エラー! 指定したスタイルは使われていません。
Page 2 V(39)

Strawman AD/TS
Thermometer Profile for GotAPI
June 9, 2016

[image: image1]
Contents
31.
Introduction

42.
References

42.1
Normative References

53.
Terminology and Conventions

53.1
Conventions

53.2
Definitions

64.
Requirements

64.1
High-Level Functional Requirements

84.2
Thermometer Specific Functional Requirements

205.
Architectural Model

205.1
Service Discovery

215.2
Thermometer Monitoring API

225.2.1
The message flow of the Pass-Through-based Plug-In

235.2.2
The message flow of the TSF-based Plug-In

266.
Technical Specifications

266.1
The Service Discovery on the GotAPI-4 Interface

276.2
The Pass-Through-based Plug-In

286.2.1
The request from an application to the GotAPI Server on the GotAPI-1 Interface

286.2.2
The request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface

296.2.3
The response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

326.2.4
The response from the GotAPI Server to the application on the GotAPI-1 Interface

346.2.5
Establishing a WebSocket channel from the application to the GotAPI Server

346.2.6
The request for the WebSocket session from the application to the GotAPI Server on the WebSocket channel

356.2.7
The response for the WebSocket session from the GotAPI Server to the application on the WebSocket channel

356.2.8
The event message of measurement from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

376.2.9
The event message of measurement from the GotAPI Server to the application on the WebSocket channel

386.2.10
The stop request from the application to the GotAPI Server on the GotAPI-1 Interface

386.2.11
The stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface

396.2.12
The stop response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

406.2.13
The stop response from the GotAPI Server to the appliaction on the GotAPI-1 Interafce

416.2.14
JavaScript code example

416.3
The TSF-based Plug-In

416.3.1
The request from an application to the GotAPI Server on the GotAPI-1 Interface

426.3.2
The request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface

436.3.3
The response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

456.3.4
The response from the GotAPI Server to the application on the GotAPI-1 Interface

476.3.5
JavaScript code example

1. Introduction

Body temperature is one of the essential vital signs health measurements.
The GotAPI provides a multi-purpose web-based framework to enable interwork applications and external devices such as thermometers. The GotAPI consists of the GotAPI Server and the Extension Plug-Ins. A smartphone application communicates with a specified Extension Plug-In through the GotAPI Server using Web technologies such as XMLHttpRequest, or WebSocket.
In the GotAPI framework, an Extension Plug-In interacts with thermometer devices and exposes interfaces to the applications through the GotAPI Server. Thanks to Extension Plug-Ins, smartphone applications can interact with many kinds of thermometer devices using consistent APIs specified in this specification.

[image: image2]
2. References
2.1 Normative References
	[GOTAPI]
	“OMA Generic Open Terminal API Framework V1.0", Open Mobile Alliance™. URL: http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/generic-open-terminal-api-framework-1-0

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[HTTP/1.1]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/rfc2616

	[WebSocket]
	"The WebSocket API", Worldwide Web Consortium (W3C), URL: http://www.w3.org/TR/websockets/

	[WebSocketProtocol]
	"The WebSocket Protocol", Internet Engineering Task Force (IETF), URL: https://tools.ietf.org/html/rfc6455

3. Terminology and Conventions
3.1 Conventions
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions
	Thermometer Plug-In
	An Extension Plug-In that is defined by the GotAPI specification. It interacts with thermometer devices and provides Web APIs, exposing the features of thermometer devices, for applications through the GotAPI Server.

	
	

	Application
	A web application running on a web browser or a native application running on the runtime supported by the underlying operating system (e.g. Android). A hybrid application is also included in the term.

4. Requirements

[image: image3]
4.1 High-Level Functional Requirements
The Plug-Ins and the APIs designed for consumer/ personal use. The following requirements specify the guidelines for all Health Device Plug-Ins. Values, when reported, are reported as Strings or MDER FLOATs. MDER FLOATs are used to report integers or real numbers. The reason for using MDER FLOATs is to capture precision as reported by the device. An MDER FLOAT is a 32 bit integer interpreted as follows:
1. The most significant 8-bits are the exponent (base 10).

2. The remaining 24-bits are the mantissa.

3. Standard positive/negative representations apply for exponent and mantissa.

4. A negative exponent gives the number of decimal places to the right of the decimal point.

5. There are codes to represent special values.

6. Examples:

	FLOAT
	exponent
	mantissa
	value

	0xFE01E240
	-2
	123456
	1234.56

	0x0201E240
	2
	123456
	12345600

	0x0001E240
	0
	123456
	123456

	0xFB000005
	-5
	5
	0.00005

	0xFD000005
	-3
	5
	0.005

	0xFE00C350
	-2
	50000
	500.00

	0xFF001388
	-1
	5000
	500.0

	0xFB000000
	-5
	0
	0.00000

	0xFD000000
	-3
	0
	0.000

	0xFFFE1DC0
	-1
	-123456
	-12345.6

	0xFEFFFFFE
	-2
	-2
	-0.02

	0x02FFFFFE
	2
	-2
	-200

	0x00FFFF38
	0
	-200
	-200

	0x007FFFFF
	
	
	NaN (Not a Number)

	0x007FFFFE
	
	
	+Inf (Positive infinity)

	0x00800002
	
	
	-Inf (Negative infinity)

	0x00800000
	
	
	NRes (Not at this resolution)

	0x00800001
	
	
	Reserved for future use

	Label
	Description
	Release

	HD-HLF-01
	The Plug-In SHALL be compliant to the GotAPI Extension Plug-In as specified in the GotAPI 1.0 specification.
	1.0

	HD-HLF-02
	The Plug-In MAY support the Temporary Server Feed (TSF) Mechanism as specified in the GotAPI 1.0 specification in order to support additional functions.
	1.0

	HD-HLF-03
	The Plug-In SHALL have a real time clock that is synchronized to UTC and SHALL be aware of its local time zone.
	1.0

	HD-HLF-04
	The Plug-In SHALL have a real time clock with a resolution that matches the resolution of any device that it interacts with.
	1.0

	HD-HLF-05
	The Plug-In SHALL be able to obtain the current time from the device if the device reports a current time. (Devices that report a time stamp with their measurements are required to be able to report the device’s sense of current time to interoperate with the Plug-In.)
	1.0

	HD-HLF-06
	The Plug-In SHALL be able to map any measurement time stamp reported by the device to an HL7 DTM time stamp with offset from UTC to local time. (An HL7 DTM time stamp is YYYYMMDDHHMMSS.sss+/-HHMM). If the device does not report a time stamp with its measurement, the Plug-In SHALL use the time of reception of the measurement as the measurement time stamp. The Plug-In SHALL provide a Boolean indication of ‘true’ if the measurement was provided by the Plug-In because the device did not provide a measurement time stamp.
	1.0

	HD-HLF-07
	The Plug-In SHALL correct any measurement time stamp by the difference between the current time reported by Device and the current time reported by the Plug-In unless the Plug-In knows that the device has a superior synchronization to UTC than the Plug-In does. In other words, if the device does not have superior time synchronization and the current time reported by the device is 20 seconds behind that reported by the Plug-In, the Plug-In adds 20 seconds to any of the measurement time stamps reported by the device. If the device has superior time synchronization, the Plug-In reports the device measurement time stamp unmodified. (Note that PCHA complaint devices have a means of reporting its time synchronization means and state to the Plug-In.)
	1.0

	HD-HLF-08
	The Plug-In SHALL have the capability to connect to and interact with PCHA-compliant devices on at least one PCHA-complaint transport. Non-PCHA compliant devices MAY also be supported as long as the following constraints are met:

1. If the proprietary device reports a time stamp with the measurement, the device SHALL have a means of obtaining its current time such that the Plug-In can satisfy guidelines *-HLF-05 to *-HLF-07.

2. If the device stores data a time stamp SHALL be provided with the measurement. Note this requirement also requires the device provide a means to obtain its current time.
3. The device provides sufficient information such that the Plug-In is able to satisfy the remaining requirements.
	1.0

	HD-HLF-09
	The Plug-In SHALL be able to provide the product name of the connected device. If the Plug-In cannot get the product name, it SHALL create a name for the device using an arbitrary algorithm. The algorithm is up to the Plug-In implementation, and this specification does not define any algorithms. Note that the ‘algorithm’ could be a non-empty user-entry.
	1.0

	HD-HLF-10
	The Plug-In SHALL be able to provide the manufacturer name of the connected device if the Plug-In can get the name. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-11
	The Plug-In SHALL be able to provide the model number of the connected device if the Plug-In can get the model number. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-12
	The Plug-In SHALL be able to provide the firmware revision of the connected device if the Plug-In can get the firmware revision. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-13
	The Plug-In SHALL be able to provide the serial number of the connected device if the Plug-In can get the serial number. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-14
	The Plug-In SHOULD be able to provide the software revision of the connected device if the Plug-In can get the software revision. If reported it SHALL be reported as a string.
	1.0

	HD-HLF-15
	The Plug-In SHOULD be able to provide the hardware revision of the connected device if the Plug-In can get the hardware revision. If reported it SHALL be reported as a string.
	1.0

	HD-HLF-16
	The Plug-In SHOULD be able to provide the part number of the connected device if the Plug-In can get the part number. If reported it SHALL be reported as a string.
Note: Protocol [B1] see Annex B [1]
	1.0

	HD-HLF-17
	The Plug-In SHOULD be able to provide the protocol revision of the connected device if the Plug-In can get the protocol revision. If reported it SHALL be reported as a string.
Note: Protocol [B2] this part of the negotiations see Annex B [2]
	1.0

	HD-HLF-18
	The Plug-In SHALL be able to provide the 64-bit IEEE system id of the connected device as a 16-character HEX string (without a ‘0x’ prefix). If the device does not report an IEEE system id, the Plug-In SHALL send a string of 16 ‘0’ characters.
	1.0

	HD-HLF-19
	The Plug-In SHALL be able to provide the battery level in percent if the device provides a battery level. If reported it SHALL be reported as an MDER FLOAT.
	1.0

Table 1: High-Level Functional Requirements

4.2 Thermometer Specific Functional Requirements
The following requirements outline the thermometer specific set of options that Thermometer Plug-Ins implement. The Thermometer Plug-In technical specifications will address the necessary functions for support of these options. This device typically would be what one calls a 1 – N shot device where N is less than 25. However, if the device stores data persistently, the number of measurements could be very large.

[image: image4]
Thermometer devices supported by this plug in specification are expected to be able to report the body temperature. The description of the measurement reported by the plug in follows the IEEE 11073 10408 Thermometer specialization specification but that does not mean the device itself must follow that specification. However, the device must provide to the plug in the necessary information such that the plug can fulfil its reporting requirements as specified in this document.

	Label
	Description
	Example

	T-HSF-00
	The Plug-In SHALL provide values as both strings (human consumption) and MDC codes for detailed understanding and machine processing).
MDC codes [A1]

	See MDC[A1]

	T-HSF-01
	The Temperature Plug-In SHALL report the values as stated in these guidelines for the equivalent of the Body Temperature object as defined in IEEE 11073 10408 Table 5.
Table [A2]
The 20601 explain the use of code as way to guaranty semantic interoperability ... the actual code for this devices is defined in ISO/IEEE 11073-10101 [B12].

	See Table [A2]

	T-HSF-01.1
	The Temperature Plug-In SHALL report the value of the TYPE* attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code; partition:code) *If the Metric Id is used the Temperature Plug-In SHALL replace the code value with this value and if the Metric-Id-partition is present the partition value SHALL be replaced with this value.
TYPE and Metric Id identify the type of device but Metric Id gives more information

TYPE [A3]

	String:

“Oral body temperature”

Code:

“188424”

	T-HSF-01.2
	The Temperature Plug-In SHALL report the value reported from the appropriate *-Nu-Observed-Val attribute as an MDER FLOAT and as string with appropriate precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to an MDER FLOAT.)
FLOAT [A4]: FLOAT (is 32 bits) and SFLOAT (small FLOAT 16 bits)
	String:

“37.2”

MDER FLOAT:

“FFFFC8E”

	T-HSF-01.3
	The Temperature Plug-In SHALL report the value of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).
	String:

“deg C”

Code:

“268192”

	T-HSF-01.4
	The Temperature Plug-In SHALL report the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.
	“20150504135813.22-0400”

Annex A (normative)

MDC codes [A1]

"MDC code"? The 20601 explain the use of code as way to guaranty semantic interoperability ... the actual code for this devices is defined in ISO/IEEE 11073-10101 [B12]. But as far the Plug in is concerned, it should pass the code to the web APP just in case the web APP understand IEEE codes and can process it. Also we send string for human consumption that way the web app can display the string for the user if they like.

IEEE 11073
6.2 Nomenclature usage

A key aspect of the DIM is that object classes and attributes are referenced using nomenclature codes found in ISO/IEEE 11073-10101 [B12]. By using a consistent nomenclature, interoperability is enhanced as all implementations maintain the same semantic meaning for the numeric codes. Using nomenclature codes also assists with international implementations as the use of strings is reduced. The ISO/IEEE 11073 nomenclature is defined as a set of context-dependent partitions. The nomenclature code in each context-dependent partition is defined by a 16-bit code that supports up to 65 536 independent terms per partition. The partitions are referenced by a 16-bit partition code. When the partition of the nomenclature code is defined through context, then it is possible to use only the 16-bit term code. If the context is not defined or a context-independent term code is required, then this situation is specified by a
32-bit code constructed from the 16-bit partition code together with the 16-bit term code. Table 1 shows the partitions that are defined in this standard and/or ISO/IEEE 11073-10101 [B12].
Term codes from 0xF000 – 0xFFFF in each partition in the nomenclature are reserved for private (vendor-specified) nomenclature codes. For each nomenclature term, ISO/IEEE 11073-10101 [B12] defines a systematic name that explains the term, a unique code value, and a reference identifier (ID). The reference ID has the form MDC_XXX_YYY (with MDC referring to “medical device communication”). Throughout this standard, nomenclature terms and nomenclature codes are referenced by the reference ID.

[image: image5.png]Table 1—Partitions in the nomenclature

Partition number Nomenclature category

‘Gbject oriented (00)

Supervisory contol asd dafa acquisition (5C:

Evens

‘Dimensions (uits of measwrement)

Virtual arbutes

Parameter groups

[Body] sites

Infasimuctue

Reserved

‘Personal healfh devices disease amagement

Personal health devices bealth and fimess

‘Personal health devices aging independently

Reserved

Fetum codes

‘Estemal nomenclitie references

Reserved

Private

Feserved

[image: image6.png]Annex |
(normative)

Nomenclature codes

This annex contains the nomenclature codes used in this standard. They are either copied from
ISO/IEEE 11073-10101 [B12] or created for this standard and incorporated iato ISOTEEE 11073-10101
The format used here follows the one defined in ISO/IEEE 11073-10101,

* Pastition codes *
#define MDC_PART_OBJ 1 /* Object Infrast. *
#define MDC_PART_SCADA 2 /* SCADA (Bhysio IDs *
#define MDC_PART DIM 4 /* Dimension *
#define MDC_PART INFRA 8 /* Infiastructure *
#define MDC_PART_PHD_DM 128 /* Disease Mgant *
#define MDC_PART PHD_HF 129 /* Health and Fitness *
#define MDC_PART PHD_AI 130 /* Aging Independently *
#define MDC_PART RET_CODE 255 /* Retumn Codes *

#define MDC_PART_EXT_NOM * Ext. Nomenclature

* From Object Infrastructuse (MDC_PART_OBI)

#define MDC_MOC_ - *
#define MDC_MOC_" B *
#define MDC_MOC_VMO_METRIC_NU . *
#define MDC_MOC_VMO_METRIC_SA_RT . *
#define MDC_MOC_SCAN . *
MDC_MOC_SCAN_CFG . *
MDC_MOC_SCAN_CFG_EPI . *
#define MDC_MOC_SCAN_CFG_PERI . *
#define MDC_MOC_VMS_MDS_SIMP . *
#define MDC_MOC_VMO_PMSTORE . *
#define MDC_MOC_PM_SEGMENT . *
#define MDC_ATTR_CONFIRM_MODE . *
#define MDC_ATTR_CONFIRM_TIMEOUT . *
#define MDC_ATTR_ID_HANDLE . *
#define MDC_ATTR_ID_INSTNO . *
#define MDC_ATTR_ID_LABEL_STRING . *
#define MDC_ATTR_ID_MODEL . *
#define MDC_ATTR_ID_PHYSIO . *
MDC_ATTR_ID_PROD_SPECN . *
MDC_ATTR_ID_TYPE 2351 *

e MDC_ATTR_METRIC_STORE_CAPAC_CNT 2369 /* *
#define MDC_ATTR_METRIC_STORE_SAMPLE_ALG 2371 /* *
#define MDC_ATTR_METRIC_STORE_USAGE_CNT 2372 /* *
#define MDC_ATTR_MSMT_STAT 2375 *
#define MDC_ATTR_NU_ACCUR_MSMT 2378 *
#define MDC_ATTR_NU_CMPD_VAL_OBS 2379 *
#define MDC_ATTR_NU_VAL_OBS 2384 ¢ *
#define MDC_ATTR_NUM_SEG 2385 *

#define MDC_ATTR_OP_STAT 2387

Table [A2]

Table for Body temperature object attributed
[image: image7.png]Table 5—Body temperature numeric object attributes

Atwribute name

Extended configuration

Standard configuration
(Dev-Configuration-1d = 0x0320)

[Mewels |

Value Qual Vriue Qual
T SeTEE Sa o M |1 W
3 ST
> 5o
SepplmeneTpes | See TEEE Sid 1107530807 | NE | Avaiote s e
low TEEE S1d 1107520601
e Spec Sl e L A A
- T apspenedc. s o aperiohe, m
oot mesace e i
Ve S Sal | See IEEE S TTOTE0R0T | NE | Aowe ot iy pren T prseat | N
llow TEEE S1d 1107300601
oo S| SRR SA ORI [K| Abute st mitally prosnt ¥ preat

Newie TTn SeeTEEE SUTI0T30601 | NE | Anabwe not miially_presear ¥ preear
follow EEE Std 11073-20601
Siewe T Pariion SeeTEEESUTI0T3060T | €| At not mially_presenr T pree | SR
SRS -
[Cetcoze |
Ao Vatoe Map SeelEEE S 1107330601 | €| MDC_ATTR_NU_VAL_OBS BASIC, then | 3
MDC_ATTR_TDEE_STAM? ABS
Sovcce Hondie Refeence | See EEE S 1107330601 | SR | Attabwte _aor_ satilly_preseat. I prevent | MK
ollow EEE Std 11073-20601
TaberSing SeeTEEESUTI0T3060T | O | Atbwte_not mially_present I preveat | O
follow EEE Std 1107320601
ot Labelswng S EEESETI0R 3001 | O | Atabwte not mtilly _present I preveat | O
follow EEE Std 1107320601
Aosoloe-Tome Stamp | SeeEEE S TI020601 | €| Ambute oot miallypresear, T preear | ©
follow IEEE Std 11073-20601. Iffxed fornst
i wed md the stndud coniguition 15
vnchanged. this stubute 55 mandstory
otherwise, the condtions Som IEEE St
110732060 gy
Reatve-Tane Stamp SeeTEEE SUTIOR A0 | €| Avibwre not mially_presear ¥ prevet | ©
ollow TEEE Std 1107320601
e Tome Sramp SeeTEEE S 110730601 | C | S Atabute nor imiially preseat. I preseat | €
ollow IEEE Std 1107320601
Sieseune Acive Peiod | See EEE S 1107330601 | NR | Atuowte _aor stally_presear T prevent | NK
follow EEE Std 11075-20601
Siople NOserved. | S EEES@TI07330601 | €| Atuiowte st mtially_presear. ¥ prevet | ©
Vane follow IEEE Std 1107320601 Iffxed forust
s wed aad the stmdand configuanton is
vnchanged. this stubute 55 mandstory
otherwise, the condtions Som IEEE St
110732060 gy
Compound Siaple Mo | S EEESATI07 30601 | C | Atuiowte st mally_presear ¥ prevet | ©
Observed-Value ollow EEE Std 11073-20601
Basic-Nu-Observed Valve | See [EEE S 1107330601 | €| Atuiowte st mtially_presear. & prevet | ©
follow EEE Std 11073-20601
Compound Buic Mo | S EEESATI0T 3060 | C | Atuiowte _sot mtially_presear. & prevet | ©
Observed-Value e s
[e EEE S T1073-20801 T
Compound Yo Observed- | See EEE S 1107330601 | €| Atuiowte st smtially_presear. & prevet | ©
Vaine follow EEE St 11073-20601
Accurse SeEEESE IO | K preseat T preseat |

'NOTE—See IEEE Std 11073-20601 for information on whether an attribute is static or dynamic.

Type [A3]

The Type of devices is communicated to Manager from the healthcare devices in TYPE attribute and complex TYPE in also communicated in the Metric-Id. Metric-Id communicate complex data for example Body temperature take Orely
[image: image8.png]MDC_ATIR_ID_TYPE

TYPE

‘This atibute defines & specific
sati type of this objectas
defined in e nomenclanze
(e pulserate for 2 specific
‘mumenc object nstance). The
Type armibute contains the
nomenclature partton and
e code IDs for context-fre.
extensble identification. This
atbute shall remain
nchanged afier e
configuration is agreed upan.

[image: image9.png]Table 5—Metric attributes

Aftribute name Attibue ID Afirbute frpe

Qual_
Metneld NDC_ATIR_D_PEYSIO G Type 0

‘more specifc than the generic
D in the Type attibute Ifthe
Metric-Id-Parition aibute is
valued, it defnes toe
nomenclature pariton forthis
atibute. Otherise,the OID-
Type s taken from the same.
nomenclature partition as
defined in the pariton feld of
the Type atmbute

“Thisatibute i needed auly i
identificaion changes during
operation and the Type
atrbute does not coxtain fill
identificaion. For example, if
he Type atmbute contains &
‘generic temperature code
(MDC_TEMP), this atibute
could eport a specific, but

MDCTEMP RECT.

Oy Gue st of Mecic 10
and Mot 16 Lt el be
present

[image: image10.png]Table 6—Extended configuratio:

: Temperature type

Type

Measurement site

MDC_TEMP_AXILLA

Axillary (armpit)

MDC_TEMP_BODY

General body temperature
‘measurement

MDC_TEMP_EAR

Ear (usually carlobe)

MDC_TEMP_FINGER

Finger

MDC_TEMP_GIT

Gastro-intestinal ract

MDC_TEMP_ORAL Mouth
MDC_TEMP_RECT Rectum
MDC_TEMP_TOE Toe

MDC_TEMP_TYMP

Tympanum (ear drum)

FLOAT [A4]

Floating point type (FLOAT-Type) data type: The FLOAT-Type is defined as a 32-bit value with 24-bit mantissa and 8-bit exponent
Short floating point type (SFLOAT-Type) data type: The SFLOAT-Type is defined as a 16-bit value with 12-bit mantissa and 4-bit exponent
Annex B (normative)
Protocol [B1]

[image: image11.png]A3.1 MDS attributes

- While model-number field name suggests 3 number, there is 20 requiement that the field
- contains aumeric values. The format of

SystemModel = SEQUENCE {
manufactuer OCTET STRING, — string size shall be even
model-number OCTET STRING — steing size shall be even

" Productionspec dealswith seral uiabess, pat aubers,seviions, ic.

Note that an agent may have multiple components; therefore, the prod-spec should be an

where spec-type is
- seplaced by the siring representation of spec-type. The format of the vendor-specified-str
s determined by the vendor.

ProductionSpec

SEQUENCE OF ProdSpecEatry

ProdSpecEntry = SEQUENCE {
spec-iype INT-UI6
unspecified(0),

s

fv-revision(3),
sw-revision(d).
f-revision(s),
protacel-sevision(s)

‘prod-spec-gmdn(7) ~-see note on GMDN below
1

componentid PrivateOid,

prod-spec OCTET STRING — string size shall be even

-~ Note: The Global Medica Device Nomenclafure (GMDN) is based on ISO 15225 [B15]
and was developed under the auspices of CEN TC257 SC1

— PowerStatus defines whether device is on battery or on mains. Upper bits define the charging
state.

PowerStatus = BITS-16 {
onMains(0).
onBattery(1),
chargingFull(s).
chargingTrickle(9),

More informatin can b found sbot i echnicl commite at htp sk et g/ gdnproject .

©1502010 - Alrigs reserved
104 © IEEE 2010 - Al rghts reserved

Authorized fosnsed use fimited to: Fujfsu Lid HQ. Downioaded on March 11,2014 at 0381:08 UTC from IEEE Xplore. Restriotons apply.

Protocol [B2]

[image: image12.png]MDER encoding rules shall always apply fo the structures in A8

AargApdu = SEQUENCE {

The assoc-version defines the version of the association procedure
used by the aget. The agent shall st exactly one
version bit. If the manager does not understand that version, it shall
tejectthe association sequest with rejected-unsupported-assoc-version.
assoc-version AssociationVersion.
data-proto-tist DataProtoList

¥
DataProtoList := SEQUENCE OF DataProto

data-proto-info shall
be filled with a PhdAssociaticalaformation structure.
I the data-proto-id set to data-proto-id-external, the data-proto-info shall
be filled with a ManufSpec ssociationlnformation structure.
I the data-proto-id set to data-proto-id-empty. the data-proto-iafo shall
e eampty (ooly used when the AseApdu is a eject).
DataProto == SEQUENCE {
data-proto-id DataProtold.
data-proto-info ANY DEFINED BY data-proto-id

All s DataProtod s s reserved and sl nc e vsed
Daorold SINT.U1S (

e proo-d-eapty(0), bl be s i AeApds oty when et is
Iadites exchange profocol flows tis sndard
iadicses ot specific
ataprtocol UUID st of
e MomSpecAssocishoninformation

data-proto-id-20601(20601),
data-proto-id-extenal(63535)

©150 2010 - Alrigris reserves
110 © IEEE 2010 Al rghts reserves

Autorzed osnsed use mied : Fuftsu Lt HQ. Donicaded on Maroh 11,2014 335108 UTC from IEEE Xpore Restrions agely.

[image: image13.png]Association response
AsreApdu = SEQUENCE {

cesult
selected-data-proto

¥

— Release request
RisqApdu = SEQUENCE {
)

- Release response
RireApdu = SEQUENCE {

¥
bort
AbrtApdu = SEQUENCE {

¥

Reason for the Abort

Abort.reason = INT-UI6 {
undefined(0),
buffer-overflow(1),
response-timeout(2),
configuration-timeout(3)

See 8.7.3.2 for a usage description.

AssociateResult = INT-UL6 {
accepted(0),
sejected-permanent(1).
sejected-transient(2),

AssociateResult,
DataProto

ReleaseRequesReason

ReleaseResponseReason

Abort.reason

All unassigned " Abort-reason " values are reserved for fufure expansion and shall not be used

Configuration message not seceived i timely
fashion

1 unassigned " AssociateResult " values are reserved for fufure expansion and shall not be used.

accepted-unknown-config(3).
rejected-no-common-protocel(4).
sejected-no-common-parameter(3),

rejected-unkmown(5).
sejected-unauthorized(7).

rejected-unsupported-assoe-version(s)

¥

—- All unassigned " ReleaseRequestReason " values are reserved for future expansion and shall nof be used.

ReleaseRequestReason = INT-U16 {
aormal(0),

n0-more-configurations(1).

configuration-changed(2)

10 2010 — Al rights reserved
IESE 2010~ Allights reserved

- used when the agent or manager decides fo
release the association under normal conditions
used by the agent when all possible configusations

were attempted and the manager

sejected them all.

used by the agent when its configuration changes

requiring the agent fo release the association. This
may be followed by an Association Request with

- new configuration information.

LT

uthorized fiosnsed use fimited to: Fujtsu Ltd HQ. Downioadsd on March 112014 3t 03:51.08 UTC from EES Xplore. Restrictions apply.

[image: image14.png]¥

- All unassigned " ReleaseResponseReason " values are reserved for fture expansion and
- shall not be used.
ReleaseResponseReason = INT-UI6 {

aoraal(0)

¥

ssociation Request DataProto values are mapped to the Phd AssociationInformation.
- This information is used to announce and negotiate the protocol version, profile, efc

PhdAssociationlnformation -:= SEQUENCE

EncodingRules

nomenclafure-version NomenclafureVersion,
functional-units FuactionalUnits,
system-type SystemType.
system-id OCTET STRING.
dev-config-id Configld
data-seq-mode-capa DataReqModeCapab.
option-list AtiributeList

- Manufacturer-specific association information for a proprietary data profocol

ManufSpecAssociationlnformation = SEQUENCE {
data-proto-id-ext Uidldeat,
data-proto-info-ext ANY DEFINED BY data-profo-id-ext

1 unassigned " AssociationVersion " bit values are reserved for future expansion and
- shall be sef to zero,

AssociationVersion = BITS-32 {

assoc-versioal (0) - This bit shall be setif version 1 of the association

- protocal is supported.

¥
—- All unassigned " Protocol Version " bit values are reserved for future expansion and shall be sef fo zero.
ProtocolVersion = BITS-32 {

‘protacel-version1 (0) - This bit shall be et if version 1 of the data

- exchange protocel is supported.

Protocol [B3]

[image: image15.png]Table 2—MDS attributes

Afribute name

Atubue ID

“Aibute type

Remark

Dete-and-Tome.

TIDC_ATIR_TDE_ABS

“HbsoluieTime

"This bt defines B date and
i of an aget with resolution
of 1100 of # second, ifavailble.
For more information on ths
atibute, see 8.12. fthe agent
seports AbsoheTime in any.
other message. it shall report fs
curent value of AbsoluteTime in
his b,

Qul
T

Felative Tome.

MDC_ATTR_TOVE REL

Felative e

Tfie agent reports RelaiveTime.
in any other message, it shall
seport s current value of
PelativeTime in this atrbute

HRes Relsiive:
Time

TIDC_ATTR_TDE REL_
HLEES

‘HighReRelstveTime

Tfike agent rpors
HighResRelative Time in any
other message, it shall report s
cument value of
HighResReltiveTime in this
atbute

Dete-and Time.
Adjustment

1DC_ATTR_TDE_ABS_
DIUST

“AbsoleTimeAdt

“This clbute reporss ay date
and e adjustments that ccur
it due t0. persen’s chsnging
e clock or evets such as
daylight savings time. Thisis
used n event reports cnly. If
queried with Get MDS Object
command, s value shallbe not
present or 0. Ifthe agent ever
adjuststhe date and fime, s
atbute s used i an event report
o eport such adjustment.

Power-Statss

NDC_ATTR_POWER_
STAT

Powersam:

“This bt reports whether
power s being drawn fom
battery or main power lines and.
the status of charging.

Femainng Batery-
Time

IDC_ATTR_TDE_
BATT REMAIN

Badfewsure

“This ot epresents e
predicted amount o operational
ime Ief o the battris. The
BatMeasure’s unit shall be set o
one of MDC_DIM_MIN

MDC DDA ER. of
MDC_DDM_DAY for mimses,
hours_or davs respectvely.

5. Architectural Model
When an application is initiated by a user, the application obtains authorization for access to GotAPI-based APIs using the GotAPI-2 Interface. Once the application is authorized by the GotAPI Auth Server, the application can access the GotAPI Server using the GotAPI-1 Interface.

After the authorization, the application will ask the GotAPI Server, using the GotAPI-1 Interface, what kind of services are available. Then the GotAPI Server requests the current status of all the installed Extension Plug-Ins using the GotAPI-4 Interface. This procedure is called the "Service Discovery", which is defined in the GotAPI specification. After the Service Discovery, the application can interact with the specific thermometer. The service provided by the Thermometer Plug-In is called "Thermometer API".
When an application sends an API request over the GotAPI-1 Interface, the GotAPI Server passes it to the Thermometer Plug-In using the GotAPI-4 Interface.
[image: image16.png]

Figure 1: Architectural Diagram Thermometer Plug-In

An application connects to the GotAPI Server using WebSocket, which is GotAPI-5 Interface. Whenever the targeted thermometer device reports event messages, the application receives the messages on the GotAPI-5 Interface asynchronously.
The GotAPI Server is agnostic to what the Thermometer Plug-In will do inside of the Plug-In. The GotAPI just passes a request from an application to the Thermometer Plug-In and passes a response back from the Thermometer Plug-In to the application.

This document defines the message flow which is specific to the Thermometer Plug-In.
5.1 Service Discovery

After the application obtains authorization for access to GotAPI-based APIs using the GotAPI-2 Interface, the application sends the Service Discovery request to the GotAPI Server. Then the GotAPI Server sends the Service Discovery request to all of the installed Extension Plug-Ins. The message flow of the Service Discovery is as follows:
[image: image17.png]Application Thermometer
User Web Rutime GotAPI (Auth) Server Plug-In

Initiates the
application

(1) Application Authorization

accessToken=0987654321

HTTP/GotAPI-2

(2) Sends the service discovery request

http://127.0.0.1:4035/gotapi/servicediscovery (3) Sends the service discovery request
?accessToken=0987654321
{

"requestCode: 10,

"api" : "gotapi®,

"profile" : "networkServiceDiscovery",
"attribute"” : "getNetworkServices",

(4) Returns the result

(5) Return the result

"requestCode:
"result"
"services"

{

{

"result": o,
SiPVICSS ["scopes":["thermometer"],

"scopes":["thermometer"], "Eﬁgine"' e
e : s

"typet: "N,
"online": true,

HTTP/GotAPI-1 Intent/GotAPI-4

Figure 2: Message flow of the Service Discovery
This document defines the message flows labelled (4) in the figure above. If the Thermometer Plug-In receives the request, it SHALL return the message defined in the section "8.3.1 Service Discovery on the GotAPI-4 Interface" of GotAPI [GotAPI].
5.2 Thermometer Monitoring API

After the application obtains authorization to access GotAPI-based APIs using the GotAPI-2 Interface and completes the Service Discovery, the application can use the service (so called "Thermometer Monitoring API") provided by the Thermometer Plug-In through the GotAPI Server.
The Thermometer Monitoring API offers measurement values reported by the targeted thermometer to an application in real time. This API uses WebSocket protocol to handle asynchronous event messages. [WebSocket] [WebSocketProtocol]
The message flow of this API is as shown as blow:
[image: image18.png]Application GotAPI Server Thermometer Plug-In

(1) Sends a HTTP request to start monitoring (2) Passes the request

PUT Action: "....PUT",
http://127.0.0.1:4035/gotapi/health/thermometer {"requestCode": 10,
?servield=org.example.devl "profile" : "health",
&accessToken=xxxxx "attribute" : "thermometer"”, ...}

Plug-In Approval procedure (if needed)

Connects to the targeted device if needed
(3) Returns the result

(4) Passes the result

Content-Type: application/json
{"result": o, ...}

Action: "....RESPONSE",
{"requestCode": 10, "result": o, ...

HTTP/GotAPI-1

(5) Establishes a WebSocket connection if needed

The access token is a token provided by the
GotAPI Auth Server previously.

(7) Returns the result

ws://127.0.0.1:4035/gotapi/websocket

(6) Sends the access token

{"accessToken":"abcdef@12345"}

{"result": o, ...

(9) Passes the result | (8) Reports the change of measurement value

Detect the measurement value

{"serviceId": "org.example.devl", Action: "....EVENT",
“thermometer"”: {"temperature": 36.4, ...}, {"requestCode": 10,
-} "thermometer": {"temperature": 36.4, ...},

.}

Intent/GotAPI-4

WebSocket/GotAPI-5

[image: image19.png]Application GotAPI Server Thermometer Plug-In

stops to report

(10) Sends a HTTP request to stop monitoring (11) Request to stop monitoring

DELETE Action: "....DELETE,

http://127.0.0.1:4035/gotapi/health/thermometer {"requestCode": 10,
?servield=org.example.devl "profile" : "health",
&accessToken=xxxxx "attribute" : "thermometer", ...}

(13) Passes the result

(12) Returns the result

Content-Type: application/json
{"result": o, ...}

Action: "....RESPONSE",
{"requestCode": 10, "result": o, ...

HTTP/GotAPI-1 Intent/GotAPI-4

Closes the WebSocket connection

Figure 3: Message Flow of the Thermometer Monitoring API
1. The user triggers a request of the Thermometer Monitoring API on the application.

2. Label (1): The application sends a request to the GotAPI Server using HTTP (REST) using the GotAPI-1 Interface. Note that the HTTP method of the request is "PUT".
3. Label (2): The GotAPI Server passes the request to the Thermometer Plug-In on the GotAPI-4 interface with the HTTP method name "PUT".
4. The GotAPI Server runs the Plug-In Approval procedure if needed, which is defined in the GotAPI specification. [GotAPI]
5. When the Thermometer Plug-In receives the request, it connects to the targeted thermometer if needed.
6. Label (3): The Thermometer Plug-In sends a response with the message using the GotAPI-4 interface.
7. Label (4): When the GotAPI Server receives the response from the Thermometer Plug-In, the GotAPI Server passes the response to the application on the HTTP connection as a HTTP response.
8. Label (5): The application establishes a WebSocket connection to the GotAPI Server if the application does not have a WebSocket connection to the GotAPI Server.
9. Label (6): As the WebSocket connection has been established, the application sends the clientId to the GotAPI Server through the WebSocket connection. the clientId is a grant which the application obtain from the GotAPI Server when the application was authorized by the GotAPI Auth Server. This authorization procedure is specified in the GotAPI specification. [GotAPI]

10. Label (7): When the GotAPI Server receives the clientId from the WebSocket channel, the GotAPI Server returns the result on whether the request is accepted or not.

11. Label (8): Whenever the targeted thermometer reports the measurement, the Thermometer Plug-In sends the measurement to the GotAPI Server on the GotAPI-4 Interface with the HTTP method name "PUT".

12. Label (9): Whenever the GotAPI Server receives a message from the Thermometer Plug-In, the GotAPI Server passes it to the application on the WebSocket Connection.
13. Label (10): When the application finishes using the service, it sends a request to stop the monitoring on the GotAPI-1 Interface using HTTP. Note that the URI is as same as that of the first request except that the HTTP method is "DELETE".
14. Label (11): When the GotAPI Server receives the request, it send a request to the Thermometer Plug-In in order to stop the monitoring with the HTTP method name "DELETE". Then the GotAPI server closes the WebSocket connection. If the WebSocket connection was closed by the application, the GotAPI Server SHALL send a request to the Thermometer Plug-In in order to stop monitoring.
15. Label (12): When the Thermometer Plug-In receives the stop request from the GotAPI Server, the Thermometer Plug-In stops to report measurement values, then it return a response to the GotAPI Server on the GotAPI-4 Interface.

16. Label (13): When the GotAPI Server receives the response, the GotAPI Server passes the response to the application on the GotAPI-1 Interface.
This document defines the details of the message flows labelled (1) - (4), (8) - (13) in the figure above.

6. Technical Specifications
6.1 The Service Discovery on the GotAPI-4 Interface

When the GotAPI Server receives the request of the Service Discovery API from an application, the GotAPI Server sends the Plug-In discovery request to the installed Plug-Ins as defined in the GotAPI specification. When the Thermometer Plug-In receives the Plug-In discovery request from the GotAPI Server, the Thermometer Plug-In SHALL return the message as follows:
Definition of the data object for the Plug-In discovery response

	Name
	Sub name
	Type
	Definition of value
	Mandatory/Optional

	requestCode
	
	int
	The request code coming from the GotAPI Server.
	Mandatory

	result
	
	int
	If success, the value is 0, otherwise an integer other than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	services
	
	Array
	
	Mandatory

	
	serviceId
	String
	The service identifier. The id could be "com.example.plugin".
	Mandatory

	
	name
	String
	The name of the targeted thermometer.
	Mandatory

	
	manufacturer
	String
	The manufacturer of the targeted thermometer.
	Optional

	
	version
	String
	The version of the targeted thermometer.
	Optional

	
	type
	String
	This value represents the type of the network used to connect to the heart rate monitor device. The value must be any one of "WiFi", "BLE", "NFC", "Bluetooth" or "USB".
	Optional

	
	online
	Boolean
	If the service is available, this value SHALL be true. Otherwise (e.g. the Thermometer Plug-In has not yet detect any thermometer or the Plug-In is not allowed to access to any devices), this value SHALL be false.
	Mandatory

	
	scopes
	Array
	This value SHALL be an array including a string "thermometer" as an array element (["thermometer", ...]).
	Mandatory

[image: image20]

[image: image21]
The Thermometer Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.

Requirements for OS-specific response channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the response.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents
	Name
	
	Example of value
	Note

	Action
	
	"org.deviceconnect.action.RESPONSE"
	This value is defined by the GotAPI Server application.

	Component
	
	"org.deviceconnect"
	This value is the package name of the GotAPI Server application.

	Extra
	
	
	

	
	requestCode
	1
	

	
	result
	0
	

	
	services
	[Array Object]
	This value is an example. Note that this is "not" a JSON string. This value must be an Array object whose content is the same as the following JSON example:

[

 {

 "id": "org.example.plugin.12345",

 "name": "Coolest Heart Rate Monitor",

 "manufacturer": "ABC Health Care Inc.",

 "version": "3.0",

 "type": "Bluetooth",

 "online": true,

 "scopes": ["heartRate"]

 },

 ...

]

	
	config
	"additional parameters"
	This name-value pair is an additional data which is not defined by this specification.

6.2 Thermometer Monitoring API
This section defines the data object for the message flows according to the architecture described in the previous section "5.2.1 The message flow".
6.2.1 The request from an application to the GotAPI Server on the GotAPI-1 Interface
When the application uses the API, it sends a request to the GotAPI Server on the GotAPI-1 Interface as follows:

Definition of the HTTP request
	
	Definitions

	Method
	HTTP PUT

	Request URL
	http://127.0.0.1:4035/gotapi/health/thermometer
https://127.0.0.1:4036/gotapi/health/thermometer

Definition of the request parameters
	Parameter name
	Definition of value
	Mandatory/Optional

	serviceId
	The identifier of the targeted service. This value is available from the Service Discovery API on the GotAPI-1 Interface.
	Mandatory

	accessToken
	The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.
	Mandatory

	key
	A random string used for the counter measure against the GotAPI Server spoofing. This key is generated by the application. If the key is present, the GotAPI Server will include a HMAC in the response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Optional

Example of the request URL

	http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefg123&accessToken=0987654321&key=93b3a219347

6.2.2 The request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface
When an application sends a request of this API to the GotAPI Server on the GotAPI-1 Interface, the GotAPI Server passes the request to the Thermometer Plug-In on the GotAPI-4 Interface. The request includes the data object as follows:

Definition of the data object for request

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	receiver
	
	String
	The address of the GotAPI Server application used by Plug-Ins. Generally, it is the application ID recognized by the OS, such as a package name.
	Mandatory

	requestCode
	
	int
	A request code identifying the request. This value could be any number but must MUST be an integer greater than 0, and unique for each open request, to ensure responses can be correlated.
	Mandatory

	serviceId
	
	String
	The identifier of the targeted Service. This value is provided by the application over the GotAPI-1 Interface.
	Mandatory

	api
	
	String
	The value must be "gotapi".
	Mandatory

	profile
	
	String
	The value must be "health".
	Mandatory

	attribute
	
	String
	The value must be "thermometer"
	Mandatory

	clientId
	
	String
	The identifier of the application, which is generated by the Plug-In when the Plug-In Approval procedure defined in the GotAPI specification.
	Mandatory

	accessToken
	
	String
	The access token for the application, which is generated by the Plug-In when the Plug-In Approval procedure defined in the GotAPI specification.
	Mandatory

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific request channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents
	Name
	
	Example of value
	Note

	Action
	
	org.deviceconnect.action.PUT
	This value is defined by the GotAPI Server application.

	Component
	
	org.example.plugin
	This value is the package name of the Plug-In application.

	Extra
	
	
	

	
	receiver
	org.deviceconnect
	

	
	requestCode
	10
	

	
	servcieId
	dev1.example.org
	

	
	api
	gotapi
	

	
	profile
	health
	

	
	attribute
	thermometer
	

	
	clientId
	1234567890
	

	
	accessToken
	0987654321
	

6.2.3 The response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface
When the Thermometer Plug-In receives the API request, it SHALL respond as follows:

Definition of the data object for the response
	Name
	
	Type
	Definition of value
	Mandatory/Optional

	requestCode
	
	Number
	The request code coming from the GotAPI Server.
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	deviceProductName
	
	String
	The product name of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, it SHALL create a name for the thermometer using an arbitrary algorithm. The algorithm is up to the Plug-In implementation, and this specification does not define any algorithms.
	Mandatory

	deviceManufacturerName
	
	String
	The manufacturer name of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceModelNumber
	
	String
	The model number of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceFirmwareRevision
	
	String
	The firmware revision of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	devcieSerialNumber
	
	String
	The serial number of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceSoftwareRevision
	
	String
	The software revision of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceHardwareRevision
	
	String
	The hardware revision of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	devicePartNumber
	
	String
	The part number of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceProtocolRevision
	
	String
	The protocol revision of the targeted thermometer.
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceSystemId
	
	String
	The system id of the targeted thermometer.
This value SHALL be a 16-character HEX string without a '0x' prefix (e.g. "ABCDEF0123456789").
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be "0000000000000000" (a string of 16 '0' characters).
	Mandatory

	deviceBatteryLevel
	
	Float
	The battery level of the targeted thermometer. This value must be a float number in a range from 0.0 to 1.0.
The value 0.0 represents that the targeted thermometer is completely out of charge. The value 1.0 represents that the targeted thermometer is fully charged.
Even if the targeted thermometer reports this value in percent in a range from 1 to 100, the Plug-In SHALL convert it to a float number in a range from 0.0 to 1.0.
If the Plug-In can't obtain battery level from the targeted thermometer, this value SHALL be -1.0.
	Mandatory

The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the GotAPI Server in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific response channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Intents
	Name
	
	Example of value
	Note

	Action
	
	org.deviceconnect.action.RESPONSE
	This value is defined by the GotAPI Server application.

	Component
	
	org.deviceconnect
	This value is the package name of the GotAPI Server application.

	Extra
	
	
	

	
	requestCode
	10
	

	
	result
	0
	

	
	deviceProductName
	ABC Thermo Pro
	

	
	deviceManufacturerName
	ABC Inc.
	

	
	deviceModelNumber
	TP-001
	

	
	deviceFirmwareRevision
	rev.1.001.003
	

	
	devcieSerialNumber
	01234-5678-9ABCD-EF01
	

	
	deviceSoftwareRevision
	rev.2.000.000
	

	
	deviceHardwareRevision
	rev.1.0
	

	
	devicePartNumber
	002
	

	
	deviceProtocolRevision
	rev.3.1
	

	
	deviceSystemId
	ABCDEF0123456789
	

	
	deviceBatteryLevel
	0.5
	

	
	config
	"additional parameters"
	This name-value pair is an additional data which is not defined by this specification.

6.2.4 The response from the GotAPI Server to the application on the GotAPI-1 Interface
After the application sends a request of the API, the GotAPI Server returns a response to the application follows:

Definition of the HTTP response
	
	Definitions

	MIME-Type
	application/json

	HTTP status
	200 OK

Most of the response values is just passed from the Thermometer Plug-In.
Definition of the data object for the response

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	product
	
	String
	The name of the GotAPI Server (e.g. "ABConnect")
	Mandatory

	version
	
	String
	The version of the GotAPI Server (e.g. "1.0").
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	deviceProductName
	
	String
	The product name of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, it SHALL create a name for the thermometer using an arbitrary algorithm. The algorithm is up to the Plug-In implementation, and this specification does not define any algorithms.
	Mandatory

	deviceManufacturerName
	
	String
	The manufacturer name of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceModelNumber
	
	String
	The model number of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceFirmwareRevision
	
	String
	The firmware revision of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	devcieSerialNumber
	
	String
	The serial number of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceSoftwareRevision
	
	String
	The software revision of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceHardwareRevision
	
	String
	The hardware revision of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	devicePartNumber
	
	String
	The part number of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceProtocolRevision
	
	String
	The protocol revision of the targeted thermometer.

If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be an empty string.
	Mandatory

	deviceSystemId
	
	String
	The system id of the targeted thermometer.

This value SHALL be a 16-character HEX string without a '0x' prefix (e.g. "ABCDEF0123456789").
If the Plug-In cannot obtain this information from the targeted thermometer, this value SHALL be "0000000000000000" (a string of 16 '0' characters).
	Mandatory

	deviceBatteryLevel
	
	Number
	The battery level of the targeted thermometer. This value must be a float number in a range from 0.0 to 1.0.

The value 0.0 represents that the targeted thermometer is completely out of charge. The value 1.0 represents that the targeted thermometer is fully charged.
Even if the targeted thermometer reports this value in percent in a range from 1 to 100, the Plug-In SHALL convert it to a float number in a range from 0.0 to 1.0.

If the Plug-In can't obtain battery level from the targeted thermometer, this value SHALL be -1.0.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string), then send it to the originating application as a SSE response.
Example of the response
	{

 "product" : "ABCConnect",

 "version" : "1.0",

 "requestCode" : 10,

 "result" : 0,

 "deviceProductName" : "ABC Thermo Pro",

 "deviceManufacturerName" : "ABC Inc.",

 "deviceModelNumber" : "TP-001",

 "deviceFirmwareRevision" : "rev.1.001.003",

 "devcieSerialNumber" : "01234-5678-9ABCD-EF01",

 "deviceSoftwareRevision" : "rev.2.000.000",

 "deviceHardwareRevision" : "rev.1.0",

 "devicePartNumber" : "002",

 "deviceProtocolRevision" : "rev.3.1",

 "deviceSystemId" : "ABCDEF0123456789",

 "deviceBatteryLevel" : 0.5,

 "config" : "additional parameters",

 "hmac" : "0123456789"

}

6.2.5 The event message of measurement from the Plug-In to the GotAPI Server on the GotAPI-4 Interface
Whenever the Plug-In detect changes the status of the measurement, the Plug-In send the measurement values to the GotAPI Server on the GotAPI-4 Interface as follows:
Definition of the data object for request

	Name
	Sub name
	Type
	Definition of value
	Mandatory/Optional

	requestCode
	
	int
	The request code coming from the GotAPI Server.
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	thermometer
	
	
	
	

	
	temperature
	Float
	This value represents the temperature measured by the targeted thermometer.
	Mandatory

	
	type
	int
	This value represents the body part where the Thermometer measured based on ISO/IEEE 11073-10101 as below:

Code
Meaning
57380
Axllary (armpit)
19292

General body temperature measument

57356

Ear (usually earlobe)

57360

Finger

57384

Gastro-intestinal tract

57352

Mouth
57348
Rectum
57376

Toe

19320

Tympanum (ear drum)

	Mandatory

	
	metricId
	TBD
	TBD
I need more details on this. What is this used for?

What is the type of this value? Integer or String?
	Mandatory

	
	unitCode
	TBD
	TBD
I need more details on this (e.g. the list of the codes and meanings).
	Mandatory

	
	nuObservedValue
	TBD
	TBD
I need more details on this. What is this used for?
	Mandatory

	
	timeStamp
	int
	This value represents the measurement time when the temperature was measured. If the measurement time is reported from the targeted thermometer, the Plug-In SHALL convert it to a unix time stamp in millisecond. Otherwise, the Plug-In set this value to the unix time when the Plug-In receives the measurement value from the Plug-In based on the clock of the underlying operating system.
	Mandatory

The Thermometer Plug-In MAY append additional data in the data object as needed.
This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific request channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents
	Name
	Extra key name
	
	Example of value
	Note

	Action
	
	
	org.deviceconnect.action.EVENT
	This value is defined by the GotAPI Server application.

	Component
	
	
	org.example.plugin
	This value is the package name of the Plug-In application.

	Extra
	
	
	
	

	
	requestCode
	
	10
	

	
	result
	
	0
	

	
	thermometer
	
	
	

	
	
	temperature
	36.0
	

	
	
	type
	TBD
	

	
	
	metricId
	TBD
	

	
	
	unitCode
	TBD
	

	
	
	nuObservedValue
	TBD
	

	
	
	timeStamp
	1431856940275
	The sample value in the left cell represents "Sun, 17 May 2015 10:02:20 GMT".

6.2.6 The event message of measurement from the GotAPI Server to the application on the GotAPI-5 Interface
When the GotAPI Server receives a message from the Plug-In on the GotAPI-4 Interface, the GotAPI Server pass it to the application on the GotAPI-5 Interface (WebSocket connection). The format of the data is a JSON string as follows:

Definition of the data object
	Name
	Sub name
	Type
	Definition of value
	Mandatory/Optional

	serviceId
	
	String
	The identifier of the targeted Service. This value is provided by the application when the application send the originated API request on the GotAPI-1 Interface.
	Mandatory

	thermometer
	
	
	
	Mandatory

	
	temperature
	Number
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	
	type
	TBD
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	
	metricId
	TBD
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	
	unitCode
	TBD
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	
	nuObservedValue
	TBD
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	
	timeStamp
	Number
	This value SHALL be as same as that which the GotAPI Server received from the Plug-In.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

Example of the JSON string

	{

 "serviceId" : 0,
 "thermometer": {

 "temperature": 36.4,

 "type": TBD,

 "metricId": TBD,

 "unitCode": TBD,

 "nuObservedValue": TBD,

 "timeStamp": 1431856940275
 }

}

6.2.7 The stop request from the application to the GotAPI Server on the GotAPI-1 Interface
When the application stops to use the API, it sends a request to the GotAPI Server on the GotAPI-1 Interface as follows:

Definition of the HTTP request
	
	Definitions

	Method
	HTTP DELETE

	Request URL
	http://127.0.0.1:4035/gotapi/health/thermometer
https://127.0.0.1:4036/gotapi/health/thermometer

Definition of the request parameters
	Parameter name
	Definition of value
	Mandatory/Optional

	serviceId
	The identifier of the targeted service. This value is available from the Service Discovery API on the GotAPI-1 Interface.
	Mandatory

	accessToken
	The access token obtained from the GotAPI Auth Server through the GotAPI-2 Interface.
	Mandatory

	key
	A random string used for the counter measure against the GotAPI Server spoofing. This key is generated by the application. If the key is present, the GotAPI Server will include a HMAC in the response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Optional

Example of the request URL

	http://127.0.0.1:4035/gotapi/health/thermometer?serviceId=abcdefg123&accessToken=0987654321&key=93b3a219347

6.2.8 The stop request from the GotAPI Server to the Plug-In on the GotAPI-4 Interface
When the GotAPI Server receives a stop request from the application on the GotAPI-1 Interface, the GotAPI Server sends a stop request to the Plug-in on the GotAPI-4 Interface. The request includes the data object as follows:
Definition of the data object for request

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	receiver
	
	String
	The address of the GotAPI Server application used by Plug-Ins. Generally, it is the application ID recognized by the OS, such as a package name.
	Mandatory

	requestCode
	
	int
	A request code identifying the request. This value could be any number but must MUST be an integer greater than 0, and unique for each open request, to ensure responses can be correlated.
	Mandatory

	serviceId
	
	String
	The identifier of the targeted Service. This value is provided by the application over the GotAPI-1 Interface.
	Mandatory

	api
	
	String
	The value must be "gotapi".
	Mandatory

	profile
	
	String
	The value must be "health".
	Mandatory

	attribute
	
	String
	The value must be "thermometer"
	Mandatory

	clientId
	
	String
	The identifier of the application, which is generated by the Plug-In when the Plug-In Approval procedure defined in the GotAPI specification.
	Mandatory

	accessToken
	
	String
	The access token for the application, which is generated by the Plug-In when the Plug-In Approval procedure defined in the GotAPI specification.
	Mandatory

This data object is sent to the Plug-Ins in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific request channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Explicit Intents
	Name
	
	Example of value
	Note

	Action
	
	org.deviceconnect.action.DELETE
	This value is defined by the GotAPI Server application.

	Component
	
	org.example.plugin
	This value is the package name of the Plug-In application.

	Extra
	
	
	

	
	receiver
	org.deviceconnect
	

	
	requestCode
	10
	

	
	servcieId
	dev1.example.org
	

	
	api
	gotapi
	

	
	profile
	health
	

	
	attribute
	thermometer
	

	
	clientId
	1234567890
	

	
	accessToken
	0987654321
	

6.2.9 The stop response from the Plug-In to the GotAPI Server on the GotAPI-4 Interface

When the Plug-In receives the stop request, it SHALL respond as follows:

Definition of the data object for the response
	Name
	
	Type
	Definition of value
	Mandatory/Optional

	requestCode
	
	Number
	The request code coming from the GotAPI Server.
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	key
	
	
	
	

The Plug-In MAY append additional data in the data object as needed.
This data object is sent to the GotAPI Server in an OS specific mechanism, .e.g., Intents for Android.
Requirements for OS-specific response channel and data container
	OS
	Description

	Android
	The GotAPI Server must use Explicit Intents for the request.
The data object must be mapped to the Extra directly.

Example of the data object of the Android Intents
	Name
	Sub name
	Example of value
	Note

	Action
	
	org.deviceconnect.action.RESPONSE
	This value is defined by the GotAPI Server application.

	Component
	
	org.deviceconnect
	This value is the package name of the GotAPI Server application.

	Extra
	
	
	

	
	requestCode
	10
	

	
	result
	0
	

6.2.10 The stop response from the GotAPI Server to the appliaction on the GotAPI-1 Interafce

When the GotAPI Server receives the stop response, the GotAPI Server passes the response to the application follows:

Definition of the HTTP response
	
	Definitions

	MIME-Type
	application/json

	HTTP status
	200 OK

Definition of the data object for the response

	Name
	
	Type
	Definition of value
	Mandatory/Optional

	product
	
	String
	The name of the GotAPI Server (e.g. "ABConnect")
	Mandatory

	version
	
	String
	The version of the GotAPI Server (e.g. "1.0").
	Mandatory

	result
	
	Number
	If success, the value is 0, otherwise an integer greater than 0, which indicates an error code.

This specification doesn't define error codes.
	Mandatory

	hmac
	
	String
	An HMAC generated for the counter measure against the GotAPI Server spoofing attack.

If the application includes a key for HMAC calculation in the API request, the GotAPI Server adds this value in the API response. Evaluating whether the HMAC is identical to the result of calculation of HMAC from the key, the application can ensure that the response is genuine.
	Mandatory if the application provide a key to the GotAPI Server

The GotAPI Server SHALL serialize the data structure above as a JSON formatted stream (i.e. JSON string), then send it to the originating application on the GotAPI-5 (WebSocket connection).
Example of the response
	{

 "product": "ABCConnect",

 "version": "1.0",

 "result" : 0,

 "hmac" : "0123456789"

}

6.2.11 JavaScript code example

Below is an example of how an application can use the Thermometer Monitoring API. In this example, the code just shows the received data in the JavaScript console.

Example of JavaScript

	TBD

Editor's note:

This draft is a strawman specification. It is not a CR. It is intended to show how the Thermometer requirements leading to the architecture and the technical specification based on OMA GotAPI 1.0 specification. This draft is not aiming at seeking approval by OMA.

The title “Thermometer Profile for GotAPI” is TBD. It is open for discussion.

Editor's note:

Whether we should mention anything about the requirements for the types of thermometer devices that can be supported by this specification in terms of standards that the thermometers support is an open issue. Such issue may inlude Bluetooth Low Energy Health Thermometer profile (HTP), IEEE 11073 standards, Continua standards, etc.

Editor's note:

The RD in this section is based on an early draft of the RD that was prepared by Fujitsu. Thus, there may be some differences from the one that has been agreed and added to the specification draft.

Nonetheless, the intention here is to show the end-end picture of this specification from RD to AD and TS.

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the architecture and technical specifications can be developed.

Editor's note:

The value "USB" was added to the list of the allowed values for the "type" property in the data object. The value "USB" is not specified in the GotAPI 1.0 specification. Is the value "USB" necessary?

Editor's note: Color schemes in the tables

The rows in green colour in the tables are the specifications where the generic specifications in the GotAPI 1.0 are specifically defined especially for the heart rate profile (instantiated for the profile).

The rows with no colours are the specifications that are specified by the current version of GotAPI 1.0. They are merely exact copies from GotAPI 1.0.

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20130101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20130101-I]

