OMA-TS-WRAPI_Design_Patterns-V1_0-2011031420110408-D
Page 10 V(18)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Web Runtime API (WRAPI) –

Design Patterns

	Draft Version 1.0 – 08 Aprr 2011

	Open Mobile Alliance

	OMA-TS-WRAPI_Design_Patterns-V1_0-20110408-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

3Contents

3Figures

4Tables

61.
Scope

72.
References

72.1
Normative References

72.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

83.3
Abbreviations

104.
Introduction

104.1
Version 1.0

115.
Use of Web IDL

115.1
Inclusion in Specifications

125.2
Web IDL Bindings

125.3
Use of Web IDL Features in API Specifications

125.3.1
Modules

125.3.2
Interfaces

125.3.3
Exceptions

125.3.4
Typedefs

125.3.5
Implements Statements

125.3.6
Types

125.3.7
Extended Attributes

136.
Asynchronous Methods

136.1
Types of Asynchronous Methods

136.1.1
Function-Only Success Callback Methods

136.1.2
Interface Success Callback Methods

146.2
Pending Operations

157.
Error Handling

168.
Arguments

179.
Accessing APIs

18Appendix A.
Change History (Informative)

18A.1
Approved Version History

18A.2
Draft/Candidate Version 1.0 History

19Appendix B.
Static Conformance Requirements (Normative)

19B.1
SCR for WRAPI Client

Tables

10Table 1 Example Web IDL Specification

12Table 4 Function-Only Success Callback Method Parameters

12Table 4 Interface Success Callback Method Parameters

1. Scope

This specification defines application programming interface (API) design patterns to be used with APIs exposed to applications executing under Web runtime environments.

2. References

2.1 Normative References

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[WAC2.0]
	"WAC 2.0", WAC, February 2011, URL: http://wacapps,.net

	[WAC-API-Patterns]
	“WAC 2.0: Guidelines and Patterns for API Definition”, WAC, February 2011, URL: http://wacapps,.net

	[RFC2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee et al. August 1998. URL: http://www.ietf.org/rfc/rfc2396.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-WebIDL]
	“Web IDL", W3C, URL: http://www.w3.org/TR/WebIDL/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
URL: http://www.openmobilealliance.org/OMNA.aspx

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	ECMAScript
	Use definition from [OMADICT].

	JavaScript
	Use definition from [OMADICT].

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies.

	Web IDL
	An IDL language for Web application APIs

	Web Runtime
	Client software that supports the execution of Web Applications

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SMS
	Short Message Service

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAC
	Wholesale Applications Community

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

This specification contains common design guidelines and requirements (“API Patterns”) intended for Web runtime APIs (referred to as simply “APIs” in this document) to be defined by the OMA. These API Patterns are a normative dependency for the specification of OMA-defined APIs exposed to applications executing under Web runtime environments.
The intent of this specification is to promote consistency in the technical approach to definition of APIs exposing OMA enabler-based services.
4.1 Version 1.0

Version 1.0 of the WRAPI Design Patterns specification addresses the following aspects:
· Use of Web IDL for API specification

· Asynchronous methods

· Error handling

· Arguments

· Accessing APIs

5. Use of Web IDL
The W3C has defined Web IDL as “an interface definition language, Web IDL, that can be used to describe interfaces that are intended to be implemented in web browsers. Web IDL is an IDL variant with a number of features that allow the behavior of common script objects in the web platform to be specified more readily. How interfaces described with Web IDL correspond to constructs within ECMAScript and Java execution environments is also detailed.” [WebIDL].
5.1 Inclusion in Specifications

Web IDL is typically included in specifications to precisely define interfaces, supplemented with text defining user agent behavior related to the interfaces and other clarifying information. To clearly identity the Web IDL from the surrounding text, it is typically included in a grayed/bordered text box and presented in a fixed-type font (e.g. Consolas), e.g. as in the XMLHttpRequest API specified by W3C:

[NoInterfaceObject]

interface XMLHttpRequestEventTarget : EventTarget {

 // for future use

};

[Constructor]

interface XMLHttpRequest : XMLHttpRequestEventTarget {

 // event handler attributes
 attribute Function onreadystatechange;

 // states
 const unsigned short UNSENT = 0;

 const unsigned short OPENED = 1;

 const unsigned short HEADERS_RECEIVED = 2;

 const unsigned short LOADING = 3;

 const unsigned short DONE = 4;

 readonly attribute unsigned short readyState;

 // request
 void open(DOMString method, DOMString url);

 void open(DOMString method, DOMString url, boolean async);

 void open(DOMString method, DOMString url, boolean async, DOMString? user);

 void open(DOMString method, DOMString url, boolean async, DOMString? user, DOMString? password);

 void setRequestHeader(DOMString header, DOMString value);

 void send();

 void send(Document data);

 void send([AllowAny] DOMString? data);

 void abort();

 // response
 readonly attribute unsigned short status;

 readonly attribute DOMString statusText;

 DOMString getResponseHeader(DOMString header);

 DOMString getAllResponseHeaders();

 readonly attribute DOMString responseText;

 readonly attribute Document responseXML;

};

The Web IDL box is typically not captioned in W3C specifications, but this is recommended for OMA specifications to allow direct access to the Web IDL in the speciciation through the table index. In addition, the inclusion of a header line for the box should clearly identify the contents as a Web IDL specification of an interface. The example below is formatted as a 1x1 cell table so that a caption can be added to the specification.
Table 1 Example Web IDL Specification

	Web IDL Specification
[NoInterfaceObject]

interface XMLHttpRequestEventTarget : EventTarget {

 // for future use

};

...

5.2 Web IDL Bindings
Web IDL is designed for binding in JavaScript and Java implementations. While WRAPI APIs are primarily intended to support interface access for Web Applications executing in Web browser contexts or other Web runtime contexts (e.g. W3C widget contexts), they should be usable in Java environments as well. The specific binding to develop is an implementation choice.
5.3 Use of Web IDL Features in API Specifications
5.3.1 Modules

[WebIDL] defines a module as a definition that “serves as a container for grouping together related definitions.”

WebIDL modules are primarily used for organization of APIs into functionally related units, which are optionally identified through a namespace. W3C does not use modules for their API definitions. All W3C specs place interfaces and exceptions at the top level scope (i.e., not in a module). WAC uses modules only to organize their APIs.

It is recommended that OMA Web runtime APIs be defined without use of modules.
5.3.2 Interfaces

[WebIDL] defines an interface as “a specification of a set of interface members, which are the constants, attributes and operations given by the InterfaceMembers part of the Interface. Objects implementing the interface will have members that correspond to each of the interface’s members.”
Appropriate use of interface inheritance is a key design criteria for APIs. Interfaces which build upon other interfaces are common in API definitions. This is commonly referred to as “extending” another interface, and is a best practice when applied carefully. The key criteria is that the inherited interface is public and stably defined, i.e. it is defined in a open standards specification that is stable, and is unlikely to affected by late changes in the specification. At what point an interface is “stable” is often a judgement call; in W3C for example interfaces can be stable for years, although the related specifications have not reached the Candidate Recommendation stage, and the API may be supported by only a few of the major browsers. In such cases, whether to inherit the interface, or to define an equivalent set of interface functions is a key design decision.
Note: Whether the inheriting interfaces can change the semantics of the inherited interfaces (i.e. whether they inherit the definition of the interface only, and are able to change its semantics) is TBD. A related best practice is expected to be included here.
It is recommended that OMA Web runtime APIs use inheritance only if the inherited interface is determined to be stably defined.
5.3.2.1 Constants

5.3.2.2 Attributes

5.3.2.3 Operations

5.3.2.4 Special Operations

5.3.2.5 Overloading

5.3.3 Exceptions

5.3.4 Typedefs

5.3.5 Implements Statements

WebIDL's "implements" keyword is used to specify the object which instantiates the given interface as an object.
WAC APIs are defined as implemented by the Window object. W3C APIs are sometimes defined as implemented by the Navigator or Window objects. The reason for this variance is unclear; thus the recommended choice for OMA Web runtime APIs is TBD.
5.3.6 Types

5.3.7 Extended Attributes

6. Asynchronous Methods
As described by [WAC-API-Patterns], “ECMAScript methods can be either synchronous or asynchronous. Methods using the synchronous mode of operation do not return control to the caller until the operation is complete. Asynchronous methods return immediately and notify the caller at some point in the future of the results via callback method(s). The callback methods are specified as input parameters to the asynchronous method. Methods that may take a long time to be executed or that may be subject to security prompt are defined as asynchronous methods…”.

The key consideration for choice of operation mode is whether request processing can result in delayed response, or require user input. Generally it is preferred that application threads not be blocked API requests that must complete before the application can contine. For example, user prompts can be described as “modal” (blocking) or “non-modal” (non-blocking). In some cases, modal prompts may be preferred, and Web technologies support this need explicitly (e.g. the HTML5 showModalDialog API). However in most cases APIs that result in user prompts, e.g. for data input or confirmation of API permissions to grant to the application, should be designed in asynchronous mode, to avoid modal prompts.
Other types of interfaces that require asynchronous mode operation include interfaces that establish an event listener, e.g. as in the WRAPI Push API. Event listeners are expected to receive one or more events at a future time, and thus require the asynchronous interface mode.
6.1 Types of Asynchronous Methods

Two types of asynchronous methods are defined by [WAC-API-Patterns], “function-only success callback” and “interface success callback”. The type of method chosen for the API depends upon whether the API request will result in a single success or error callback (“function-only”), or whether in addition specific event interfaces are defined as well. For example, an interface can include specific “on event” handler definitions for events related to the interface’s purpose, e.g. a messaging interface that provides not only message sending success and error callbacks, but an event interface for message delivery or read receipt.

6.1.1 Function-Only Success Callback Methods

Table 4 Function-Only Success Callback Method Parameters
	Parameter (in order of occurrence)
	Optionality
	Description

	Success callback
	Mandatory
	Function to handle success callback

	Error callback
	Optional
	Function to handle error callback

	Additional parameters
	Optional
	Method-specific parameters

6.1.2 Interface Success Callback Methods
Table 4 Interface Success Callback Method Parameters
	Parameter (in order of occurrence)
	Optionality
	Description

	Success callback
	Mandatory
	Interface defining functions to handle specific callback events

	Error callback
	Optional
	Function to handle error callback

	Additional parameters
	Optional
	Method-specific parameters

6.2 Pending Operations
The result of an asynchronous method call is always a PendingOperation object, or null. Pending Operation objects provide a means to cancel the asynchronous operation, if possible. The return of null indicates that a callback was executed prior to completion of the asynchronous method, with the effect that the operation is completed (no longer pending).
7. Error Handling

8. Arguments

9. Accessing APIs

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions:

OMA-TS-WRAPI_Design_Patterns-V1_0
	14 Mar 2011
	All
	Baseline TS

	
	
	
	

	Candidate Version:

OMA-TS-WRAPI_Design_Patterns-V1_0
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for WRAPI Client
	Item
	Function
	Reference
	Requirement

	WRAPI-PATTERN-C-001-M
	
	
	

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]

