Doc# OMA-COM-CPM-2016-0097-CR_Sec_6_2_and_6_3[image: image2.jpg]
Input Contribution

Doc# OMA-COM-CPM-2016-0097-CR_Sec_6_2_and_6_3
Input Contribution

Input Contribution

	Title:
	CR_Sec_6_2_and_6_3
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA CPM

	Submission Date:
	10/18/2016

	Source:
	Jerry Shih, AT&T
Jerry.shih@att.com

	Attachments:
	OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This input contribution proposes content for a new section 6.3 in OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D. The tittle of this section is changed to better match to its content.
NOTE: The tittle of this CR is misleading, no changes to section 6.2 is included in this CR.
2 Summary of Contribution

New text proposal for section 6.3 in OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D.
3 Detailed Proposal

New context for section 6.3
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group to discuss and agree the following new text into baseline document.
############################# First Change ##
6. Client Operations at the Object Store

The message store will support message storage in folders as follows:

· Legacy non-CPM group messages are stored in the NonCPM folder

· RCS/CPM and legacy one-to-one messages are stored in folders based on

· the identity of the contact (for 1-to-1 messages)

· the Conversation-ID (for group messages, i.e. 1-to-N messages).

Clients should facilitate folder selection by using the Is-CPM-Group parameter (set to “yes”) when depositing RCS group messages. Clients should use “no” for all other messages.

Note that group messages may or may not be deposited in the correct conversation folder by other depositing systems; anticipating this problem, client developers may opt to group messages in some way other than according to ConversationId folder (according to sender and recipient list, for example) for multi-party messages that do not contain this parameter.

To discover the folder structure, clients should follow the process described in section 6.1.3 “Root folder and active folder operations” – i.e. descend recursively from root.

The folder structure is as follows:

· /

· /Default

· /Default/NonCPM

· /Default/{Contact or Conversation ID}

6. Managing local storage mirror (cache) at the client

Clients may need to have a local cache, representing the storage at the server. In order to keep it up-to-date, any change made on the server needs to be mirrored in the local cache, which requires tracking of storage changes. Tracking such changes in a multi-device (multi-client) environment is a complicated task that requires extended state management. This tracking incurs overhead both in complexity (cost) of the client and server implementations and in their runtime performance when synchronizing the changes between the client(s) and the server.

The NMS API offers two alternatives for synchronizing their local cache: strict synchronization and simplified synchronization. The CPM Message Storage server MUST offer strict synchronization. The CPM Message Storage client SHOULD NOT attempt to use simplified synchronization.
6. Object POST Operation

When a Message Storage Client needs to store an object (e.g. a message object, a file transfer history object, a standalone Media Object) into a folder on the Message Storage Server, the Message Storage Client SHALL send to the Message Storage a RESTFul Command to execute the Resource for creating a new object, supporting POST only:

//{nmsHost}/nms/v1/base/{boxId}/objects

This method shall be used to create a new object with or without a payload and is specified in more detail [OMA REST NMS section 6]. The NMS server MUST support a representation of objects as multipart/form-data entity bodies, where the first entry of the form are the root fields and the second entry of the form are the payload parts. Details about the structure of such objects are defined in [REST_NetAPI_Common] and [REST_WP]. The type of the form entry carrying the root fields part of such an object MUST be Object in this API.

Other formats MAY be supported at the server’s discretion.

It is to be noted that a client may defer uploading objects to store, if its primary method of receiving messages is wirelessly using other interfaces (SMS/MMS/RCS). The only time when a client MUST upload objects to the store is as a result of initial sync.

6. POST Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.2

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. userId).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

Note: When uploading an MMS, the correlationId should come from the X-Mms-Transaction-ID field, known as tr_id on Android devices and tag 0x98 in the MMS PDU. The client should omit the first two characters from this field before using it as the correlationId.

[image: image1.png]
6. Generating Target Folders

It may be practical to have a POST generate a target folder path although this is outside of how [OMA REST NMS] deals with folders, in that folders are not user-defined and do not have independent permissions. It may be preferable, however to have the folder’s path and ID are generated from the object’s conversation ID. In these cases it is possible that the object POST URL may generate the target folder path on the server as follows.

· For RCS messages

· Identify the conversation ID <convid> for the RCS message being uploaded

· Build the folder path using the conversation ID - '/Default/<convid>'

· For legacy SMS/MMS messages

· Build the folder path using the conversation ID - '/Default/NonCPM'

The parentFolderPath is optional. If it is supplied, it should match these rules; otherwise, the folder will be inferred using these rules. Similarly, if a parentFolder is provided, it should correspond to a folder path matching these rules.

For this reason, [OMA REST NMS 15] is not directly reproducible. The error code returned from NMS in the case of an invalid parentFolder or parentFolderPath differs from that example.

A successful request will return status 201 and the location of the newly created object. The path parameter may or not be included in the response.

	Name
	Description

	path
	The object’s path

	resourceURL
	The object resource URL

The resourceURL should be parsed as follows.

· Parse the objectId (the text after .../objects/).

· The objectId should be used for subsequent operations on the object (e.g. to delete the object), so it should be stored with the object in the device’s messaging metadata.

6. POST RESPONSE

The RESTful Message store will respond with a [201] success when creating an object.
6. Bulk Object creation

A client may wish to create multiple objects in a single POST. The server shall support the following resource

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/bulkCreation
If the creation of all the objects failed the HTTP response code SHALL be 4xx or 5xx.

Otherwise the HTTP response code SHALL be 2xx, even if the creation of some (but not all) objects failed.

For HTTP response codes, see [REST_NetAPI_Common].

The response body includes a list of success or failure status for each object in the request list respectively.

The maximum size of bulk creation request MAY be limited subject to server’s pre-defined policy, e.g. by number of objects, object size, total request size. For this reason the client SHOULD NOT make unreasonably large bulk creation requests.

6. Object Search Operation

A client shall query the store to get object information using the resource

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/search

This resource is used for retrieving information about a set of selected objects according to the SearchCriterion shown in [OMA-REST-NMS].

The response to an Object Search is 200 OK containing an object list of the applicable objects.

6. Object GET Operation

When a Message Storage Client needs to fetch a message object, file transfer history object or stand-alone Media Object from the active folder on the Message Storage Server, the Message Storage Client SHALL call the Message Storage Server using the RESTful Resource for managing the stored object. The HTTP verb GET is used to download the object from the resource, for example:

//{nmsHost}/nms/v1/base/{boxId}/objects/{objectId}

6. Request URL variables

	Name
	Description

	objectId
	Object identifier

Note that the payloadPart href value may change over time, so it should not be permanently stored; if the client needs to download a payload part later, it should re-GET the message and use the latest payloadPart href value.

The message Store MAY not support the PayloadURL field. However, it will return the payloadParts of the object.

6. Responses

This is an example response for a successful retrieval of a standalone message. Note that the payloadPart contentId is not returned, as this element is optional.

6. Object Move Operation

If a client wishes to move a referenced source object(s) and/or folder(s) (including recursive folders’ content) to a designated target folder, then the resource to be used is as follows:

//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/folders/operations/moveToFolder

The resouce is only available using a POST verb. GET and PUT are not permitted.
6. Request URL variables

The following request URL variables are common for all HTTP methods:

	Name
	Description

	serverRoot
	Server base url: hostname+port+base path. Port and base path are OPTIONAL.
Example: example.com/exampleAPI

	apiVersion
	Version of the API client wants to use. The value of this variable is defined in section 5.2

	storeName
	Name of the storage. This variable can be used to allow multi-tenancy (i.e. a server hosting multiple independent stores). The value of this variable is deployment dependent (e.g. in simple deployment scenarios it could be a fixed literal).

	boxId
	Identifier of designated area within the store (a “box”). The value of this variable depends on the deployment scenario and the service provider’s policy. For example:

· in deployment scenario where each user is allocated a ‘box’ of its own, the value of “boxId” can be equivalent to the unique identifier of the user (e.g. userId).

· in deployment scenario where a ‘box’ is allocated to a group of multiple users (or machines), the value of “boxId” can be a unique identifier of the group

· in deployment scenarios where a ‘box’ is allocated to a machine (non-human user), the value of the “boxId” can be a unique identifier of the machine

6. Response to Move

A HTTP 200 OK is given for a successful use of this resource. Please see [OMA-REST-NMS] for other response codes

6. Object DELETE Operation
When a Message Storage Client needs to remove a stored message object, a file transfer history object, a Group State Object or a stored standalone Media Object, the Message Storage Client SHALL send to the Message Storage Server a DELETE command
6. DELETE

Deletes an object and its payload. This endpoint is specified in more detail at [OMA REST NMS].

In RESTful message store, successful DELETE operations return 204 No Content. According to [OMA REST NMS], valid responses may include 200 OK and the full object content or 204 No Content. A DELETE operation on a non-existent object will return a 404 Not Found and a SVC2008 errorCode containing “Unknown object <objectId>”.
6. Bulk DELETE objects
A client may wish to delete more than one object is a single DELETE. The resource used is:
//{serverRoot}/nms/{apiVersion}/{storeName}/{boxId}/objects/operations/bulkdelete

This resource is used for deleting multiple objects using a single request.

If the delete of all the objects failed the HTTP response code SHALL be 4xx or 5xx.

Otherwise the HTTP response code SHALL be 2xx, even if the delete of some (but not all) objects failed.

For HTTP response codes, see [REST_NetAPI_Common].

The response body includes a list of success or failure status for each object in the request list (if objects are specified in the request) or for each matching object (if selectionCriteria are specified in the request) respectively.

The maximum size of bulk delete request MAY be limited subject to server’s pre-defined policy, e.g. by number of objects, object size, total request size. For this reason the client SHOULD NOT make unreasonably large bulk delete requests.

##################################### end of first change #####################################
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20140101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20130101-I]

