
Page 20 V(38)

	[image: image16.png]
	

	Device WebAPIWeb Device API

	Draft Version 1.0 – 19 May 2015

	Open Mobile Alliance

	OMA-ER-Device WebAPIs-V1_0-20150120D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Definitions

73.3
Abbreviations

94.
Introduction

104.1
Version 1.0

105.
Device WebAPIs release description (Informative)

106.
Requirements (Normative)

106.1
High-Level Functional Requirements

106.1.1
Security and Privacy

107.
Architectural Model

107.1
Dependencies

107.2
Architectural Diagram

107.3
Functional Components and Interfaces/reference points definition

107.4
Security Considerations

108.
Technical Specifications

109.
Sections As Needed

109.1
Example Level 2

109.1.1
Example Level 3

1010.
Release Information

1010.1
Supporting File Document Listing

1010.2
OMNA Considerations

1010.3
Additional Items

10Appendix A.
Change History (Informative)

10A.1
Approved Version History

10A.2
Draft/Candidate Version 1.0 History

10Appendix B.
Call Flows (Informative)

10Appendix C.
Static Conformance Requirements (Normative)

10C.1
ERDEF for GotAPI 1.0 - Client Requirements

10C.2
ERDEF for GotAPI 1.0 - Server Requirements

Error! Bookmark not defined.C.3
SCR for GotAPI Client

10C.4
SCR for GotAPI Server

10Appendix D.
<Additional Information>

10D.1
App Headers

10D.1.1
More Headers

10Appendix E.
GotAPI Enabler Deployment Considerations

Figures
20Figure 1: Example Figure

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Device WebAPIs Enabler.
The scope of OMA Device WebAPI enabler will include:
· Requirements, architecture and specifications for web-based APIs to expose services available from external devices and internal enablers through Extension Plug-Ins to applications.
· The web-based APIs that will work in the framework that GotAPI (Generic Open Terminal API Framework) defines, where the web-based APIs are implemented in the Extension Plug-Ins and exposing the services from the external devices or internal enablers that are connected with the Extension Plug-Ins.
· The framework provided by the combination of GotAPI and Device WebAPI to enable applications to work through standardized APIs with external devices or internal enablers, as GotAPI itself does not standardize the APIs to be implemented in the Extension Plug-Ins.
· Web-based APIs that will initially address such areas as healthcare devices, DWAPI-PCH (Personal Connected Healthcare) and other areas where standardization will help solving application interoperability problems.
OMA will continue expanding the coverage of the standaridized Device WebAPIs in areas where standardization helps the markets to expand and innovate.
2. References
2.1 Normative References

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[EventSource]
	“Server-Sent Events”, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/eventsource/ (latest working draft)

	[HTTP/1.1]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/rfc2616

	[HTTP/2.0]
	“Hypertext Transfer Protocol version 2.0”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/draft-ietf-httpbis-http2-09 (latest working draft)

	[JSON-RPC]
	“JSON-RPC 2.0 Specification”, JSON-RPC Working Group, URL: http://www.jsonrpc.org/specification

	[WebSocket]
	“The WebSocket API, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/websockets/ (latest working draft)

	
	

	
	

	
	

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(. URL:
http://www.openmobilealliance.org/tech/omna.aspx

	[CSEA]
	“Client Side Enabler API (CSEA)”, Version 1.0, Open Mobile Alliance™, OMA-RRP-CSEA-V1_0, URL:http://www.openmobilealliance.org/

	[WRAPI]
	“Web Runtime API (WRAPI”, Version 1.0, Open Mobile Alliance™, OMA-ERP-WRAPI-V1_0, URL:http://www.openmobilealliance.org/

	
	

	
	

	
	

Terminology and Conventions

2.3 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

2.4 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	Agent
	A node that collects and transmits personal health data to an associated manager.

	Device
	A physical device implementing either an agent or manager role.

	Browser Context
	Web applications executing under a Web browser as Web runtime environment.

	Datagram
	An API providing access to UDP protocol based networking.

	ECMAScript
	Use definition from [OMADICT].

	Hybrid Native/Web App
	An application designed to execute under the native OS / middleware environment of a device, and that use native APIs for the execution of web content in addition to native code.

	JavaScript
	Use definition from [OMADICT].

	Manager
	A node receiving data from one or more agent systems. Examples of managers include a cellular phone, health appliance, set top box, or computer system.

	Native App
	An application designed to execute under the native OS / middleware environment of a device.

	Personal Health Device
	A device used in personal health applications.

	Socket
	An API providing access to TCP protocol based networking.

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

	Web IDL
	An IDL language for Web application APIs

	Web Runtime Environment
	Client software that supports the execution of Web applications (e.g. browsers or widget engines).

	Web Runtime Application
	A client-side Web application that is executed in Web runtime environments.

	WebSocket
	An API providing networking services per the WebSocket standard [WebSocket].

	Widget Context
	Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime environment.

	Widget Engine
	Software which supports the execution of Web applications running outside a browser context, e.g. with the same functional capabilities as browsers but without the user interface functions provided by a browser, including window frames, menus, toolbars and scroll bars.

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	
	

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	RPC
	Remote Procedure Call

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	
	

3. Introduction

External devices that are connected with smartphones are increasingly gaining mainstream acceptance and we are starting to see rapid adoption of such devices.
While there are various types of new devices and sensors to be connected with smartphones coming out, there are fundamental issue to be solved for certain markets:
· Since there are no open standardized APIs and frameworks that application developers can use for the same type of devices, developers are required to customize their applications for each and every different device.
· In order to access features from applications, some environments mandate that the users’ data must be routed through certain entities, e.g., servers outside user’s control. As such, it is difficult to ensure data confidentiality and privacy to such a level where certain vertical markets require.

As the first step to solve this problem, OMA has standardized GotAPI (Generic Open Terminal API Framework) [***]. GotAPI provides the framework to enable applications (native, hybrid and web applications) to work with external devices and internal enablers through GotAPI Servers and Extension Plug-Ins based on web technologies. There are multiple Extension Plug-Ins to be expected and each Extension Plug-In is connected to external devices and internal enablers. Each Extension Plug-Ins implements web-based APIs to expose services (or data) from those connected. The applications securely access the web-based APIs under the framework that GotAPI provides. The figure-1 shows the overview of GotAPI’s framework.

[image: image2]
Figure-1 Overview of GotAPI’s framework.
GotAPI itself does not standardize the web-based APIs that are implemented in the Extension Plug-Ins, and it is left open for implementers of each Extension Plug-In. This openness enables many external device vendors to freely provide unique and differentiated new services through the GotAPI framework.

On the other hand, for certain markets, standardizing the web-based APIs is desired. Standardized web-based API will enable open markets for new applications by 3rd party developers that will rapidly innovat and grow the market, while ensuring the interoperability and security.
OMA has identified personal connected healthcare market is looking for standardized APIs, and OMA Device WebAPIs Enabler addresses this issue in order to ensure service interoperability between the same type of devices, as an alternative to siloed and non-interoperable devices.
Editor’s Note: Add other areas here that OMA will standardize the APIs.
For personal connected healthcare devices, IEEE 11073 family of standard define a large number of healthcare devices. OMA Device WebAPIs Enabler will develop web-based APIs to expose services from devices that are based on IEEE 11073 standards, where the APIs will be implemented in Extension Plug-Ins under the GotAPI framework. This document refers to this use of GotAPI as DWAPI-PCH.
3.1 IEEE 11073 Family of Standards Overview

The ISO/IEEE 11073 family of standards is based on an object-oriented systems management paradigm. Data (measurement, state, and so on) are modeled in the form of information objects that are accessed and manipulated using an object access service protocol.

The ISO/IEEE 11073-20601 Data Exchange Protocol (known as 20601) provides a framework for information and modelling, information access and measurement data transfer suitable to a wide variety of personal health devices. Examples of such health devices are as follows: weighing scales, thermometers, pulse oximeters, blood pressure monitors, and glucose meters. In addition to health and fitness sensors, the protocol is designed to support a range of home health sensors. This enables interoperability between a data management device to process, display or transfer the specific measurements.
20601 core protocol specification, which describe the tools to represent and convey data, and 104xx Device Data Specialization specifications, which provide details on how the 20601 tools are applied for each health device’s implementation.
[image: image3.png]
Figure-2 IEEE 11073 Overview.
3.2 Version 1.0

Device WebAPIs version 1.0 includes the functionality:
· Requirements and API specifications for DWAPI-PCH, with selected device classes from IEEE 11073 based on market requirements, based on the GotAPI 1.0 framework
· Supporting assets
4. Device WebAPIs Enabler release description
(Informative)

This release focuses on the functions of exposing the data from external devices to applications. The Device WebAPIs enabler will utilize the GotAPIs enabler and specify the APIs under the GotAPIs framework.
5. Requirements
(Normative)
Edtor’s Note: Most of the security requirements should have already been defined in GotAPI 1.0.

If there is anything that is missing or unaddressed, we need to articulate them in thie security section.

5.1 High-Level Functional Requirements: DWAPI-PCH
The Plug-Ins and the APIs designed for consumer/ personal use perspective. The following requirements specify the guidelines for all Health Device Plug-Ins. Values, when reported, are reported as Strings or MDER FLOATs.

MDER FLOATs are used to report integers or real numbers. The reason for using MDER FLOATs is to capture precision as reported by the device. An MDER FLOAT is a 32 bit integer interpreted as follows:

1. The most significant 8-bits are the exponent (base 10).

2. The remaining 24-bits are the mantissa.

3. Standard positive/negative representations apply for exponent and mantissa.

4. A negative exponent gives the number of decimal places to the right of the decimal point.

5. There are codes to represent special values.

6. Examples:

	FLOAT
	exponent
	mantissa
	value

	0xFE01E240
	-2
	123456
	1234.56

	0x0201E240
	2
	123456
	12345600

	0x0001E240
	0
	123456
	123456

	0xFB000005
	-5
	5
	0.00005

	0xFD000005
	-3
	5
	0.005

	0xFE00C350
	-2
	50000
	500.00

	0xFF001388
	-1
	5000
	500.0

	0xFB000000
	-5
	0
	0.00000

	0xFD000000
	-3
	0
	0.000

	0xFFFE1DC0
	-1
	-123456
	-12345.6

	0xFEFFFFFE
	-2
	-2
	-0.02

	0x02FFFFFE
	2
	-2
	-200

	0x00FFFF38
	0
	-200
	-200

	0x007FFFFF
	
	
	NaN (Not a Number)

	0x007FFFFE
	
	
	+Inf (Positive infinity)

	0x00800002
	
	
	-Inf (Negative infinity)

	0x00800000
	
	
	NRes (Not at this resolution)

	0x00800001
	
	
	Reserved for future use

	Label
	Description
	Release

	HD-HLF-01
	The Plug-In SHALL be compliant to the GotAPI Extension Plug-In as specified in the GotAPI 1.0 specification.
	1.0

	HD-HLF-02
	The Plug-In MAY support the Temporary Server Feed (TSF) Mechanism as specified in the GotAPI 1.0 specification in order to support additional functions.
	1.0

	HD-HLF-03
	The Plug-In SHALL have a real time clock that is synchronized to UTC and SHALL be aware of its local time zone.
	1.0

	HD-HLF-04
	The Plug-In SHALL have a real time clock with a resolution that matches the resolution of any device that it interacts with.
	1.0

	HD-HLF-05
	The Plug-In SHALL be able to obtain the current time from the device if the device reports a current time. (Devices that report a time stamp with their measurements are required to be able to report the device’s sense of current time to interoperate with the Plug-In.)
	1.0

	HD-HLF-06
	The Plug-In SHALL be able to map any measurement time stamp reported by the device to an HL7 DTM time stamp with offset from UTC to local time. (An HL7 DTM time stamp is YYYYMMDDHHMMSS.sss+/-HHMM). If the device does not report a time stamp with its measurement, the Plug-In SHALL use the time of reception of the measurement as the measurement time stamp. The Plug-In SHALL provide a Boolean indication of ‘true’ if the measurement was provided by the Plug-In because the device did not provide a measurement time stamp.
	1.0

	HD-HLF-07
	The Plug-In SHALL correct any measurement time stamp by the difference between the current time reported by Device and the current time reported by the Plug-In unless the Plug-In knows that the device has a superior synchronization to UTC than the Plug-In does. In other words, if the device does not have superior time synchronization and the current time reported by the device is 20 seconds behind that reported by the Plug-In, the Plug-In adds 20 seconds to any of the measurement time stamps reported by the device. If the device has superior time synchronization, the Plug-In reports the device measurement time stamp unmodified. (Note that PCHA complaint devices have a means of reporting its time synchronization means and state to the Plug-In.)

Note: the Plug_in has the responsibility to correct the time. Some devices do not know the time or the time need to be set (i.e. do not have superior synchronization) manually (which may be different from the actual time), so that why the Plug-in need to correct the time
	1.0

	HD-HLF-08
	The Plug-In SHALL have the capability to connect to and interact with PCHA-compliant devices on at least one PCHA-complaint transport. Non-PCHA compliant devices MAY also be supported as long as the following constraints are met:

1. If the proprietary device reports a time stamp with the measurement, the device SHALL have a means of obtaining its current time such that the Plug-In can satisfy guidelines *-HLF-05 to *-HLF-07.

2. If the device stores data a time stamp SHALL be provided with the measurement. Note this requirement also requires the device provide a means to obtain its current time.

3. The device provides sufficient information such that the Plug-In is able to satisfy the remaining requirements.
	1.0

	HD-HLF-09
	The Plug-In SHALL be able to provide the product name of the connected device. If the Plug-In cannot get the product name, it SHALL create a name for the device using an arbitrary algorithm. The algorithm is up to the Plug-In implementation, and this specification does not define any algorithms. Note that the ‘algorithm’ could be a non-empty user-entry.
	1.0

	HD-HLF-10
	The Plug-In SHALL be able to provide the manufacturer name of the connected device if the Plug-In can get the name. It SHALL be reported as a string (may be empty).

Note: MDS attributes
[image: image4.png]
	1.0

	HD-HLF-11
	The Plug-In SHALL be able to provide the model number of the connected device if the Plug-In can get the model number. It SHALL be reported as a string (may be empty).

Note: MDS attributes
[image: image5.png]
	1.0

	HD-HLF-12
	The Plug-In SHALL be able to provide the firmware revision of the connected device if the Plug-In can get the firmware revision. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-13
	The Plug-In SHALL be able to provide the serial number of the connected device if the Plug-In can get the serial number. It SHALL be reported as a string (may be empty).
	1.0

	HD-HLF-14
	The Plug-In SHOULD be able to provide the software revision of the connected device if the Plug-In can get the the software revision. If reported it SHALL be reported as a string.
	1.0

	HD-HLF-15
	The Plug-In SHOULD be able to provide the hardware revision of the connected device if the Plug-In can get the hardware revision. If reported it SHALL be reported as a string.
	1.0

	HD-HLF-16
	The Plug-In SHOULD be able to provide the part number of the connected device if the Plug-In can get the part number. If reported it SHALL be reported as a string.

Note: MDS attributes
[image: image6.png]

	1.0

	HD-HLF-17
	The Plug-In SHOULD be able to provide the protocol revision of the connected device if the Plug-In can get the protocol revision. If reported it SHALL be reported as a string.

	1.0

	HD-HLF-18
	The Plug-In SHALL be able to provide the 64-bit IEEE system id of the connected device as a 16-character HEX string (without a ‘0x’ prefix). If the device does not report an IEEE system id, the Plug-In SHALL send a string of 16 ‘0’ characters.
Note: VMS object class attributes
[image: image7.png][image: image8.png]
	1.0

	HD-HLF-19
	The Plug-In SHALL be able to provide the battery level in percent if the device provides a battery level. If reported it SHALL be reported as an MDER FLOAT.

	1.0

Table 1: High-Level Functional Requirements
5.2 Thermometer Specific Functional Requirements

The following requirements outline the thermometer specific set of options that Thermometer Plug-Ins implement. The Thermometer Plug-In technical specifications will address the necessary functions for support of these options. This device typically would be what one calls a 1 – N shot device where N is less than 25. However, if the device stores data persistently, the number of measurements could be very large.

[image: image9]
Thermometer devices supported by this plug in specification are expected to be able to report the body temperature. The description of the measurement reported by the plug in follows the IEEE 11073 10408 Thermometer specialization specification but that does not mean the device itself must follow that specification. However the device must provide to the plug in the necessary information such that the plug can fulfil its reporting requirements as specified in this document.

	Label
	Description
	Release

	T-HSF-00
	The Plug-In SHALL provide values as both strings (human consumption) and MDC codes for detailed understanding and machine processing).

Note: For each nomenclature term, ISO/IEEE 11073-10101 [B12] defines a systematic name that explains the term, a unique code value, and a reference identifier (ID). The reference ID has the form MDC_XXX_YYY (with MDC referring to “medical device communication”). Throughout this standard, nomenclature terms and nomenclature codes are referenced by the reference ID.

	1.0

	T-HSF-01
	The Temperature Plug-In SHALL report the values as stated in these guidelines for the equivalent of the Body Temperature object as defined in IEEE 11073 10408 Table 5.

Note: Body temperature numeric object attributes

Attribute name
Extended configuration
Standard configuration
Value
Qual
Value
Qual
Type
{MDC_PART_SCADA,

MDC_TEMP_zzz}.
M
{MDC_PART_SCADA,

MDC_TEMP_BODY}.
M
Metric-Id
See IEEE Std 11073-20601.
C

Attribute not initially present. If present follow IEEE Std 11073-20601.
NR

Nu-Observed-Value
See IEEE Std 11073-20601.
C
Attribute not initially present. If present follow IEEE Std 11073-20601.
C
Unit-Code
MDC_DIM_DEGC or

MDC_DIM_FAHR.
M
MDC_DIM_DEGC.
M

	1.0

	T-HSF-01.1
	The Temperature Plug-In SHALL report the value of the TYPE* attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code; partition:code) *If the Metric Id is used the Temperature Plug-In SHALL replace the code value with this value and if the Metric-Id-partition is present the partition value SHALL be replaced with this value.

Note: TYPE and Metric Id identify the type of device but Metric Id gives more information.

Example: String: “Oral body temperature”

Code: “188424

	1.0

	T-HSF-01.2
	The Temperature Plug-In SHALL report the value reported from the appropriate *-Nu-Observed-Val attribute as an MDER FLOAT and as string with appropriate precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will report this value typically as an MDER SFLOAT which the Temperature Plug-In maps to an MDER FLOAT.)

Example: String: “37.2”

MDER FLOAT:“FFFFC8E”

	1.0

	T-HSF-01.3
	The Temperature Plug-In SHALL report the value of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code).

Example: String: “deg C”

Code: “268192”
	1.0

	T-HSF-01.4
	The Temperature Plug-In SHALL report the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.

Example: “20150504135813.22-0400”

	1.0

Table 2: Thermometer Specific Functional Requirements
5.3 Pulse Oximeter Specific Functional Requirements

The following requirements outline the pulse oximeter specific set of options that Pulse Oximeter Plug-Ins may implement. The Pulse Oximeter Plug-In technical specifications will address the necessary functions for support of these options. Pulse Oximeters may stream data or send spot data episodically similar to a Blood Pressure cuff or do both.

[image: image10]
Pulse oximeter devices supported by this plug in specification are expected to be able to report the oxygen saturation and pulse rate. The description of the measurement reported by the plug in follows the IEEE 11073 10404 Pulse Oximeter specialization specification but that does not mean the device itself must follow that specification. However the device must provide to the plug in the necessary information such that the plug can fulfil its reporting requirements as specified in this document.

Pulse oximeters report measurements in several different manners. Data is often streamed at regular intervals (say once per second) or reported over various ‘sample’ times. The latter are referred to as spot modalities, and they can be fast, slow, or just ‘spot’. The spot measurements represent a more ‘robust’ estimate of the actual value. IEEE supports several types of spot modality measurements. Spot measurements, being episodic, typically have time stamps whereas streaming measurements tend not to have time stamps.

The Pulse Oximeter Plug-In will report at least one type of oxygen saturation and pulse rate. It may be further described as modality spot, modality fast spot, or modality slow spot.

	Label
	Description
	Release

	PO-HSF-00
	The Plug-In SHALL provide values as both strings (human consumption) and MDC codes for detailed understanding and machine processing).

	1.0

	PO-HSF-01
	The Pulse Oximeter Plug-In SHALL report the values as stated in these guidelines for the equivalent of the Oxygen Saturation object as defined in IEEE 11073 10404 Table 5.

Note: SpO2 numeric object attributes

Attribute name
Extended configuration
Standard configuration
Value
Qual
Value
Qual
Type
{MDC_PART_SCADA,

MDC_PULS_OXIM_SAT_O2}
M
{MDC_PART_SCADA,

MDC_PULS_OXIM_SAT_O2}
M
Supplemental-

Types
The Supplemental-Types attribute is used to distinguish the modality of a particular SpO2 measurement. In

order to express the fast-response SpO2 measurement, slow-response SpO2 measurement, If there is no desire to distinguish a modality, the Supplemental-Types

attribute shall not be used.

C

See IEEE Std 11073-20601-2008 and

following text.
NR

Nu-Observed-

Value
See IEEE Std 11073-20601-

2008.
C
Attribute not initially present. If

present, follow IEEE Std 11073-20601-

2008.
C
Unit-Code
MDC_DIM_PERCENT
M
MDC_DIM_PERCENT
M

	1.0

	PO-HSF-01.1
	The Pulse Oximeter Plug-In SHALL report the value of the TYPE attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit partition and 16 bit code; partition:code). [The TYPE attribute value for the Oxygen Saturation is fixed for all Pulse Oximeter devices]

Example: String: “Oxygen Saturation”

Code: “150456”
[MDC_PULS_OXIM_SAT_O2]
	1.0

	PO-HSF-01.1.1
	The Pulse Oximeter Plug-In SHALL report the value of the Supplemental types attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit bit partition code with the 16-bit code partition:code) if a supplemental types exists.

Example: String: “Spot (average) measurement”

Code: “150588” [MDC_MODALITY_SPOT]
	1.0

	PO-HSF-01.2
	The Pulse Oximeter Plug-In SHALL report the value reported from the appropriate *-Nu-Observed-Val attribute as an MDER FLOAT and as string with appropriate precision as derived from the MDER encoded FLOAT. (Note that IEEE devices will report this value typically as an MDER SFLOAT which the Pulse Oximeter Plug-In maps to an MDER FLOAT.)

Example: String: “98”

MDER FLOAT: “00000062’

	1.0

	PO-HSF-01.3
	The Pulse Oximeter Plug-In SHALL report the value of the Unit Code attribute as a human readable string and as its 32-bit MDC code (combine the 16-bit bit partition code which is always 4 with the 16-bit code partition:code or 4:code). [The Unit Code attribute value for the Oxygen Saturation is fixed for all Pulse Oximeter devices]

Example: String: “%”

Code: “262688”
[MDC_DIM_PERCENT]
	1.0

	PO-HSF-01.4
	The Pulse Oximeter Plug-In SHALL report the measurement time stamp as an HL7 DTM time stamp as specified by HD-HLF-06 and HD-HLF-07.

Example: 20150506162223.50-0400
	

Table 3: Pulse Oximeter Specific Functional Requirements
5.3.1 Security and Privacy: DWAPI-PCH
	Label
	Description
	Release

	
	
	

	
	
	

Table 2: High-Level Functional Requirements – Security and Privacy Items
5.3.1.1 Authentication and Authorization: DWAPI-PCH
	Label
	Description
	Release

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table 3: High-Level Functional Requirements – Authentication and Authorization Items

5.3.1.2 Data Integrity: DWAPI-PCH
	Label
	Description
	Release

	
	
	

	
	
	

Table 4: High-Level Functional Requirements – Data Integrity Items

5.3.1.3 Confidentiality

	Label
	Description
	Release

6. Architectural Model
The following diagram shows the basic flow of DWAPI-PCH. It shows how the GotAPI framework and IEEE 11073 devices work together using Extension Plug-Ins.
Under the GotAPI framework, the Plug-In implements web-based APIs, DWAPI-PCH, and the Manager whose function is defined by IEEE 11073. The Plug-In with the Manager communicates with IEEE 11073 healthcare devices that implements Agent and Sensor. IEEE 11073 defines all the necessary protocols, data formats, and the roles for Manager and Agent. From the Manager, some data is made available to DWAPI-PCH to be exposed in the web-based APIs to applications through the GotAPI framework.

Figure-2 DWAPI-PCH Basic data flows.
[image: image12.png]
6.1 Dependencies
DWAPI-PCH depends on GotAPI 1.0, and relevant IEEE 11073 specifications (TBD).

6.2 Architectural Diagram

<< This section contains the architectural diagram for the enabler. . The examples in figures 1 and 2, along with the legend, describe the drawing conventions to be followed. In some cases (an example figure is not shown here) the resulting architecture diagram may contain combinations of interfaces and reference points.
DELETE THIS COMMENT >>
6.3 Functional Components and Interfaces/reference points definition

<< This section describes all of the architecture’s functional components and the specified interfaces and/or reference points.

As a general guidance, the Architecture Document SHOULD define interfaces, wherever possible.
Each of the components should be described in a separate subsection and MUST contain at least the following information:

· Name

· Description

· Responsibility (e.g. what does the component do/perform)

Each component SHOULD have at least one interface or at least one reference point that can be used by some other functional component, enabler, application, etc.

All of the interfaces and/or the reference points should be described in this section.

Interfaces and reference points MUST be described in a language-independent way.

Each interface description MUST include at least the following information:

· Name

· Description

· Entity that exposes the interface

Each reference point description MUST include at least the following information:

· Name

· Description of all the functions exposed between the two entities

· The two entities that are linked by this reference point

Each reference point description SHOULD include the following information:

· Name of each interface included in the reference point

Description of each interface included in the reference point

Interface/reference point naming convention:

The name of an interface/reference point consists of a minimal number of characters (e.g. no longer than the WID's registered name), followed by a dash, followed by a running number (starting at “1” and counting upwards in steps of 1 for each new interface/reference point). Each work group decides about the character(s) for their interfaces/reference point as long as there is no duplication with already existing names (work groups can consult ARC to confirm). Names should be chosen in an intuitive way to allow easy recognition of the interface/reference point. Some examples are:

 B-1
B stands for “Browsing”

 POC-5
POC stands for “Push to Talk over Cellular”

 MMS-7
MMS stands for “Multimedia Messaging”

Interface re-use convention: In case an interface from another enabler is re-used (e.g. exactly as is, as a profiled subset, or extended with additional Attribute Value Pairs), the interface name is that of the other enabler. That is, the interface name does not change, since the interface does not fundamentally change. The interface structure and placement of parameters and/or AVPs are already defined as part of the other enabler.
Reference points re-use convention:
 In case a reference point from another enabler is re-used (i.e. all of its interfaces, and the two entities, as originally defined, linked through the reference point) then, the reference point name is that of the other enabler. That is, the reference point name does not change, since the reference point does not fundamentally change. The reference point structure and placement of parameters and/or AVPs are already defined as part of the other enabler.

Detailed recommendations on how to re-use reference points may be found in the “Architecture Best Practices” document.

Graphical representation convention:

Reference points are depicted as a line and interfaces are depicted as an arrow.

DELETE THIS COMMENT >>

6.4 Security Considerations

<<Describe security functionalities based on security requirements defined in corresponding Requirement Document.

Security functionalities should address and consider at least the following features:

· Authentication

· Authorization

· Data integrity

· Confidentiality
· Non-repudiation
DELETE THIS COMMENT >>

7. Technical Specifications

8. Sections As Needed

8.1 Example Level 2

<text>

8.1.1 Example Level 3

<text>

8.1.1.1 Example Level 4

<text>

 SHAPE * MERGEFORMAT

Figure 1: Example Figure

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 5: Example Table

9. Release Information

9.1 Supporting File Document Listing

<< List the documents besides this document that comprise this release. This is where supporting files for elements such as Schemas, Managed Objects or Data Descriptions would be itemized. Each such document is to be listed by fully qualified name as known in the permanent document area. Each document should also include the reference from section 2 to provide linkage with other uses in this document.

For supporting files that need to be made available separate from the permanent document area (e.g. DTD in a publicly reachable directory), provide information on the expected path as well as the external file name. These should be based on existing recommendations and not picked arbitrarily (see information on supporting files available in the REL support menu).

The following table includes example fields with dummy values to make it clear the type of information to be entered. The actual table should be filled in for the specific release.

DELETE THIS COMMENT >>
	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	[FOO_DTD]
	OMA-SUP-DTD_FOO_Msgs-V1_2-20050222-D
	DTD for the messages and included elements of the FOO protocols.

Working file in DTD directory:
file:
foo_msgs-v1_2.dtd
path:
http://www.openmobilealliance.org/tech/dtd/

	[FOO_AC]
	OMA-SUP-AC_ap0123_FOO-v1_2-20050531-D
	Description of the Application Characteristic for FOO. This aligns with the Provisioning Spec.

Working file in Application Characteristics directory:
file:
ap0123_foo-v1_2.txt
path:
http://www.openmobilealliance.org/tech/omna/dm-ac

Table 6: Listing of Supporting Documents in FOO Release

9.2 OMNA Considerations

<< This section is to be used to describe any OMNA items included in the release. This would include, among others:

· Usage of OMA-based Uniform Resource Names (URNs) (including those used as namespace identifiers in Schemas)

· AppiDs for Application Characteristics (AC)

· Managed Object (MO) identifier information for the MO registry

· ISO Object IDs

· PUSH Application Ids

· WAP Wireless Session Protocol (WSP) Content Types

· Presence <service-description> assignments

· Uniform Resource Identifier (URI)-List Registered Usage Names (for XDM)

The format of this section will be left up to the release owners to account for the particular needs they may run into. It should be clear from the written material, though, as to the set of OMNA items needed.

If a new OMNA registry is needed to support the release – clearly this should have been worked with the REL Committee before submitting a Release Document. Failure to do so may result in delays as the required tables are worked up and made publicly available. Another risk is that the table desired is not supported by OMNA (is not a registry type table) and the group will need to re-think how they intend to resolve their needs.

Through the normal development process the OMNA entries or support registries should be accommodated. This should not be trigger to remove the linkage from this section. Thus, if an entry is added to OMNA after the initial Candidate version described the need – the material should stay in this section. It may be useful in subsequent releases to add some text to indicate that the needed items have been accommodated (e.g. add a comment regarding its availability or support as appropriate).

If the release has absolutely no OMNA items to be accommodated – then it should indicate that explicitly with a short description (e.g. this release does not have any OMNA items for handling). This determination probably can not be made until the end of the development phases and editors are encouraged to keep this advisory in place until the Consistency Review.

DELETE THIS COMMENT >>

9.3 Additional Items

<<If the release has any other elements needed to make it complete they should be noted in this section. For example, if there are any external registrations (e.g. IANA assigned values) or shared/dependent components they should be documented.

The format of the description in this section is left to the editor based on the information needed. If there are no such elements, the editor may remove this sub-section.

DELETE THIS COMMENT >>

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	
	

	
	
	

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-Device WebAPIs-V1_0
	25 Jan 2015
	All
	Initial baseline document.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. Call Flows
 (Informative)

This is a placeholder to be populated, as required.
Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for Device WebAPI 1.0 - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-Device WebAPIs 1.0-C-001-<<M/O>>
	
	

	
	
	

Table 7: ERDEF

C.2 ERDEF for GotAPI 1.0 - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-GotAPI 1.0-S-001-<<M/O>>
	GotAPI 1.0 Server
	

	
	
	

Table 8: ERDEF for GotAPI 1.0 Server-side Requirements

<Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

C.3 App Headers

<More text>

C.3.1 More Headers

<More text>

C.3.1.1 Even More Headers

<More text>

Appendix D. Device WebAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.
Appendix E. List of IEEE 11073 specifications
Editor’s Note: The status may need to be updates.

	Status
	Specification
	Title

	Completed Standards
	IEEE Std 11073-10404 Dev specialization
	Pulse oximeter

	Completed Standards
	IEEE Std 11073-10406 Dev specialization
	Basic ECG

	Completed Standards
	IEEE Std 11073-10407 Dev specialization
	Blood pressure monitor

	Completed Standards
	IEEE Std 11073-10408 Dev specialization
	Thermometer

	Completed Standards
	IEEE Std 11073-10415 Dev specialization
	Weighing scale

	Completed Standards
	IEEE Std 11073-10417 Dev specialization
	Glucose meter + Revision

	Completed Standards
	IEEE Std 11073-10418 Dev specialization
	INR (blood coagulation)

	Completed Standards
	IEEE Std 11073-10420 Dev specialization
	Body composition analyzer

	Completed Standards
	IEEE Std 11073-10421 Dev specialization
	Peak flow

	Completed Standards
	IEEE Std 11073-10441 Dev specialization
	Cardiovascular + Revision

	Completed Standards
	IEEE Std 11073-10442 Dev specialization
	Strength

	Completed Standards
	IEEE Std 11073-10471 Dev specialization
	Activity hub

	Completed Standards
	IEEE Std 11073-10472 Dev specialization
	Medication monitor

	Completed Standards
	IEEE Std 11073-20601
	Optimized exchange protocol + Amendment

	Completed Standards
	IEEE Std 11073-00103
	Guide for Health informatics - Personal health device communication - Overview

	Work being drafted
	IEEE Std 11073-20601
	Optimized exchange protocol (Revision)

	Work being drafted
	IEEE P11073-10404 Dev specialization
	Pulse oximeter (Revision)

	Work being drafted
	IEEE P11073-10413 Dev specialization
	Respiration rate

	Work being drafted
	IEEE P11073-10419 Dev specialization
	Insulin pump

	Work being drafted
	IEEE P11073-10422 Dev specialization
	Urine analyzer

	Work being drafted
	IEEE P11073-10423 Dev specialization
	Sleep Quality Monitor

	Work being drafted
	IEEE P11073-10424 Dev specialization
	Sleep Aponea Breathing Therapy Equipment

	Work being drafted
	IEEE P11073-10425 Dev specialization
	Continuous Glucose Meter

	Work being drafted
	IEEE P11073-10417a Dev specialization
	Glucose meter (Amendment)

	Work being drafted
	IEEE P11073-10406a Dev specialization
	Basic ECG (Amendment)

	Work being drafted
	IEEE P11073-10471a Dev specialization
	AI Living Hub (Amendment)

	Work being drafted
	IEEE P11073-10407 Dev specialization
	Blood Pressure Monitor (Corrigendum)

	Work being drafted
	IEEE P11073-10408 Dev specialization
	Thermometer (Corrigendum)

	Work being drafted
	IEEE P11073-10415 Dev specialization
	Weighing Scale (Corrigendum)

	Work being drafted
	IEEE P11073-10420 Dev specialization
	Body composition analyzer (Corrigendum)

	Work being drafted
	IEEE P11073-10418 Dev specialization
	INR monitor (Corrigendum)

Editor's note:

This section should specify all the detailed and necessary requirements that are specific to the profile, so that the architecture and technical specifications can be developed.

Editor's note:

This section should speficy all the detailed and necessary requirements that are specific to the profile, so that the architecture and technical specifications can be developed.

(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]

[image: image1.jpg][image: image14.png][image: image15.png]