OMA-TS-CAB-V1_0-20100804-D
Page 66 V(66)

	[image: image1.jpg]
	

	Converged Address Book (CAB) Specification

	Draft Version 1.0 – 04 Aug 2010

	Open Mobile Alliance

	OMA-TS-CAB-V1_0-20100804-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
9
4.
Introduction (Informative)
10
4.1
Version 1.0
10
5.
Procedures at CAB Server
11
5.1
AB Synchronization Function
11
5.2
Contact Subscription Function
11
5.3
Contact Share Function
13
5.4
Interworking Function
14
5.4.1
Interaction with Non-CAB AB Systems
14
5.4.2
Contact Search with External Directories
15
5.4.3
Format Adaptation
16
5.5
XDM Agent
22
5.6
Contact Status Function
22
6.
Procedures at CAB Client
23
6.1
Contact Search
23
6.2
Document management
23
6.2.1
Personal Contact Card (PCC) management
23
6.2.2
CAB User Preferences management
23
6.2.3
Access Permissions management
25
6.3
Subscription to CAB XML documents changes
25
6.3.1
Subscriptions to CAB User’s own PCC document changes
25
6.3.2
Subscriptions to CAB User’s own CAB User Preferences document changes
26
6.3.3
Subscriptions to CAB User’s own CAB Feature Handler document changes
26
6.3.4
Subscription to CAB User’s own CAB XML documents using Subscription Proxy
26
6.4
Address book management and synchronization
27
6.5
Authentication
27
6.5.1
Authentication for AB Synchronization
27
6.5.2
Authentication for XML Document Management
27
6.6
Contact Status Management
28
7.
CAB XDMS
29
8.
CAB Management Object
30
9.
CAB data for cross-domain exchange
31
9.1
CAB Contact Added
31
Appendix A.
Change History (Informative)
33
A.1
Approved Version History
33
A.2
Draft/Candidate Version 1.0 History
33
Appendix B.
Static Conformance Requirements (Normative)
36
B.1
SCR for CAB Client
36
B.2
SCR for CAB Server
38
Appendix C.
Flows (Informative)
42
C.1
Contact Search
42
C.1.1
Contact Search - PCC
42
C.1.2
Contact Search - AB
43
C.1.3
Contact Search – External Directories
44
C.2
Import from non-CAB Address Book Systems
45
C.3
Sample XCAP flows for management of CAB XML documents
46
C.3.1
XCAP operations on CAB XML documents
46
C.4
Sample Contact Share flows
50
C.4.1
Contact Share towards a CAB User
50
C.4.2
Contact Share towards a Non CAB User
54
C.5
Contact Subscription flows
55
C.5.1
CAB Server Subscribes to contacts PCCs using Subscription Proxy
55
C.6
Managing Address Book Flow
56
C.6.1
CAB Client Address Book Modifications and Synchronization
56
C.6.2
Address Book Modifications from Network
58
C.7
CAB data exchange between multiple CAB domains
59
C.7.1
Exchange of CAB Contact Added
59

Figures

46Figure 1 : CAB Client manipulating a CAB XML document*

51Figure 2 : Flows of Contact Share in the originating side towards a CAB user

53Figure 3 : Flows of Contact Share towards a non CAB user

54Figure 4 : Contact Subscription flow using the Subscription Proxy

56Figure 5 : CAB Client Address Book Modifications and Synchronization Flow

57Figure 6 : Address Book Modifications from Network

Tables

21Table 1: Mapping between CAB Format and Legacy Format(s)

1. Scope

This document provides the Technical Specification of the CAB Enabler to fulfil the requirements outlined in the Converged Address Book Requirements document [CAB RD] for CAB V1.0 and in compliance to the architecture described in Converged Address Book Architecture document [CAB AD]. The Technical Specification provides the definition of data elements of the CAB Enabler and the description of the procedures for the features supported by the CAB Enabler.

Additionally, this document describes a set of detailed flows for the functionalities of the CAB Enabler. These flows explain the system concepts in a graphical manner and describe the relationships between the functional components of the CAB Enabler architecture.

2. References

2.1 Normative References

	[CAB AD]
	“Converged Address Book Architecture”, Version 1.0, Open Mobile Alliance™, OMA-AD-CAB-V1_0,
URL:http://www.openmobilealliance.org/

	[CAB RD]
	“Converged Address Book Requirements”, Version 1.0, Open Mobile Alliance™, OMA-RD-CAB-V1_0,
URL:http://www.openmobilealliance.org/

	[CAB MO]
	"Converged Address Book Management Object", Version 1.0, Open Mobile Alliance™,
OMA-TS-CAB-MO-V1_0, URL:http://www.openmobilealliance.org/

	[CAB XDMS]
	"Converged Address Book XDM Specification", Version 1.0, Open Mobile Alliance™,
OMA-TS-CAB-XDMS-V1_0, URL:http://www.openmobilealliance.org/

	[OMA CPM CONV FCT TS]
	“CPM Conversation Functions”, Version 1.0, Open Mobile Alliance™,
OMA-TS-CPM_Conv_Fnct-V1_0, URL:http://www.openmobilealliance.org/

	[OMA CPM IWF TS]
	“CPM Interworking”, Version 1.0, Open Mobile Alliance™,
OMA-TS-CPM_Interworking-V1_0, URL:http://www.openmobilealliance.org/

	[OMA DS]
	“SyncML Representation Protocol, Data Synchronization Usage”, Version 1.2, Open Mobile Alliance™,
OMA-TS-DS_DataSyncRep-V1_2, URL:http://www.openmobilealliance.org/

	[OMA DS DevInf]
	“OMA DS Device Information”, Version 1.2, Open Mobile Alliance™,
OMA-TS-DS_DevInf-V1_2, URL:http://www.openmobilealliance.org/

	[OMA DS Pro]
	“DS Protocol”, Version 1.2.2, Open Mobile Alliance™, OMA-TS-DS_Protocol-V1_2_2, URL:http://www.openmobilealliance.org/

	[OMA XDM AD]
	“XML Document Management Architecture”, Version 2.1, Open Mobile Alliance™,
OMA-AD-XDM-V2_1, URL:http://www.openmobilealliance.org/

	[OMA XDM Core]
	“XML Document Management Specification”, Version 2.1, Open Mobile Alliance™,
OMA-TS-XDM_Core-V2_1, URL:http://www.openmobilealliance.org/

	[OMA XDM RD]
	“XML Document Management Requirements”, Version 2.1, Open Mobile Alliance™,
OMA-RD-XDM-V2_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2425]
	A MIME Content-Type for Directory Information. T. Howes, M. Smith, F. Dawson. September 1998. URL: http://www.ietf.org/rfc/rfc2425.txt

	[RFC2426]
	vCard MIME Directory Profile. F. Dawson, T. Howes. September 1998.

URL: http://www.ietf.org/rfc/rfc2426.txt

	[RFC4660]
	IETF RFC 4660 “Functional Description of Event Notification Filtering”, H. Khartabil et al., September 2006 URL: http://www.ietf.org/rfc/rfc4660.txt

	[RFC4661]
	IETF RFC 4661 “An Extensible Markup Language (XML)-Based Format for Event Notification Filtering”, H. Khartabil et al,, September 2006 URL: http://www.ietf.org/rfc/rfc4661.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[vCard2.1]
	“vCard The Electronic Business Card Version 2.1”, A versit Consortium Specification, September 18, 1996

URL: http://www.imc.org/pdi/vcard-21.doc

	[XSD cab pcc]
	“XML Schema Definition: CAB Personal Contact Card document”, Version 1.0, Open Mobile Alliance(, OMA-SUP-XSD_cab_pcc-V1_0, URL: http://www.openmobilealliance.org/

	[XSD extSearch]
	“XML Schema Definition: CAB Search Document extension for External Directories”, Version 1.0, Open Mobile Alliance(, OMA-SUP-XSD_cab_search_external_directories-V1_0, URL: http://www.openmobilealliance.org/

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	
	

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Access Permissions
	See [OMA XDM RD].

	Aggregation Proxy
	See [OMA XDM AD].

	Address Book
	See Converged Address Book in [CAB RD].

	Application Unique ID
	See [OMA XDM Core].

	Application Usage
	See [OMA XDM Core].

	CAB Client
	See [CAB AD].

	CAB Format
	An XML format containing a set of attributes representing contact information.

	CAB User
	See [CAB RD].

	Contact Share
	See [CAB RD].

	Contact Status
	See [CAB AD].

	Contact Subscription
	See [CAB RD].

	Contact View
	See [CAB RD].

	DS Client
	See Client [OMA DS].

	DS Server
	See Server [OMA DS].

	External Directories
	See [CAB AD].

	History Information
	See [OMA XDM AD].

	Legacy Formats
	See [CAB RD].

	Limited XQuery over HTTP
	See [OMA XDM AD].

	Management Object
	See [OMA DM TND].

	Non-CAB Address Book System
	See [CAB AD].

	Personal Contact Card
	See [CAB RD].

	Published Contact Card
	See [CAB RD].

	Users Tree
	See [OMA XDM Core].

	XDCP Request
	See [OMA XDM Core].

	XDM Agent
	See [OMA XDM AD].

	XDM Client
	See XDMC in [OMA XDM AD].

	XDMS
	See [OMA XDM AD].

	
	

	
	

3.3
Abbreviations

	AB
	Address Book

	AUID
	Application Unique ID

	DM
	Device Management

	DS
	Data Synchronization

	DTD
	Document Type Definition

	HTTP
	Hyper Text Transfer Protocol

	IP
	Internet Protocol

	OMA
	Open Mobile Alliance

	PCC
	Personal Contact Card

	SIP
	Session Initiation Protocol

	XCAP
	XML Configuration Access Protocol

	XDCP
	XDM Command Protocol

	XDM
	XML Document Management

	XDMC
	XML Document Management Client

	XDMS
	XML Document Management Server

	XML
	eXtensible Markup Language

	XQuery
	XML Query

	XUI
	XCAP User Identifier

4. Introduction
(Informative)

The CAB Technical Specification provides the CAB User with the features described in subclause 4.1. The CAB Technical Specification utilizes the technologies of data management and synchronization [OMA DS Pro] and XML document management [OMA XDM Core] to fulfil CAB requirements [CAB RD] and is based on CAB architecture described in the [CAB AD].
4.1 Version 1.0

CAB Technical Specification version 1.0 supports the following features as described in [CAB AD] subclause 4.1:
1) Management of AB
2) Management of PCC
3) Contact Subscription
4) Notifications and status information
5) Sharing contact information
6) Searching contact information
7) Exposure of CAB information to external Enablers
8) Interaction with Non-CAB Address Book systems
5. Procedures at CAB Server
The CAB Server SHALL support the procedures described in the following subclauses.
5.1 AB Synchronization Function
The CAB Server SHALL use OMA DS Protocol [OMA DS Pro] as specified in CAB-01 interface [CAB AD] to synchronize the AB or subsets of AB with the CAB Client. .

The CAB Server SHALL support AB CAB Format for AB synchronization with CAB Client. In addition to the AB CAB Format, the CAB Server MAY support the synchronization of Legacy Formats vCard 2.1 [vCard 2.1], and vCard 3.0 [RFC2425] [RFC2426]. Uses of vCard 2.1 and vCard 3.0 in synchronization are specified in
· sections 5.3.26 to 5.3.29 of [OMA DS DevInf] in terms of properties and parameters, and

· section 8 of [OMA DS] in terms of MIME type.
For synchronization of vCard 2.1 and vCard 3.0 formats, format adaptation is required. The CAB server SHALL perform the mapping as specified in “Format Adaptation” subclause 5.4.3.
Note: The use of the Legacy Formats will result in reduced support of the contact information provided by the AB XDMS.

Editor’s Note: The addition of syncml DevInfo as base for the DS DevInfo is FFS.
Editor’s Note: The addition of other OMA DS 1.2 DevInfo sections is FFS.

Editor’s Note: the reference [xxx] to the DTD specifications for the vcard 2.1 and vcard 3.0 are FFS.

The CAB Server SHALL act as a XDM Agent (see sub-clause 5.5 “XDM Agent”) to manage (e.g. retrieve, create, modify, delete) AB XML document.

After successfully receiving AB changes from the CAB Client as part of the synchronization sequence, and if there is resulting data to be updated in the AB XDMS, the CAB Server SHALL update the AB XDMS before closing the procedure of OMA DS synchronization, i.e.. prior to sending the [OMA DS Pro] message (OMA DS Pkg #6) with the map acknowledgement to the CAB Client, or if OMA DS Pkg #5 and OMA DS Pkg #6 are not required, prior to sending OMA DS Pkg #4.
The CAB Server SHALL use “Server Alerted Sync” as defined in [OMA DS Pro], sub-clause 12 “Server Alerted Synch”, to alert the CAB Client to initiate synchronization, when there are data updates in the AB XDMS,.

Editor’s Note: the use of [OMA DS] data representation in CAB Server is FFS.

5.2 Contact Subscription Function
The Contact Subscription function is responsible for handling CAB User’s subscription requests towards other CAB Users and data resulting from Contact Subscription updates,.

The Contact Subscription SHALL use XDM Agent (see sub-clause 5.5 “XDM Agent”) to retrieve the list of contacts (through either XCAP GET or SIP SUBSCRIBE/NOTIFY to the CAB User preferences XML document) to which it must establish Contact Subscription(s), from the CAB User Preference Application Usage, with the following clarifications:

1) SHALL use auid “org.openmobilealliance.cab-user-prefs”.
2) SHALL obtain the value of the <XUI> elements included in entries of the <subscription-list> element, from the CAB User Preference XML document [CAB XDMS].
3) SHALL use the value of the <XUI> elements to create PCC subscription request(s) directly to the PCC XDMS or via Subscription Proxy as described in [OMA XDM Core].

If a <filter-set> element per [RFC4661] is associated with an <XUI>, then the Contact Subscription Function SHALL include the <filter-set> element in a MIME type "application/simple-filter+xml" [RFC4661] in the SIP SUBSCRIBE, in accordance with XDMC document change subscription procedures for an XDM Agent in Section "6.1.2 Subscribing to Changes in the XDM Resources" [OMA XDM Core].

When the XDMC changes a <filter-set> element in an <entry>, the Contact Subscription Function SHALL restart the backend SIP subscription.

The Contact Subscription SHALL use XDM Agent, (see sub-clause 5.5 “XDM Agent”), to generate subscription request(s) (via SIP SUBSCRIBE) towards the PCC XDMS(s) [CAB XDMS] of each of the contact(s) retrieved from <subscription-list>. These subscriptions SHALL be done directly to the PCC XDMS or via Subscription Proxy as described in [OMA XDM Core].
In case the CAB User to which the Contact Subscription needs to be established is not a contact in the AB XDMS, the Contact Subscription SHALL add it as a new Contact Entry in AB XDMS and then it SHALL generate the Contact Subscription.
Upon receiving an incoming notification for a contact’s PCC update from a PCC XDMS (via SIP NOTIFY), the Contact Subscription function:

1) SHALL use <contact-subscription-update> element from CAB User’s preference XML document [CAB XDMS] to identify how to process the incoming update, as follows:
a) When <contact-subscription-update> element is “true”, Contact Subscription function SHALL update AB XML document in [CAB XDMS] with the resulting changes. If the CAB User Preferences element <notify-when-receive-contact-subscription> is set to ‘true’ then the Contact Subscription function SHALL set in the AB XML document the <update> element value to “contact subscription”.
b) When <contact-subscription-update> element is “false”, Contact Subscription function SHALL store the delta changes to as new <contact> element in AB XDMS, and SHALL set the <temporary> element to “contact subscription”, SHALL set ‘contactIdRef” attribute to the reference of the Contact Entry to which the temporary contact entry type is associated with.
The Contact Subscription Function SHALL set the <contact-status> in the AB XML document in [CAB XDMS]:

1) The value of the <contact-subscription status> element:

a) <contact-subscription status> = “active”, when the value of the “Subscription-State” header of the SIP NOTIFY contains the value “active”, meaning that the subscription has been accepted and has been authorized by the contact.

b) <contact-subscription status> = “pending”, when the value of the “Subscription-State” header of the SIP NOTIFY contains the value “pending”, meaning that the subscription has been received, but that the information in the contact’s PCC Access Permissions is insufficient to accept or deny the subscription.

c) <contact-subscription status> = “denied”, when the value of the “Subscription-State” header of the SIP NOTIFY contains the value “terminated” and the reason code is “rejected”, or when the Contact Subscription Function receives a SIP “403 Forbidden” or “603 Decline” response, meaning that the subscription is not allowed by the CAB User’s access permission or service provider policy and the subscription is not active.

d) <contact-subscription status> = “invalid_filter”, when the Contact Subscription Function receives a SIP "488 Not Acceptable Here" response per [RFC4660] or when the Contact Subscription Function receives a SIP NOTIFY response per [RFC4660] with a event-reason-value of value "badfilter".

e) <contact-subscription status> = “not_found”, when the value of the “Subscription-State” header of the SIP NOTIFY contains the value “terminated” and the reason code is “noresource”, or when the Contact Subscription Function receives a “404 Not Found” error code, meaning that the contact could not be identified as a CAB User and the subscription is not active.

f) <contact-subscription status> = “other_error”, meaning that the subscription is not active and the Contact Subscription Function determines that the non-availability is not transient, so the Contact Subscription Function does not retry.
NOTE: In case the Contact Subscription Function receives a SIP NOTIFY request with the “Subscription-State” header value of “terminated” and determines that the non-availability is transient (e.g., when the reason code is “deactivated” or “probation”), the Contact Subscription Function tries re-subscription, and the Contact Subscription function decides whether the <contact-subscription-status> need to be updated.
Editor’s note:
CAB User interactions for conflict resolution arisen from Contact Subscriptions is FFS

5.3 Contact Share Function
The Contact Share function is responsible for handling CAB User’s Contact Share requests, initiating an XDCP request for forwarding Contact Share data, and invoking corresponding messaging actions towards non-CAB User.

The Contact Share function SHALL support retrieval of Contact Share requests stored in the CAB Feature Handler Application Usage [CAB XDMS]. This is accomplished either by document management operations or subscribing to changes to the CAB Feature Handler Document. The retrieval is performed via the XDM Agent (see subclause 5.5 “XDM Agent”).
Contact Share function SHALL obtain the data for the Contact Share request via XDM Agent (see subclause 5.5 “XDM Agent”) from the CAB Feature Handler Application Usage as follows:

· SHALL set the AUID to “org.openmobilealliance.cab-feature-handler”
Upon obtaining the CAB Feature Handler document, the Contact Share function SHALL extract the data from the <contact-share> element.

The Contact Share function

1. SHALL use the <recipients-list> element to determine the recipients and it identifies the recipients type (i.e. whether the recipient is a CAB or a non-CAB User);

If the recipient is a CAB User:

a. it SHALL construct the XDCP Forward Request using the data retrieved from the CAB XDMS [CAB XDMS] with the following clarifications:
i. SHALL set the request URI of the XDCP Request as “http://[XCAP Root URI]/ org.openmobilealliance.cab-address-book /users/[XUI]” if the <data> element in the retrieved Contact Share request contains <AB> child element(s);

ii. SHALL set the request URI of the XDCP Request as “http://[XCAP Root URI]/ org.openmobilealliance.cab-pcc /users/[XUI]” if the <data> element in the retrieved Contact Share request contains <PCC> child element(s);
iii. SHALL create the XDCP Document to be included in the XDCP Request by copying the values from the retrieved elements of the <contact-share> ;

iv. SHALL bind the value of the “id” attribute of the <cab-feature> element that contains the <contact-share> element, with the <request-id> element of the XDCP Forward request; and

v. SHALL include <delivery-report> element in the XDCP Forward request with the value “true” if <delivery-report-request> element in the <contact-share> is set to “true”.
If the recipient is a non-CAB User:

a. It SHALL retrieve appropriate data from CAB User’s PCC and/or AB Application Usage based on the data type indicated in the request.

b. When applicable and subject to service provider policies, it SHALL request the CAB Interworking Function to convert the data to be shared to a Legacy Format via the Interworking Function (see subclause 5.4 “Interworking Function”).

c. When CPM Interworking Function is used as messaging delivery mechanism, it SHALL construct a message as described in [OMA CPM CONV FCT TS] and send a message towards the CPM Interworking Selection Function [OMA CPM IWF TS].

The Contact Share function SHALL update the <response> element in the CAB Feature Handler Document based on the response received for the XDCP Forward Request. If <delivery-report-request> element for this <contact-share> request was set to “true”, it SHALL further update the <delivery-report- status> in the CAB Feature Handler Document based on the updates made by the CAB XDMS to the Forwarding Notification List [List XDMS].

For each of the recipients, it SHALL create a <entry-report> element per recipient and set the “uri” attribute of the recipient accordingly. The Contact Share function SHALL obtain the Forwarding Notification List Document [List XDMS] through either document management or subscribe/notify mechanisms of [OMA XDM Core] and populate the <delivery-status> element as follows:

· The <code> element contains the value of either “Pending”, “Successful” or “Failure” based on the data retrieved from Forwarding Notification List Document for the XDCP request.

· The “Pending” value is set when there is no XDM Forward Delivery Report available yet for the XDCP Forward request.

· The “Successful” value is set when the <status> element of the XDM Forward Delivery Report is either “delivered” or “rejected”.
· The “Failure” value is set when the <status> element of the XDM Forward Delivery Report is “expired”.
· It MAY populate the <phrase> element with descriptive text corresponding to the delivery status.

5.4 Interworking Function
The Interworking function SHALL support the following procedures, described in the subclauses below:

· Interaction with non-CAB AB system(s)

· Contact Search with External Directories

· Format adaptation (between CAB Format and Legacy Formats)

5.4.1 Interaction with Non-CAB AB Systems

The data for the scheduled import requests of contact(s) from non-CAB AB systems into CAB SHALL be retrieved from the CAB Feature Handler Application Usage [CAB XDMS]. This is accomplished either by document management operations or subscribing to changes to the CAB Feature Handler Document. The retrieval is performed via the XDM Agent (see subclause 5.5 “ XDM Agent”).

The Interworking Function SHALL use the encrypted access parameters supplied in the requests to obtain access to the non-CAB AB systems and retrieval of the non-CAB AB data.
While processing the import request, the Interworking Function MAY set the value of the <code> to “Pending”.

If the Interworking Function failed to process the request, the Interworking Function SHALL set the value of the <code> to “Failure”.

After successful imported and format adaptation of the each imported contact, the Interwork Function:

1) SHALL use <contact-import-update> element from CAB User’s preference XML document [CAB XDMS] to identify how to store the imported contacts, as follows:
a) When <contact-import-update> element is “true”, the Interworking Function SHALL update AB XML document in [CAB XDMS] with the resulting changes and SHALL set the value of <updated> element as “contact imported”.
b) When <contact-import-update> element is “false”, Interworking Function SHALL store the imported contact to a new <contact> element in AB XDMS, and SHALL set the value of <temporary> element as “contact imported”.
2) SHALL set the value of <contact-source> element to the value of <non-CAB-source> element.
3) SHALL set the value of the <code> element to “Success”.
The CAB Server performs the AB synchronization as specified in Section 5.1 in order to inform the CAB Client of the AB updates.
5.4.2 Contact Search with External Directories

The CAB Interworking Function SHALL support searches to External Directories, by hosting a standard XML format (see subclause 5.4.2.1) and receiving search requests via XDM-7i interface (i.e. Limited XQuery over HTTP).

The contact search requests and responses SHALL be based the search document schema as described in [OMA XDM Core] subclause 5.4.1 “Search Document”.
Upon receiving the search request, the CAB Interworking Function SHALL use <dataSource> child element (see sub-clause 5.4.2.1.5) to construct an external search request.
CAB Interworking Function translates the search requests received via XDM-7i to external search requests based on the format supported by the External Directories, in the case when External Directories do not support the standard XML format. When the External Directories support the standard XML format for search requests, translation MAY not be required.

 Note: The interactions with External Directories and mapping the requests/responses to/from External Directories are out of scope of this specification.

The CAB Interworking Function SHALL route back the search requests responses from the External Directory to the Search Proxy via XDM-7i interface. If multiple External Directories are searched, the CAB Interworking Function SHALL aggregate the results prior to sending the response back to the Search Proxy.

5.4.2.1 Application Usage for External Directories Search

This Applications Usage specifies the standard XML format for supporting searches towards External Directories.

If the External Directories content is stored at the CAB Server, the content SHALL conform to the standard XML format (see subclause 5.4.2.1.4) and stored in the Global Tree of the Application Usage as described in [OMA XDM Core] subclause “5.5 Global Documents”.
5.4.2.1.1 Application Unique ID
The AUID SHALL be “org.openmobilealliance.cab-external-search”.

5.4.2.1.2 Default Namespace
The CAB Interworking Function document default element namespace is "urn:oma:xml:cab:external-search".
5.4.2.1.3 Search Capabilities
This Application Usage SHALL support search requests towards External Directories based on standard XML search document that conforms to the XML schema defined in subclause 5.4.2.1.4 and the following rules apply in addition to the procedures defined in [OMA XDM Core]:

1. support a collection “org.openmobilealliance.cab-external-search/global/”,

2. The basic XQuery expression supported by this Application Usage SHALL be as follows:
xquery version "1.0";

declare default element namespace "urn:oma:xml:cab-external-search";

Editor’s Note:
The exact expression is based on the schema and is FFS.
All search requests that do not comply with the basic XQuery expression as defined in this subclause SHALL be responded with an HTTP “409 Conflict” error response as defined by [OMA XDM Core] in sub-clause 6.2.3.
5.4.2.1.4 XML Schema
The standard XML format for external search SHALL conform to the PCC XML schema as described in [XSD cab pcc].

5.4.2.1.5 Extension for <dataSource>

Additional CAB extension to the search document as described in [OMA XDM Core] subclause 5.4.1 “Search Document”:
· The <dataSource> child element of the <search> element indicates the specific external directory source to which the <request> is targeted or the specific external directory source from which the <response> is received. The value SHALL be of type String.

This extension is described in [XSD extSearch]

5.4.3 Format Adaptation
The format adaptation between CAB Format and Legacy Format(s) SHALL be supported by the Interworking function.
The following table defines the supported properties and corresponding semantics between the CAB Format and the Legacy Format (s) vCard object, [vCard 2.1], [RFC2425], [RFC2426],.

Editor’s Note: The mapping below is in draft stage. The final structure and cardinality of all elements in the PCC and AB structure below should be aligned with the final PCC and AB structure in CAB XDMS TS, especially the highlighted elements and their children.
	Contacts or PCC

Property or attribute
	vCard 2.1

Property/parameter
	vCard 3.0

Property/parameter

For PCCs only

	"pcc-type" attribute
	

For Contacts only
	<contact-status>

Cardinality: (0,1)
	

	
	<contact-type>
Cardinality: (0,1)
	

	
	<contact-subscription-status>
Cardinality: (0,1)
	

	
	<contact-source>
Cardinality: (0,1)
	

For PCCs and Contacts
	<person-details>
Cardinality: (0,1)
	See conditions & details below

	<name> with "pref" , "name-type" attributes

Cardinality: (1,n)
	<N> without the Pref attribute value and without name-type attribute value (only the one with minimum pref value

	<N> (or <Nickname> when name-type='KnownAs') , without the Pref attribute value and without name-type attribute value (only the one with minimum pref value (without name-type)

	
	"pref" attribute
	

	
	"name-type" attribute
	

	
	<title>

Cardinality: (1,1)
	<N>; Name Prefix (fourth field)
	<N>; Honorific Prefix (fourth field)

	
	<given>

Cardinality: (1,1)
	<N>; Given Name (second field)

	
	<middle>

Cardinality: (1,1)
	<N>; Additional Names (third field)

	
	<family>

Cardinality: (1,1)
	<N>; Family Name (first field)

	
	<gen-id>

Cardinality: (1,1)
	<N>; Name Suffix (fifth field)
	<N>; Honorific Suffix (fifth field)

	
	<degree>

Cardinality: (1,1)
	<N>; Name Suffix (fifth field)
	<N>; Honorific Suffix (fifth field)

	
	<phonetic-given>

Cardinality: (1,1)
	

	
	<phonetic-family>

Cardinality: (1,1)
	

	
	<display name>

Cardinality: (1,1)
	<FN>

Note : if multiple display name element is allowed : only the first value of <display name>(multiple display name element occurrence is FFS)

	<address> with "pref", "addr-type", "xml:lang" attributes

Cardinality: (0,n)
	<ADR> with TYPE=addr-type value without the Pref attribute value

Or

<LABEL> with TYPE=addr-type value without the Pref attribute value

 (only the first value of <address> or the one with minimum pref value

see conditions & details below

	
	"pref" attribute
	

	
	"addr-type" attribute
	TYPE parameter

	
	"xml:lang" attribute
	LANG parameter

	
	<addr-location>
Cardinality: (0,1)
	

	
	<country>
Cardinality: (0,1)
	<ADR>; Country (seventh field)

	
	<region> with "region-type" attribute
Cardinality: (0,1)
	<ADR>; region (fifth field) (only the region i.e. without the region-type

	
	"region-type" attribute
	

	
	<sub-region>
	

	
	<locality> with "loc-type" attribute
Cardinality: (0,1)
	See conditions & details below

	
	"loc-type" attribute
	

	
	<sub-locality> with "subloc-type" attribute
	

	
	"subloc-type" attribute
	<ADR>; sub-locality (fourth field)

	
	<street>
Cardinality: (0,1)
	<ADR>; Street (third field)

"str-name and str-number" are just put one after the other (i.e. without separating comma)

Example :

ADR;TYPE=home: ;str-name str-number ;……

	
	< str-name>
	<ADR>; sub-locality (fourth field)

	
	<str-number
	<ADR>; sub-locality (fourth field)

	
	<postal_code>
Cardinality: (0,1)
	See conditions & details below

	
	<postal-code-main>
	<ADR>; postal-code-main (sixth field)

	
	<sub-postal-code>
	

	
	<postal-delivery-point>
Cardinality: (0,1)
	<ADR>; Post Office Box (first field) only the first postal-delivery-name

	
	<postal-delivery-name>
Cardinality: (1,n)
	

	
	<post-office>
Cardinality: (0,1)
	

	
	<postal-code-name>

Cardinality : (1,n)
	

	
	Other elements

Cardinality : (0,n)
	

	
	<extended-address>

Cardinality : (1,n)
	<ADR>; Extended address (second field) (only the first value of <extended-address>

	
	<premises> with "premise-type" attribute
	

	
	"premises-type" attribute
	

	
	<premises-name>
	

	
	<premises-number>
	

	
	<sub-premises> with sub-premises-type
	

	
	"sub-premises-type" attribute
	

	
	<sub-premises-name>

Card : (0,n)
	

	
	<sub-premises-number>

Card : (0,n)
	

	<location>
Cardinality: (0,1)
	<GEO> and <TZ>

see conditions & details below

	
	<location-label>
	

	
	<latitude>
	<GEO>; lat (first field) in decimal form with "decimal value=+/- degrees + minutes/60 + seconds/3600"

Decimal value is positive when lat-sign='N', negative when lat-sign='S'

	
	<degrees-measure>
	

	
	<minutes-measure>
	

	
	<seconds-measure>
	

	
	<lat-sign>
	

	
	<longitude>
	<GEO>; lon (second field) in decimal form with "decimal value=+/- degrees + minutes/60 + seconds/3600"

Decimal value is positive when long-sign='E', negative when long-sign='W'

	
	<degrees-measure>
	

	
	<minutes-measure>
	

	
	<seconds-measure>
	

	
	<long-sign>
	

	
	<altitude>
	

	
	<time-zone>
	See conditions & details below

	
	<tz-label>
	

	
	<utc-offset>
	<TZ>

	
	<tz-url>
	

	<comm.-addr>
Cardinality: (0,1)
	<TEL> and <EMAIL> with parameter PREF
See conditions & details below

	
	<addr-uri> with "pref", "addr-uri-type" attributes

Cardinality: (0,n)
	a) When addr-uri-type = 'email'

<EMAIL>;PREF;TYPE=addr-uri-type values:uri

PREF is only used for the uri with the minimum "pref" value

b) When addr-uri-type="SIP URI" or "IM" or "pres URI"
<IMPP>;PREF:uri

PREF is only used for the uri with the minimum "pref" value

	
	"pref" attribute
	

	
	"addr-uri-type" attribute
	

	
	<uri>

Cardinality: (1,1)
	

	
	<comm-label> (i.e communication mean)
	

	
	<tel> with "pref", "tel-type"

Cardinality: (0,n)
	<TEL>;PREF;TYPE=tel-type: tel-nb and extension translated to an X500 value

PREF is only used for the tel with the minimum "pref" value

	
	"pref" attribute
	

	
	"tel-type" attribute
	

	
	<tel-nb> which is <tel-str> or <tel-uri> or <E.164>

Cardinality: (1,1)
	

	
	<extension>
	

	
	<comm-label>
	

	<birth>
Cardinality: (0,1)
	<BDAY>

see conditions & details below

	
	<birth-date> with "cal-type" attribute
Cardinality: (1,n)
	<BDAY> (only the birth-date i.e without cal-type

	
	"cal-type" attribute
	

	
	<birth-place>
	

	<anniversary> with "cal-type"

Cardinality: (0,n)
	

	
	"cal-type" attribute
	

	
	<anniversary-date>
	

	
	<anniversary-label>
	

	<gender>

Cardinality: (0,1)
	

	<lang>

Cardinality: (0,1)
	

	
	<language> with "pref"

Cardinality: (1,n)
	

	
	"pref" attribute
	

	<media-list>
Cardinality: (0,1)
	<SOUND> and <LOGO> and <PHOTO>

see conditions & details below

	
	<media> with "media-content" attribute

And with "media-type" attribute

Cardinality: (1,n)
	When media-content is "sound" or "logo" or "photo"

<SOUND> or <LOGO> or <PHOTO> with TYPE="a translation of media-type attribute i.e TYPE=the media type value when media-content = photo or logo (see RFC4288)"

	
	
	When media-content is "video"

	
	"media-content" attribute
	

	
	"media-type" attribute
	

	
	<media-label>
	

	<categories>
Cardinality: (0,1)
	
	<CATEGORIES>

	
	<category>

Cardinality: (1,n)
	
	<CATEGORIES>

	<note>

Cardinality: (0,1)
	<NOTE>

	<web resources>
Cardinality: (0,1)
	<URL>

see conditions & details below

	
	<url> with "pref" attribute

Cardinality: (1,n)
	<URL> (only the first value of <url> without the pref attribute value

	
	"pref" attribute
	

	
	<url-label>
	

	
	

	<keys>
Cardinality: (0,1)
	<KEY> with TYPE= key-type value

	
	<key> with "key-type" attribute

Cardinality: (1,n)
	

	
	"key-type" attribute
	TYPE parameter

	<aliases>
Cardinality: (0,1)
	

	
	<service-alias>

Cardinality: (1,n)
	

	
	<alias-label>
	

	
	<alias>
	

	
	<alias-url>
	

	<expertise>
Cardinality: (0,1)
	

	
	"q-level" attribute
	

	
	<qualifications> with "q-level" attribute

Cardinality: (1,n)
	

	<hobbies>
Cardinality: (0,1)
	

	
	"h-level" attribute
	

	
	<hobby> with "h-level" attribute

Cardinality: (1,n)
	

	<interests>
Cardinality: (0,1)
	

	
	"i-level" attribute
	

	
	<interest> with "i-level" attribute

Cardinality: (1,n)
	

	<career-history>
Cardinality: (0,1)
	

	
	<school> with "display-order" attribute

Cardinality: (1,n)
	

	
	"display-order" attribute
	

	
	<workplace> with "display-order" attribute

Cardinality: (1,n)
	

	
	"display-order" attribute
	

	<public-note>

Cardinality: (0,1)
	

	<organization-details>
Cardinality: (0,1)
	See conditions & details below

	<org-name> with "pref", "org-name-type" attributes

Cardinality: (1,n)
	<ORG>

see conditions & details below

	
	"pref" attribute
	

	
	"org-name-type" attribute
	

	
	<display-name>

Cardinality: (0,1)
	<ORG> (only the display-name and unit values included in the first occurrence of <org-name> without the pref and org-name-type attributes values

	
	<unit>

Cardinality: (0,1)
	

	
	<entity>

Cardinality: (0,1)
	

	<org_directory>

Cardinality: (0,1)
	

	<address> with "pref", "addr-type", "xml:lang" attributes

Cardinality: (1,n)
	

	<organization-members>

Cardinality: (0,1)
	

	<comm.-addr>

Cardinality: (0,1)
	

	<media> with "media-content" attribute

And with "media-type" attribute

Cardinality: (0,1)
	

	<web resources>

Cardinality: (0,1)
	

	<keys>

Cardinality: (0,1)
	

	<group-details>
Cardinality: (0,n)
	

	<group-name>

Cardinality: (0,1)
	

	<group-uri>

Cardinality: (0,1)
	

	<group-members>

Cardinality: (0,1)
	

	<comm.-addr>

Cardinality: (0,1)
	

	<media> with "media-content" attribute

And with "media-type" attribute

Cardinality: (0,1)
	

	<web resources>

Cardinality: (0,1)
	

	<keys>

Cardinality: (0,1)
	

Table 1: Mapping between CAB Format and Legacy Format(s)

5.5 XDM Agent
The XDM Agent acts as a supporting entity to other CAB Server functions and supports interactions (i.e. document management operations, subscriptions/notifications, history access, forwarding) with CAB Application Usages [CAB XDMS]. The document management operation supported for PCC XDMS is limited to read-only

The XDM Agent SHALL support the following procedures as described in [OMA XDM Core] subclause 6.1 “Procedures at the XDMC and the XDM Agent”:

· Procedures of document management of CAB XML documents [CAB XDMS] based on subclause “6.1.1 Document Management” from [OMA XDM Core].
In case the AB Synchronization Function requests XDM Agent to access AB XDMS, the XDM Agent SHALL use the identity (XUI) of the CAB User. In all the other cases when the CAB Server performs write operations into the AB XDMS (e.g. triggered by Contact Subscription), the XDM Agent SHALL use XUI assigned to the CAB Server, (i.e. different from XUIs of CAB Users).
· Procedures of subscription to changes in CAB XML documents [CAB XDMS] as described in subclause “6.1.2 Subscribing to changes in the XML documents” with the exception of subclause “6.1.2.1.2 XDMC” as described in [OMA XDM Core].
· Procedures of history information access for CAB XML documents [CAB XDMS] based on subclause “6.1.4.2 Request History Information [OMA XDM Core]
· Procedures of XDM Forwarding for CAB XML documents [CAB XDMS] based upon subclause “6.1.1.3.2 XDM Resource Forwarding Operations [OMA XDM Core]

The XDM Agent SHALL support the Application Usages specified in [CAB XDMS].
5.6 Contact Status Function
The Contact Status function SHALL manage the Contact Status information contained in the <contact-status> element as specified in AB Application Usage [CAB XDMS].
The discovery mechanism that is used to populate the <contact-type> element value for the CAB Status of the CAB User’s contacts is out of scope of this specification.

6. Procedures at CAB Client

6.1 Contact Search
When the CAB User requests contact search, CAB Client SHALL perform the following:

1. Construct a search request document according to the rules and procedures described in [OMA XDM Core] subclause 5.4.1 “Search Document” and subclause 6.2.3 “Searching for Data in XML Documents” with the following clarifications:

a. When searching AB, the collection parameter SHALL be “org.openmobilealliance.cab-address-book/users/[XUI]/AB”, where [XUI] represents the XUI of a CAB User and AB represents the Address Book document name. This search is limited to the CAB User’s AB.
b. When searching PCC, the collection parameter SHALL be “org.openmobilealliance.cab-pcc/users/”.
c. When searching external directories the collection parameter SHALL be “org.openmobilealliance.cab-external-search/global/”, and SHALL use the <dataSource> child element CAB extension [XSD extSearch] of the <search> element to indicate the specific external directory source to which the <request> is targeted or the specific external directory source from which the <response> is received.
2. Send the search request document using a HTTP POST request to the Aggregation Proxy according to the rules and procedures described in [OMA XDM Core] subclause 6.1.3 “Searching for Data in XML Documents” with the following clarification:

a. When searching PCC, the value of “domain” parameter SHALL be set to any of the following values: domain=[home, all, or target domains] and be subject to service provider policies.

b. When searching External Directories, the value of “domain” parameter SHALL be “home”.
Editor’s note: Restrictions applicable to the xQuery [OMA XDM Core] are FFS.
6.2 Document management
6.2.1 Personal Contact Card (PCC) management

The CAB Client SHALL format the requests for CAB User’s PCC document management as described in the [OMA XDM Core] subclause 6.1.1 “Document Management” with the following clarifications:

· It SHALL populate the AUID of the XCAP URI with “org.openmobilealliance.cab-pcc” application usage for the PCC, as defined in [CAB XDMS].
6.2.2 CAB User Preferences management

The CAB Client SHALL format the requests for CAB User Preferences document management as described in the [OMA XDM Core] subclause 6.1.1 “Document Management” with the following clarifications:

· It SHALL populate the AUID of the XCAP URI with “org.openmobilealliance.cab-user-prefs” Application Usage for CAB User preferences as defined in [CAB XDMS].

6.2.2.1 Import Non-CAB Address Book
The CAB Client SHALL use the <import-non-cab> element in the CAB Feature Handler XML document [CAB XDMS] to store the non-CAB address import request data, and SHALL use the procedures as described in the [OMA XDM Core] subclause 6.1.1 “Document Management” with the following clarifications:
1)
SHALL use the AUID “org.openmobilealliance.cab-feature-handler”.

2)
SHALL populate <non-CAB-source> and <credential> elements.

The CAB Client SHALL use the <response> element of the <import-non-cab> element to indicate the status of the request to the CAB User, with the following clarifications:

1) SHALL use either subscription operation or document management operation as specified in [OMA XDM Core] to obtain the CAB Feature Handler XML document [CAB XDMS].
2) SHALL use <import-non-cab> “id” attribute that is associated with the same request.
3) SHOULD delete the whole import request of <import-non-cab> element, when AB synchronization is completed.
The CAB Client retrieves the imported Contact Entries (i.e. with either <updated> or <temporary> element value set to “contact imported”), through the AB synchronization performed as specified in Section 6.4.

6.2.2.2 Contact Share
The CAB Client SHALL issue the Contact Share request by storing the request data in the CAB Feature Handler Application Usage [CAB XDMS], and following the procedures as described in the [OMA XDM Core] subclause 6.1.1 “Document Management” with the following clarifications:

· It SHALL populate the AUID of the XCAP URI with “org.openmobilealliance.cab-feature-handler” Application Usage for CAB Feature Handler as defined in [CAB XDMS].

The request data SHALL be formatted according to the <contact-share> element as described in CAB Feature Handler Application Usage [CAB XDMS].
Note: The request data is compatible with the XDM Forward request, as specified in [OMA XDM Core] subclause 6.1.1.3.2.
The status of the response to the Contact Share request is available from the <response> element that is associated with the same request, and SHALL be obtained through either of the following methods:

· By subscription operations as described in subclauses 6.3.3 “Subscriptions to CAB User’s own CAB Feature Handler document changes or 6.3.4 “Subscription to CAB User’s own CAB XML documents using Subscription Proxy”

· By document management retrieve operations as described in the [OMA XDM Core] subclause 6.1.1 “Document Management”.
When child element of <actions> element of the <contact-share-prefs> element of CAB User Preferences Document defined in [CAB XDMS] section 5.3.1 is <confirm> element, the corresponding Application Usage sets the <status> element of the <request> in the Forwarding List Document to “pending” before notifying the CAB Client about the received XDCP Forwarding Request. Upon receiving that notification, the CAB Client SHALL obtain receiving CAB User’s disposition for the Forward Request and act as described in [OMA XDM Core] subclause 6.11.3.3 “Handing of XDM Resource Forwarding Notifications”
6.2.2.3 Contact Subscription

In order to subscribe or unsubscribe to a contact’s PCC document changes, the CAB Client SHALL follow the procedures as described in the [OMA XDM Core] subclause 6.1.1 “Document Management” to respectively add or delete the corresponding <entry> element in the <subscription-list> element of his/her CAB User Preferences Application Usage [CAB XDMS] with the following clarifications:
· It SHALL populate the AUID of the XCAP URI with “org.openmobilealliance.cab-user-prefs” Application Usage for CAB User Preferences as defined in [CAB XDMS];

· It SHALL populate the <XUI> sub-element of the <entry> element with the XUI of the contact to subscribe to;
· It MAY populate a <filter-set> sub-element of the <entry> element by following the procedure described in subclause 6.1.2.1.2 “XDMC” of [OMA XDM Core].
6.2.3 Access Permissions management

If the Access Permissions Document is used, the procedure to manage the Access Permissions Document at CAB Client SHALL conform to the subclause of “6.1.1 Document Management” and the subclause of “5.6 Access Permissions Document” in [OMA XDM_Core] with the clarification given in this subclause.

6.2.3.1 Access Permissions Document for Address Book

The Access Permissions Document for Address Book SHALL be addressed using the User Directory Document Selector ‘/oma-ap/access-permissions’ with Address Book AUID. The HTTP Request-URI for the document management operations SHALL be set with the following value:

· “http://[XCAP_Root_URI]/org.openmobilealliance.cab-address-book/users/[XUI]/oma_ap/access-permissions”
6.2.3.2 Access Permissions Document for PCC

The Access Permissions Document for PCC SHALL be addressed using the User Directory Document Selector ‘/oma-ap/access-permissions’ with PCC AUID. The HTTP Request-URI for the document management operations SHALL be set with the following value:

· “http://[XCAP_Root_URI]/org.openmobilealliance.cab-pcc/users/[XUI]/oma_ap/access-permissions”
6.3 Subscription to CAB XML documents changes

There are two mechanisms (i.e. SIP and XDCP/Push) through which a CAB Client can subscribe to document changes stored in CAB XDMS(s), except AB XDMS. The CAB Client SHALL support one of the two mechanisms.

6.3.1 Subscriptions to CAB User’s own PCC document changes
The CAB Client SHALL generate the subscription requests to CAB User’s own PCC document changes, as described in [OMA XDM Core] subclause 6.1.2 “Subscribing to changes in XDM Resources” with the following clarifications:
· If the SIP method is used, the Request-URI SHALL be set to the XUI of the CAB User with the URI Parameter: auid=<“org.openmobilealliance.cab-pcc”>;
· If the XDCP/Push method is used, the AUID in the Request-URI as described in [OMA XDM Core] subclause 6.1.1.3 “XDM Operations using XDCP” SHALL be set to the “org.openmobilealliance.cab-pcc”.
6.3.2 Subscriptions to CAB User’s own CAB User Preferences document changes
The CAB Client SHALL generate the subscription requests to CAB User’s own CAB User Preferences document changes, as described in [OMA XDM Core] subclause 6.1.2 “Subscribing to changes in XDM Resources” with the following clarifications:
· If the SIP method is used, the Request-URI SHALL be set to the XUI of the CAB User with the URI Parameter: auid=<“org.openmobilealliance.cab-user-prefs”>;
If the XDCP/Push method is used, the AUID in the Request-URI as described in [OMA XDM Core] subclause 6.1.1.3 “XDM Operations using XDCP” SHALL be set to the “org.openmobilealliance.cab-user-prefs”.
6.3.3 Subscriptions to CAB User’s own CAB Feature Handler document changes
The CAB Client SHALL generate the subscription requests to CAB User’s own CAB Feature Handler document changes, as described in [OMA XDM Core] subclause 6.1.2 “Subscribing to changes in XDM Resources” with the following clarifications:

· If the SIP method is used, the Request-URI SHALL be set to the XUI of the CAB User with the URI Parameter: auid=<“org.openmobilealliance.cab-feature-handler”>;
· If the XDCP/Push method is used, the AUID in the Request-URI as described in [OMA XDM Core] subclause 6.1.1.3 “XDM Operations using XDCP” SHALL be set to the “org.openmobilealliance.cab-feature-handler” .
6.3.4 Subscription to CAB User’s own CAB XML documents using Subscription Proxy
If the Subscription Proxy was provisioned to the XDMC of the CAB Client and subscription to more than one CAB User’s own CAB XML documents, the CAB client SHALL generate the subscription requests to the Subscription Proxy, as described in [OMA XDM Core] subclause 6.1.2 “Subscribing to changes in XDM Resources” with the following clarifications:

· If the SIP method is used, the Request-URI SHALL be set to the SIP URI of the Subscription Proxy and the body of the SIP SUBSCRIBE request SHALL contain the resource list as defined in [OMA XDM Core] with all relevant XDM resource entries, in which the Document Selector SHALL be set to one or more document selectors in the following list:
· “org.openmobilealliance.cab-pcc/users/[XUI]/PCC.xml for the PCC document,

· “org.openmobilealliance.cab-user-prefs/users/[XUI]/CAB-UP.xml for the CAB User Preferences document,

· “org.openmobilealliance.cab-feature-handler /users/[XUI]/feature-handler.xml for the CAB Feature Handler document,

The XUI SHALL be set to the XUI of the CAB User.

· If the XDCP/Push method is used, the Request-URI as described in [OMA XDM Core] subclause 6.1.1.3 “XDM Operations using XDCP” SHALL be set to “http://[XCAP_Root_URI]/org.openmobilealliance.xdcp.sp”, targeting to the Subscription Proxy, and the payload of the XCAP request SHALL contain the resource list as defined in [OMA XDM Core] with all relevant XDM resource entries, in which the Document Selector SHALL be set to one or more document selectors in the following list:
· “org.openmobilealliance.cab-pcc/users/[XUI]/PCC.xml for the PCC document,

· “org.openmobilealliance.cab-user-prefs/users/[XUI]/CAB-UP.xml for the CAB User Preferences document,

· “org.openmobilealliance.cab-feature-handler /users/[XUI]/feature-handler.xml for the CAB Feature Handler document,

The XUI SHALL be set to the XUI of the CAB User.
Editor’s note:
If required, any additional auids needed in the subscription requests using the Subscription proxy such as Access Permissions, history, they can be added when they are available in [OMA XDM Core].
6.4 Address book management and synchronization

The CAB Client SHALL use OMA DS Protocol [OMA DS Pro] as specified in CAB-01 interface [CAB AD] to synchronize the address book with the CAB Server.

The CAB Client SHALL support at least one of AB CAB Format or the Legacy Formats vCard 2.1 [vCard 2.1], vCard 3.0 [RFC2425], [RFC2426] for AB synchronization with CAB Server.

Editor’s Note: details of the synchronization with both formats is FFS.

Note: Syncing with the Legacy Formats may result in reduced support of the AB contact information provided by the AB Application Usage.

CAB Client SHALL be able to receive “Server Alerted Synch” as specified in [OMA DS Pro], sub-clause 12 “Server Alerted Synch”.

6.5 Authentication
6.5.1 Authentication for AB Synchronization
The CAB Client SHALL follow the authentication procedures described in [OMA DS Pro] subclause 7 “Authentication”.

6.5.2 Authentication for XML Document Management
The CAB Client SHALL follow the authentication procedures described in [OMA XDMS Core] subclause 5.1.1 “Authentication”.
6.6 Contact Status Management

The CAB Client SHALL use the <contact-status> element from the AB XML document to convey the status information of the AB contacts to the CAB User.
7. CAB XDMS

The CAB XDMS(s) SHALL support the XDMS procedures described in [OMA XDM Core] “Procedures at the XDM Server”, and the Application Usages described in [CAB XDMS].

8. CAB Management Object

The CAB Management Object (MO) for configuration and provisioning of CAB Client is described in [CAB MO].

9. CAB data for cross-domain exchange

The following data is used for exchange across multiple CAB domains.
1) AB Add data – the data associated with the operation when a contact has been added to the CAB User’s AB.
9.1 CAB Contact Added

The ‘CAB Contact Added’ data SHALL be used to share between multiple domains. The AB data is generated at the CAB Server when a CAB User adds another CAB User to his/her AB.

If the <send-notification-contact-added> element of the CAB User Preference document is set to ‘true ‘, the CAB Server SHALL generate a XDM Forward request via the XDM Agent to the CAB User Preference XDMS of the CAB User, containing the following CAB User Preference data fragment representing the ‘CAB Contact Added’ data:

Editor’s Note:
The app usage in CAB User Preference XDMS that stores the CAB Contact Added data is FFS.

AB Owner – is referred to the CAB User who is performing the Add operation

Added Contact – is referred to the contact that is added by the CAB User.

Prior to generating the XDM Forward request, the CAB Server SHALL check the CAB User’s PCC Access Permissions and SHALL proceed as follows:

· If the PCC Access Permissions do not allow publication of the CAB User’s XUI to the Contact’s XUI, the CAB Server will not send the XDM Forward. The publication is considered allowed if at least <allow-retrieve> access level is granted to the Contact.

· Else, if the PCC Access Permissions allow publication of either of the “Name” and/or “DisplayName” data to the Added Contact’s XUI, their respective cardinality SHALL be 1. If multiple “Name” and/or “DisplayName” elements are allowed, the elements with the lowest ‘pref’ value SHALL be chosen. The publication is considered allowed if at least <allow-retrieve> access level is granted to the Contact.

	Element
	DataType
	Cardinality
	Description

	AB Owner data
	
	
	

	XUI
	xs:anyURI
	1
	The XUI of the CAB User performing the Add operation

	Name
	NameType
	0…1
	The Name of the CAB User from CAB User’s PCC

 [CAB XDMS].

	DisplayName
	xs:string
	0…1
	The Display Name is the display name of the CAB User from CAB User’s PCC.

.

	Added Contact
	
	
	

	XUI
	xs:anyURI
	1
	The XUI of the Added Contact

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

	
	
	

	
	
	

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-CAB-V1_0
	07 May 2009
	 All
	Initial draft

	
	03 Jul 2009
	1,2,3,5,6, App. C
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0190R01-INP_TS_Contents,

OMA-MWG-CAB-2009-0191R01-CR_TS_Scope,

OMA-MWG-CAB-2009-0192R01-CR_TS_References,

OMA-MWG-CAB-2009-0201R01-CR_TS_Definitions,

OMA-MWG-CAB-2009-0206R01-CR_TS_Appendix_Contact_Search_Flow, and

OMA-MWG-CAB-2009-0208R01-CR_TS_Abbreviations.

	
	21 Jul 2009
	4, App. C
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0193R01-CR_TS_Introduction, and

OMA-MWG-CAB-2009-0205R01-CR_TS_Appendix_Interaction_with_non_CAB_Address_Book_Systems_Flow_.

Updated the flow diagrams in C.1.

	
	27 Jul 2009
	6.1
	Incorporated the following CR:

OMA-MWG-CAB-2009-0236R01-CR_TS_Search.

	
	20 Aug 2009
	2.1, 3.3, C.3, 4, 7, 8
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0253R02-CR_TS_Model_Flow_AI037,

OMA-MWG-CAB-2009-0264R01-CR_CAB_TS_Version, and

OMA-MWG-CAB-2009-0265R01-CR_CAB_TS_new_sections_for_CAB_XDMS_and_MO.

	
	07 Sep 2009
	2.1, 3.2, 4, 5, 5.6, 6.1, C.3
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0267R01-CR_CAB_TS_Section_5 and

OMA-MWG-CAB-2009-0274-CR_TS_OMA_XDM_reference.

	
	06 Oct 2009
	3.2, 5.1, 5.2, 5.3, 5.4, C.2
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0280R02-CR_CAB_data_Format,

OMA-MWG-CAB-2009-0289R01-CR_Contact_Subscription_Function_CAB_TS,

OMA-MWG-CAB-2009-0290R02-CR_Contact_Share_Function_CAB_TS, and

OMA-MWG-CAB-2009-0291R01-CR_Interworking_Function_CAB_TS.

	
	23 Nov 2009
	5.4.2, C.4, C.5
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0303R02-CR_TS_ContactShareFlow,

OMA-MWG-CAB-2009-0305R02-CR_ContactSubscription_with_SUP, and

OMA-MWG-CAB-2009-0317R01-CR_Contact_Search_with_External_Directories.

	
	06 Jan 2010
	6.2, 6.3, 6.4, 6.5, C.6
	Incorporated the following CRs:

OMA-MWG-CAB-2009-0352R02-CR_TS_was_284R01,

OMA-MWG-CAB-2009-0373R01-CR_CAB_Client, and

OMA-MWG-CAB-2009-0379R01-CR_CAB_Client_TS_Structure.

	
	17 Feb 2010
	2.1, 5.4.2, 6.2.2, 6.2.3, 6.5, 9, C.4.1.2, C.7
	Corrected subclause numbers in 5.4.2.

Incorporated the following CRs:

OMA-MWG-CAB-2009-0390R04-CR_AI_069_HLF_013_Trigger_and_data_sharing,

OMA-MWG-CAB-2010-0001R01-CR_Procedures_at_CAB_Client,

OMA-MWG-CAB-2010-0013R02-CR_TS_CAB_AccessPermission_DocManagement,

OMA-MWG-CAB-2010-0028R01-CR_Search_Document_Extension,

OMA-MWG-CAB-2010-0046R01-CR_Flows_Contact_Share,

OMA-MWG-CAB-2010-0052R01-CR_auth_for_AB_doc_management, and

OMA-MWG-CAB-2010-0053R01-CR_auth_for_PCC_doc_management.

	
	22 Feb 2010
	2.1, 5.4.3, B
	Incorporated the following CRs:

OMA-MWG-CAB-2010-0021R03-CR_TS_CAB_SCR_Table and

OMA-MWG-CAB-2010-0074R01-CR_PCC_Data_Structure_Name_vCard_mapping.

	
	05 Mar 2010
	5.1, 6.4, 9, C.4.1.1, C.7.2,
All (editorial)
	Incorporated the following CRs:
OMA-MWG-CAB-2010-0060R01-CR_Procedures_for_HLF_012,

OMA-MWG-CAB-2010-0075R01-CR_Client_Server_AB_synch,

OMA-MWG-CAB-2010-0081R01-CR_Contact_Share_flows, and

OMA-MWG-CAB-2010-0085R01-CR_CAB_TS_Core_clean_up_and_fixes,

	
	08 Mar 2010
	6.2.2.3, C.4.1.1
	Unincorporated the following CR:

OMA-MWG-CAB-2010-0081R01-CR_Contact_Share_flows.

Incorporated the following CRs:

OMA-MWG-CAB-2010-0081R02-CR_Contact_Share_flows and

OMA-MWG-CAB-2010-0099R01-CR_Client_contact_subscription_list.

	
	09 Mar 2010
	All
	Editorial cleanup.

	
	23 Apr 2010
	3.2, 3.3, 5.1, 5.2, 5.3, 5.4,1, 5.5, 5.6, 9.2, C.4.1.1, C.4.1.2, 6.2.2.2
	Incorporated the following CRs:

OMA-COM-CAB-2010-0172-CR_CONR_Resolution_C005_C006_C042_C044_C047_C052_C057_C064_C0169_C0252,

OMA-COM-CAB-2010-0174R01-CR_CONR_Resolution_C0205,

OMA-COM-CAB-2010-0177-CR_CONRR_on_abbreviation_table, and

OMA-COM-CAB-2010-0178R01-CR_solution_for_C037.

	
	03 May 2010
	2.1, 3.2
	Incorporated the following CR:

OMA-COM-CAB-2010-0161R01-CR_CONR_Resolution_TS_Comments_C028_C029_C030.

	
	06 May 2010
	2.1, 2.2, 5.1, 5.2, 5.3, 5.4.1, 5.4.2, 5.4.3, 5.5, C.6.2
	Incorporated the following CRs:

OMA-COM-CAB-2010-0152R02-CR_Comments_C071_to_C099_Section5_2_CAB_TS,

OMA-COM-CAB-2010-0168R02-CR_CONR_Resolution_TS_C055_C056_C060_C063_C069,

OMA-COM-CAB-2010-0192R01-CR_CONRR_TS_C018_to_C027, and

OMA-COM-CAB-2010-0198-CR_CONRR_C0318_on_C6.2.

	
	17 May 2010
	1, 2.1, 4, 5.1, 5.2, C.2
	Incorporated the following CRs:
OMA-COM-CAB-2010-0202R02-CR_CONR_Resolution_HLF_013,

OMA-COM-CAB-2010-0205-CR_CONRR_TS_C010_to_C017,

OMA-COM-CAB-2010-0206R01-CR_CONRR_TS_C034_to_C036,

OMA-COM-CAB-2010-0207R01-CR_CONRR_TS_C046,

OMA-COM-CAB-2010-0212R01-CR_CONR_Resolution_TS_Core_Appendix_C.2, and

OMA-COM-CAB-2010-0215R02-CR_CONR_Resolution_CAB_TS_filter_subscription.

	
	07 Jun 2010
	5.1
	Incorporated the following CR:

OMA-COM-CAB-2010-0236R01-CR_CONR_Resolution_C066.

	
	24 Jun 2010
	6.2.2.3, 6.4, C.7
	Incorporated the following CRs:

OMA-COM-CAB-2010-0247-CR_CAB_User_List_clean_up,
OMA-COM-CAB-2010-0248R01-CR_CONR_Resolution_TS_C222_C231, and

OMA-COM-CAB-2010-0267R01-CR_CONRR_TS_C207_to_C212.

	
	13 Jul 2010
	5.1, 5.2, 5.4.1, 5.4.2, 5.4.2.1.3, 5.4.2.1.4, 5.4.2.1.5, 5.5, 6.2.2.1, 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.6, C.6.1, C.6.2
	Incorporated the following CRs:

OMA-COM-CAB-2010-0197R01-CR_CONRR_C0317_on_C6.1,
OMA-COM-CAB-2010-0209R02-CR_Comments_Section5_2_part2_CAB_TS,
OMA-COM-CAB-2010-0227R02-CR_CONRR_C0200_to_C0203_section_541_6221,
OMA-COM-CAB-2010-0255R01-CR_resolution_AI_A022_TS_CAB,
OMA-COM-CAB-2010-0272R01-CR_CONRR_C0137_C0141_C0143_C0147_on_5.4.2,
OMA-COM-CAB-2010-0273R01-CR_CONRR_C0142_C0150_C0151_on_5.4.2.1.3,
OMA-COM-CAB-2010-0276R01-CR_CONRR_TS_C217_to_C221, and
OMA-COM-CAB-2010-0286R01-CR_TS_AB_Personalization.

	
	08 Aug 2010
	2.1, 5.2, 5.4.2, 5.4.3, 6.1, C.4

	Incorporated the following CRs:

OMA-COM-CAB-2010-0253R01-CR_CONR_Contact_Search_C001_to_C013, OMA-COM-CAB-2010-0284R01-CR_CONR_Resolution_C0311, OMA-COM-CAB-2010-0304R01-CR_CONR_Resolution_for_C0160_C0165, OMA-COM-CAB-2010-0307R01-CR_CONR_CAB_TS_External_Directories_Search_section_5.4.2, OMA-COM-CAB-2010-0320-CR_action_item_031

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
The SCRs defined in the following tables includes SCR for:

· CAB Client

· CAB Server

B.1 SCR for CAB Client

Note: All the Requirements that prefix with “XDM Core” are a reference to the [XDM Core] specification.

Editor’s Note:
The “Y” marking should be resolved into a “M” or “O”.
	Item
	Function
	Reference
	Requirement

	CAB-CS-C-001-Y
	Support for constructing and sending the contact search request to CAB AB XDMS
	Section 6.1
	XDM_Core-SRC-C-002-O

	CAB-CS-C-002-Y
	Support for constructing and sending the contact search request to CAB PCC XDMS
	Section 6.1
	XDM_Core-SRC-C-002-O

	CAB-CS-C003-Y
	Support for constructing and sending the contact search request to the External Directories
	Section 6.1
	XDM_Core-SRC-C-002-O

	CAB-XOP-C-001-Y
	Support for managing CAB PCC document
	Section 6.2.1
	XDM_Core-XOP-C-001-M,

XDM_Core-XOP-C-003-M

	CAB-XOP-C-002-Y
	Support for managing CAB User Preference document
	Section 6.2.2
	XDM_Core-XOP-C-001-M,

XDM_Core-XOP-C-003-M

	CAB-XOP-C-003-Y
	Support for managing CAB Feature Handler document
	Section 6.2.2
	XDM_Core-XOP-C-001-M,

XDM_Core-XOP-C-003-M

	CAB-SUB-C-001-Y
	Support for subscribing to CAB PCC document changes
	Section 6.3
	CAB-SUB-C-007-Y, CAB-SUB-C-008-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-002-Y
	Support for subscribing to CAB User Preferences document changes
	Section 6.3
	CAB-SUB-C-009-Y, CAB-SUB-C-010-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-003-Y
	Support for subscribing to CAB Feature Handler document changes
	Section 6.3
	CAB-SUB-C-011-Y, CAB-SUB-C-012-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-004-Y
	Support for subscribing to CAB PCC document changes via Subscription Proxy
	Section 6.3,

Section 6.3.4
	CAB-SUB-C-013-Y, CAB-SUB-C-014-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-005-Y
	Support for subscribing to CAB User Preferences document changes via Subscription Proxy
	Section 6.3,

Section 6.3.4
	CAB-SUB-C-015-Y, CAB-SUB-C-016-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-006-Y
	Support for subscribing to CAB Feature Handler document changes via Subscription Proxy
	Section 6.3,

Section 6.3.4
	CAB-SUB-C-017-Y, CAB-SUB-C-018-Y,

XDM_Core-SUB-C-001-O,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-007-Y
	Initial subscription using SIP SUBSCRIBE message for PCC document changes
	Section 6.3.1
	CAB-SUB-C-008-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-008-Y
	Processing Received SIP Notify for PCC document changes
	Section 6.3.1
	CAB-SUB-C-007-Y,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-009-Y
	Initial subscription using SIP SUBSCRIBE message for PCC document changes via Subscription Proxy
	Section 6.3.1,

Section 6.3.4
	CAB-SUB-C-010-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-010-Y
	Processing Received SIP Notify for PCC document changes via Subscription Proxy
	Section 6.3.1,

Section 6.3.4
	CAB-SUB-C-009-Y,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-011-Y
	Initial subscription using SIP SUBSCRIBE message for CAB User Preferences document changes
	Section 6.3.2
	CAB-SUB-C-012-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-012-Y
	Processing Received SIP Notify for CAB User Preferences document changes
	Section 6.3.2
	CAB-SUB-C-011-Y,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-013-Y
	Initial subscription using SIP SUBSCRIBE message for CAB User Preferences document changes via Subscription Proxy
	Section 6.3.2,

Section 6.3.4
	CAB-SUB-C-014-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-014-Y
	Processing Received SIP Notify for CAB User Preferences document changes via Subscription Proxy
	Section 6.3.2,

Section 6.3.4
	CAB-SUB-C-013-Y,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-015-Y
	Initial subscription using SIP SUBSCRIBE message for CAB Feature Handler document changes
	Section 6.3.3
	CAB-SUB-C-016-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-016-Y
	Processing Received SIP Notify for CAB Feature Handler document changes
	Section 6.3.3
	CAB-SUB-C-015-Y,

XDM_Core-SUB-C-002-O

	CAB-SUB-C-017-Y
	Initial subscription using SIP SUBSCRIBE message for CAB Feature Handler document changes via Subscription Proxy
	Section 6.3.3,

Section 6.3.4
	CAB-SUB-C-018-Y,

XDM_Core-SUB-C-001-O

	CAB-SUB-C-018-Y
	Processing Received SIP Notify for CAB Feature Handler document changes via Subscription Proxy
	Section 6.3.3,

Section 6.3.4
	CAB-SUB-C-017-Y,

XDM_Core-SUB-C-002-O

B.2 SCR for CAB Server

	Item
	Function
	Reference
	Requirement

	CAB-CSUB-S-001-Y
	Support for retrieving the list of contact subscriptions from CAB User’s subscription list XML document in the CAB User Preference XDMS
	Section 5.2, Section 5.6
	CAB-CSUB-S-002-Y,

CAB-CSUB-S-003-Y, OR,

CAB-CSUB-S-004-Y

XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M,

XDM_Core-SUB-C-003-O,

XDM_Core-SUB-C-004-O

	CAB-CSUB-S-002-Y
	Initial subscription using SIP SUBSCRIBE message for CAB User’s subscription list XML document changes
	Section 5.2, Section 5.6
	CAB-CSUB-S-003-Y,

XDM_Core-SUB-C-003-O,

	CAB-CSUB-S-003-Y
	Processing Received Notification for CAB User’s subscription list XML document changes (XDM v2.0)
	Section 5.2, Section 5.6
	CAB-CSUB-S-002-Y,

XDM_Core-SUB-C-004-O

	CAB-CSUB-S-004-Y
	Support for retrieving CAB User’s subscription list XML document using XDM management operation (XDM v1.1)
	Section 5.2, Section 5.6
	XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M

	CAB-CSUB-S-005-Y
	Support for subscribing to CAB PCC document changes
	Section 5.2, Section 5.6
	CAB-CSUB-S-006-Y,

CAB-CSUB-S-007-Y, OR.,

CAB-CSUB-S-008-Y,

CAB-CSUB-S-009-Y,

XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M,

XDM_Core-SUB-C-003-O,

XDM_Core-SUB-C-004-O

	CAB-CSUB-S-006-Y
	Initial subscription using SIP SUBSCRIBE message for CAB PCC document changes
	Section 5.2, Section 5.6
	CAB-CSUB-S-007-Y,

CAB-CSUB-S-010-Y,

XDM_Core-SUB-C-003-O

	CAB-CSUB-S-007-Y
	Processing Received Notification for CAB PCC document changes (XDM v2.0)
	Section 5.2, Section 5.6
	CAB-CSUB-S-006-Y,

CAB-CSUB-S-010-Y,

XDM_Core-SUB-C-004-O

	CAB-CSUB-S-008-Y
	Initial subscription using SIP SUBSCRIBE message for CAB PCC document changes via Subscription Proxy
	Section 5.2, Section 5.6
	CAB-CSUB-S-009-Y,

CAB-CSUB-S-010-Y,

XDM_Core-SUB-C-003-O

	CAB-CSUB-S-009-Y
	Processing Received Notification for CAB PCC document changes via Subscription Proxy
	Section 5.2, Section 5.6
	CAB-CSUB-S-008-Y,

CAB-CSUB-S-010-Y,

XDM_Core-SUB-C-004-O

	CAB-CSUB-S-010-Y
	Support for storing or updating CAB AB document using XDM management operation
	Section 5.2, Section 5.6
	XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M

	CAB-CSF-S-001-Y
	Support for retrieving the Contact Share request from CAB User Preference XDMS
	Section 5.3, Section 5.6
	CAB-CSF-S-002-Y, CAB-CSF-S-003-Y, OR,

CAB-CSF-S-004-Y,

XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M,

XDM_Core-SUB-C-003-O,

XDM_Core-SUB-C-004-O

	CAB-CSF-S-002-Y
	Initial subscription using SIP SUBSCRIBE message for Contact Share request stored in CAB User Preference XDMS
	Section 5.3, Section 5.6
	CAB-CSF-S-003-Y,

XDM_Core-SUB-C-003-O

	CAB-CSF-S-003-Y
	Processing Received Notification for Contact Share request from CAB User Preference XDMS
	Section 5.3, Section 5.6
	CAB-CSF-S-002-Y,

XDM_Core-SUB-C-004-O

	CAB-CSF-S-004-Y
	Support for retrieving Contact Share request from CAB User Preference XDMS using XDM management operation
	Section 5.3, Section 5.6
	XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M

	CAB-CSF-S-005-Y
	Support for determining the recipient type, i.e. CAB or non-CAB
	Section 5.3
	

	CAB-CSF-S-006-Y
	Support for retrieving the data from CAB PCC XDMS to be shared with non-CAB recipients
	Section 5.3, Section 5.6
	

	CAB-CSF-S-007-Y
	Support for retrieving the data from CAB AB XDMS to be shared with non-CAB recipients
	Section 5.3, Section 5.6
	

	CAB-CSF-S-008-Y
	Support for constructing the message defined in [OMA CPM CONV FCT TS]
	Section 5.3
	

	CAB-CSF-S-009-Y
	Support for sending the message defined in [OMA CPM CONV FCT TS] towards the CPM Interworking Selection Function [OMA CPM IWF TS]
	Section 5.3
	

	CAB-IWF-S-001-Y
	Support for retrieving the request to import the contacts from non-CAB system
	Section 5.4.1, Section 5.6
	CAB-IWF-S-002-Y, CAB-IWF-S-003-Y, OR, CAB-IWF-S-004-Y,

XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M,

XDM_Core-SUB-C-003-O,

XDM_Core-SUB-C-004-O

	CAB-IWF-S-002-Y
	Initial subscription using SIP SUBSCRIBE message for the request to import the contacts from non-CAB system, which is stored in CAB User Preference XDMS
	Section 5.4.1, Section 5.6
	CAB-IWF-S-003-Y,

XDM_Core-SUB-C-003-O

	CAB-IWF-S-003-Y
	Processing Received Notification for the import request of contact(s) from CAB User Preference XDMS
	Section 5.4.1, Section 5.6
	CAB-IWF-S-002-Y,

XDM_Core-SUB-C-004-O

	CAB-IWF-S-004-Y
	Support for retrieving the import request of contact(s) from CAB User Preference XDMS using XDM management operation
	Section 5.4.1, Section 5.6
	XDM_Core-XOP-C-004-M,

XDM_Core-XOP-C-005-M

	CAB-IWF-S-005-Y
	Support for receiving and processing Search request via XDM-7i (Limited XQuery over HTTP) (XDM v2.1)
	Section 5.4.2
	XDM_Core-SRC-S-001-O,

XDM_Core-SRC-S-002-O

	CAB-IWF-S-006-Y
	Support for translating/mapping the received Search request (XDM-7i) to the external Search request based upon the format supported by the External Directories
	Section 5.4.2
	

	CAB-IWF-S-007-Y
	Support for generating the response to Search Proxy via XDM-7i (XDM v2.1)
	Section 5.4.2
	XDM_Core-SRC-S-001-O,

XDM_Core-SRC-S-002-O

	CAB-IWF-S-008-Y
	Support for the adaptation between CAB format and Legacy format(s)
	Section 5.4.3
	

Appendix C. Flows
(Informative)

C.1 Contact Search

The following provides three basic message flows for contact search based on the target destination i.e. PCC, AB, and External directories. Any combination of these flows may be employed by the CAB Enabler implementations.
C.1.1 Contact Search - PCC

[image: image2.emf]CAB Client

CAB XDMS

(PCC)

Aggregation/Search/Cross-

Network Proxy

(XDM Enabler)

1. Contact search request (PCC)

(XDM-5i)

2. Search request to PCC XDMS

(XDM-7i)

3. Search response from PCC XDMS

(XDM-7i)

4. Contact search response (PCC)

(XDM-5i)

Step1: The CAB Client makes a contact search request to CAB Users’ PCC(s) via the XDM Enabler Proxies (Aggregation Proxy,Search Proxy,Cross-Network Proxy) using Limited XQuery. The request is formulated based on the PCC XML schema hosted by the PCC XDMS. This request is based on XDM-5i.

Step 2: Upon receiving the CAB Client request, the Search proxy routes the request to the PCC XDMS as indicated in the original request.

Step 3: The search response including the search results from the PCC XDMS is delivered in the response to the Search proxy. The search results may be further formatted or aggregated in the Search proxy. The PCC search results are subject to CAB User’s PCC Access Permissions.

Step 4: The contact search response (PCC) is sent back to the CAB Client which includes the list of results corresponding to the initial search request in Step1. The response is based on XDM-5i.

C.1.2 Contact Search - AB

[image: image3.emf]CAB Client

CAB XDMS

(AB)

Aggregation/Search/Cross-

Network Proxy

(XDM Enabler)

1. Contact search request (AB)

(XDM-5i)

2. Search request to AB XDMS

(XDM-7i)

3. Search response from AB XDMS

(XDM-7i)

4. Contact search response (AB)

(XDM-5i)

Step1: The CAB Client makes a contact search request to the CAB User’s own AB via the XDM Enabler Proxies (Aggregation Proxy,Search Proxy, Cross-Network Proxy)using Limited XQuery. The request is formulated based on the AB XML schema hosted by the AB XDMS. This request is based on XDM-5i.

Step 2: Upon receiving the CAB Client request, the Search proxy routes the request to the AB XDMS as indicated in the original request.

Step 3: The search response including the search results from the AB XDMS is delivered in the response to the Search proxy. The search results may be further formatted or aggregated in the Search proxy. The AB search results are subject to CAB User’s AB Access Permissions.

Step 4: The contact search response (AB) is sent back to the CAB Client which includes the list of results corresponding to the initial search request in Step1. The response is based on XDM-5i.

Note: the format of the search request for AB needs to identify the target as a specific CAB User’s AB XML document, to satisfy the UC where the CAB User A might have given Access permissions to other CAB User B to search the CAB User A AB data.

C.1.3 Contact Search – External Directories

[image: image4.emf]CAB ClientExternal Directories

Aggregation/Search Proxy

(XDM Enabler)

1. Contact search request

(External Directories)

(XDM-5i)

2. Search request to CAB Server

(XDM-7i)

3. Search response from CAB Server

(XDM-7i)

4. Contact search response

(External Directories)

(XDM-5i)

CAB Server

(Interworking Function)

Search request to External

Directories

Search response from External

Directories

Step1: The CAB Client makes a contact search request towards External Directories via the Aggregation/Search Proxy using Limited XQuery. The request is formulated based on the standard XML search format (for External directories) hosted by the Interworking Function. This request is based on XDM-5i.

Step 2: Upon receiving the CAB Client request, the Search proxy routes the request to the CAB Server (i.e. Interworking Function) as indicated in the original request via XDM-7i. The Interworking Function translates the standard XML search request to external search request. The interactions and mapping between standard XML search request and external search request is out of scope.

Step 3: The search response including the search results from the External Directories is delivered in the response to the Search proxy. The response is based on XDM-7i. The search results may be further formatted or composed in the Search proxy.

Step 4: The contact search response (External Directories) is sent back to the CAB Client which includes the list of results corresponding to the initial search request in Step1. The response is based on XDM-5i.
C.2 Import from non-CAB Address Book Systems

[image: image5.emf]CAB Client

CAB XDMS

(AB)

Non-CAB Address Book

Systems

1. Store the “Import non-

CAB data” request

(XDM-3i)

2. Notify or retrieve non-

CAB data request info

(SIC-2 or XDM-4i)

6. Server alert to initiate

synchronization of AB

with CAB Client(s) using

OMA DS

CAB Server

(Interworking Function)

3. Request access to

user’s non-CAB address

book data

CAB XDMS

(CAB Feature Handler)

4. Retrieve user’s non-CAB

address book data

5. Store the imported address book data into AB

(XDM-4i)

Step 1: The CAB Client makes an “import non-CAB AB data” request by writing/storing the request information formatted to the <import-non-cab> element as described in the CAB Feature Handler Application Usage [CAB XDMS].
Step 2: The CAB Server retrieves the “import non-CAB AB data” request information from the CAB Feature Handler App Usage by either of the following methods:

Step 2a: Feature Handler App Usage notifies a change to the feature handler XML document to the CAB Server assuming a prior subscription to the changes is in place by the CAB Server.

Step 2b: Feature Handler App Usage is polled by the CAB Server for changes in the feature handler XML document based on a pre-determined time interval using XCAP.

Step 3: The CAB Server (i.e. Interworking Function) on behalf of the CAB User requests the non-CAB address book system(s) access to the CAB User’s legacy address book data, by supplying the necessary access parameters.

Step 4: Upon obtaining the access, the CAB Server (i.e. Interworking Function) retrieves/receives the non-CAB address book data of the CAB User from the non-CAB address book system(s).

Step 4a: The CAB Server (i.e. Interworking Function) transforms the imported data into the CAB Format.
Step 5: The CAB Server stores the resulting data in the AB Application Usage [CAB XDMS] subject to CAB User’s preferences.

Editor’s Note: the cases where a CAB user interaction is required need to be resolved (e.g. contact merge interaction).
Step 6: The data in the CAB User’s AB is then subsequently synchronized with the CAB Client(s) using OMA DS server-alerted notification sent by DS Server to CAB Client to initiate synchronization.

C.3 Sample XCAP flows for management of CAB XML documents

The flows in figure below describe the management operations on the data in the CAB XML documents*, based on [OMA XDM Core] document management operations: create, retrieve, update, delete.

*Note: The AB XML document data management operations are captured in the flows < ref to AB synch & mgmt flows >. The flows in this section apply to all the CAB XML documents except the AB XML document.

C.3.1 XCAP operations on CAB XML documents

The management operations on the CAB XML documents is realized through XCAP operations as described in Appendix C of [OMA XDM Core]. This example describes the message flows used by CAB Client to manipulate a CAB XML document* in CAB XDMS(s) after authentication.

[image: image6.emf]CAB XDMS(s)

Aggregation Proxy &

Cross-Network Proxy

(XDM Enabler)

CAB Client

A3. Response (201 Created)

A2. Document create (HTTP PUT)

(XDM-4i)

A1. Document create (HTTP PUT)

(XDM-3i)

B2. Document data update (HTTP PUT)

(XDM-4i)

B1. Document data update (HTTP PUT)

(XDM-3i)

A4. Response (201 Created)

C2. Document data retrieval (HTTP PUT)

(XDM-4i)

C1. Document data retrieval (HTTP PUT)

(XDM-3i)

D2. Document data delete (HTTP DELETE)

(XDM-4i)

D1. Document data delete (HTTP DELETE)

(XDM-3i)

B3. Response (200 OK)

B4. Response (200 OK)

C3. Response (200 OK)

C4. Response (200 OK)

D3. Response (200 OK)

D4. Response (200 OK)

Figure 1 : CAB Client manipulating a CAB XML document*

NOTE 1 :
The request messages (A, B, C, D) are shown in one diagram for the convenience of the reader, but there is no implication that all of them have to be performed.
NOTE 2: The Cross-Network Proxy is present in the flows in the case of an Authorized Principal managing PCC XDMS documents from a remote domain.

Editor’s Note:
All the highlighted text in the “Description of steps” below shall be updated with exact XML elements once they are described in the XML Documents schemas in CAB XDMS(s).

Description of steps below use as example operations on CAB User Preferences document:

Operation A: Creation of a document in CAB XDMS(s)

A1) The CAB Client sends an HTTP PUT request using the XDM-3i interface, via the Aggregation Proxy/Cross-Network Proxy to create a new CAB document “index” for a user in any of the CAB XDMS(s).

The example below is an HTTP PUT operation on the CAB User Preferences document that is owned by user with XUI of “sip:joebloggs@example.com” in the example.com domain.

PUT /cab-user-prefs/users/sip:joebloggs@example.com/index HTTP/1.1

Host: xcap.example.com

…

Content-Type: application/<TBD> +xml; charset="utf-8"

Content-Length: (…)

<?xml version="1.0" encoding="UTF-8"?>

<cab-user-prefs xmlns="urn:oma:xml:cab:cab-user-prefs">
 <FFS name="X">

 <ABC> </ABC
 </FFS>

</ cab-user-prefs >

A2) Assuming that the CAB Client was successfully authenticated, the CAB XDMS(s) receive the request over the XDM-4i interface from the XDM proxies (Aggregation Proxy/Cross-Network proxy).
A3) The CAB XDMS(s) acknowledge the creation of the index document with a HTTP “201 Created” message, assuming that the CAB Client had the right Access Permissions to perform the create operation and the operation was successful.

HTTP/1.1 201 Created

Etag: "cdcdcdcd"

…

Content-Length: 0

A4) The HTTP “201 Created” message is received by the CAB Client.
Operation B: Document data update in CAB XDMS(s)

B1) The CAB Client sends a HTTP PUT request over the XDM-3i interface, via the Aggregation Proxy/Cross-Network Proxy to the just-created “index” document in “sip:joebloggs@example.com”’s home directory to add a new <ABC> sub-element “YZW” to the <FFS> element identified as “X”.

PUT /cab-user-prefs/users/sip:joebloggs@example.com/index /~~/cab-user-prefs /FFS5B@name=%22X%22%5D/ABC5B@=%22YZW%22%5D HTTP/1.1

Host: xcap.example.com

…

Content-Type: application/xcap-el+xml; charset="utf-8"

Content-Length: (…)

<ABC="YWZ"></ABC
B2) Assuming that the CAB Client was successfully authenticated, the CAB XDMS(s) receive the request over the XDM-4i interface from the XDM proxies (Aggregation Proxy/Cross-Network proxy).
B3) The CAB XDMS(s) acknowledge the data update request of the index document with a HTTP “200 OK” reply, assuming that the CAB Client had the right Access Permissions to perform the update operation and the operation was successful.

HTTP/1.1 200 OK

Etag: "efefefef"

…

Content-Length: 0

B4) The HTTP “200 OK” message is received by the CAB Client.
Operation C: Document data retrieval from CAB XDMS(s)

C1) The CAB Client sends a HTTP GET request over the XDM-3i interface, via the Aggregation Proxy/Cross-Network Proxy to retrieve “sip:joebloggs@example.com”’s the FFS “X” from CAB User preference XDMS.
GET /cab-user-prefs/users/sip:joebloggs@example.com/index/~~/cab-user-prefs/FFS5B@name=%22X%22%5D HTTP/1.1

Host xcap.example.com

C2) Assuming that the CAB Client was successfully authenticated, the CAB XDMS(s) receive the request over the XDM-4i interface from the XDM proxies (Aggregation Proxy/Cross-Network proxy).
C3) The CAB XDMS(s) returns the data in the body of an HTTP “200 OK” reply, assuming that the CAB Client had the right Access Permissions to perform the retrieval operation and the operation was successful.
HTTP/1.1 200 OK

…

Etag: "efefefef"

Content-Type: application/xcap-el+xml; charset="utf-8"

Content-Length: (…)

<FFS name="X">

 <ABCYZW</ABC>

 </FFS
C4) The HTTP “200 OK” message is received by CAB Client.
Operation D: Document data deletion from CAB XDMS(s)

D1) The CAB Client sends a HTTP DELETE request over the XDM-3i interface, via the Aggregation Proxy/Cross-Network Proxy to delete an <ABC> identified by the “YZW” from “sip:joebloggs@example.com”’s FFS “X” in the CAB User preference XDMS.
DELETE /cab-user-prefs/users/sip:joebloggs@example.com/index/~~/cab-user-prefs/ FFS%5B@name=%22X%22%5D/ABC%5B@=%YZW%22%5D HTTP/1.1

Host: xcap.example.com

D2) Assuming that the CAB Client was successfully authenticated, the CAB XDMS(s) receive the delete request over the XDM-4i interface from the XDM proxies (Aggregation Proxy/Cross-Network proxy).
D3) The CAB XDMS(s), after checking the Access Permissions of the CAB Client, perform the deletion and acknowledges it by returning the body of an HTTP “200 OK” reply.
HTTP/1.1 200 OK

Etag: "ghghgh"

…

Content-Length: 0
D4) The HTTP “200 OK” message is received by CAB Client.
C.4 Sample Contact Share flows
The sample flows below capture the Contact Share operations covering all supported scenarios:

- Sending Side:

· Contact Share towards a CAB User

· Contact Share towards a non-CAB User

- Receiving side

· Contact Share received by a CAB User.

The CAB User data that can be shared by the CAB Enabler is:

· AB data (Contact Entries)

· PCC data (Contact Views)

The sample flows below use the case where AB Contact Entries or PCC Contact Views are the subject of Contact Share data.

Note: The determination of the recipient type (.i.e. if a CAB User or not), it is out of scope of the CAB specifications. There are many ways to achieve it (e.g. contact subscription, contact search), but none is mandated by the CAB Enabler. This applies to both flows (CAB to CAB and CAB to non-CAB) between steps 4 and 5.

C.4.1 Contact Share towards a CAB User
C.4.1.1 Originating Side
C.4.1.1.1 AB forwarding

[image: image7.emf]CAB Client A

[XDMC]

Contact Share

Function

[CAB server]

CAB XDMS

[Originating]

List XDMS

[Originating]

1. Contact Share Request (HTTP PUT)

(XDM-3i)

3. Notification (SIP NOTIFY)

(SIC-2)

8. XDM Forward Request (HTTP POST)

(across network)

2. Response (200 OK)

(XDM-3i)

4. response (200 OK)

(SIC-2)

9. Response (200 OK)

(across network)

10. Response (200 OK)

(XDM-4i)

11. Result of Forwarding (HTTP PUT)

(XDM-4i)

5. Forward Request (HTTP POST)

(XDM-4i)

12. response (200 OK)

(XDM-4i)

Aggregation and Cross

Network Proxy

(XDM Enabler)

6. Update Forward Notification List for

delivery notificationwith status

“pending”(HTTP PUT)

7. response (200 OK)

13. Contact Share Delivery Report(XDCP)

(across network)

14. response (200 OK)

(across network)

15. Update Forward Notification List for

delivery notificationwith the status

“delivered”(HTTP PUT)

16. response (200 OK)

17. XDM Agent in CAB Server gets

notified of the delivery report and

updates the CAB Feature Handler app

usage for this request

Figure 2 : Flows of AB forwarding in the originating side towards a CAB user

Step 1;
CAB Client A performs a HTTP PUT containing Contact Share data in CAB Feature Handler document in the CAB XDMS, using XDM-3i interface

Step 2:
CAB XDMS (Feature Handler Application Usage) sends the response back to CAB Client using XDM-3i interface.

Step 3:
CAB XDMS (AB Application Usage) notifies Contact Share Function (through the CAB Server’s XDM Agent) about document changes using SIC-2 interface.

Note: alternatively, the CAB Server can poll via XDM-3i the CAB Feature Handler document and perform the steps below after detecting a change in the data.

Step 4:
Contact Share Function sends the response (200 OK) to CAB XDMS (CAB Feature Handler Application Usage) using SIC-2 interface

Step 5:
Contact Share Function uses the CAB Server’s XDM Agent to initiate an XDCP Request (HTTP POST) for forwarding Contact Share data to the corresponding CAB XDMS through the XDM-4i interface.
Step 6:
CAB XDMS (AB application usage) updates the Forwarding Notification List of CAB Client A for delivery notification with the status “pending”.

Step 7:
CAB XDMS (AB application usage) updates the Forwarding Notification List by adding the <delivery-notification> entry received and sends 200 OK response.

Step 8: Since the recipient is in different domain CAB XDMS (AB Application Usage) creates the Contact Share data to be forwarded in a temporary storage and then does the XDCP Forward Remote request to the recipients’ CAB XDMS(s), using the XDM Enabler interfaces (e.g. XDM-8.2i) as described in the [OMA XDM AD].

Step 9:
CAB XDMS (AB Application Usage) of CAB Client A receives the response (200 OK) with result of forwarding back from the terminating network.

Step 10:
CAB XDMS (i.e. AB Application Usage) of CAB Client A on receiving the remote forward response creates 200 OK response to the forward requested received from CAB Client.
Step 11:
Contact Share Function performs an XCAP PUT using XDM-4i containing the result of forwarding in the <response> element of the CAB Feature Handler document in the CAB XDMS.

Step 12: CAB Feature Handler from the CAB XDMS responds with 200 OK response back to Contact Share Function using XDM-4i interface.
Step 13: Since CAB Client A has requested for the Delivery Report, CAB XDMS (AB Application Usage) of CAB Client A receives the Contact Share Delivery Report request (XDCP) from the terminating network.

Step 14: CAB XDMS (AB Application Usage) of CAB Client A sends 200 OK response with the XDCP Response containing <done> element.

Step 15: CAB XDMS (AB Application Usage) of CAB Client A updates the Forwarding Notification List entry created in the Step 6 of this flow by changing the status attribute value to “delivered”
Step 16: The List XDMS sends 200 OK response.

Step 17: CAB Server of User A would get notified about the contact share delivery status (the subscription to Forwarding Notification List document changes for CAB User’s Forwarding Notification List document from the CAB server is assumed to have occurred prior to the notification). The CAB Server updates the delivery status in the CAB Feature Handler document for the corresponding request.
C.4.1.1.2 PCC forwarding

[image: image8.emf]CAB Client A

[XDMC]

Contact Share

Function

[CAB server]

CAB XDMS

[Originating]

List XDMS

[Originating]

1. Contact Share Request (HTTP PUT)

(XDM-3i)

3. Notification (SIP NOTIFY)

(SIC-2)

8. XDM Forward Request (HTTP POST)

(across network)

2. Response (200 OK)

(XDM-3i)

4. response (200 OK)

(SIC-2)

9. Response (200 OK)

(across network)

10. Response (200 OK)

(XDM-4i)

11. Result of Forwarding (HTTP PUT)

(XDM-4i)

5. Forward Request (HTTP POST)

(XDM-4i)

12. response (200 OK)

(XDM-4i)

Aggregation and Cross

Network Proxy

(XDM Enabler)

6. Update Forward Notification List for

delivery notificationwith status

“pending”(HTTP PUT)

7. response (200 OK)

13. Contact Share Delivery Report(XDCP)

(across network)

14. response (200 OK)

(across network)

15. Update Forward Notification List for

delivery notificationwith the status

“delivered”(HTTP PUT)

16. response (200 OK)

17. XDM Agent in CAB Server gets

notified of the delivery report and

updates the CAB Feature Handler app

usage for this request

Figure 3: Flows of PCC forwarding in the originating side towards a CAB user

Step 1;
CAB Client A performs a HTTP PUT containing Contact Share data in CAB Feature Handler document in the CAB XDMS, using XDM-3i interface

Step 2:
CAB XDMS (Feature Handler Application Usage) sends the response back to CAB Client using XDM-3i interface.

Step 3:
CAB XDMS (PCC Application Usage) notifies Contact Share Function (through the CAB Server’s XDM Agent) about document changes using SIC-2 interface.

Note: alternatively, the CAB Server can poll via XDM-3i the CAB Feature Handler document and perform the steps below after detecting a change in the data.

Step 4:
Contact Share Function sends the response (200 OK) to CAB XDMS (CAB Feature Handler Application Usage) using SIC-2 interface

Step 5:
Contact Share Function uses the CAB Server’s XDM Agent to initiate an XDCP Request (HTTP POST) for forwarding Contact Share data to the corresponding CAB XDMS through the XDM-4i interface.
Step 6:
CAB XDMS (PCC application usage) updates the Forwarding Notification List of CAB Client A for delivery notification with the status “pending”.

Step 7:
CAB XDMS (PCC application usage) updates the Forwarding Notification List by adding the <delivery-notification> entry received and sends 200 OK response.

Step 8: Since the recipient is in different domain CAB XDMS (PCC Application Usage) creates the Contact Share data to be forwarded in a temporary storage and then does the XDCP Forward Remote request to the recipients’ CAB XDMS(s), using the XDM Enabler interfaces (e.g. XDM-8.2i) as described in the [OMA XDM AD].

Step 9:
CAB XDMS (PCC Application Usage) of CAB Client A receives the response (200 OK) with result of forwarding back from the terminating network.

Step 10:
CAB XDMS (i.e. PCC Application Usage) of CAB Client A on receiving the remote forward response creates 200 OK response to the forward requested received from CAB Client.
Step 11:
Contact Share Function performs an XCAP PUT using XDM-4i containing the result of forwarding in the <response> element of the CAB Feature Handler document in the CAB XDMS.

Step 12: CAB Feature Handler from the CAB XDMS responds with 200 OK response back to Contact Share Function using XDM-4i interface.
Step 13: Since CAB Client A has requested for the Delivery Report, CAB XDMS (PCC Application Usage) of CAB Client A receives the Contact Share Delivery Report request (XDCP) from the terminating network.

Step 14: CAB XDMS (PCC Application Usage) of CAB Client A sends 200 OK response with the XDCP Response containing <done> element.

Step 15: CAB XDMS (PCC Application Usage) of CAB Client A updates the Forwarding Notification List entry created in the Step 6 of this flow by changing the status attribute value to “delivered”
Step 16: The List XDMS sends 200 OK response.

Step 17: CAB Server of User A would get notified about the contact share delivery status (the subscription to Forwarding Notification List document changes for CAB User’s Forwarding Notification List document from the CAB server is assumed to have occurred prior to the notification). The CAB Server updates the delivery status in the CAB Feature Handler document for the corresponding request.
C.4.1.2 Terminating Side
C.4.1.2.1 AB forwarding

[image: image9.emf]List XDMS

[Term]

CAB Server

[Term]

2. Response (200 OK)

(across network)

Aggregation and Cross

Network Proxy

(XDM Enabler)

CAB Client B

[XDMC]

CAB XDMS

[Term]

1. XDM Forward Request (HTTP POST)

(acrossnetwork)

3. Check the preference on the received XDM

Forward request from CAB User Preferences

Application Usage

4. Depending on the preference, Fetch the

corresponding document from CAB XDMS in

the originating domain and update AB of the

recipient

10. Notify the changes to CAB

Server

(SIC-2)

5. Update the Forwarding

Notification List document with

“delivered”status

7. Notify the details of received XDM Forward request to CAB Client

(SIC-1)

12. Initiate sever alert for

synchronization as described in

[CAB TS] Appendix C.6.2

11. Response (200 OK)

(SIC-2)

6. Response (200 OK)

8. Contact Share Delivery Report(XDCP)

(across network)

9. response (200 OK)

(across network)

Figure 4: Flows of AB forwarding in the terminating side towards a CAB user
Step 1:
CAB XDMS (AB Application Usage) of CAB Client B receives the XDCP Forward Remote request form the originating network.

Step 2:
CAB XDMS (AB Application Usage) of CAB Client B on receiving the remote forward request checks whether the recipients listed in the request are in its domain and then creates the 200 OK response and sends to the CAB XDMS (AB Application Usage) of CAB Client A.

Step 3:
CAB XDMS (AB Application Usage) of CAB Client B checks the preferences of the CAB Client B for handling the forward request from the contact share preferences stored in the CAB User Preferences Application Usage. Here the case shown is that CAB Client B wants to accept the XDM Resource received from CAB Client A

Step 4:
CAB XDMS (AB Application Usage) fetches the XDM Resource using the URI received in the Forward Remote request and stores the Contact Share data in CAB Client’ AB Application Usage. Upon updating of AB XML document with the received contact information (i.e. AB XML document), CAB XDMS (AB Application Usage) resolves the conflict as described in [CAB XDMS] if the <addr-uri> or the <tel> element value corresponds to the XUI used in the XCAP URI of the specific CAB User’s PCC in the CAB Users Tree.
Step 5:
CAB XDMS (AB Application Usage) of CAB Client B updates the Forwarding Notification List of CAB Client B for request notification with the details of the received remote forward request
Step 6:
The List XDMS of CAB Client B updates the Forwarding Notification List of CAB Client B with the above request notification entry and sends 200 OK response.

Step 7:
CAB Client B would be notified about the details of the received forward request provide he/she has subscribed to the document changes of the Forwarding Notification List Document.

Step 8:
Since CAB Client A has requested for the Contact Share Delivery Report CAB XDMS (AB Application Usage) of CAB Client B generates the Forward Delivery Report request.

Step 9:
CAB XDMS (AB Application Usage) of CAB client B receives 200 OK response with the XDCP Response containing <done> element from the originating network.

Step 10: CAB XDMS (AB Application Usage) of CAB client B notifies the CAB Server about document changes using SIC-2 interface.

Step 11:
The CAB Server sends the response (200 OK) to CAB XDMS (AB Application Usage) using SIC-2 interface.
Step 12:
The CAB Server sends an alert to CAB Client to indicate changes occurred in the CAB User’s AB as described in the step 5 of [CAB TS] Appendix C.6.2
Following this, the CAB Client B may initiate synchronization as described in [CAB TS] Appendix C.6.1
C.4.1.2.2 PCC forwarding

[image: image10.emf]List XDMS

[Term]

CAB Server

[Term]

2. Response (200 OK)

(across network)

Aggregation and Cross

Network Proxy

(XDM Enabler)

CAB Client B

[XDMC]

CAB XDMS

[Term]

1. XDM Forward Request (HTTP POST)

(acrossnetwork)

3. Check the preference on the received XDM

Forward request from CAB User Preferences

Application Usage

4. Depending on the preference, Fetch the

corresponding document from CAB XDMS in

the originating domain and update AB of the

recipient

10. Notify the changes to CAB

Server

(SIC-2)

5. Update the Forwarding

Notification List document with

“delivered”status

7. Notify the details of received XDM Forward request to CAB Client

(SIC-1)

12. Initiate sever alert for

synchronization as described in

[CAB TS] Appendix C.6.2

11. Response (200 OK)

(SIC-2)

6. Response (200 OK)

8. Contact Share Delivery Report(XDCP)

(across network)

9. response (200 OK)

(across network)

Figure 5: Flows of PCC forwarding in the terminating side towards a CAB user
Step 1:
CAB XDMS (PCC Application Usage) of CAB Client B receives the XDCP Forward Remote request form the originating network.

Step 2:
CAB XDMS (PCC Application Usage) of CAB Client B on receiving the remote forward request checks whether the recipients listed in the request are in its domain and then creates the 200 OK response and sends to the CAB XDMS (PCC Application Usage) of CAB Client A.

Step 3:
CAB XDMS (PCC Application Usage) of CAB Client B checks the preferences of the CAB Client B for handling the forward request from the contact share preferences stored in the CAB User Preferences Application Usage. Here the case shown is that CAB Client B wants to accept the XDM Resource received from CAB Client A

Step 4:
CAB XDMS (PCC Application Usage) fetches the XDM Resource using the URI received in the Forward Remote request and stores the Contact Share data in CAB Client’ AB Application Usage. Upon updating of AB XML document with the received contact information (i.e. PCC XML document), CAB XDMS (AB Application Usage) resolves the conflict as described in [CAB XDMS] if the <addr-uri> or the <tel> element value corresponds to the XUI used in the XCAP URI of the specific CAB User’s PCC in the CAB Users Tree.
Step 5:
CAB XDMS (PCC Application Usage) of CAB Client B updates the Forwarding Notification List of CAB Client B for request notification with the details of the received remote forward request
Step 6:
The List XDMS of CAB Client B updates the Forwarding Notification List of CAB Client B with the above request notification entry and sends 200 OK response.

Step 7:
CAB Client B would be notified about the details of the received forward request provide he/she has subscribed to the document changes of the Forwarding Notification List Document.

Step 8:
Since CAB Client A has requested for the Contact Share Delivery Report CAB XDMS (PCC Application Usage) of CAB Client B generates the Forward Delivery Report request.

Step 9:
CAB XDMS (PCC Application Usage) of CAB client B receives 200 OK response with the XDCP Response containing <done> element from the originating network.

Step 10: CAB XDMS (PCC Application Usage) of CAB client B notifies the CAB Server about document changes using SIC-2 interface.

Step 11:
The CAB Server sends the response (200 OK) to CAB XDMS (PCC Application Usage) using SIC-2 interface.
Step 12:
The CAB Server sends an alert to CAB Client to indicate changes occurred in the CAB User’s AB as described in the step 5 of [CAB TS] Appendix C.6.2
Following this, the CAB Client B may initiate synchronization as described in [CAB TS] Appendix C.6.1
C.4.2 Contact Share towards a Non CAB User

[image: image11.emf]CAB client A

[XDMC]

Contact Share

Function

[CAB server]

CABXDMS

[Originating]

IWF

[CAB server]

CPM ISF

7. Convert the format based upon sender’s preference

9.send the contacts to be shared using CPM ISF

5. Retrieve the contacts to be shared (HTTP GET)

(XDM-4i)

5. Retrieve the contacts to be shared (HTTP GET)

(XDM-4i)

6. Response (200 OK)

(XDM-4i)

10. send the message

Aggregation and Cross

Network Proxy

(XDM Enabler)

Follow step 1~ 4in Contact Share Flow towards a CAB user

Terminating

network

(non-CAB client B)

8. Response (200 OK)

Figure 6: Flows of Contact Share towards a non CAB user

Steps 1 through 4 are same as the above flow “Contact Share towards a CAB User”

Step 5:
Contact Share Function uses the CAB Server’s XDM Agent to perform a HTTP GET using XDM-4i to retrieve the contact(s) to be shared from CAB XDMS

Step 6:
Contact Share Function receives the success response (200 OK) from CAB XDMS.

Step 7:
Subject to CAB Client A Preferences, Contact Share Function may request internally to CAB IWF to convert the format of the contact(s) to be shared, based on CAB Client A Preferences.
Step 8:
Contact Share Function receives the success response (200 OK) from CAB IWF.
Step 9:
Upon successfully obtaining the data format to be sent to the recipient(s), Contact Share Function sends the contacts to be shared using CPM ISF through its exposed interface.

Step 10:
CPM ISF sends the message that contains the shared contacts to the recipient(s). The delivery and responses depend on CPM Enabler employed and it is out of scope of this specification.

C.5 Contact Subscription flows

C.5.1 CAB Server Subscribes to contacts PCCs using Subscription Proxy
This flow is triggered by the updates in the CAB User’s subscription list in the CAB User Preference XDMS, such as deleting, adding new contacts or modifying existing contacts uris that are used in the subscription process.

This example flow uses the case of addition of multiple users into the CAB User A’s subscription list: CAB User B and CAB user C to be subscribed to. The Subscription List in the CAB User Preference XDMS follows the same flow as described in the Appendix C.3 “Sample XCAP flows for management of CAB XML documents”.

In this example, the CAB User A is identified through the following URI: “sip:joe.bloggs@example.com”.

Note: the 200 OK responses and ACK are not shown in the figure and steps for simplification.

[image: image12.emf]CAB User

Prefs

XDMS

(User A)

CAB

Server

(User A)

PCC

XDMS

(user B)

Subscription

Proxy

(Home)

SIP/IP Core

(XDM Enabler

Home, Remote)

AB

XDMS

(User A)

Subscription

Proxy

(Remote)

PCC

XDMS

(User C,

Remote)

1. SIP SUBSCRIBE

(SIC-2)

 SIP NOTIFY

(SIC-2)

2. SIP SUBSCRIBE

(SIC-2)

SIP SUBSCRIBE

2.C. SIP SUBSCRIBE

(SIC-2)

 SIP SUBSCRIBE

(SIC-2)

 SIP SUBSCRIBE

(SIC-2)

 3.B. SIP NOTIFY

(SIC-2)

SIP NOTIFY

(SIC-2)

 3.C. SIP NOTIFY

(SIC-2)

 SIP NOTIFY

(SIC-2)

 SIP NOTIFY

(SIC-2)

Predefined

interval

 4. SIP NOTIFY

(SIC-2)

2.B. SIP SUBSCRIBE

5. XCAP Put (Contact Status)

(XDM-3i)

User

updates

subscription

data

Figure 4 : Contact Subscription flow using the Subscription Proxy

Step 1: Following the subscription of the CAB Server of CAB User A through interface SIC-2 to the updates of the Subscription List in the CAB User Preference XDMS, the CAB Server of CAB User A gets notified of changes. Note: This trigger can also be achieved through regular polling of CAB User Preferences document by the CAB Server. The Contact Subscription status is set to “pending” for both contacts B and C in the Contact Status.

Step 2: CAB Server of CAB user A sends a SIP SUBSCRIBE request to the Subscription Proxy via the SIP/IP Core using the xcap-diff event package as defined in [OMA XDM Core]. The Request URI of the SIP SUBSCRIPTION request is set to the SIP address of the Subscription Proxy as obtained during provisioning. The body of the SIP SUBSCRIBE request contains the resource list with three entries as specified in [OMA XDM Core]:

· AUID “org.openmobilealliance.cab-pcc”

· URI pointing to PCC of user B: “userB@example.com”

· URI pointing to PCC of user C: “userC@other_domain.com”

.

Upon receiving a SIP SUBSCRIBE request for the “xcap-diff” event package, the Subscription Proxy creates a subscription dialog to "xcap-diff" event package to provide the changes of the data identified by the body of SUBSCRIBE request, and return 200 OK to the CAB server through the SIP/IP Core

Step 2.B: Based on the received initial subscription, the Subscription Proxy generates SIP SUBSCRIBE requests for back-end subscriptions, through the. SIP/IP core for each of the users listed in the body. First, the Subscription Proxy sets the Request URI to the value “sip:userB@example.com;auid=org.openmobilealliance.cab-pc” and sends a SIP SUBSCRIBE request to the PCC XDMS of CAB User B.

The PCC XDMS of CAB User B receives the SIP SUBSCRIBE with the Request URI “sip:userB@example.com;auid=org.openmobilealliance.cab-pc” and verifies the CAB User B Access permissions regarding CAB user A. Assuming the CAB User A passed authorization checks, the PCC XDMS of User B replies with 200 OK, through SIP/IP Core to the CAB Server.

Step 2.C: The next back-end subscription is targeted to PCC XDMS in a remote network. Such SIP SUBSCRIBE request is sent to PCC XDMS of User C in the remote network via the SIP/IP Core, and possibly via Subscription Proxy in the remote network.

The PCC XDMS in the remote network receives the SIP SUBSCRIBE with the Request URI “sip:userC@other_domain.com;auid=org.openmobilealliance.cab-pc” and verifies the CAB User C Access permissions regarding CAB user A. Assuming the CAB User A passed authorization checks, the PCC XDMS of User C replies with 200 OK following the same path back to the CAB Server.

Step 3.B: The PCC XDMS of CAB User B generates and sends an initial SIP NOTIFY via same path, containing initial reference to XDM document listed in the body of SIP SUBSCRIBE request, i.e. the PCC XML document of the CAB User B. The SIP NOTIFY is received by the Subscription Proxy in Home domain of CAB User A, which will reply with 200 Ok all the way to the PCC XDMS.

Step 3.C: The PCC XDMS of CAB User C generates and sends an initial SIP NOTIFY via same path, containing initial reference to XDM document listed in the body of SIP SUBSCRIBE request, i.e. the PCC XML document of the CAB User C. The SIP NOTIFY is received by the Subscription Proxy in Home domain of CAB User A, which will reply with 200 Ok all the way to the PCC XDMS.

Step 4: In this example, it is assumed that initial notifications from PCC XDMSs in the same domain are received without any significant delay. The Subscription Proxy, after the predefined interval, generates initial notification to the subscribed CAB server of CAB User A.

Until this state, the initial notifications from PCC XDMS(s) in the same network and remote network were received. The initial notification contains the body indicating these states. The SIP NOTIFY request is sent by the Subscription Proxy via the SIP/IP Core, to the CAB Server of CAB User A. The CAB server A will reply all the way back with 200 OK.

Step 5: CAB Server A receives the SIP Notify with the states of the subscriptions for the CAB user B and CAB user C and updates the Contact Status of the Contact Entries corresponding to CAB User B and CAB User C in the AB XDMS of the CAB User A. The updates in Contact Status of contacts B and C consists in the subscription status data (in this case “subscribed”)

.
C.5.2 AB document update upon receiving an incoming notification for a contact’s PCC update
Editor’s Note:
The flow details have to be updated based on sub-clause 5.2.

C.6 Managing Address Book Flow
C.6.1 CAB Client Address Book Modifications and Synchronization
Figure 5 depicts a CAB Client originated address book modifications and synchronization flow. The flow assumes that the CAB Server and CAB Client had up-to-date copies of the network-based address book, prior to the CAB Client making modifications to the address book. For illustrative purposes, a two-way DS synchronization with initialization separate from data sync is shown.

[image: image13.emf]CAB

Server

(User A)

AB

XDMS

(User A)

1. DS Pkg #1

(CAB-01)

5. XDM PUT

(XDM-3)

CAB

Client

(User A)

2. DS Pkg #2

(CAB-01)

3. DS Pkg #3

(CAB-01)

4. Analyzes

changes

6. XDM OK

(XDM-3)

7. DS Pkg #4

(CAB-01)

8. DS Pkg #5

(CAB-01)

9. DS Pkg #6

(CAB-01)

Figure 5 : CAB Client Address Book Modifications and Synchronization Flow

1. Based on modifications on the CAB User’s client address book, the CAB Client sends an OMA DS initialization message (OMA DS Pkg #1) to the CAB Server. The message includes server challenge (if needed), device capability information, DS sync type, and data type (i.e., the user's Address Book) to be synchronized with associated anchors.
2. The CAB Server computes the authentication challenge response, if a challenge was included, and then sends a DS message (OMA DS Pkg #2) to the CAB client that includes the challenge response to the CAB Client, if the CAB Client had challenged the CAB Server, a client challenge, server capability information, sync type, and synchronization information including associated anchors.
3. The CAB Client computes the challenge response for the CAB Server, and sends a DS message (OMA DS Pkg #3) with proposed address book modifications to the CAB Server.

4. The CAB Server processes address book modifications from the CAB Client.
5. The CAB Server updates the AB XDMS. This may involves multiple XDM requests, but only one request is depicted in the figure.

6. The AB XDMS acknowledges the write operation. There is one XDM response for each XDM request in the previous step.

7. The CAB Server sends a DS message (OMA DS Pkg #4) with a status for the client modifications and server modifications to the client.

8. The CAB Client updates its local address book cache, and sends a DS status message to the server (OMA DS Pkg #5).

9. The CAB Server sends an DS message (OMA DS Pkg #6) with the map acknowledgement to the CAB Client.
Note: Depending on the DS packages implementation, Steps 5 and 6 may occur at different times during OMA DS synchronization procedure. If there is data resulting from Step 4 that needs to be written into AB XDMS, this has to be done prior to closing the procedure of OMA DS synchronization (i.e. Step 9 or Step 7) to avoid data inconsistency in case of further reads of AB XDMS data.
C.6.2 Address Book Modifications from Network
Figure 6 depicts a network originated address book modifications flow e.g. when there is a change to the user address book that occurred in the network. The flow assumes that the local and network address books were up-to-date prior to the network modifications.

[image: image14.emf]CAB

Server

(User A)

AB

XDMS

(User A)

3. XDM PUT

(XDM-3)

CAB

Client

(User A)

2. Analyzes

changes

4. XDM OK

(XDM-3)

1. Receive a

notification that

requires

changes to AB

XDMS

AB Synchronization

5. Server alert for synchronization

Figure 6 : Address Book Modifications from Network
1. The CAB Server receives a notification that may require a change to the user's AB in the network (e.g., receives a SIP NOTIFY request from an XDM Subscription Proxy or PCC XDMS of the Published Contact Card, based on an active subscription, change from multiple devices).

2. The CAB Server analyzes the changes found in the notifications.
3. The CAB Server updates the AB XDMS.
4. The AB XDMS applies access permission rules, updates AB document, and acknowledges the update.
5. The CAB Server sends an alert to CAB Client to indicate changes occurred in the CAB User’s network address book.
Following this, the CAB Client may initiate synchronization as described in C6.1.
C.7 CAB data exchange between multiple CAB domains
This subclause describes basic flows to illustrate exchange of the following CAB data between multiple CAB domains:

2) AB Add data

C.7.1 Exchange of CAB Contact Added
Editor’s Note:
The flow details have to be updated based on sub-clause 9.1.

Step 1: A CAB User is identified. See subclause 9.1 “CAB User data”.
Step 2: To exchange CAB User list with remote domains, the CAB User list is stored in the CAB User List Application Usage [CAB XDMS] in the home domain e.g. with an HTTP PUT operation using XDM-4i.

Step 3: An HTTP 200 OK message response is received from the CAB XDMS acknowledging a successful operation.

Step 4: The CAB Server (in the remote domain) retrieves the CAB User list information from the CAB XDMS (of the home domain) using either SIC-2 (SIP:SUBSCRIBE/NOTIFY) or XDM-4i (XCAP GET) or XDM-7i (XQuery) operations. These operations are subject to service provider’s policy (e.g. via Access Permission settings).

Step 5: Upon retrieving the CAB User list from the home domain, the CAB Server (in the remote domain) processes the CAB User list (e.g. notifies the CAB User in its domain that one of his contacts in the AB has now become a CAB User).

Editor’s note:
Step 4 flow will be expanded to show how a remote domain CAB server is notified of changes to the CAB User List and how the remote domain CAB Server accesses/retrieves the changed CAB User List data via XDM NNI operations.

(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20100101-I]
(2010 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20100101-I]

_1328897746.vsd
A2. Document create (HTTP PUT)
(XDM-4i)

B2. Document data update (HTTP PUT)
(XDM-4i)

CAB XDMS(s)

B1. Document data update (HTTP PUT)
(XDM-3i)

Aggregation Proxy & Cross-Network Proxy
(XDM Enabler)

CAB Client

C2. Document data retrieval (HTTP PUT)
(XDM-4i)

B3. Response (200 OK)

C1. Document data retrieval (HTTP PUT)
(XDM-3i)

A4. Response (201 Created)

D2. Document data delete (HTTP DELETE)
(XDM-4i)

B4. Response (200 OK)

C3. Response (200 OK)

A1. Document create (HTTP PUT)
(XDM-3i)

D1. Document data delete (HTTP DELETE)
(XDM-3i)

A3. Response (201 Created)

C4. Response (200 OK)

D3. Response (200 OK)

D4. Response (200 OK)

_1341140327.vsd
CAB Client A
[XDMC]

Contact Share Function
[CAB server]

CAB XDMS
[Originating]

List XDMS
[Originating]

1. Contact Share Request (HTTP PUT)
(XDM-3i)

3. Notification (SIP NOTIFY)
(SIC-2)

8. XDM Forward Request (HTTP POST)
(across network)

2. Response (200 OK)
(XDM-3i)

4. response (200 OK)
(SIC-2)

9. Response (200 OK)
(across network)

10. Response (200 OK)
(XDM-4i)

6. Update Forward Notification List for delivery notification with status “pending” (HTTP PUT)

11. Result of Forwarding (HTTP PUT)
(XDM-4i)

5. Forward Request (HTTP POST)
(XDM-4i)

12. response (200 OK)
(XDM-4i)

Aggregation and Cross Network Proxy
(XDM Enabler)

7. response (200 OK)

13. Contact Share Delivery Report(XDCP)
(across network)

14. response (200 OK)
(across network)

15. Update Forward Notification List for delivery notification with the status “delivered” (HTTP PUT)

16. response (200 OK)

17. XDM Agent in CAB Server gets notified of the delivery report and updates the CAB Feature Handler app usage for this request

_1343125869.vsd
CAB Client B
[XDMC]

1. XDM Forward Request (HTTP POST)
(across network)

List XDMS
[Term]

CAB Server
[Term]

3. Check the preference on the received XDM Forward request from CAB User Preferences Application Usage

4. Depending on the preference, Fetch the corresponding document from CAB XDMS in the originating domain and update AB of the recipient

6. Response (200 OK)

10. Notify the changes to CAB Server
(SIC-2)

2. Response (200 OK)
(across network)

5. Update the Forwarding Notification List document with “delivered” status

7. Notify the details of received XDM Forward request to CAB Client
 (SIC-1)

CAB XDMS
[Term]

12. Initiate sever alert for synchronization as described in [CAB TS] Appendix C.6.2

11. Response (200 OK)
(SIC-2)

Aggregation and Cross Network Proxy
(XDM Enabler)

8. Contact Share Delivery Report(XDCP)
(across network)

9. response (200 OK)
(across network)

_1343126966.vsd
CAB client A
[XDMC]

Contact Share Function
[CAB server]

CAB XDMS
[Originating]

Follow step 1~ 4 in Contact Share Flow towards a CAB user

Terminating network
(non-CAB client B)

IWF
[CAB server]

CPM ISF

7. Convert the format based upon sender’s preference

9. send the contacts to be shared using CPM ISF

5. Retrieve the contacts to be shared (HTTP GET)
(XDM-4i)

6. Response (200 OK)
(XDM-4i)

10. send the message

Aggregation and Cross Network Proxy
(XDM Enabler)

8. Response (200 OK)

_1343125821.vsd
CAB Client B
[XDMC]

1. XDM Forward Request (HTTP POST)
(across network)

List XDMS
[Term]

CAB Server
[Term]

3. Check the preference on the received XDM Forward request from CAB User Preferences Application Usage

4. Depending on the preference, Fetch the corresponding document from CAB XDMS in the originating domain and update AB of the recipient

6. Response (200 OK)

10. Notify the changes to CAB Server
(SIC-2)

2. Response (200 OK)
(across network)

5. Update the Forwarding Notification List document with “delivered” status

7. Notify the details of received XDM Forward request to CAB Client
 (SIC-1)

CAB XDMS
[Term]

12. Initiate sever alert for synchronization as described in [CAB TS] Appendix C.6.2

11. Response (200 OK)
(SIC-2)

Aggregation and Cross Network Proxy
(XDM Enabler)

8. Contact Share Delivery Report(XDCP)
(across network)

9. response (200 OK)
(across network)

_1328898260.vsd
Double-click here and type
notes.

Text

Text

7. DS Pkg #4
(CAB-01)

8. DS Pkg #5
(CAB-01)

CAB Client
(User A)

2. DS Pkg #2
(CAB-01)

3. DS Pkg #3
(CAB-01)

4. Analyzes changes

 6. XDM OK
(XDM-3)

9. DS Pkg #6
(CAB-01)

CAB Server
(User A)

AB XDMS
(User A)

1. DS Pkg #1
(CAB-01)

 5. XDM PUT
(XDM-3)

_1334140706.vsd
CAB Client

CAB XDMS
(AB)

Non-CAB Address Book Systems

1. Store the “Import non-CAB data” request
(XDM-3i)

2. Notify or retrieve non-CAB data request info
(SIC-2 or XDM-4i)

4. Retrieve user’s non-CAB address book data

5. Store the imported address book data into AB
(XDM-4i)

6. Server alert to initiate synchronization of AB with CAB Client(s) using OMA DS

CAB Server
(Interworking Function)

3. Request access to user’s non-CAB address book data

CAB XDMS
(CAB Feature Handler)

_1334675042.vsd
Double-click here and type
notes.

Text

Text

AB Synchronization

CAB
Client
(User A)

1. Receive a notification that requires changes to AB XDMS

2. Analyzes changes

 4. XDM OK
(XDM-3)

CAB Server
(User A)

AB XDMS
(User A)

 3. XDM PUT
(XDM-3)

5. Server alert for synchronization

_1328898118.vsd
Double-click here and type
notes.

Text

Text

5. XCAP Put (Contact Status)
(XDM-3i)

_1309645017.vsd
CAB Client

CAB XDMS
(PCC)

Aggregation/Search/Cross-Network Proxy
(XDM Enabler)

1. Contact search request (PCC)
(XDM-5i)

2. Search request to PCC XDMS
(XDM-7i)

3. Search response from PCC XDMS
(XDM-7i)

4. Contact search response (PCC)
(XDM-5i)

_1309645115.vsd
CAB Client

External Directories

Aggregation/Search Proxy
(XDM Enabler)

1. Contact search request
(External Directories)
(XDM-5i)

2. Search request to CAB Server
(XDM-7i)

3. Search response from CAB Server
(XDM-7i)

4. Contact search response (External Directories)
(XDM-5i)

CAB Server
(Interworking Function)

Search request to External Directories

Search response from External Directories

_1309644909.vsd
CAB Client

CAB XDMS
(AB)

Aggregation/Search/Cross-Network Proxy
(XDM Enabler)

1. Contact search request (AB)
(XDM-5i)

2. Search request to AB XDMS
(XDM-7i)

3. Search response from AB XDMS
(XDM-7i)

4. Contact search response (AB)
(XDM-5i)

