocument2.jpg” to the folder “/myfolder/mydocument”. This example assumes that a folder “/myfolder/mydocument” already exists.
6.4.4.2.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: image/jpg
Content-Length: nnnn

MIME-Version: 1.0

[mydocument2.jpg’s content]

6.4.4.2.2 Response

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:file xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

<fileAttributes>

 <fileType>jpg</fileType>

 <size>500KB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

 <owner>George Smith</owner>

 <metadataList>

 <metadata>

 <name>publisher</name>

 <value>XYZ</value>

 </metadata>

 <metadata>

 <name>project</name>

 <value>abc</value>

 </metadata>

 <metadata>

 <name>department</name>

 <value>Sales</value>

 </metadata>

 </metadataList>

 <accessControlList>

 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>FILE_INHERIT</aceflags>

 <acemask>READ_DATA, WRITE_DATA, APPEND_DATA, READ_NAMED_ATTRS, WRITE_NAMED_ATTRS, READ_ATTRIBUTES, WRITE_ATTRIBUTES, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE</acemask></accessControlEntry>

 </accessControlList>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>58231FE8653BBCF371362F86D471913EE4B1DF2F</value>

 </hash>

 <share>

 <isShare>No</isShare>

 </share>

 <revisionList>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001</resourceURL>

 </reference>

 </revisionList>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL></ucd:file>

6.4.4.3 Example 3: Updating file in range, response with a copy of created resource
(Informative)
The following example shows a request for updating file called “mydocument1.doc” in range to the folder “/myfolder/mydocument”. This example assumes that a folder “/myfolder/mydocument” already exists.
6.4.4.3.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: binary/oct-stream
Range:bytes=start-end

[mydocument1.doc’s updating content]

6.4.4.3.2 Response

	HTTP/1.1 200 OK
Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc
Content-Type: application/xml

Content-Range: start-end/size
<?xml version="1.0" encoding="UTF-8"?>

<ucd:file xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

<fileAttributes>

 <fileType>doc</fileType>

 <size>200KB</size>

 <createTime>2014-01-09T18:20:40Z</createTime>

 <modifyTime>2014-01-19T08:30:50Z</modifyTime>

 <accessTime>2014-01-10T12:10:30Z</accessTime>

 <owner>George Smith</owner>

 <metadataList>

 <metadata>

 <name>publisher</name>

 <value>HZ</value>

 </metadata>

 <metadata>

 <name>project</name>

 <value>abc</value>

 </metadata>

 <metadata>

 <name>department</name>

 <value>Sales</value>

 </metadata>

 </metadataList>

 <accessControlList><accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask></accessControlEntry>

 </accessControlList>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>86D471913EE4B1DF2F58231FE8653BBCF371362F</value>

 </hash>

 <share>

 <isShare>No</isShare>

 </share>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc</resourceURL>
</ucd:file>

6.4.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.4.6 DELETE

This operation is used to delete a file to recycle bin or permanently.
The server responds to a DELETE request with an HTTP 204 No Content response.

6.4.6.1 Example 1: Delete a file to recycle bin, response with “204 No Content”
(Informative)
6.4.6.1.1 Request
	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:deleteMode xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <deleteMode>DeleteToRecycleBin</deleteMode>

</ucd:deleteMode>

6.4.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

6.4.6.2 Example 2: Delete a file permanently, response with “204 No Content”
(Informative)
6.4.6.2.1 Request
	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:deleteMode xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <deleteMode>DeletePermanently</deleteMode>

</ucd:deleteMode>

6.4.6.2.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

6.5 Resource: Individual file attributes
The resource used is:
//{serverRoot}/ucd/{apiVersion}/{userId}/{folderName}/{fileName}/[ResourceRelPath]

This resource is used to retrieve individual file attributes or update individual file attributes including fileType, metadata, ACL information, sharing information.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

	folderName
	The folder name which is absolute value including path.
It starts from the root folder and ending with the given folder’s name where the folder names are separated by a “/” (U+002F) character.

	fileName
	The file name.

	[ResourceRelPath]
	Relative resource path for a Light-weight Resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable, see 6.4.1.1.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.1.1 Light-weight relative resource paths

The following table describes the type of Light-weight Resources that can be accessed by using this resource, applicable methods, and the link to a data structure that contains values (strings) for those relative resource paths.

	Light-weight Resource type
	Method supported
	Description

	Individual file attributes
	GET
	Enables retrieve individual folder attributes.

See column [ResourceRelPath] for element “folderAttributes” in section 5.2.2.1 for possible values for the Light-weight relative resource path.

	individual file attributes including fileType, metadatas, ACL information, sharing information
	PUT
	Enables update file attributes including fileType, metadatas, ACL information, sharing information.

See column [ResourceRelPath] for element “folderAttributes/acl” in section 5.2.2.2 for possible values for the Light-weight relative resource path.

6.5.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.5.3 GET
This operation is used for retrieval individual file attributes.

6.5.3.1 Example: Retrieve a file’s attributes
(Informative)
6.5.3.1.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes
HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.5.3.1.2 Response

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
<?xml version="1.0" encoding="UTF-8"?>

<ucd:fileAttributes xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <fileType>jpg</fileType>

 <size>500KB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

 <owner>George Smith</owner>

 <metadataList>

 <metadata>

 <name>publisher</name>

 <value>XYZ</value>

 </metadata>

 <metadata>

 <name>project</name>

 <value>abc</value>

 </metadata>

 <metadata>

 <name>department</name>

 <value>Sales</value>

 </metadata>

 </metadataList>

 <accessControlList>

 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>

 </accessControlEntry>

 </accessControlList>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>58231FE8653BBCF371362F86D471913EE4B1DF2F</value>

 </hash>

 <share>

 <isShare>No</isShare>

 </share>

 <revisionList>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001</resourceURL>

 </reference>

 </revisionList>
</ucd:fileAttributes>

6.5.4 PUT

This operation is used to update individual file attributes including fileType, metadatas, ACL information, sharing information.
6.5.4.1 Example 1: Update individual file’s attribute of fileType
(Informative)

6.5.4.1.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/fileType HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:fileType xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">png</ucd:fileType>

6.5.4.1.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:fileType xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">png</ucd:fileType>

6.5.4.2 Example 2: Update individual file’s attribute of metadata
(Informative)

6.5.4.2.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/metadatas HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:metadataList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <metadata>

 <name>publisher</name>

 <value>XYZ</value>

 </metadata>

 <metadata>

 <name>project</name>

 <value>def</value>

 </metadata>

 <metadata>

 <name>department</name>

 <value>Sales</value>

 </metadata>
</ucd:metadataList>

6.5.4.2.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:metadataList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <metadata>

 <name>publisher</name>

 <value>XYZ</value>

 </metadata>

 <metadata>

 <name>project</name>

 <value>def</value>

 </metadata>

 <metadata>

 <name>department</name>

 <value>Sales</value>

 </metadata>
</ucd:metadataList>

6.5.4.3 Example 3: Update individual file ACL information
(Informative)

6.5.4.3.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/acl HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:accessControlList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>FILE_INHERIT</aceflags>

 <acemask>READ_DATA, WRITE_DATA, APPEND_DATA, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE</acemask>

 </accessControlEntry>
</ucd:accessControlList>

6.5.4.3.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:accessControlList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>FILE_INHERIT</aceflags>

 <acemask>READ_DATA, WRITE_DATA, APPEND_DATA, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE</acemask>

 </accessControlEntry>
</ucd:accessControlList>

6.5.4.4 Example 4: Update individual file sharing information
(Informative)

6.5.4.4.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/share HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:share xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1"> <isShare>Yes</isShare>

 <shareLink>http://example.com/GeorgeSmith/mydocument2.jpg</shareLink>

 <accessCode>12345</accessCode>
</ucd:share>

6.5.4.4.2 Response

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:share xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1"> <isShare>Yes</isShare>

 <shareLink>http://example.com/GeorgeSmith/mydocument2.jpg</shareLink>

 <accessCode>12345</accessCode>
</ucd:share>

6.5.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, PUT’ field in the response as per section 14.7 of [RFC2616].
6.6 Resource: RecycleBin
The resource used is:
//{serverRoot}/ucd/{apiVersion}/{userId}/recycleBin
This resource is used for managing recycle bin such as listing recycle bin, revoking or cleaning recycle bin.

6.6.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.6.3 GET
This operation is used for listing recycle bin.

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request for the same folder;

	maxEntries
	xsd:int
	Yes
	Specifies maximum number of entries to be returned in the response. The server MAY return fewer entries than this.

Default is provided by server policy.

6.6.3.1 Example 1: List recycle bin
(Informative)

6.6.3.1.1 Request

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/recycleBin HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

6.6.3.1.2 Response

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:recycleBin xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

<recycleBinItemList>

 <recycleBinItem>

 <type>0</type>

 <name>mypicture</name>

 <originalPath>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmypicture</originalPath>

 <recycleBinItemAttributes>

 <size>50MB</size>

 <deleteTime>2014-02-01T07:29:45Z</deleteTime>

 <createTime>2014-01-19T08:30:50Z</createTime>

 </recycleBinItemAttributes>

 </recycleBinItem>

 <recycleBinItem>

 <type>1</type>

 <name>novel111.pdf</name>

 <originalPath>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel111.pdf</originalPath>

 <recycleBinItemAttributes>

 <fileType>pdf</fileType>

 <size>2MB</size>

 <deleteTime>2014-01-03T07:29:45Z</deleteTime>

 <createTime>2014-01-01T08:30:50Z</createTime>

 </recycleBinItemAttributes>

 </recycleBinItem>

 </recycleBinItemList>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin</resourceURL>
</ucd:recycleBin>

6.6.4 PUT

This operation is used for revoking or deleting items in recycle bin.

6.6.4.1 Example 1: Revoking recycle bin items
(Informative)
6.6.4.1.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/recycleBin HTTP/1.1

Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:recycleBin xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

<recycleBinItemList>

 <recycleBinItem>

 <type>1</type>

 <name>novel111.pdf</name>

 <originalPath>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel111.pdf</originalPath>

 <recycleBinItemAttributes>

 <fileType>pdf</fileType>

 <size>2MB</size>

 <deleteTime>2014-01-03T07:29:45Z</deleteTime>

 <createTime>2014-01-01T08:30:50Z</createTime>

 </recycleBinItemAttributes>

 </recycleBinItem>

 <recycleBinTreatment>Revoke</recycleBinTreatment>

 </recycleBinItemList>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin</resourceURL>
</ucd:recycleBin>

6.6.4.1.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 May 2014 06:05:09 GMT

6.6.4.2 Example 2: Clean the recycle bin
(Informative)
6.6.4.2.1 Request

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/recycleBin HTTP/1.1

Host: example.com

Accept: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<ucd:recycleBin xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <recycleBinItemList>

 <recycleBinTreatment>Delete</recycleBinTreatment>

 </recycleBinItemList>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin</resourceURL>
</ucd:recycleBin>

6.6.4.2.2 Response

	HTTP/1.1 204 No Content

Date: Thu, 05 May 2014 06:05:09 GMT

6.6.5 POST

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC2616].

6.6.6 DELETE

This operation is used to delete a folder to recycle bin or permanently. All the contained subfolders and files in the targeted folder SHALL be deleted as well.
The server responds to a DELETE request with an HTTP 204 No Content response.

6.7 Resource: Search for files or folders
The resource used is:

//{serverRoot}/ucd/{apiVersion}/{userId}/operations/search
This resource is used to search folders or files.
6.7.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.7.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.7.5 POST
This operation is used for search folders or files, where the set is defined by selection criteria.
6.7.5.1 Example 1: Search
(Informative)

6.7.5.1.1 Request

	POST /exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:searchCriteria xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <maxEntries>10</maxEntries>

 <searchKey>*my*</searchKey>

 <searchScope>

 <reference>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder</resourceURL>

 </reference>

 </searchScope>

 <sortCriterion>Ascending by Date</sortCriterion>
</ucd:searchCriteria>

6.7.5.1.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?><ucd:searchResult xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <result>

 <folderSearchResult>

 <folder>

 <folderAttributes>

 <root>No</root>

 <size>15MB</size>

 <createTime>2014-01-05T06:03:05Z</createTime>

 <filesNumber>3</filesNumber>

 <subFoldersNumber>0</subFoldersNumber>

 <owner>George Smith</owner>

 <accessControlList>

 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>

 </accessControlEntry>

 </accessControlList>

 </folderAttributes>

 <files>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel001.pdf</resourceURL>

 </reference>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel002.pdf</resourceURL>

 </reference>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel003.pdf</resourceURL>

 </reference>

 </files>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel</resourceURL>

 </folder>

 </folderSearchResult>

 <fileSearchResult>

 <file>

 <fileAttributes>

 <fileType>doc</fileType>

 <size>200KB</size>

 <createTime>2014-01-09T18:20:40Z</createTime>

 <owner>George Smith</owner>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>86D471913EE4B1DF2F58231FE8653BBCF371362F</value>

 </hash>

 <share>

 <isShare>No</isShare>

 </share>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc</resourceURL>

 </file>

 <file>

 <fileAttributes>

 <fileType>jpg</fileType>

 <size>500KB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

 <owner>George Smith</owner>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>58231FE8653BBCF371362F86D471913EE4B1DF2F</value>

 </hash>

 <share>

 <isShare>Yes</isShare>

 <shareLink>http://example.com/GeorgeSmith/mydocument2.jpg</shareLink>

 <accessCode>12345</accessCode>

 </share>

 <revisionList>

 <reference><resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001</resourceURL>

 </reference>

 </revisionList>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL>

 </file>

 </fileSearchResult>

 </result>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search</resourceURL>

</ucd:searchResult>

	

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.8 Resource: List the shared files
The resource used is:

//{serverRoot}/ucd/{apiVersion}/{userId}/operations/listShare
This resource is used to list all file sharing.
6.8.1 Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	Identifier of user.

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Unified Cloud Disk, see section 7.

6.8.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
6.8.5 POST
This operation is used to list all file sharing.
6.8.5.1 Example 1: List the shared files
(Informative)

6.8.5.1.1 Request

	POST /exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/listShare HTTP/1.1
Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

6.8.5.1.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<ucd:shareList xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">
 <share>

 <isShare>Yes</isShare>

 <shareLink>http://example.com/GeorgeSmith/mydocument2.jpg</shareLink>

 <accessCode>12345</accessCode>

 </share>
</ucd:shareList>

	

6.8.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC2616].
7. Fault definitions

7.1 Service Exceptions

<< This section provides details about Service Exception type of faults specific for that particular API. Some APIs do have specific Service Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Service Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Service Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful Network Message Storage API.
<< If API has specific Service Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Service Exception codes consists of a prefix “SVC” followed by 4 digit code number.
The original Service Exception codes from the baseline product (if any) are included unchanged.
For a new Service Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment >>
For common Service Exceptions refer to [REST_NetAPI_Common]. The following additional Service Exception codes are defined for the RESTful Network Message Storage API.
7.1.1 SVC[code number]: [Text for exception header]
	Name
	Description

	MessageID
	SVC[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <Variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Service Exception code can be used with]

7.2 Policy Exceptions

<< This section provides details about Policy Exception type of faults specific for that particular API. Some APIs do have specific Policy Exception fault definitions, some don’t have. Pick the right text block. Delete this comment. >>
<< If API has no specific Policy Exception codes defined either in that particular API version, or in the baseline version, use the following text. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. There are no additional Service Exception codes defined for the RESTful Network Message Storage API.
<< If API has specific Policy Exception codes defined either in that particular version, or in the baseline version, use the following text and include the codes in the table(s).
Policy Exception code consists of a prefix “POL” followed by 4 digit code number.
The original Policy Exception codes from the baseline product (if any) are included unchanged.
For a new Policy Exception code, 4 digit code number MUST be obtained from OMNA Exception codes registry. Delete this comment. >>
For common Policy Exceptions refer to [REST_NetAPI_Common]. The following additional Policy Exception codes are defined for the RESTful [Functional Area] API.
7.2.1 POL[code number]: [Text for exception header]
	Name
	Description

	MessageID
	POL[code number]

	Text
	[Text describing the fault with optional replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1]

	Variables
	[%n variables to substitute into the string, or “None”]

	HTTP status code(s)
	[HTTP status code(s) where that particular Policy Exception code can be used with]

 << Example - DELETE this row and the following table. >>
7.2.2 POL1003: Refund exceeds original charge amount
	Name
	Description

	MessageID
	POL1003

	Text
	The refund amount exceeds the original amount charged %1

	Variables
	%1 – the original amount charged

	HTTP status code(s)
	403 Forbidden

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _UCD-V1_0
	[05 may 2014]
	All
	Initial baseline
OMA-CD-UCD-2014-0027-INP_REST_NetAPI_UCD_TS_base

	
	[12 Jun 2014]
	[All]
	
OMA-CD-UCD-2014-0029R03-CR_UCD_2_resource_datatype_fix

	
	[12 Jun 2014]
	[section 6]
	
OMA-CD-UCD-2014-0031R03-CR_UCD_2_example

	
	[12 Jun 2014]
	[section Appendix D]
	OMA-CD-UCD-2014-0033R02-CR_UCD_2_JSON_example

	
	[12 Jun 2014]
	[section Appendix C]
	OMA-CD-UCD-2014-0034-CR_UCD_2_x_www_form_urlencoded_example

	
	[12 Jun 2014]
	[section Appendix B]
	OMA-CD-UCD-2014-0035R01-CR_UCD_2_Static_Conformance_Requirements

	
	[12 Jun 2014]
	[section Appendix F]
	OMA-CD-UCD-2014-0036-CR_UCD_2_Light_weight_Resources

	
	[12 Jun 2014]
	[section 5.3]
	OMA-CD-UCD-2014-0039R01-CR_UCD_2_Sequence_Diagrams

	
	[12 Jun 2014]
	[section G]
	OMA-CD-UCD-2014-0042R02-CR_Interface_UCD_2_Authorization_Aspects

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

B.1.1
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

B.2 SCR for REST.UCD Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-SUPPORT-S-001-M
	Support for the RESTful UCD API
	5, 6
	

	REST-UCD-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST-UCD-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

	REST-UCD-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	Appendix C
	

B.2.1 SCR for REST.UCD.Folder Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-FOLDER-001-M
	Support for folder operations
	6.1
	

	REST-UCD-FOLDER-002-M
	List folder information

- GET
	6.1.3
	

	REST-UCD-FOLDER-003-M
	Create folder - POST
	6.1.4
	

	REST-UCD-FOLDER-004-M
	Delete folder to recycle bin or permanently - DELETE
	6.1.6
	

B.2.2 SCR for REST.UCD.Folder.Attr Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-FOLDER-ATTR-001-O
	Support for the management of individual folder attributes
	6.2
	

	REST-UCD-FOLDER-ATTR-002-O
	Retrieve individual folder attributes- GET
	6.2.3
	

	REST-UCD-FOLDER-ATTR-003-O
	Update individual folder ACL information - PUT
	6.2.4
	

B.2.3 SCR for REST.UCD.File Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-FILE-001-M
	Support for file operations
	6.3
	

	REST-UCD-FILE-002-M
	Download file
- GET
	6.3.3
	

	REST-UCD-FILE-003-M
	Upload file or Update file in range - PUT
	6.3.4
	

	REST-UCD-FILE-004-M
	Delete file to recycle bin or permanently- DELETE
	6.3.6
	

B.2.4 SCR for REST.UCD.File.Attr Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-FILE-ATTR-001-O
	Support for the management of individual file attributes
	6.4
	

	REST-UCD-FILE-ATTR-002-O
	Retrieve individual file attributes- GET
	6.4.3
	

	REST-UCD-FILE-ATTR-003-O
	Update individual file information including fileType, metadatas, ACL information, sharing information - PUT
	6.4.4
	

B.2.5 SCR for REST.UCD.Recyclebin Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-RECYCLEBIN-001-M
	Support for Recycle bin operations
	6.5
	

	REST-UCD-RECYCLEBIN-002-M
	List recycle bin
- GET
	6.5.3
	

	REST-UCD-RECYCLEBIN-003-M
	Revoke or Delete the items of recycle bin- PUT
	6.5.4
	

B.2.6 SCR for REST.UCD.Search Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-SEARCH-001-M
	Support for search operations
	6.6
	

	REST-UCD-SEARCH-002-M
	Search file or folder
- POST
	6.6.5
	

B.2.7 SCR for REST.UCD.ListShare Server

	Item
	Function
	Reference
	Requirement

	REST-UCD-LISTSHARE-001-M
	Support for listShare operations
	6.7
	

	REST-UCD-LISTSHARE-002-M
	List all file sharing
- POST
	6.7.5
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)

C.1

	
	
	
	

	
	
	
	

	

	
	
	
	

	

C.1.1
C.1.1.1
	

C.1.1.2
	

This section defines a format for the RESTful UCD API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-form-urlencoded character escaping rules from [W3C_URLENC].
The encoding is defined below for the following UCD REST operations which are based on POST requests:
· search folders or files
C.2 Search folders or files
This operation is used to search folders or files. See section 6.6.5.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	fromCursor
	xsd:string
	Yes
	The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with the same search selection criteria.

	maxEntries
	xsd:int
	Yes
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	searchKey
	xsd:string
	Yes
	Search key

If there is no search key, the server will retrieval all available elements.

	resourceURL
	xsd:anyURI
	No
	The URL that addresses the resource. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

	sortCriterion
	xsd:string
	Yes
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

If the operation was successful, it returns an HTTP Status of “201 Created”.

C.2.1 Example

(Informative)

C.2.1.1 Request

	POST /exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

maxEntries=10&
searchKey=*my*&
resourceURL=http%3A%2F%2FexampleAPI%2Fucd%2Fv1%2Ftel%3A%2B19585550100%2Fmyfolder&
sortCriterion=Ascending by Date

C.2.1.2 Response

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>
<ucd:searchResult xmlns:ucd="urn:oma:xml:rest:netapi:ucd:1">

 <result>

 <folderSearchResult>

 <folder>

 <folderAttributes>

 <root>No</root>

 <size>15MB</size>

 <createTime>2014-01-05T06:03:05Z</createTime>

 <filesNumber>3</filesNumber>

 <subFoldersNumber>0</subFoldersNumber>

 <owner>George Smith</owner>

 <accessControlList>

 <accessControlEntry>

 <acetype>ALLOW</acetype>

 <identifier>OWNER@</identifier>

 <aceflags>DIRECTORY_INHERIT</aceflags>

 <acemask>LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE </acemask>

 </accessControlEntry>

 </accessControlList>

 </folderAttributes>

 <files>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel001.pdf</resourceURL>

 </reference>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel002.pdf</resourceURL>

 </reference>

 <reference>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel003.pdf</resourceURL>

 </reference>

 </files>

 <resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel</resourceURL>

 </folder>

 </folderSearchResult>

 <fileSearchResult>

 <file>

 <fileAttributes>

 <fileType>doc</fileType>

 <size>200KB</size>

 <createTime>2014-01-09T18:20:40Z</createTime>

 <owner>George Smith</owner>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>86D471913EE4B1DF2F58231FE8653BBCF371362F</value>

 </hash>

 <share>

 <isShare>No</isShare>

 </share>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc</resourceURL>

 </file>

 <file>

 <fileAttributes>

 <fileType>jpg</fileType>

 <size>500KB</size>

 <createTime>2014-01-19T08:30:50Z</createTime>

 <owner>George Smith</owner>

 <hash>

 <algorithm>sha-1</algorithm>

 <value>58231FE8653BBCF371362F86D471913EE4B1DF2F</value>

 </hash>

 <share>

 <isShare>Yes</isShare>

 <shareLink>http://example.com/GeorgeSmith/mydocument2.jpg</shareLink>

 <accessCode>12345</accessCode>

 </share>

 <revisionList>

 <reference><resourceURL>http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/%myfolder%2Fmydocument/mydocument2.jpg.rev001</resourceURL>

 </reference>

 </revisionList>

 </fileAttributes>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg</resourceURL>

 </file>

 </fileSearchResult>

 </result>

 <resourceURL>http://exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search</resourceURL>

</ucd:searchResult>

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a Light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1

	

	

D.2 Retrieve information about a folder (section 6.1.3.1)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"folder": {

 "files": {"reference": [

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc"},

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg"}

]},

 "folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z",

 "filesNumber": "2",

 "owner": "George Smith",

 "root": "No",

 "size": "5MB",

 "subFoldersNumber": "1"

 },

 "resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument",

 "subfolders": {"reference": {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel"}}

}}

D.3 Retrieve information about a non-existent folder (section 6.1.3.2)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fotherdocument HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 404 Not Found

Content-Type: application/xml

Content-Length: nnnn

Date: Fri, 17 Jan 2014 17:51:59 GMT
{"requestError": {

 "link": {

 "href": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fotherdocument",

 "rel": "folder"

 },

 "serviceException": {

 "messageId": "SVC0004",

 "text": "No valid addresses provided in message part %1",

 "variables": "Request-URI"

 }

}}

D.4 Retrieve information about a large folder (section 6.1.3.3)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument?maxEntries=1 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"folder": {

 "cursor": "abcdef?cur&194",

 "folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z ",

 "filesNumber": "2",

 "owner": "George Smith",

 "root": "No",

 "size": "5MB",

 "subFoldersNumber": "1"

 },

 "resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument",

 "subfolders": {"reference": {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel"}}

}}

D.5 Retrieve information about a large folder (section 6.1.3.4)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument?fromCursor=abcdef%3Fcur%38194&maxEntries=2 HTTP/1.1

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"folder": {

 "files": {"reference": [

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc"},

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg"}

]},

 "folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z ",

 "filesNumber": "2",

 "owner": "George Smith",

 "root": "No",

 "size": "5MB",

 "subFoldersNumber": "1"

 },

 "resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument"

}}

D.6 Create folder, response with a location of created resource (section 6.1.4.1)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Response:

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument
Content-Type: application/xml

Content-Length: nnnn

{"reference": {"resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument"}}

D.7 Create folder, response with a copy of created resource (section 6.1.4.2)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1

Accept: application/xml

Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Response:

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument
Content-Type: application/xml

Content-Length: nnnn

{"folder": {

 "folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z",

 "filesNumber": "0",

 "owner": "George Smith",

 "root": "No",

 "size": "0KB",

 "subFoldersNumber": "0"

 },

 "resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument"

}}

D.8 Delete a folder to recycle bin, response with “204 No Content” (section 6.1.6.1)

Request:

	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com

Accept: application/xml

{"deleteMode": {"deleteMode":DeleteToRecycleBin}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

D.9 Delete a folder permanently, response with “204 No Content” (section 6.1.6.2)

Request:

	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument HTTP/1.1
Host: example.com

Accept: application/xml

{"deleteMode": {"deleteMode":DeletePermanently}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

D.10 Retrieve a folder’s attributes (section 6.2.3.1)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/folderAttributes
HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z",

 "filesNumber": "2",

 "owner": "George Smith",

 "root": "No",

 "size": "5MB",

 "subFoldersNumber": "1"

}}

D.11 Update individual folder ACL information (section 6.2.4.1)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/folderAttributes/acl HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn
{"accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

}}}

Response:

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

{"accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

}}}

D.12 Downloading a file (section 6.3.3.1)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Length: nnnn

[mydocument1.doc’s content]

D.13 Uploading a file, response with a location of created resource (section 6.3.4.1)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: image/jpg
Content-Length: nnnn

MIME-Version: 1.0

[mydocument2.jpg’s content]

Response:

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg

Content-Type: application/xml

Content-Length: nnnn

{"reference": {"resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg"}}

D.14 Uploading a file, response with a copy of created resource (section 6.3.4.2)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: image/jpg
Content-Length: nnnn

MIME-Version: 1.0

[mydocument2.jpg’s content]

Response:

	HTTP/1.1 201 Created

Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg

Content-Type: application/xml

Content-Length: nnnn

{"file": {

 "fileAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "FILE_INHERIT",

 "acemask": "READ_DATA, WRITE_DATA, APPEND_DATA, READ_NAMED_ATTRS, WRITE_NAMED_ATTRS, READ_ATTRIBUTES, WRITE_ATTRIBUTES, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z",

 "fileType": "jpg",

 "hash": {

 "algorithm": "sha-1",

 "value": "58231FE8653BBCF371362F86D471913EE4B1DF2F"

 },

 "metadataList": {"metadata": [

 {

 "name": "publisher",

 "value": "XYZ"

 },

 {

 "name": "project",

 "value": "abc"

 },

 {

 "name": "department",

 "value": "Sales"

 }

]},

 "owner": "George Smith",

 "revisionList": {"reference": {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001"}},

 "share": {"isShare": "No"},

 "size": "500KB"

 },

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg"

}}

D.15 Updating file in range, response with a copy of created resource (section 6.3.4.3)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1

Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Content-Type: binary/oct-stream
Range:bytes=start-end

[mydocument1.doc’s updating content]

Response:

	HTTP/1.1 200 OK
Date: Tue, 19 Jan 201408:30:50 GMT

Location: http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc
Content-Type: application/xml

Content-Range: start-end/size
{"file": {

 "fileAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "accessTime": "2014-01-10T12:10:30Z",

 "createTime": "2014-01-09T18:20:40Z",

 "fileType": "doc",

 "hash": {

 "algorithm": "sha-1",

 "value": "86D471913EE4B1DF2F58231FE8653BBCF371362F"

 },

 "metadataList": {"metadata": [

 {

 "name": "publisher",

 "value": "HZ"

 },

 {

 "name": "project",

 "value": "abc"

 },

 {

 "name": "department",

 "value": "Sales"

 }

]},

 "modifyTime": "2014-01-19T08:30:50Z",

 "owner": "George Smith",

 "share": {"isShare": "No"},

 "size": "200KB"

 },

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc"

}}

D.16 Delete a file to recycle bin, response with “204 No Content” (section 6.3.6.1)

Request:

	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com

Accept: application/xml

{"deleteMode": {"deleteMode":DeleteToRecycleBin}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

D.17 Delete a file to permanently, response with “204 No Content” (section 6.3.6.2)

Request:

	DELETE /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc HTTP/1.1
Host: example.com

Accept: application/xml

{"deleteMode": {"deleteMode":DeletePermanently}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 Sep 2013 06:05:09 GMT

D.18 Retrieve a file’s attributes (section 6.4.3.1)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes
HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK
Date: Thu, 04 Jun 2012 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"fileAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-19T08:30:50Z",

 "fileType": "jpg",

 "hash": {

 "algorithm": "sha-1",

 "value": "58231FE8653BBCF371362F86D471913EE4B1DF2F"

 },

 "metadataList": {"metadata": [

 {

 "name": "publisher",

 "value": "XYZ"

 },

 {

 "name": "project",

 "value": "abc"

 },

 {

 "name": "department",

 "value": "Sales"

 }

]},

 "owner": "George Smith",

 "revisionList": {"reference": {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001"}},

 "share": {"isShare": "No"},

 "size": "500KB"

}}

D.19 Update individual file’s attribute of fileType (section 6.4.4.1)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/fileType HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

{"fileType": "png"}

Response:

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

{"fileType": "png"}

D.20 Update individual file’s attribute of metadata (section 6.4.4.2)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/metadatas HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

{"metadataList": {"metadata": [

 {

 "name": "publisher",

 "value": "XYZ"

 },

 {

 "name": "project",

 "value": "def"

 },

 {

 "name": "department",

 "value": "Sales"

 }

]}}

Response:

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

{"metadataList": {"metadata": [

 {

 "name": "publisher",

 "value": "XYZ"

 },

 {

 "name": "project",

 "value": "def"

 },

 {

 "name": "department",

 "value": "Sales"

 }

]}}

D.21 Update individual file ACL information (section 6.4.4.3)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/acl HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn
{"accessControlList": {"accessControlEntry": {

 "aceflags": "FILE_INHERIT",

 "acemask": "READ_DATA, WRITE_DATA, APPEND_DATA, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

}}}

Response:

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

{"accessControlList": {"accessControlEntry": {

 "aceflags": "FILE_INHERIT",

 "acemask": "READ_DATA, WRITE_DATA, APPEND_DATA, DELETE, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

}}}

D.22 Update individual file sharing information (section 6.4.4.4)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg/fileAttributes/share HTTP/1.1
Host: example.com

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

{"share": {

 "accessCode": "12345",

 "isShare": "Yes",

 "shareLink": "http://example.com/GeorgeSmith/mydocument2.jpg"
}}

Response:

	HTTP/1.1 200 OK

Date: Thu, 04 Mar 2014 02:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn

{"share": {

 "accessCode": "12345",

 "isShare": "Yes",

 "shareLink": "http://example.com/GeorgeSmith/mydocument2.jpg"
}}

D.23 List recycle bin (section 6.5.3.1)

Request:

	GET /exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Response:

	HTTP/1.1 200 OK

Date: Fri, 14 Mar 2014 09:51:59 GMT

Content-Type: application/xml

Content-Length: nnnn
{"recycleBin": {

 "recycleBinItemList": {"recycleBinItem": [

 {

 "name": "mypicture",

 "originalPath": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmypicture",

 "recycleBinItemAttributes": {

 "createTime": "2014-01-19T08:30:50Z",

 "deleteTime": "2014-02-01T07:29:45Z",

 "size": "50MB"

 },

 "type": "0"

 },

 {

 "name": "novel111.pdf",

 "originalPath": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel111.pdf",

 "recycleBinItemAttributes": {

 "createTime": "2014-01-01T08:30:50Z",

 "deleteTime": "2014-01-03T07:29:45Z",

 "fileType": "pdf",

 "size": "2MB"

 },

 "type": "1"

 }

]},

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin"

}}

D.24 Revoking recycle bin items (section 6.5.4.1)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin HTTP/1.1

Host: example.com

Accept: application/xml

{"recycleBin": {

 "recycleBinItemList": {

 "recycleBinItem": {

 "name": "novel111.pdf",

 "originalPath": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel111.pdf",

 "recycleBinItemAttributes": {

 "createTime": "2014-01-01T08:30:50Z",

 "deleteTime": "2014-01-03T07:29:45Z",

 "fileType": "pdf",

 "size": "2MB"

 },

 "type": "1"

 },

 "recycleBinTreatment": "Revoke"

 },

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin"

}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 May 2014 06:05:09 GMT

D.25 Clean all items in recycle bin (section 6.5.4.2)

Request:

	PUT /exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin HTTP/1.1

Host: example.com

Accept: application/xml

{"recycleBin": {

 "recycleBinItemList": {"recycleBinTreatment": "Delete"},

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/recyclebin"

}}

Response:

	HTTP/1.1 204 No Content

Date: Thu, 05 May 2014 06:05:09 GMT

D.26 Search (section 6.6.5.1)

Request:

	POST /exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search HTTP/1.1
Host: example.com
Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903

Accept: application/xml

Content-Type: application/xml

Content-Length: nnnn

{"searchCriteria": {

 "maxEntries": "10",

 "searchKey": "*my*",

 "searchScope": {"reference": {"resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder"}},

 "sortCriterion": "Ascending by Date"

}}

Response:

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

{"searchResult": {

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/search",

 "result": {

 "fileSearchResult": {"file": [

 {

 "fileAttributes": {

 "createTime": "2014-01-09T18:20:40Z",

 "fileType": "doc",

 "hash": {

 "algorithm": "sha-1",

 "value": "86D471913EE4B1DF2F58231FE8653BBCF371362F"

 },

 "owner": "George Smith",

 "share": {"isShare": "No"},

 "size": "200KB"

 },

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument1.doc"

 },

 {

 "fileAttributes": {

 "createTime": "2014-01-19T08:30:50Z",

 "fileType": "jpg",

 "hash": {

 "algorithm": "sha-1",

 "value": "58231FE8653BBCF371362F86D471913EE4B1DF2F"

 },

 "owner": "George Smith",

 "revisionList": {"reference": {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg.rev001"}},

 "share": {

 "accessCode": "12345",

 "isShare": "Yes",

 "shareLink": "http://example.com/GeorgeSmith/mydocument2.jpg"

 },

 "size": "500KB"

 },

 "resourceURL": "http://exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument/mydocument2.jpg"

 }

]},

 "folderSearchResult": {"folder": {

 "files": {"reference": [

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel001.pdf"},

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel002.pdf"},

 {"resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel/novel003.pdf"}

]},

 "folderAttributes": {

 "accessControlList": {"accessControlEntry": {

 "aceflags": "DIRECTORY_INHERIT",

 "acemask": "LIST_DIRECTORY, ADD_FILE, ADD_SUBDIRECTORY, DELETE_CHILD, READ_ACL, WRITE_ACL, WRITE_OWNER, SYNCHRONIZE ",

 "acetype": "ALLOW",

 "identifier": "OWNER@"

 }},

 "createTime": "2014-01-05T06:03:05Z",

 "filesNumber": "3",

 "owner": "George Smith",

 "root": "No",

 "size": "15MB",

 "subFoldersNumber": "0"

 },

 "resourceURL": "http://example.com/exampleAPI/ucd/v1/tel%3A%2B19585550100/myfolder%2Fmydocument%2Fnovel"

 }}

 }

}}

D.27 List the shared files (section 6.7.5.1)

Request:

	POST /exampleAPI/ucd/v1/tel%3A%2B19585550100/operations/listShare HTTP/1.1
Accept: application/xml

Authorization: BEARER 08776724-6d0d-4aa6-a404-2bc19b5cf903
Host: example.com

Response:

	HTTP/1.1 200 OK
Date: Fri, 14 Mar 2014 07:51:50 GMT

Content-Type: application/xml

Content-Length: nnnn

{"shareList": {"share": {

 "accessCode": "12345",

 "isShare": "Yes",

 "shareLink": "http://example.com/GeorgeSmith/mydocument2.jpg"

}}}

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)
As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight Resources
(Informative)

	
	
	
	
	

	

	
	
	
	

	
	
	
	
	

	

	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

The following table lists all UCD data structure elements that can be accessed individually as Light-weight Resources.
For each Light-weight Resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of Light-weight Resources (and references to data structures)
	Element/attribute
that can be accessed as Light-weight Resource
	Root element name for the Light-weight Resource
	Root element type for the Light-weight Resource
	[ResourceRelPath] string that needs to be appended to the corresponding Heavy-weight Resource URL

	File
(5.2.2.1)
	fileAttributes
	fileAttributes
	FileAttributes
	fileAttributes

	FileAttributes

(5.2.2.2)
	fileType
	fileType
	xsd:string
	fileAttributes/fileType

	
	metadataList
	metadataList
	MetadataList
	fileAttributes/metadatas

	
	accessControlList
	accessControlList
	AccessControlList
	fileAttributes/acl

	
	share
	share
	Share
	fileAttributes/share

	Folder

(5.2.2.8)
	folderAttributes
	folderAttributes
	FolderAttributes
	folderAttributes

	FolderAttributes
(5.2.2.9)
	accessControlList
	accessControlList
	AccessControlList
	folderAttributes/acl

Appendix G. Authorization aspects
(Normative)

G.1

·
·
G.1.1
G.1.1.1

·
·
	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

G.1.1.2

·
G.1.1.3

	
	

	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	

	
	
	

G.1.2

·
·
This appendix specifies how to use the RESTful Unified Cloud Disk API in combination with some authorization frameworks.

G.2 Use with OMA Authorization Framework for Network APIs
The RESTful UCD API MAY support the authorization framework defined in [Autho4API_10].

A RESTful UCD API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.2.1 Scope values
G.2.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful UCD API:

· SHALL support the scope values defined in the table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_ucd.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1. This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_ucd.file
	Provide access to all defined operations(e.g., read, delete, update, etc.) on file
	No

	oma_rest_ucd.folder
	Provide access to all defined operations(e.g., read, delete, etc.) on folder
	No

	oma_rest_ucd.recycleBin
	Provide access to all defined operations(e.g., read, delete, etc.) on recycleBin
	No

	oma_rest_ucd.search
	Provide access to all defined operations(e.g., allowed or not allowed to search) on search
	No

	oma_rest_ucd.listShare
	Provide access to all defined operations on listShare
	No

Table 1: Scope values for RESTful UCD API

G.2.1.2 Downscoping

In the case where the client requests authorization for “oma_rest_ucd.all_{apiVersion}” scope, the authorization server and/or resource owner MAY restrict the granted scope to some of the following scope values:
· oma_rest_ucd.file
· oma_rest_ucd.folder
· oma_rest_ucd.recyclebin
· oma_rest_ucd.search
· oma_rest_ucd.listShare
G.2.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful UCD API map to the REST resources and methods of this API. In these tables, the root “oma_rest_ucd.” of scope values is omitted for readability reasons.

	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	A file
	/{folderName}/{fileName}
	6.3
	all_{apiVersion} or
file
	all_{apiVersion} or
file
	n/a
	all_{apiVersion} or
file

	Individual File Attributes
	/{folderName}/{fileName}/[ResourceRelPath]

	6.4
	all_{apiVersion} or
file
	all_{apiVersion} or
file
	n/a
	n/a

Table 2: Required scope values for: managing files

	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	A folder
	/{folderName}
	6.1
	all_{apiVersion} or
folder
	all_{apiVersion} or
folder
	n/a
	all_{apiVersion} or
folder

	Individual folder attributes
	/{folderName}/[ResourceRelPath]

	6.2
	all_{apiVersion} or
folder
	all_{apiVersion} or
folder
	n/a
	n/a

Table 3: Required scope values for: managing folder

	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Recycle Bin
	/recycleBin
	6.5
	all_{apiVersion} or
recycleBin
	all_{apiVersion} or
recycleBin
	n/a
	 n/a

Table 4: Required scope values for: managing recyclebin
	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	File or Folder search
	/operations/search
	6.6
	n/a
	n/a
	all_{apiVersion} or
search
	 n/a

Table 5: Required scope values for: managing search
	Resource
	URL
Base URL: http://{serverRoot}/ucd/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	List shared files
	/operations/listShare
	6.7
	n/a
	n/a
	all_{apiVersion} or
listShare
	 n/a

Table 6: Required scope values for: managing listShare
G.2.2 Use of ‘acr:auth’

This section specifies the use of ‘acr:auth’ in place of an end user identifier in a resource URL path.

An ‘acr’ URI of the form ‘acr:auth’, where ‘auth’ is a reserved keyword MAY be used to avoid exposing a real end user identifier in the resource URL path.

A client MAY use ‘acr:auth’ in a resource URL in place of a {userId} when the RESTful UCD API is used in combination with [Autho4API_10].
In the case the RESTful UCD API supports [Autho4API_10], the server:

· SHALL accept ‘acr:auth’ as a valid value for the resource URL variable {userId}

· SHALL conform to [REST_NetAPI_Common] section 5.8.1.1 regarding the processing of ‘acr:auth’.
/{fileName }

/listSshare

/search

Figure � SEQ Figure * ARABIC �1� UCD-2 Resource structure defined by this specification

/operations

/recycle_Bbin

/{folderName }

//{serverRoot}/ucd/{apiVersion}/{userId}

/[ResourceRelPath]

/[ResourceRelPath]

Application

Server

1. PUT create a folder

Response : folder

Create a folder

2.GET read a folder

Response : folder

Retrieve folder information

3. DELETE delete a folder

Response

Delete a folder

Application

Server

1. PUT update folder acl

Response: accessControlList

Update folder attributes

2.GET get folder attributes

Response : folderAttributes

Retrieve folder attributes

Application

Server

1. PUT create a file

Response : file

Create a file

2.GET read a file

Response :file

Retrieve file information

3. DELETE delete a file

Response

Delete a file

Application

Server

1. PUT update individual file attribute

Response

Update user defined metadata

2.GET get file attributes

Response : file attributes

Retrieve file attributes

Application

Server

1. GET list the recycle bin

Response: RecycleBin

Retrieve the files and folders information in the recycle bin

2.PUT revoke a file in the recycle bin

Response

The file is revoked

Application

Server

1. POST search for files and folders folders

Response: SearchResult

Search the files and folders using the search criteria

Application

Server

1. POST list the shared files

Response: SharedLIst

Retrieve the shared files of the user

(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-TEMPLATE-TS_RESTful_Network_API-20130226-I]

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

