Doc# OMA-MWG-CAB-2010-0323-INP-element-ordering-AI-038.doc[image: image1.jpg]
Input Contribution

Doc# OMA-MWG-CAB-2010-0323-INP-element-ordering-AI-038.doc
Input Contribution

Input Contribution

	Title:
	Discussions Topics: Element Ordering
Use of the "xml:lang" attribute
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	CAB WG

	Submission Date:
	16 July 2010

	Source:
	Tom Hiller, Alcatel-Lucent
tomhiller@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

Reason for Contribution

Basic XCAP [RFC 4825] imposes certain constraints on the PCC document and the associated schema. This input contribution addresses such constraints. In doing so, the contribution also closes action item #038. This contribution also addresses general requirements regards XCAP selectors identifying multiple instances of an element, and, as well, the use of xml:lang attribute, which appears continuously in the PCC document.
This contribution supports an associated CR on the CAB XDMS TS (PCC document - Section 5.2).
1 Summary of Contribution
Generally speaking in XDM, XCAP selectors need to be able to point to a unique location in the document, e.g., before/after/etc node(s) are to be inserted. The requirement applies to filters, XCAP-Diff, and XDCP Differential Write.

Regards basic XCAP, an additional constraint also applies: When inserting a new child node of a parent element, XCAP selectors need to select a currently "non existing" element, i.e., the one that will exist after the insertion; however, depending on the schema design, rules for basic XCAP can lead to the new child element being appended at the end of a series of child nodes and causing an error, if the schema happens to require a fixed order of child nodes.
There are at least a few possible solutions:
1. Define <name> as possessing unordered child elements:
a. Use a sequence of <name-element> elements each of which has an attribute that indicates an enumeration type. The sequence does not mandate fixed-order because the attributes are not formally part of the sequence. It is not possible to constrain the cardinality of a child element type, if necessary.
b. Use a "sequence" of "choices" of each child type, which allows child nodes to occur in any order. It is not possible to constrain the cardinality of a child element type, if necessary.
2. Mandate that at least one element type always be present, even if it has a nil content. It is possible to constrain cardinality using "nil" content as a zero occurrence.
3. Always write the entire <name> element, i.e., not just a child element of <name>. In this case it is only necessary for XCAP selectors to pinpoint the <name> element itself, not any of its child elements. This is not spectrally advantageous.
An "all" construct element, which can permit zero or one elements in any order, does not work if there are two or more elements of the sequence. Therefore, an "all" construct approach for <name> does not work because a user may have multiple middle names, titles, generation identifiers, degrees (or certifications), or phonetic given/family pronunciations.
Although outside the scope of action 0038 item, when a name is in some language for which the user seeks to provide a "phonetic pronunciation", an issue exists as to how the attribute "xml:lang" should be used. The typical case is a name is in Asian character (script) and a phonetic pronunciation in English-based syllables scripted in Latin characters. Due to prevailing dialects, more than one such pronunciation may be needed. The problem is naturally resolved by adding the xml:lang to name components. However, there are important caveats about xml:lang that need to be observed.
Throughout this input contribution, XML instances and schemas are provide to aid the discussion. This may also serve to provide input into schemas.
Detailed Proposal
XCAP Selectors

To aid in the discussion of XCAP node selector constraints, the following is a possible schema snippet to realize the currently defined <name> element:

<xs:element name="name" type="PersonNameType">

 <xs:complexType name="PersonNameType">

 <xs:sequence>

 <xs:element name="title" type="xs:string" minOccurs="0"/>

 <xs:element name="given" type="xs:string" minOccurs="0"/>

 <xs:element name="middle" type="xs:string" minOccurs="0"/>

 <xs:element name="family" type="xs:string" minOccurs="0"/>

 <xs:element name="gen_id" type="xs:string" minOccurs="0"/>

 <xs:element name="degree" type="xs:string" minOccurs="0"/>

 <xs:element name="phonetic-given" type="xs:string" minOccurs="0"/>

 <xs:element name="phonetic-family" type="xs:string" minOccurs="0"/>

 <xs:element name="degree" type="xs:string" minOccurs="0"/>

 <xs:element name="display-name" type="xs:string" minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 <xs:attribute name="name-type" type="PersonNameTypeList">
 <xs:attribute name="pref" type="PrefValue"/>
 <xs:attribute type="xml:lang"/>
 <xs:anyAttribute processContents="lax"/>

 </xs:complexType>

<xs:simpleType name="PersonNameTypeList">

<xs:restriction base="xs:normalizedString">

<xs:enumeration value="Alias"/>

<xs:enumeration value="LegalName"/>

<xs:enumeration value="KnownAs"/>

<xs:enumeration value="MaidenName"/>

<xs:enumeration value="FormerName"/>

<xs:enumeration value="NameAtBirth"/>

<xs:enumeration value="OfficialName"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PrefValue">

<xs:restriction base="xs:integer">

<xsd:minInclusive value="1"/>

<xsd:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType
A specific <person-details> element can be selected via an attribute of the <person-details> element, and now the problem is to insert child elements of <name> into a partially populated <name> element.
Using the example data of OMA-COM-CAB-2010-0290R01-CR_CAB_XDMS_Appendix_D, let's assume that "J Bloggs" had not included his middle name ("Samuel") and wants to insert it in a subsequent step. This is the initial data:

 <name pref=”1” name-type=”LegalName”>

 <title>Mr.</title>

 <given>Joseph</given>

 <family>Bloggs</family>

 <gen-id>Jr.</gen-id>

 <display-name>Joesph Bloggs</display-name>

 </name>

Description: Starting instance of <name> is partially populated with no <middle> element.

A typical XCAP URI expression like

root/person-details[@id="gt4fd890bu8"]/name[@name-type="LegalName"]/middle
in an HTTP PUT results in the <middle> being appended to the end, as follows, resulting in an XCAP error code

 <name pref=”1” name-type=”LegalName”>

 <title>Mr.</title>

 <given>Joseph</given>

 <family>Bloggs</family>

 <gen-id>Jr.</gen-id>

 <display-name>Joesph Bloggs</display-name>
 <middle>Samuel</middle>
 </name>
Description: The above selector expression causes <middle> to be inserted at end of <name>, creating an invalid instance. Instead, the XCAP (XDM) request would be rejected.

The following is an excerpt from RFC 4825 (Section 7.3, page 27) that outlines certain constraints of basic XCAP. Below text "Figure 3" referenced is also copied for ease of reference.

Oftentimes, the client will wish to insert an element into a document
in a certain position relative to other children of the same parent.
This is called a positional insertion. They often arise because the
schema constrains where the element can occur, or because ordering of
elements is significant within the schema. To accomplish this, the
client can use a node selector of the following form:

parent/*[position][unique-attribute-value]

Here, "parent" is an expression for the parent of the element to be
inserted. "position" is the position amongst the existing child
elements of this parent where the new element is to be inserted.
"unique-attribute-value" is an attribute name and value for the
element to be inserted, which is different from the current element
in "position". The second predicate is needed so that the overall
expression is a no-match when evaluated against the current children.
Otherwise, the PUT would replace the existing element in that
position. Note that in addition to wildcard "*" a QName can also be
used as a node test. The insert logic is described in more detail in
Section 8.2.3.
Consider the example document in Figure 3. The client would like to
insert a new <watcher> element as the second element underneath
<watcher-list>. However, it cannot just PUT to a URI with the
watcherinfo/watcher-list/*[2] node selector; this node selector would
select the existing second child element of <watcher-list> and
replace it. Thus, the PUT has to be made to a URI with watcherinfo/
watcher-list/*[2][@id="hhggff"] as the node selector, where "hhggff"
is the value of the "id" attribute of the new element to be inserted.
This node-selector is a no-match against the current document, and
would be a match against the new element if it was inserted as the
second child element of <watcher-list>.
<?xml version="1.0"?>
<watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
version="0" state="full">

<watcher-list resource="sip:professor@example.net" package="presence">

<watcher id="8ajksjda7s" duration-subscribed="509" event="approved">

sip:userA@example.net

</watcher>

 <watcher status="pending" id="hs7" display-name="Mr. Subscriber" event="subscribe">

 sip:userB@example.org

 </watcher>

</watcher-list>

</watcherinfo>

Figure 3: Example XML Document

The text states the client creates a node selector that is a "no match", which simply means the "selected" node does not (yet) exist, but post insertion, this same node selector will select the newly inserted element. The issue is there is no way in the currently planned schema to use XCAP to point to the position after the <given> name element where the <middle> element should go.
Various solutions were outlined above.
One approach is to use a generic element for each name component (name child element), and distinguish them via an attribute that takes on the enumerated values of "given", "middle", "family", etc., but that is outside the sequence itself. The result is the following schema.
<xs:element name="name" type="PersonNameType">

 <xs:complexType name="PersonNameType">

 <xs:sequence>

<xs:element name="name-element" type="PersonNameElementType" maxOccurs="1">

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="name-type" type="PersonNameTypeList">
 <xs:attribute name="pref" type="PrefValue"/>
 <xs:anyAttribute processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="PersonNameElementType">

<xs:restriction base="xs:normalizedString">

 <xs:attribute name="element-type" type="PersonNameTypeList">
 <xs:anyAttribute processContents="lax"/>

 </xs:complexType>

<xs:simpleType name="PersonNameElementList">

<xs:restriction base="xs:normalizedString">

<xs:enumeration value="Title"/>

<xs:enumeration value="Given"/>

<xs:enumeration value="Middle"/>

<xs:enumeration value="Family"/>

<xs:enumeration value="Gen_ID"/>

<xs:enumeration value="Degree"/>

<xs:enumeration value="Phonetic-Given"/>

<xs:enumeration value="Phonentic-Family"/>

<xs:enumeration value="Degree"/>

<xs:enumeration value="Display-Name"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PersonNameElementList">

<xs:restriction base="xs:normalizedString">

<xs:enumeration value="Title"/>

<xs:enumeration value="Given"/>

<xs:enumeration value="Middle"/>

<xs:enumeration value="Family"/>

<xs:enumeration value="Gen_ID"/>

<xs:enumeration value="Degree"/>

<xs:enumeration value="Phonetic-Given"/>

<xs:enumeration value="Phonentic-Family"/>

<xs:enumeration value="Degree"/>

<xs:enumeration value="Display-Name"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PersonNameTypeList">

<xs:restriction base="xs:normalizedString">

<xs:enumeration value="Alias"/>

<xs:enumeration value="LegalName"/>

<xs:enumeration value="KnownAs"/>

<xs:enumeration value="MaidenName"/>

<xs:enumeration value="FormerName"/>

<xs:enumeration value="NameAtBirth"/>

<xs:enumeration value="OfficialName"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PrefValue">

<xs:restriction base="xs:integer">

<xsd:minInclusive value="1"/>

<xsd:maxInclusive value="100"/>

</xs:restriction>

</xs:simpleType
To see what this looks like, an example instance is:

<xs:name pref=”1” name-type=”LegalName”>

<xs:name-element element-type="title">Mr.</name-element>

<xs:name-element element-type="given">Joseph</name-element>

<xs:name-element element-type="family">Bloggs</name-element>

<xs:name-element element-type="gen-id">Jr.</name-element>

<xs:name-element element-type="display-name">Joseph Bloggs</name-element>

<xs:name-element element-type="middle">Joseph Bloggs</name-element>
</xs:name>

Description: The "name-element" elements are unordered, so it no issue for name-element with element-type value of "middle" to be inserted at the end.
One can add a second attribute 'display-order' to the types that can appear multiply, so they are displayed to the user in correct order. Still, the elements are stored any order, so there is no violation of schema ordering, if such ordering is required.
Another option outlined above is "sequence of choices", which would appear as follows
 <xs:complexType name="PersonNameType">

 <xs:sequence>
 <xs:choice>

 <xs:element name="title" type="xs:string" maxOccurs="1"/>

 <xs:element name="given" type="xs:string" maxOccurs="1"/>

 <xs:element name="middle" type="xs:string" maxOccurs="1"/>

 <xs:element name="family" type="xs:string" maxOccurs="1"/>

 <xs:element name="gen_id" type="xs:string" maxOccurs="1"/>

 <xs:element name="degree" type="xs:string" maxOccurs="1"/>

 <xs:element name="phonetic-given" type="xs:string" maxOccurs="1"/>

 <xs:element name="phonetic-family" type="xs:string" maxOccurs="1"/>

 <xs:element name="degree" type="xs:string" maxOccurs="1"/>

 <xs:element name="display-name" type="xs:string" maxOccurs="1"/>

 <xs:any namespace="##other" processContents="lax" maxOccurs="1"/>
 <xs:choice/>

 </xs:sequence>
 <xs:attribute name="name-type" type="PersonNameTypeList">
 <xs:attribute name="pref" type="PrefValue"/>
 <xs:attribute type="xml:lang"/>
 <xs:anyAttribute processContents="lax"/>

 </xs:complexType>

The syntax "maxOccurs=1" above merely indicates each element of the sequence is at most one choice, and therefore, any number of child elements of <name> can appear in any order.
To say a few words about a <name> element in which all child types appear at least once, using nil content as "zero occurrence", an XCAP selector identifies the desired child type, which will always be there in a fixed position, and then we use some attribute (index or display-order) to force the insertion of a new child into the current child with nil content or below the current child as a new child. In either case, the fixed order prevails and the schema is not violated. A schema example is not provided herein, but one simply adds the attribute 'nillable' with value "true" for each child element. One can control child element cardinality with this approach.
Distinguishing multiple sibling elements
A well structured series of contact names with similar, but varying types and numbers of accreditations may be important to information to some users. We prefer distinct child elements because it makes it easier to run searches on specific titles, degrees, certifications, etc., and in fact, do anything else that requires a solid information model. Keeping these things separate (as opposed to concatenated via white space or commas into one text string) may also aid search or import functionality. However, in this case, multiple sibling elements must have distinct XCAP selectors, otherwise, a selector would select all such siblings, which causes problems outlined above.
Examples: a person that is a lawyer and an accountant, might have the dual degrees of "JD" and "CPA". It may be useful to find one or the other or both. Multiple certifications is another example: "RD LPN", means "Registered Dietician" and "Licensed Practical Nurse"; additional varying certifications often follow "RD LPN" in common (US) usage. Degrees and certifications need to be displayed in specific order as part of an overall "name".

A simple approach to this problem is an optional "index" attribute. The following adds an optional attribute "index" to the "name-element", an example schema provided above:

 <xs:complexType name="PersonNameElementType">

<xs:restriction base="xs:normalizedString">

 <xs:attribute name="name-type" type="PersonNameTypeList">
 <xs:attribute name="index" type="xs:integer" use="optional">
 <xs:anyAttribute processContents="lax"/>

 </xs:complexType>

Note that the "index" is only unique within the parent element, not the entire document instance.
The approach more often taken in the accompanying CR to the XDMS TS PCC Section 5.2 is to use attribute 'display-order', which applies to overlapping child elements of the same type, since they usually need to both be displayed in a certain order, and as well, uniquely selected.
Using "xml:lang"
The following <name> instance example uses Chinese simplified characters, and has two Latin character based English pronunciations (Mandarin-pinyin and Cantonese). See the references below for IANA language tags and sub-tags for details on locating tags, definitions, and other valuable details.
<xs:name pref=”1” name-type=”LegalName”>
 <xs:name-element element-type="given" xml:lang="zh-CN">中山</name-element>

 <xs:name-element element-type="family" xml:lang="zh-CN">孫</name-element>
 <xs:name-element element-type="phonetic-family" xml:lang=“zh-Latin-pinyin”>Sun</name-element>
 <xs:name-element element-type="phonetic-first" xml:lang=“zh-Latin-pinyin”>Zhong Shan</name-element>

 <xs:name-element element-type="phonetic-family" xml:lang=“zh-yue”>Sun</name-element>
 <xs:name-element element-type="phonetic-first" xml:lang=“zh-yue”>Yat-sen</name-element>
</name>
Note that when xml:lang appears in a parent <name>, the language tag and sub-tag also applies to all child elements, including attributes of the child nodes, unless overridden in the child element. In the above example, had xml:lang been included in the parent node (e.g., xml:lang='zh-CN"), then the attributes of element-type, such as "element-type="family", would also be in Chinese characters. For example, in Chinese simplified script, the attribute element-type value of "family" becomes "姓". If one uses xml:lang in <Name Element> elements, and not in the parent <name> element; only the content of the <name-element> elements will be in Asian characters.
If it is desired that <name-element> nodes and attributes are all in (e.g.,) Asian characters, it is still mandatory to include a correct Latin based xml:lang (e.g., “zh-Latin-pinyin”) in the <phonetic-family> and <phonetic-given> elements in order to convey pinyin content.
Note that is possible to use xml:lang without any tag. In this case the implied "language" is the one the application would use if no xml:lang existed at that point in the XML instance.
In summary, unless one wants all content and attributes of <name-element> elements to appear in an Asian character sets, one should move xml:lang from the parent <name> into the component <name-elements>. Continuing, if one puts the xml:lang attribute with an Asian character tag and sub-tag, such as "zh-TW" for Chinese traditional script in the parent <name> element, then xml:lang with an appropriate Latin script based tag and sub-tag still needs to appear in the phonetic-family and phonetic-given elements because these are absolutely Latin character scripted content.
xml:lang tag and sub-tag references

[RFC5645] Ewell, D., Ed., "Update to the Language Subtag Registry", September 2009.
[RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying Languages", RFC 5646, September 2009.
Tag finder tool

http://rishida.net/utils/subtags/index.php?find=&submit=Find
List of tags:

http://rishida.net/utils/subtags/index.php?list=4&submit=List
Penn State website of language, include tags and sub-tags:

http://tlt.its.psu.edu/suggestions/international/bylanguage/index.html
http://tlt.its.psu.edu/suggestions/international/web/tips/langtag.html
For example, for Chinese dialects and scripts, see:

http://tlt.its.psu.edu/suggestions/international/bylanguage/chinese.html#dialect
On this website, codes for different languages, scripts, and dialects are not documented in uniform places, so it is necessary to follow links. Nevertheless, this site presents myriad information in a conveniently condensed format.
Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

Recommendation
· The contribution outlines that it is important that an XCAP selector be able to pinpoint elements, etc., and that basic RFC 4825 XCAP write requests do not result in errors due to invalid element ordering. The group should discuss the schema design options outlined in this contribution, as well.
· This contribution recommends a child-level attribute 'index' or 'display-order' that is unique within a parent element, or to a given child element type, respectively, that appears in the accompanying CR to section 5.2.

· The contribution usage for xml:lang that appears in the accompanying CR to section 5.2.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

