OMA-TS-WRAPI_Push-V1_0-20110831-D
Page 2 V(22)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Web Runtime API (WRAPI) –

Push

	Draft Version 1.0 – 31 Aug 2011

	Open Mobile Alliance

	OMA-TS-WRAPI_Push-V1_0-20110831-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

3Contents

3Tables

3Figures

41.
Scope

52.
References

52.1
Normative References

52.2
Informative References

63.
Terminology and Conventions

63.1
Conventions

63.2
Definitions

63.3
Abbreviations

84.
Introduction

84.1
Version 1.0

95.
Overview of the Push API in the OMA Push Architecture

106.
Design Basis in W3C APIs

117.
The Push Interface

117.1
Establishing a New EventSource for Push

127.1.1
Establishing a New EventSource

177.2
Applying Filters on Push Events

177.3
Mapping of Events to the text/event-stream MIME type

187.4
Terminating an EventSource for Push

198.
Security Considerations

198.1
Push API and the Same-Origin Policy

198.2
Privacy considerations for implementors of the Push API

208.3
Use of Push API Feature URI for Widget Applications

208.4
Application Security

21Appendix A.
Change History (Informative)

21A.1
Approved Version History

21A.2
Draft/Candidate Version 1.0 History

22Appendix B.
Static Conformance Requirements (Normative)

22B.1
SCR for User Agent

Tables

11Table 1 The EventSource interface

Table 2 Javascript example for establishing a new event source for SMS events
12
Table 3 Javascript example for establishing a new event source for OMA Push and processing received events
15

Figures

9Figure 1 Relationship of Push API in the OMA Push Architecture

Figure 2 Switching from Connection-Based EventSource to SMS
13
Figure 3 EventSource Switching from Connection-Based to OMA Push
16

1. Scope

This specification defines an API exposing the enabler services provided by OMA Push to applications executing in Web Runtime environments.
2. References

2.1 Normative References

	[Push-CAI]
	“Push Client - Application Interface”, Open Mobile Alliance™, OMA-TS-PushCAI-V1_1, URL:http://www.openmobilealliance.org/

	[Push-OTA]
	“Push Over The Air”, , Open Mobile Alliance™, OMA-TS-PushOTA-V2_3, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, T. Berners-Lee et al. January 2005. URL: http://tools.ietf.org/html/rfc3986

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL:http://www.ietf.org/rfc/rfc4627.txt

	[RFC5724]
	“URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS)”, E. Wilde et. al, January 2010, http://tools.ietf.org/rfc/rfc5724.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[WAC-2.0-Security]
	“WAC 2.0 – Widget Security and Privacy”, Wholesale Application Community, 2011. URL: http://specs.wacapps.net/2.0/jun2011/

	[W3C-EventSource]
	“Server-Sent Events”, W3C, URL: http://www.w3.org/TR/eventsource/

	[W3C-FileAPI]
	“File API”, W3C, URL: http://www.w3.org/TR/FileAPI/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type,
URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

	[W3C-WARP]
	“Widget Access Request Policy”, W3C, URI: http://www.w3.org/TR/widgets-access/

	[WRAPI-API-Patterns]
	“Web Runtime API (WRAPI) – Design Patterns”, Open Mobile Alliance™, OMA-TS-WRAPI_Design_Patterns-V1_0, URL:http://www.openmobilealliance.org/

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
URL: http://www.openmobilealliance.org/OMNA.aspx

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	ECMAScript
	Use definition from [OMADICT].

	JavaScript
	Use definition from [OMADICT].

	Push Client
	Device software which implements the Push API.

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies.

	Web IDL
	An IDL language for Web application APIs

	Web Runtime
	Client software that supports the execution of Web Applications

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SMS
	Short Message Service

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAC
	Wholesale Applications Community

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

This specification defines an API exposing the enabler services provided by OMA Push to applications executing in Web Runtime environments. This API is referred to in this document as the Push API.

The functions supported by the User Agent as referred to here include:

· implementation of the Push API

· functions of the Push Client as defined by the OMA Push enabler, for the supported Push-OTA protocol bindings, if

· there is no distinct Push Client software function on the terminal which exposes a native implementation of the OMA Push Client-Application Interface [Push-CAI], or other interface implementation via which the User Agent accesses the supported OMA Push enabler functions

4.1 Version 1.0

Version 1.0 of the Push API specification addresses the following aspects:

· Basis of the Push API design in the W3C API “Server-Sent Events” [W3C-EventSource]

· Support for a subset of the features of the OMA “Push Client - Application Interface” specification [Push-CAI]:

· Push-OTA bearer binding, at minimum supporting SMS-based connectionless Push

· To reduce the complexity of the Push API for this release, the ability to select specific OMA Push bearers to activate is deferred to a future release.

This limited scope of supported OMA Push features enables the API to use the existing W3C-EventSource API definition, while opening up (at minimum) the most widely deployed OMA Push bearer (SMS) to a new class of client applications. If the underlying platform supports other Push-OTA bearers (e.g. OTA-HTTP, OTA-SIP, etc), events from these sources can also be delivered through the Push API.

5. Overview of the Push API in the OMA Push Architecture

Web applications can support both online and offline use cases with access to the OMA Push enabler, and can use the OMA-standardized content types or application-specific content.

OMA Push enables the direct delivery of content in network contexts (point-to-point IP, SMS, SIP/IMS, and broadcast/multicast) and via methods (e.g. connectionless Push) that are typically unsupported by W3C-standard implementations. OMA Push can complement the HTML5 native APIs Push-capable APIs such as Server-Sent Events and Web Sockets, with these additional capabilities that are unsupported by the HTML5 APIs.

The Push API provides a bridge between Web applications executing in Web browsers or widget runtime environments (WRT), and the enabler services provided by OMA Push or SMS text messaging. The relationship of the Push API to the overall architectural elements in devices and the OMA Push architecture is illustrated below.

Figure 1 Relationship of Push API in the OMA Push Architecture

6. Design Basis in W3C APIs

The Push API design is based upon the EventSource interface as defined in the W3C API “Server-Sent Events” [W3C-EventSource]. This approach is intended to serve the key objectives:

· Simply developer adoption of the Push API by aligning the API design pattern with the conventions already established by W3C for EventSource

· Promote development of the Push API within open-source projects contributing to the mainstream Web browsers, e.g. Webkit and Mozilla

· Promote the inclusion of Push API extensions in W3C specifications

The EventSource interface provides the basic functionality of the Push API, which includes:

· Ability to create a new EventSource, which establishes a connection with a source for server-sent events

· Ability to receive events related to the overall status of an EventSource, including

· Notification of successful opening of an EventSource connection

· Notification of a new message from an EventSource

· Notification of errors in an EventSource connection

As defined by W3C Server-Sent Events, the EventSource constructor takes a URL parameter expected to use the http URI scheme. In this release, the Push API extends the use of the URL parameter:

· The URL parameter supports use of an OMNA-registered URN (“urn:oma:xml:push” – to be registered with OMNA), which if present indicates a request for delivery of any OMA Push message received from the supported OMA Push bearers.
· The URL parameter supports the SMS URI scheme per [RFC5724], which indicates a request for delivery of incoming SMS messags from the specific SMS source address indicated in the URL.

The Push API adapts data from these new event sources to the text/event-stream MIME-type processing model defined for EventSource.
7. The Push Interface

The Push API is based upon the EventSource interface defined in [W3C-EventSource].

In addition to the specific requirements given in the following sections, User Agents MUST support all aspects of the EventSource interface for the new event sources made available through the Push API, with the following exception:

· For connectionless bearers, the “reconnection time” and reconnection processing.

Note that the Push API has no effect upon the operation of the EventSource interface for other event sources, e.g. http-based event sources as defined by [W3C-EventSource].

The WebIDL specification for EventSource is provided below.

Table 1 The EventSource interface
	Web IDL Specification
[Constructor(in DOMString url)]

interface EventSource {

 readonly attribute DOMString url;

 // ready state

 const unsigned short CONNECTING = 0;

 const unsigned short OPEN = 1;

 const unsigned short CLOSED = 2;

 readonly attribute unsigned short readyState;

 // networking

 attribute Function? onopen;

 attribute Function? onmessage;

 attribute Function? onerror;

 void close();

};

EventSource implements EventTarget;

7.1 Establishing a New EventSource for Push

The EventSource API defines a single parameter for new EventSource objects: a URL representing the source from which event reception should be initiated.

For the Push API, the URL parameter is optional, and has the following interpretation:

· URLs using the SMS URI scheme indicate a request for delivery of incoming SMS from a specific SMS source address.

· If instead of a URL, the OMNA-registered URN “urn:oma:xml:push” is provided, this indicates a request for delivery of any OMA Push message received from the supported OMA Push bearers
Applications can create multiple EventSource objects for delivery of Push events. This allows the application to choose which types of Push sources should be activated, in any desired combination e.g.:

· SMS from one more specific source addresses (one EventSource object is created per source address)

· OMA Push from any supported OMA Push bearer

· W3C Server-Sent Events (EventSource created with http:// URI scheme as defined by W3C)

User Agents MUST support multiple EventSource objects, with the same or different types of event sources.

The application can use these options to apply specific event handlers for the different event sources. For example, the application may expect SMS from specific source addresses to have a specific format for processing. OMA Push messages may also have specific processing and validation requirements, e.g. for filtering by the application based upon the Push Application Id, and to parse or validate the message data for different Push content types.

7.1.1 Establishing a New EventSource

As described in [W3C-EventSource], the EventSource(url) constructor takes one argument, url, which specifies the resource to which to connect. When the EventSource() constructor is invoked, the User Agent MUST run these steps:
1. If the url parameter begins with “http:” or “https:”, establish a new EventSource as described in [W3C-EventSource]

2. If the url parameter begins with “sms:”

a. If the url contains only a single “sms-recipient” field as defined by [RFC2754], set the SMS source address filter to the sms-recipient field, and establish a new EventSource for SMS events as described in 7.1.1.1
b. Otherwise, throw a SYNTAX_ERR exception.

3. If the url parameter begins with “urn:”

a. If the URN is “urn:oma:xml:push”, establish a new EventSource for OMA Push events as described in 7.1.1.2
b. Otherwise, throw a SYNTAX_ERR exception.
7.1.1.1 Establishing a New EventSource for SMS Events
Upon successful creation of a new EventSource object for SMS, User Agents MUST begin delivery of SMS message events to the EventSource object, and deliver all incoming SMS events which match the SMS source address filter.

Below is an example of how an application can create a new EventSource for SMS events using the Push API.

Table 2 Javascript example for establishing a new event source for SMS events

	try {

 var es = new EventSource("sms:+14255551212"); // Expect Push API events from SMS source +14255551212
 es.onmessage = function (event) { // Event handler

 // Handle then new event: the example below just shows presentation of the content
 ediv = document.getElementById('esdata'); // get HTML element where new content is to be displayed

 ediv.innerHTML = event.data; // Display the new content

 };
 }

catch(e) {

 // Handle EventSource setup exception
 }

}

Figure 2 Switching from Connection-Based EventSource to SMS

[image: image2.png]App Server

SMsC

2) Open connection e.g.

GET http://myapp.com

User Agent

3) Deliver event stream

5) Activate SMS event delivery
(SMS destination address to be used)

1) Create new EventSource
(http://myapp.com)

4) Call onmessage function
with event stream

Client
Application

Some time later, app needs to
switch to connectionless events,
and coordinates with app server at
the application layer (unspecified)

6) Confirm SMS event delivery preparation

(SMS source

address to be used)

8) Close connection

App Server notes the EventSource
connection is down, and delivers
the event stream via SMS.

10) Deliver event stream in SMS message.

App Server

SMsC

(event stream)

Establish SMS reception
if not already active.

11) Deliver SMS

User Agent

7) Call close() on
EventSource object

9) Create new EventSource
(sms:+14255551212)

12) Call onmessage function
with event stream

Client
Application

www.websequencediagrams.com

1. Application invokes the EventSource API with a URI meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URI.

3. The App Server delivers an event stream.

4. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

5. Sometime later, the Client App decides to switch to connectionless event delivery via SMS. Coordination of the key parameters (e.g. SMS destination address and SMS source address to be used), and the trigger for switching to connectionless delivery (e.g. upon closure of the eventsource connection over HTTP), are assumed to occur at the application layer. The Client App initiates this coordination (in this example) by requesting switch to connectionless delivery, and providing its SMS destination address (so the App Server knows where to send events).

6. The App Server confirms preparation of the switch to connectionless delivery, and provides its SMS source address so that the Client App can establish the event source.
7. The Client App calls the close() method on the eventsource object.
8. The User Agent closes the EventSource connection to the App Server.

9. Application invokes the EventSource API with an SMS URI scheme (sms:+14255551212).

10. The User Agent establishes SMS reception if not already active.
11. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App. The App Server delivers the event stream in an SMS message, either directly to the SMSC, or via an SMS API service.

12. The SMSC delivers the SMS message to the user's device.

13. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
7.1.1.2 Establishing a New EventSource for OMA Push Events
Upon successful creation of a new EventSource object for OMA Push, User Agents MUST begin delivery of OMA Push message events to the EventSource object, delivering all incoming OMA Push events that are received.

The OMA Push Client functionality is assumed to be pre-configured in the device to establish connections over the supported bearers (e.g. OTA-WSP/SMS, OTA-WSP/IP, OTA-HTTP, OTA-SIP, etc) either through OMA Device Management or device-specific configuration mechanisms.

Below is an example of how an application can create a new EventSource for OMA Push events using the Push API. In this example, the application ignores any messages of content type other than Service Indication. Similar techniques can be used to filter incoming messages based upon the value of other message headers, e.g. X-Wap-Initiator-URI or X-Wap-Application-Id.

Table 3 Javascript example for establishing a new event source for OMA Push and processing received events

	try {

 var es = new EventSource('urn:oma:xml:push'); // Expect Push API events from OMA Push sources
 es.onmessage = function (event) { // Event handler

 // Handle the new event

 if (event.data.search(/content\-type\:\ application\/vnd\.wap\.si/i)) { // Push Service Indication

 var data = event.data.substring(event.data.indexOf('\n\n')+2); // Data follows the first blank line

 parseSi(data); // Parse the SI content
 ediv = document.getElementById('esdata'); // Get the output element
 ediv.innerHTML = pushText + "
Click Here!"; // Output the content
 }

 };
 }

catch(e) {

 // Handle EventSource setup exception
 }

}
var pushXml; // Variable to hold XML DOM document created from the Push content
var pushUrl; // Variable to hold the SI URL
var pushText; // Variable to hold the SI text
function parseSi(data) { // Parse SI content
 if (data.length > 0) { // Ignore empty content (not expected)
 try { // Internet Explorer method
 pushXml=new ActiveXObject("Microsoft.XMLDOM");

 pushXml.async="false";

 pushXml.loadXML(data);

 }
 catch(e) { // Internet Explorer method failed
 try { // Try Mozilla etc (W3C) method
 var parser = new DOMParser();

 pushXml = parser.parseFromString(data, "text/xml");

 }

 catch(e1) {

 alert('Unable to parse content from eventsource server'); // Error in content

 return(false);
 }

 }

 var el = pushXml.getElementsByTagName("indication"); // Find <indication> element
 pushUrl = el[0].attributes["href"].value; // Get SI URL (href attribute)
 pushText = el[0].textContent; // Get SI text
 return(true);
 }

 else {

 alert('No content from eventsource server');

 return(false);

 }

}

Figure 3 EventSource Switching from Connection-Based to OMA Push
[image: image3.png]App Server Push Server push Client User Agent c/l':;‘

1) Create new EventSource
(http://myapp.com)

2) Open connection e.

GET http://myapp.com

3) Deliver event stream

4) Call onmessage function
with event stream

Some time later, app
decides to switch to
connectionless delivery.

5) Activate OMA Push event delivery
(OMA Push address, Appld, etc)

6) Confirm OMA Push event delivery preparation
(Push Initiator Address)

7) Call close() on

Eventsource object
et R

8) Close connection

9) Create new EventSource

(urn:oma:xml:push)
| UITOMAXMEPEY

Establish OMA Push reception
if not already active.

App Server notes the EventSource
connection is down, and delivers
the event stream via OMA Push PPG.

10) Deliver event stream
(Push PAP or PushREST)

11) Deliver OMA Push-OTA message.
12) Deliver OMA Push-OTA message.

13) Call onmessage function
with event stream

App Server Push Server push Client User Agent c/l':;‘

www.websequencediagrams.com

1. Client App invokes the EventSource API with a URI meeting same-origin requirements.

2. The User Agent opens an EventSource connection to the server at the requested URI.

3. The App Server delivers an event stream.

4. The User Agent calls the onmessage function defined for the EventSource object with the event stream.

5. Sometime later, the Client App decides to switch to event delivery via OMA Push. Coordination of the key parameters (e.g. OMA Push address, Push AppId, etc), and the trigger for switching to connectionless delivery (e.g. upon closure of the eventsource connection over HTTP), are assumed to occur at the application layer. The Client App initiates this coordination (in this example) by requesting switch to OMA Push delivery, and providing its OMA Push address and AppId (so the App Server knows where to send events, and what AppId to use).

6. The App Server confirms preparation of the switch to OMA Push delivery, and provides relevant parameters for use by the Client App (e.g. Push Initiator Address, if used for incoming event filtering based upon the X-Wap-Initiator-URI Push message header).
7. The User Agent closes the EventSource connection to the App Server.

8. Client App invokes the EventSource API with the URL parameter set to "urn:oma:xml:push".
9. The User Agent establishes OMA Push reception if not already active.

10. The App Server has an event to be delivered, and notes that no EventSource connection is active to the Client App. The App Server delivers the event stream in an OMA Push message, either using OMA Push PAP, PushREST, or via some other OMA Push API service.

11. The Push Server delivers the Push message message to the Push Client on the user's device.

12. The Push Client delivers the Push message message to the User Agent.

13. The User Agent calls the onmessage function defined for the EventSource object with the event stream.
7.2 Applying Filters on Push Events

For EventSource objects created with the SMS URI scheme, the User Agent MUST delivery only those events that match the SMS source address as described in section 7.1.1.

For OMA Push events, filtering is assumed to be applied either by the underlying platform (e.g. using the Push Whitelist feature of OMA Push 2.2) or by the application, e.g. as shown in Table 3.

7.3 Mapping of Events to the text/event-stream MIME type

EventSource is designed for delivery of a particular message format in event streams, per the text/event-stream MIME type processing model defined in [W3C-EventSource]. To enable developers to use a consistent approach to accessing event data, the typical structure of OMA Push-OTA events (headers+body) is mapped to the EventSource event-stream format.

For received OMA Push messages with a Content-Type header with value “text/event-stream”, User Agents MUST interpret the received message body as an event stream, as described in [W3C-EventSource] section 7 “Interpreting an event stream”.

For received OMA Push messages with Content-Type header set to values other than “text/event-stream”, User Agents MUST dispatch a single EventSource event, as follows:

· Setting the event stream "event" name buffer to the string “OMAPush”

· Setting the data buffer to a text string concatenating all Push message headers, followed by an empty line, followed by the Push message content, using the following processing model:
· if the message body has a OMA-defined compressed MIME type (e.g. application/vnd.oma.sic), decompress the message headers and body, and set the Content-Type header to the equivalent uncompressed MIME type (e.g. application/vnd.oma.si).

· Set the data buffer to the concatenation of the message headers and message body

· For each message header, add the message header followed by a U+000A LINE FEED (LF) character to the data buffer

· After all message headers have been included, add a single U+000A LINE FEED (LF) character to the data buffer

· For each line of the message body, add the line followed by a single U+000A LINE FEED (LF) character to the data buffer
For received SMS messages, User Agents MUST dispatch a single EventSource event, as follows:

· Setting the event stream "event" name buffer to the string “SMS”

· Setting the data buffer to the SMS text content.

TBD: How to handle binary SMS content (and if we need to).

7.4 Terminating an EventSource for Push

When the close() method is invoked on an EventSource object, User Agents MUST terminate delivery of SMS and WAP Push message events to the EventSource object if applicable.

8. Security Considerations

The API defined in this specification can be used to access incoming SMS messages and OMA Push events. This may result in the disclosure of information related to a user's contacts, other applications that use SMS or OMA Push, and other personally identifying information carried by these event sources. The distribution of this information could potentially compromise the user's privacy, or the user's contacts' privacy. A conforming implementation of this specification must provide a mechanism that protects the user's privacy and this mechanism should ensure that no SMS or OMA Push event data is accessible without the user's express permission.
Other than the capabilities described in the following sections, the host device may have additional security-enhancing capabilities such as support for the OMA Push Whitelist feature, or other SMS filtering, spam control, or content filtering capabilities. Regardless, developers need to use caution in processing events from potentially unknown sources.

8.1 Push API and the Same-Origin Policy
As defined by [W3C-EventSource], security of the EventSource interface for HTTP-based resources is based upon the standard “same-origin policy” security design of the Web. The same-origin policy is applicable to browser context applications, for which a specific origin server can be determined, so eventsource data from the same origin can also be trusted under the same-origin policy. The user thus implicitly chooses to trust the application by browsing to it at the origin server resource address (Web page that starts the application).

Prearranged trust relationships, or explicit user consent may apply in other contexts. For widget context applications, the ablity to access network resources including via eventsource is based upon declaration of the network domains that the application intends to access, in the widget configuration document as described by [W3C-WARP] for HTTP-based resources, and by additional security framework capabilities for non-HTTP-based resources (e.g. inclusion of API feature URIs in the widget configuration document per [WAC-2.0-Security]). For widgets, during widget installation the user is typically informed which APIs and resources the widget has declared a need to access. The user is able to provide consent at that time, or later e.g. if an applicable security policy requires a user prompt for each application session or API use.

The Push API has no effect upon HTTP-based event sources, but does require some considerations for the new event source types defined in this specification. This is primarily because the same-origin policy only applies to HTTP-based resources. Thus the user’s consent for the application to use content from Push API event sources, and the security of the application in using content from those sources, both require additional measures.
8.2 Privacy considerations for implementors of the Push API
A User Agent MUST NOT provide Push API event source access to browser context applications without the express permission of the user. A User Agent MUST acquire consent for permission through a user interface, unless a prearranged trust relationship applies, as described below. The user interface for consent MUST include the application’s base URL. Those permissions that are acquired through the user interface and that are preserved beyond the current browsing session (i.e. beyond the time when the browsing context is navigated to another URL outside the application) MUST be revocable and a User Agent MUST respect revoked permissions.

Obtaining the user's express permission to access one Push API source does not imply the user has granted permission for the same application to access other sources provided by the Push API, as part of the same permission context. If a user has expressed permission for an implementation to, e.g. access incoming SMS events from a particular SMS source address, the implementation MUST seek the user's express permission if and when any additional event sources are accessed via the Push API.

A User Agent MAY support prearranged trust relationships that do not require such user interfaces, e.g. as described in section 8.1. For example, while a Web browser will present a user interface when a Web site establishes a new Push API eventsource, a widget runtime MAY have a prearranged, delegated security relationship with the user and, as such, a suitable alternative security and privacy mechanism with which to authorise access to Push API event sources.
8.3 Use of Push API Feature URI for Widget Applications

For widget context applications, User Agents MUST NOT allow access to the Push API unless the Push API feature URI “http://openmobilealliance.org/wrapi/push” is included in a <feature> element in the widget configuration document.
8.4 Application Security

For SMS event sources, application security is provided by limiting the SMS messages that can be received to those from specific SMS source addresses. It is assumed that the application has gained the necessary degree of trust in the content provided by an SMS source, prior to initiating event reception from that source.

For OMA Push event sources, applications generally can depend upon the security of the OMA Push enabler as typically deployed. However defensive programming measures should always be applied by the developer, to ensure that the XML-based content and other content provided through OMA Push is safely processable.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions:

OMA-TS-WRAPI_Push-V1_0-20110628-D
	28 Jun 2011
	All
	Baseline TS

	
	15 Jul, 2011
	All
	Incorporates agreed CR:

OMA-CD-WRAPI-2011-0003R06-INP_Push_API_TS_Baseline

	
	31 Aug, 2011
	5, 7, 7.1, 7.3,
	Incorporates agreed CR:

OMA-CD-WRAPI-2011-0009-CR_Push_API_TS_Edits

	Candidate Version:

OMA-TS-WRAPI_Push-V1_0-20110628-D
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for User Agent
	Item
	Function
	Reference
	Requirement

	WRAPI-SSE-C-001-M
	Support all applicable EventSource functions
	7
	

	WRAPI-SSE-C-002-M
	Support multiple EventSource objects
	7
	

	WRAPI-SSE-C-003-M
	Establishing a new EventSource
	7.1.1
	

	WRAPI-SSE-C-004-M
	Applying event filters
	7.2
	

	WRAPI-SSE-C-005-M
	Mapping of events to the text/event-stream MIME type
	7.3
	

	WRAPI-SSE-C-006-M
	Terminating an EventSource
	7.4
	

	WRAPI-SSE-C-007-M
	Privacy considerations
	8.2
	

	WRAPI-SSE-C-008-M
	Use of Push API feature URI for Widgets
	8.3
	

W3C Server-Sent Events

OMA Push PAP or PushREST

OMA Push Proxy Gateway

Application Server

SMS Service Provider

WAP2 stack

SIP stack

WAP1 stack

HTTP stack

SMS stack

Push Client

Operating System

Applications

Webapp

Webapp

Webapp

Webapp

User

Agent

Web Layout Engine

Widget Runtime

Web Browser

Other APIs

Push API

Other APIs

Web Runtime Environment

User Device (Terminal)

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20110101-I]

