Doc# OMA-MWG-CAB-2010-0064-INP_DS_Filter_Multiple_Device.doc[image: image2.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Doc# OMA-MWG-CAB-2010-0064-INP_DS_Filter_Multiple_Device.doc
Input Contribution

Input Contribution

	Title:
	DS_Filter_Multiple_Device
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MWG-CAB

	Submission Date:
	17.02.2010

	Source:
	Thinh Nguyenphu, Nokia Siemens Networks, thinh.nguyenphu@nsn.com
Kepeng Li; likepeng@huawei.com
Howard Wang; howard.wang@huawei.com
Suresh Chituri; schitturi@rim.com
Miraj Mostafa; miraj.mostafa@nokia.com
Danny Cauchie; dany.cauchie@orange-ftgroup.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Revision History: R0 and R1 documents are the same. OMA portal creates R01 when updating the “Source” field.

The purpose of this contribution is to close the action item below and illustrate OMA DS support for multiple devices.
· Thinh to bring an INP to explain how DS works on filtering in 3 weeks.

2 Summary of Contribution
1. OMA DS supports multiple devices.

Per OMA-TS-DS_Protocol-V1_2_2-20090319-A, Section 6.1 and 6.3. OMA DS 1.2 protocol support multiple device synchronization, and data mapping to each device. The text is from OMA-TS-DS_Protocol-V1_2_2-20090319-A.

===========================

In DS, Device ID is only contained in Device Info, and it will be sent in the initialization packages, that is, Pkg #1 and Pkg #2.

DevID

Usage: Specifies the identifier of the source synchronization device.

In the session, DS Client and DS Server will use Source and Target to identify the device and server.

For example:
 <Target><LocURI>http://www.syncml.org/servlet/syncit/</LocURI></Target>

 <Source>

 <LocURI>IMEI:001004FF1234567</LocURI>

 <LocName>Bruce’s Mobile Device</LocName>

 </Source>

4.3 Change Log Information

This protocol requires that devices (the client and server) are able to keep tracks of changes that have happened between synchronizations. I.e., they are responsible for maintaining the change log information about the modifications associated with data items of a database. The types of the modifications can be e.g., replace, addition, and deletion. This protocol does not specify in which format this change log information is maintained inside devices. However, when synchronization is started, the devices MUST be able to specify, which data items have changed. To specify the changed data items, the unique identifiers are used (See also Chapter 6.3). To indicate the type of a modification, the different operations (e.g., Replace) are used.

4.3.1 Multiple devices

If a device synchronizes with multiple devices, the change log information MUST be able to indicate all modifications related to a previous synchronization with each device.

Per OMA-TS-DS_Protocol-V1_2_2-20090319-A, Section 6.3.

4.4 ID Mapping of Data Items

This protocol is based on the principle that the client and the server can have their own ID’s for data items in their databases. These ID’s MAY or MAY NOT match with each other. Because the ID’s can be different, the server MUST maintain the ID mapping table for items. That is, the server knows which client ID (LUID) and which server ID (GUID) points to the same data item.

Figure 5 shows an example of an ID mapping table after synchronization. In this example the mapping table in the server is depicted as a separate from the actual database.

[image: image1.wmf]

 Client Device

 Client Database:

LUID

Data

11

Car

22

Bike

33

Truck

44

Shoes

Server Device

Server Database:

GUID

Data

1010101

Car

2121212

Bike

3232323

Truck

4343434

Shoes

Server Mapping Table:

GUID

LUID

1010101

11

2121212

22

3

232323

33

4343434

44

Figure 5 Example: ID Mapping of Data Items

The LUID’s are always assigned by the client device. This means that even if the server adds an item to the client device, the client assigns a LUID for this item. In this case, the client returns the LUID of the new item to the server. The Map operation is used for this. After the Map operation is sent by the client, the server is able to update its mapping table with the client LUID.

When a server is adding a new item to a client, it MUST NOT send its actual GUID if the size of the actual GUID is exceeding the maximum size of the temporary GUID defined by the client. If size of the actual GUID’s exceeds the maximum size, the server MUST use a smaller temporary GUID when adding an item to the client. The maximum size of the temporary GUID is defined in the device information document of the client.

If the server has modified an existing item (i.e., an item which is on both the devices), the server MUST identify the item by using the client LUID for this item, when the modification (e.g., replace or deletion) is synchronized with the client. In the case of the client modifications, items are also identified with LUID’s, when the modifications are sent to the server. The server can map a LUID to its own GUID by utilizing the mapping table.
2. OMA DS supports filtering.

Per OMA-TS-DS_Protocol-V1_2_2-20090319-A, Section 4.3.

4.5 Version 1.2 (OMA DS 1.2)
The OMA Data Synchronization 1.2 main changes are:

· Suspend and Resume

· Server Alerted Notification

· Data Sync Record and Field Level Filtering

· Field Level Replace

· Synchronization of hierarchical data objects

· Folder Data Objects

· Email Data Objects

· File Data Objects

Per OMA-TS-SyncML_RepPro-V1_2_1-20070612-A. SyncML Representation Protocol
6.1.7Field

Usage: Specifies a field level filter to be performed on the parent element of the filter element.

Parent Elements: Filter
Restrictions: If the Field element is present, the Meta Type subelement of the Filter element is used to indicate the content type used in the content filtering and MUST be present. The Item Meta element is used to indicate the device info mime type and MUST be present. The Item Data element MUST contain Property elements. The mark-up characters of the Data element content MUST be properly escaped according to [XML] specification rules or the CDATA sections MUST be used. The Property elements MUST be used to override any Property elements previously received in the CTCap element for the content-type being filtered and MUST apply to the current synchronization session only. If no Field element is present in the Filter element, then all properties SHOULD be filtered using the device info data store CTCap element for the specified Alert Target element.

Content Model:

	(Item)

Attributes: None.

6.1.8Filter

Usage: Specifies a filter action to be performed on the parent element.

Parent Elements: Target
Restrictions: The Filter element MAY appear in the Target element for Alert elements. If the Filter element is present, the Meta Type is used to indicate the content type used in the filter query and MUST be present. If the Filter element does not have a Record nor a Field element, then the filter request is ignored and synchronization MUST continue without any filtering.

Content Model:

	(Meta, Field?, Record?, FilterType?)

Attributes: None.

6.1.9FilterType

Usage: Indicates the type of filtering behaviour that is being requested. If the requested filter type is not supported by the recipient then a Status code 406 (OPTIONAL feature not supported) MUST be returned. The Item element of the Status command SHOULD indicate that the FilterType element was the unsupported feature.

Parent Elements: Filter
Restrictions: If present, these keywords MUST be one of the FilterType keywords listed below. If not present, then the FilterType value of “EXCLUSIVE” MUST be assumed.

It is assumed that for the current release (e.g. SyncML Common 1.2) the only valid use case for filtering is when a client sends a filter to a server. In further releases, the specification of filtering may satisfy additional use cases.

In the following definitions:

· "Sender" defines the side that sends and uses a Filter (e.g. client)

· "Recipient" defines the other side that receives the Filter (e.g. server)

· "Item" defines a record in a datastore - When an item is said to be synchronized, this means that a command on this item is transmitted in the Package #3 or in the Package #4.

	Keywords
	Description

	EXCLUSIVE
	Indicates that the sender is requesting that the set of items to be synchronized MUST be exactly the set of items specified by the Filter. The items outside the filter criteria in the recipient's data storeMUST not be synchronized. The recipient MUST send Delete commands to the sender for all the items outside the filter criteria that it (the recipient) assumes to exist in the sender's data store.

	INCLUSIVE
	Indicates that the sender is requesting that the set of items to be synchronized MUST include the set of items specified by the Filter. The recipient MUST NOT create new items outside the filter criteria in the sender's data store. The items that exist on both sides belong to the set of synchronization, even if they are outside the filter criteria.

Content Model:

	(#PCDATA)

Attributes: None.

The main difference between EXCLUSIVE and INCLUSIVE filter types is that:

· The EXCLUSIVE filter recipient MUST send DELETE commands for all the items that it assumes to exist in the sender's data store if they do not satisfy the filter.
· In case of INCLUSIVE filter, there is no such requirement.
It is recommended to follow the behavior described below for the use of EXCLUSIVE and INCLUSIVE filter types:

(In the following, it is said that a device sends its updates regarding items, means that it sends commands (ADD, REPLACE, MOVE, DELETE) regarding those items).

Items sent by the sender of the filter:

· For both EXCLUSIVE and INCLUSIVE filter types: the sender sends to the recipient its updates regarding items inside and outside the filter criteria, since the filter only applies to the recipient's items.

Items sent by the recipient of the filter:

· For an EXCLUSIVE filter: the recipient sends to the sender only its updates (except for DELETE) regarding items inside the filter criteria. The DELETE commands can be sent regardless of whether the deleted item was inside or outside the filter.

· For an INCLUSIVE filter: the recipient sends to the sender its updates regarding items inside the filter criteria. The recipient sends also to the sender its updates regarding items outside the filter criteria if they already exist in the sender's side. The recipient does not create in the sender's data store new items outside the filter criteria.
Deletion of items outside the filter criteria in the sender's data store:

· For an EXCLUSIVE filter: the recipient sends DELETE commands to the sender for the items outside the filter criteria in the sender's data store.

· For an INCLUSIVE filter: there is no such requirement.

6.1.20Record

Usage: Specifies a record level filter to be performed on the parent element of the filter element.

Parent Elements: Filter
Restrictions: The Record element MAY appear in the Filter element for Alert Target elements. If the Record element is present, the Meta Type subelement of the Filter element is used to indicate the content type used in the filter record query and MUST be present. The Record Item element specifies the filter query itself. The Meta Type subelement of the Record Item element is used to indicate the filter query grammar. The Data subelement of the Record Item element is used to indicate the filter query itself and MUST be present.

Content Model:

	(Item)

Attributes: None.

7 SyncML DTD

<!-- Value must be one of "Add" | "Alert" | "Atomic" | "Copy" | "Delete" | "Exec" | "Get" | "Map" | "Move" | "Put" | "Replace" | "Results" | "Search" | "Sequence" |

	"Status" | "Sync". -->

<!ELEMENT Cmd (#PCDATA)>

<!-- Authentication Challenge -->

<!ELEMENT Chal (Meta)>

<!-- Sync message unique identifier for command -->

<!ELEMENT CmdID (#PCDATA)>

<!-- Reference to command identifier -->

<!ELEMENT CmdRef (#PCDATA)>

<!-- Credentials -->

<!ELEMENT Cred (Meta?, Data)>

<!-- Final message flag -->

<!ELEMENT Final EMPTY>

<!-- Desired language for results -->

<!ELEMENT Lang (#PCDATA)>

<!-- Location displayable name -->

<!ELEMENT LocName (#PCDATA)>

<!-- Location URI -->

<!ELEMENT LocURI (#PCDATA)>

<!-- Indication for more data to come -->

<!ELEMENT MoreData EMPTY>

<!-- SyncML Message ID -->

<!ELEMENT MsgID (#PCDATA)>

<!-- Reference to a SyncML Message ID -->

<!ELEMENT MsgRef (#PCDATA)>

<!-- No Response Status Requested Indicator -->

<!ELEMENT NoResp EMPTY>

<!-- No Results Requested Indicator -->

<!ELEMENT NoResults EMPTY>

<!-- NumberOfChanges used to display progress information -->

<!ELEMENT NumberOfChanges (#PCDATA)>

<!-- URI recipient used for response -->

<!ELEMENT RespURI (#PCDATA)>

<!-- SyncML session identifier -->

<!ELEMENT SessionID (#PCDATA)>

<!-- Soft delete indicator for Delete -->

<!ELEMENT SftDel EMPTY>

<!-- Source location -->

<!ELEMENT Source (LocURI, LocName?)>

<!ELEMENT SourceParent (LocURI)>

<!ELEMENT SourceRef (#PCDATA)>

<!-- Target location information -->

<!ELEMENT Target (LocURI, LocName?, Filter?)>

<!ELEMENT TargetParent (LocURI)>

<!ELEMENT TargetRef (#PCDATA)>

<!-- SyncML specificaiton major/minor version info. -->

<!-- For this version of the DTD, the value is "1.2" -->

<!ELEMENT VerDTD (#PCDATA)>

<!-- Data sync protocol major/minor version -->

<!-- For example, "xyz/1.2" -->

<!ELEMENT VerProto (#PCDATA)>

<!-- Synchronization data elements -->

<!-- Item element type -->

<!ELEMENT Item (Target?, Source?, SourceParent?, TargetParent?, Meta?, Data?, MoreData?)>

<!-- Meta element type -->

<!-- Element types in the content MUST have name space declared. -->

<!--The Meta content would be something such as: <Meta> <Type xmlns='syncml:metinf'>text/calendar</Type> <Format xmlns='syncml:metinf'>xml</Format> </Meta>-->

<!ELEMENT Meta (#PCDATA)>

<!--Correlator element type -->

<!ELEMENT Correlator (#PCDATA)>

<!-- Actual data content -->

<!ELEMENT Data (#PCDATA)>

<!-- SyncML Commands -->

<!-- Add operation. -->

<!ELEMENT Add (CmdID, NoResp?, Cred?, Meta?, Item+)>

<!-- Alert operation. -->

<!-- Alert types are either "User Agent" or "Application" oriented -->

<!ELEMENT Alert (CmdID, NoResp?, Cred?, Data?, Correlator?, Item*)>

<!-- Atomic operation. All or nothing semantics. -->

<!ELEMENT Atomic (CmdID, NoResp?, Meta?, (Add | Replace | Delete | Copy | Atomic | Map | Move | Sequence | Sync | Get | Exec | Alert)+)>

<!-- Copy operation. -->

<!ELEMENT Copy (CmdID, NoResp?, Cred?, Meta?, Item+)>

<!-- Delete operation. -->

<!ELEMENT Delete (CmdID, NoResp?, Archive?, SftDel?, Cred?, Meta?, Item+)>

<!-- Exec operation -->

<!-- Executable can either be referenced with Target element type -->

<!-- or can be specified in the Data element type. -->

<!ELEMENT Exec (CmdID, NoResp?, Cred?, Meta?, Correlator?, Item)>

<!-- Get operation. -->

<!ELEMENT Get (CmdID, NoResp?, Lang?, Cred?, Meta?, Item+)>

<!-- MAP operation. Create/Delete an item id map kept at the server. -->

<!ELEMENT Map (CmdID, Target, Source, Cred?, Meta?, MapItem+)>

<!ELEMENT MapItem (Target, Source)>

<!-- Move operation. -->

<!ELEMENT Move (CmdID, NoResp?, Cred?, Meta?, Item+)>

<!-- Put operation. -->

<!ELEMENT Put (CmdID, NoResp?, Lang?, Cred?, Meta?, Item+)>

<!-- Replace operation. -->

<!ELEMENT Replace (CmdID, NoResp?, Cred?, Meta?, Item+)>

<!-- Results operation. -->

<!ELEMENT Results (CmdID, MsgRef?, CmdRef, Meta?, TargetRef?, SourceRef?, Item+)>

<!-- Search operation. -->

<!ELEMENT Search (CmdID, NoResp?, NoResults?, Cred?, Target?, Source+, Lang?, Meta, Data)>

<!-- Sequence operation. -->

<!ELEMENT Sequence (CmdID, NoResp?, Meta?, (Add | Replace | Delete | Copy | Atomic | Map | Move | Sync | Get | Alert | Exec)+)>

<!-- Status operation. -->

<!ELEMENT Status (CmdID, MsgRef, CmdRef, Cmd, TargetRef*, SourceRef*, Cred?, Chal?, Data, Item*)>

<!-- Synchronize Operation. -->

<!ELEMENT Sync (CmdID, NoResp?, Cred?, Target?, Source?, Meta?, NumberOfChanges?, (Add | Atomic | Copy | Delete | Move | Replace | Sequence)*)>

<!-- Filtering operations -->

<!ELEMENT Filter (Meta, Field?, Record?, FilterType?)>

<!ELEMENT Field (Item)>

<!ELEMENT Record (Item)>

<!ELEMENT FilterType (#PCDATA)>
<!-- End of DTD Definition -->

3 Detailed Proposal

1. Supporting Multiple Devices:

As described in above section, OMA DS protocol supports multiple devices and maintaining a mapping table of each device. Therefore, there no need to create another set of IDs in the AB XDMS as proposed by OMA-MWG-CAB-2010-0039-INP_Per_Device_Contact_Set.
2. Supporting filtering:
In this example, the client wishes to sync only Contact items that fall into the “business” or “personal” group, and wish to filter the PHOTO property from the server for this synchronization request.

<SyncAlert CmdID="5">

<!-- -->

<Filter>

<Meta Type="text/x-vcard" />

<Field>

<Item>

<Meta Type="application/vnd.syncml-devinf+xml" />

<Data>

<![CDATA[

<Property>

<PropName>PHOTO</PropName>

<MaxSize Truncate="false">0</MaxSize>

</Property>

]]>

</Data>

</Item>

</Field>

<Record>

<Item>

<Meta Type="syncml:filtertype-cgi" />

<Data><![CDATA[GROUP&iCON;business&OR;GROUP&iCON;personal]]></Data>

</Item>

</Record>

</Filter>
</SyncAlert>
The above example shows that by using the combination of <Field> and <Record> in same command, OMA DS protocol supports individual property level filtering. Therefore, there is no need to create “ForDevice” ID as proposed by OMA-MWG-CAB-2010-0039-INP_Per_Device_Contact_Set.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation
The author recommends using OMA DS protocol “filter” feature to satisfy HLF-014 and “Change Log” feature to support multiple devices.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2010 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20100101-I]

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 11)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20090101-I]

_1028958851.doc
		

		DOCUMENTTYPE

		

		1 (2)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

 Client Device

 Client Database:

		LUID

		Data

		11

		Car

		22

		Bike

		33

		Truck

		44

		Shoes

Server Device

Server Database:

		GUID

		Data

		1010101

		Car

		2121212

		Bike

		3232323

		Truck

		4343434

		Shoes

Server Mapping Table:

		GUID

		LUID

		1010101

		11

		2121212

		22

		3232323

		33

		4343434

		44

_935227290.doc

