OMA-TS-WRAPI_Push-V1_0-20110628-D
Page 2 V(21)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Web Runtime API (WRAPI) –

Push

	Draft Version 1.0 – 28 Jun 2011

	Open Mobile Alliance

	OMA-TS-WRAPI_Push-V1_0-20110628-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
8
4.1
Version 1.0
8
5.
Overview of the Push API in the OMA Push Architecture
9
6.
Design Basis in W3C APIs
10
7.
The Push Interface
11
7.1
Establishing a New EventSource for Push
11
7.1.1
Establishing a New EventSource for SMS Events
12
7.1.2
Establishing a New EventSource for OMA Push Events
14
7.2
Applying Filters on Push Events
17
7.3
Mapping of Events to the text/event-stream MIME type
17
7.4
Terminating an EventSource for Push
18
8.
Security Considerations
19
Appendix A.
Change History (Informative)
20
A.1
Approved Version History
20
A.2
Draft/Candidate Version 1.0 History
20
Appendix B.
Static Conformance Requirements (Normative)
21
B.1
SCR for User Agent
21

Tables

11Table 1 The EventSource interface

Table 2 Javascript example for establishing a new event source for SMS from a specific source address
12
Table 3 Javascript example for establishing a new event source for SMS from any source address
12
Table 3 Javascript example for establishing a new event source for OMA Push and processing received events
15

Figures

9Figure 1 Relationship of Push API in the OMA Push Architecture

Figure 2 Switching from Connection-Based EventSource to SMS
13
Figure 3 EventSource Switching from Connection-Based to OMA Push
16

1. Scope

This specification defines an API exposing the enabler services provided by OMA Push to applications executing in Web Runtime environments.
2. References

2.1 Normative References

	[Push-CAI]
	“Push Client - Application Interface”, Open Mobile Alliance™, OMA-TS-PushCAI-V1_1, URL:http://www.openmobilealliance.org/

	[Push-OTA]
	“Push Over The Air”, , Open Mobile Alliance™, OMA-TS-PushOTA-V2_3, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee et al. January 2005. URL: http://tools.ietf.org/html/rfc3986

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-EventSource]
	“Server-Sent Events”, W3C, URL: http://www.w3.org/TR/eventsource/

	[W3C-FileAPI]
	“File API”, W3C, URL: http://www.w3.org/TR/FileAPI/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[WRAPI-API-Patterns]
	“Web Runtime API (WRAPI) – Design Patterns”, Open Mobile Alliance™, OMA-TS-WRAPI_Design_Patterns-V1_0, URL:http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
URL: http://www.openmobilealliance.org/OMNA.aspx

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	ECMAScript
	Use definition from [OMADICT].

	JavaScript
	Use definition from [OMADICT].

	Push Client
	Device software which implements the Push API.

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies.

	Web IDL
	An IDL language for Web application APIs

	Web Runtime
	Client software that supports the execution of Web Applications

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SMS
	Short Message Service

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAC
	Wholesale Applications Community

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

This specification defines an API exposing the enabler services provided by OMA Push to applications executing in Web Runtime environments. This API is referred to in this document as the Push API.

The functions supported by the User Agent as referred to here include:

· implementation of the Push API

· functions of the Push Client as defined by the OMA Push enabler, for the supported Push-OTA protocol bindings, if

· there is no distinct Push Client software function on the terminal which exposes a native implementation of the OMA Push Client-Application Interface [Push-CAI], or other interface implementation via which the User Agent accesses the supported OMA Push enabler functions

4.1 Version 1.0

Version 1.0 of the Push API specification addresses the following aspects:

· Basis of the Push API design in the W3C API “Server-Sent Events” [W3C-EventSource]

· Support for a subset of the features of the OMA “Push Client - Application Interface” specification [Push-CAI]:

· Push-OTA bearer binding, at minimum supporting SMS-based connectionless Push

· To reduce the complexity of the Push API for this release, the ability to select specific OMA Push bearers to activate is deferred to a future release.

This limited scope of supported OMA Push features enables the API to use the existing W3C-EventSource API definition, while opening up (at minimum) the most widely deployed OMA Push bearer (SMS) to a new class of client applications. If the underlying platform supports other Push-OTA bearers (e.g. OTA-HTTP, OTA-SIP, etc), event from these sources can also be delivered through the Push API.

5. Overview of the Push API in the OMA Push Architecture

Web applications can support both online and offline use cases with access to the OMA Push enabler, and can use the OMA-standardized content types or application-specific content.

OMA Push enables the direct delivery of content in network contexts (point-to-point IP, SMS, SIP/IMS, and broadcast/multicast) and via methods (e.g. connectionless Push) that are otherwise unachievable using W3C-standard specifications alone. OMA Push can complement the HTML5 native APIs Push-capable APIs such as Server-Sent Events and Web Sockets, with these additional capabilities that will be unsupported by the HTML5 APIs.

The Push API provides a bridge between Web applications executing in Web browsers or widget runtime environments (WRT), and the enabler services provided by OMA Push or SMS text messaging. The relationship of the Push API to the overall architectural elements in devices and the OMA Push architecture is illustrated below.

Figure 1 Relationship of Push API in the OMA Push Architecture

6. Design Basis in W3C APIs

The Push API design is based upon the EventSource interface as defined in the W3C API “Server-Sent Events” [W3C-EventSource]. This approach is intended to serve the key objectives:

· Simply developer adoption of the Push API by aligning the API design pattern with the conventions already established by W3C for EventSource

· Promote development of the Push API within open-source projects contributing to the mainstream Web browsers, e.g. Webkit and Mozilla

· Promote the inclusion of Push API extensions in W3C specifications

The EventSource interface provides the basic functionality of the Push API, which includes:

· Ability to create a new EventSource, which establishes a connection with a source for server-sent events

· Ability to receive events related to the overall status of an EventSource, including

· Notification of successful opening of an EventSource connection

· Notification of a new message from an EventSource

· Notification of errors in an EventSource connection

As defined by W3C Server-Sent Events, the EventSource constructor takes a URL parameter expected to use the http URI scheme. In this release, the Push API extends the use of the URL parameter:

· The URL parameter is optional, and if absent indicates a request for delivery of any OMA Push message received from the supported OMA Push bearers.
· The URL parameter supports the SMS URI scheme, which indicates a request for delivery of incoming SMS messags from a specific source address (if indicated), or any source address.

The Push API adapts data from these new event sources to the text/event-stream MIME-type processing model defined for EventSource.
7. The Push Interface

The Push API is based upon the EventSource interface defined in [W3C-EventSource].

In addition to the specific requirements given in the following sections, User Agents MUST support all aspects of the EventSource interface for the new event sources made available through the Push API.

Note that the Push API has no effect upon the operation of the EventSource interface for other event sources, e.g. http-based event sources as defined by [W3C-EventSource].

The WebIDL specification for EventSource is provided below.

Table 1 The EventSource interface
	Web IDL Specification
[Constructor(in DOMString url)]

interface EventSource {

 readonly attribute DOMString url;

 // ready state

 const unsigned short CONNECTING = 0;

 const unsigned short OPEN = 1;

 const unsigned short CLOSED = 2;

 readonly attribute unsigned short readyState;

 // networking

 attribute Function? onopen;

 attribute Function? onmessage;

 attribute Function? onerror;

 void close();

};

EventSource implements EventTarget;

7.1 Establishing a New EventSource for Push

The EventSource API defines a single parameter for new EventSource objects: a URL representing the source from which event reception should be initiated.

For the Push API, the URL parameter is optional, and has the following interpretation:

· URLs using the SMS URI scheme indicate a request for delivery of incoming SMS from a specific source address (if the URL contains an authority component), or any source address (if the URL contains only the URI scheme).

· The absence of the URL parameter indicates a request for delivery of any OMA Push message received from the supported OMA Push bearers
Applications can create multiple EventSource objects for delivery of Push events. This allows the application to choose which types of Push sources should be activated, in any desired combination e.g.:

· SMS from one more specific source addresses (one EventSource object is created per source address)

· SMS from any source address

· OMA Push from any supported OMA Push bearer

· W3C Server-Sent Events (EventSource created with http:// URI scheme as defined by W3C)

The application can use these options to apply specific event handlers for the different event sources. For example, SMS from specific source addresses may require less validation (e.g. to avoid errors due to malformed data or unexpected data formats) than SMS messages from any source. OMA Push messages may also have specific processing and validation requirements, e.g. for filtering by the application based upon the Push Application Id, and to parse or validate the message data for different Push content types.

7.1.1 Establishing a New EventSource for SMS Events
When an EventSource object is created with a URL using the sms: URI scheme, User Agents MUST begin delivery of SMS message events to the EventSource object.

In the following Push API use example, the application expects to receive text SMS events from a specific SMS source address.

Table 2 Javascript example for establishing a new event source for SMS from a specific source address

	try {

 var es = new EventSource("sms:+14255551212"); // Expect Push API events from SMS source +14255551212
 es.onmessage = function (event) { // Event handler

 // Handle then new event: the example below just shows presentation of the content
 ediv = document.getElementById('esdata'); // get HTML element where new content is to be displayed

 ediv.innerHTML = event.data; // Display the new content

 };
 }

catch(e) {

 // Handle EventSource setup exception
 }

}

In the following Push API example, the application expects to receive text SMS events from any SMS source address.

Table 3 Javascript example for establishing a new event source for SMS from any source address
	try {

 var es = new EventSource("sms:"); // Expect Push API events from any SMS source
 es.onmessage = function (event) { // Event handler

 // Handle the new event: the example below just shows presentation of the content
 ediv = document.getElementById('esdata'); // get HTML element where new content is to be displayed

 ediv.innerHTML = event.data; // Display the new content

 };
 }

catch(e) {

 // Handle EventSource setup exception
 }

}

Figure 2 Switching from Connection-Based EventSource to SMS

[image: image2.png]App Server

SMsC

2) Open connection e.g.

GET http://myapp.com

3) Deliver event stream

6) Close connection

App Server notes the EventSource
connection is down, and delivers
the event stream via SMS.

App Server

8) Deliver event stream in SMS message.

SMsC

Client

User Agent

1) Create new EventSource
(http:/myapp.com)

4) Call onmessage function
with event stream

App

Some time later, app
decides to switch to
connectionless delivery.

5) Call close() on
EventSource object

7) Create new EventSource
(sms:+14255551212)

Establish SMS reception

if not alread

9) Deliver SMS

(event stream)

ly active.

10) Call onmessage function
with event stream

Client

User Agent

www.websequencediagrams.com

App

1. Application invokes the EventSource API with a URI meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URI.

3. The App Server delivers an event stream.

4. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

5. Sometime later, the Client App decides to switch to connectionless event delivery. The Client App is assumed to have earlier arranged, using unspecified application-specific means, for the App Server to deliver SMS-based events when an EventSource connection is not active. The App Server is further assumed to have informed the Client App of a specific SMS source address (+14255551212) that it will use when delivering events via SMS.

6. The User Agent closes the EventSource connection to the App Server.

7. Application invokes the EventSource API with an SMS URI scheme (sms:+14255551212). The User Agent establishes SMS reception if not already active.

8. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App. The App Server delivers the event stream in an SMS message, either directly to the SMSC, or via an SMS API service.

9. The SMSC delivers the SMS message to the user's device.

10. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
7.1.2 Establishing a New EventSource for OMA Push Events
When an EventSource object is created with no URL parameter, User Agents MUST begin delivery of OMA Push message events to the EventSource object, for all supported and configured OMA Push bearers.

The OMA Push Client functionality is assumed to be pre-configured in the device to establish connections over the supported bearers (e.g. OTA-WSP/SMS, OTA-WSP/IP, OTA-HTTP, OTA-SIP, etc) either through OMA Device Management or device-specific configuration mechanisms.

In the following Push API example, the application requests delivery of OMA Push messages, and ignores any messages of content type other than Service Indication.

Table 3 Javascript example for establishing a new event source for OMA Push and processing received events

	try {

 var es = new EventSource(); // Expect Push API events from OMA Push sources
 es.onmessage = function (event) { // Event handler

 // Handle the new event

 if (event.data.search(/content\-type\:\ application\/vnd\.wap\.si/i)) { // Push Service Indication

 var data = event.data.substring(event.data.indexOf('\n\n')+2); // Data follows the first blank line

 parseSi(data); // Parse the SI content
 ediv = document.getElementById('esdata'); // Get the output element
 ediv.innerHTML = pushText + "
Click Here!"; // Output the content
 }

 };
 }

catch(e) {

 // Handle EventSource setup exception
 }

}
var pushXml; // Variable to hold XML DOM document created from the Push content
var pushUrl; // Variable to hold the SI URL
var pushText; // Variable to hold the SI text
function parseSi(data) { // Parse SI content
 if (data.length > 0) { // Ignore empty content (not expected)
 try { // Internet Explorer method
 pushXml=new ActiveXObject("Microsoft.XMLDOM");

 pushXml.async="false";

 pushXml.loadXML(data);

 }
 catch(e) { // Internet Explorer method failed
 try { // Try Mozilla etc (W3C) method
 var parser = new DOMParser();

 pushXml = parser.parseFromString(data, "text/xml");

 }

 catch(e1) {

 alert('Unable to parse content from eventsource server'); // Error in content

 return(false);
 }

 }

 var el = pushXml.getElementsByTagName("indication"); // Find <indication> element
 pushUrl = el[0].attributes["href"].value; // Get SI URL (href attribute)
 pushText = el[0].textContent; // Get SI text
 return(true);
 }

 else {

 alert('No content from eventsource server');

 return(false);

 }

}

Figure 3 EventSource Switching from Connection-Based to OMA Push
[image: image3.png]App Server Push Server push Client User Agent c/l':;‘
1) Create new EventSource
(httpy/imyapp.com)
|<——(ttp/imyapp.com) |
2) Open connection e.g.
GET http://myapp.com

3) Deliver event stream

4) Call onmessage function
with event stream

Some time later, app
decides to switch to
connectionless delivery.

5) Call close() on

Eventsource object
et R

6) Close connection

7) Create new EventSource

(no URL parameter)
le— PR

Establish OMA Push reception
if not already active.

App Server notes the EventSource
connection is down, and delivers
the event stream via OMA Push PPG.

8) Deliver event stream
(Push PAP or PushREST)

9) Deliver OMA Push-OTA message.
10) Deliver OMA Push-OTA message.

11) Call onmessage function
with event stream

Client

App Server Push Server Push Client User Agent Aop

www.websequencediagrams.com

1. Client App invokes the EventSource API with a URI meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URI.

3. The App Server delivers an event stream.

4. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

5. Sometime later, the Client App decides to switch to connectionless event delivery. The Client App is assumed to have earlier arranged, using unspecified application-specific means, for the App Server to deliver OMA Push-based events when an EventSource connection is not active.

6. The User Agent closes the EventSource connection to the App Server.

7. Client App invokes the EventSource API with no URL parameter. The User Agent establishes OMA Push reception if not already active.

8. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App. The App Server delivers the event stream in an OMA Push message, either using OMA Push PAP, PushREST, or via some other OMA Push API service.

9. The Push Server delivers the Push message message to the Push Client on the user's device.

10. The Push Client delivers the Push message message to the User Agent.

11. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
7.2 Applying Filters on Push Events

For EventSource objects created with the SMS URI scheme, if the URL contains an authority part, the User Agent MUST apply the authority part as an SMS source address filter on incoming SMS.

If the URL contains no authority part, the User Agent MUST deliver all received SMS messages to the EventSource object.

For OMA Push events, filtering is assumed to be applied either by the underlying platform (e.g. using the Push Whitelist feature of OMA Push 2.2) or by the application, e.g. as shown in Table 3.

7.3 Mapping of Events to the text/event-stream MIME type

EventSource is designed for delivery of a particular message format in event streams, per the text/event-stream MIME type processing model defined in [W3C-EventSource]. To enable developers to use a consistent approach to accessing event data, the typical structure of OMA Push-OTA events (headers+body) is mapped to the EventSource event-stream format.

For received OMA Push messages, User Agents MUST dispatch a single EventSource event, as follows:

· Setting the event stream "event" name buffer to the string “PushEvent”

· Setting the data buffer to a text string concatenating all Push message headers, followed by an empty line, followed by the Push message content, using the following processing model:
· if the message body has a OMA-defined compressed MIME type (e.g. application/vnd.oma.sic), decompress the message headers and body, and set the Content-Type header to the equivalent uncompressed MIME type (e.g. application/vnd.oma.si).

· Set the data buffer to the concatenation of the message headers and message body

· For each message header, add the message header followed by a U+000A LINE FEED (LF) character to the data buffer

· After all message headers have been included, add a single U+000A LINE FEED (LF) character to the data buffer

· For each line of the message body, add the line followed by a single U+000A LINE FEED (LF) character to the data buffer
For received SMS messages with a non-multipart MIME type or for each part of a multipart Push message, User Agents MUST dispatch a single EventSource event, as follows:

· Setting the event stream "event" name buffer to the string “PushEvent”

· Setting the data buffer to the SMS text content.

7.4 Terminating an EventSource for Push

When the close() method is invoked on an EventSource object, User Agents MUST terminate delivery of SMS and WAP Push message events to the EventSource object if applicable.

8. Security Considerations

Incoming SMS and WAP Push events can represent a security risk for applications. While the Push API provides no specific security-enhancing features other than the ability to specify a filter on the event source, the host device may have additional security-enhancing capabilities such as support for the OMA Push Whitelist feature, or other SMS filtering, spam control, or content filtering capabilities. Regardless, developers need to use caution in processing events from potentially unknown sources.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions:

OMA-TS-WRAPI_Push-V1_0-20110628-D
	28 Jun 2011
	All
	Baseline TS

	
	
	
	

	Candidate Version:

OMA-TS-WRAPI_Push-V1_0-20110628-D
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for User Agent
	Item
	Function
	Reference
	Requirement

	
	
	
	

W3C Server-Sent Events

OMA Push PAP or PushREST

OMA Push Proxy Gateway

Application Server

SMS Service Provider

WAP2 stack

SIP stack

WAP1 stack

HTTP stack

SMS stack

Push Client

Operating System

Applications

Webapp

Webapp

Webapp

Webapp

User

Agent

Web Layout Engine

Widget Runtime

Web Browser

Other APIs

Push API

Other APIs

Web Runtime Environment

User Device (Terminal)

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]

