Doc# OMA-COM-CPM-2016-0102-CR_Sec_6_8_Sync_Operations[image: image2.png]Worker Queue

Polling
Thread

Request

Request

Request

Request

Input Contribution

Doc# OMA-COM-CPM-2016-0102-CR_Sec_6_8_Sync_Operations[image: image3.jpg]"sOMaQa

Open Mobile Alliance

Input Contribution

Input Contribution

	Title:
	CR_Sec_6_8_Sync_Operations
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA CPM

	Submission Date:
	10/18/2016

	Source:
	Jerry Shih, AT&T
Jerry.shih@att.com

	Attachments:
	OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This input contribution proposes content for a new section 6.8 in OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D.
2 Summary of Contribution

New text proposal for section 6.8 in OMA-TS-MessageStore_Using_RestfulAPI-V1_0_0-20160710-D.
3 Detailed Proposal

New context for section 6.8
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group to discuss and agree the following new text into baseline document.
############################# First Change ##
6.8 Synchronization Operations

4. Strict Synchronization

Strict synchronization uses subscriptions and notifications to keep the client informed of changes to the network message storage.

Strict synchronization can be used both online (where a client receives a stream of change notifications) and offline (where a client asks the server to be told of changes that have occurred since it was last connected). Strict synchronization is reliable as it can recover from notification loss, reordering, or duplication. During synchronization only the changes and a per user folder token are exchanged.

To perform strict synchronization, the client should follow the steps for establishing a subscription and processing notifications, as described in section 1.7
4. Client Software Architecture [Informative]

It is recommended to structure the application with one or more application threads; these interact with the user, presenting them with a view of the local message store and updating the local store as the user makes changes (mark as read, delete, compose) to the messages.

In addition to the main application threads, two threads maybe dedicated to synchronizing the local message store with RESTful message store: the worker thread and the notification thread. This architecture shall ensure that the application remains responsive to the user while the client performs sync operations in the background.

A notification thread waits for inbox change notifications from RESTful message store. Based on these notifications, the thread assigns work to the worker thread via a queue. The worker thread picks up work items from the queue.

The worker thread applies updates to the store, retrieving additional content or metadata from RESTful message store if needed.

The order of items in this queue is important, especially when considering activities such as first time sync (covered below).

Example Client Messaging Processing Thread Model

[image: image1]
This section describes the overall structure of the application and the high-level process of syncing messages between RESTful message store and the local store.

The overall initialization process looks as may look as follows.

I. The Application thread starts the Worker thread.

II. The Worker thread then

a. ensures there is a valid Token to use with RESTful message store,

b. starts the Notification thread and waits until the thread is listening for updates to RESTful message store, initiates the First Time Sync process if appropriate,

c. initiates the Steady State Sync process.

III. The Notification thread polls for notifications from RESTful message store.

The Worker thread ensures there is a valid Token for use by both it and the Notification thread.

This means that the Notification thread must wait if it gets an authentication error until the Worker thread has obtained a new Token
The following sections discuss in more detail how the First Time and Steady State Sync functions work.

4. First Time Sync

First Time Sync performs the following to get the local store and RESTful message store in sync with one another. This is in two stages and result in both stores having the same set of messages.

· Download existing messages from RESTful message store to the handset.

· Upload any handset messages that are not present in RESTful message store.

Once First Time Sync has completed then Steady State Sync can start.

Two key notes to consider:

· Since First Time Sync can take a significant amount of time to complete, the process may be interrupted. The handset may lose network access or be stopped.

· Any user interactions with messages on the handset such as reading or deleting messages need to be queued up until the message in question has been correlated with RESTful message store (see section Scenario: Message Object Correlation).

Since messages are returned newest first, the handset may choose to synchronize only the most recent messages, saving local storage space.

If there are a large number of handset messages which are not present in RESTful message store, the client may wish to upload them using the /objects/operations/bulkCreation resource. Such clients should be aware of the following issues:

· BulkCreation requests may take a long time to complete. If a handset queues other requests behind a bulkCreation request, then this could make the handset appear unresponsive.

· When a bulkCreation request fails, no attempt is made to delete those objects which have already been uploaded. Following a failed bulkCreation request, the client should re-sync by downloading the most recent messages, and should only retry the upload for those messages which are not present in RESTful message store.

To ensure a graceful re-sync restart, the handset must store the following information persistently:

· The Index of the latest notification returned by a poll – to check for missed notifications.

· The latest RestartToken value – used to restart the polling process if interrupted.

· The latest /objects/operations/search cursor - used to restart the search process if interrupted.

· The time at which the existing subscription (if any) times out - used to know when the lifetime of the subscription needs updating.

· A list of the messages on the handset that have not been correlated with RESTful message store.

· Whether First Time Sync message upload has completed or not - to decide whether Steady State Sync should run or not.

4. Application Thread

The application thread should perform the following steps:

· Start the Worker thread.

· Perform the user interaction needed to begin first time sync – gaining acceptance of terms, account provisioning, etc. After this point, all synchronization is now performed within the new threads.

4. Worker Thread

The underlying flow for the worker thread is shown in [FLOW_FIRSTTIMESYNC]. Be aware that the flow may be made more complicated by the need to process changes to messages that arrive during the sync.

· Start the Notification thread and wait until it has an active long poll call to RESTful message store. (not shown in diagram. See Notification Thread.)

· Add a search request to the worker queue, with a blank cursor, or the stored cursor if restarting an interrupted sync.

Begin processing the queue.

· Use the request arrival time and number of downloaded messages to determine the pause before issuing another request. The overall rate for this sync should be one message/second to limit handset, network and RESTful message store load.

· For a search request: download the messages using the objects/operations/search endpoint using the specified cursor.

· The first search uses a blank cursor, and subsequent searches use the cursor supplied by the last search.

· The number of messages to be downloaded in each search is specified using the maxEntries field – the recommended value is 10.

· On receiving a response to a search:

· Iterate through the message headers and correlate with locally stored messages. If a correlationId is available for the message, use it to correlate messages according to [FLOW_CORRELATIONID]. Otherwise, correlate using the correlationTag as depicted in [FLOW_CORRELATIONTAG].

· If a correlating message is found, then update the local message, and remove from the list of uncorrelated messages.

· Be aware that in rare cases, when relaying on a correlationTag, multiple matches may occur. In this case, follow the guidance provided in Dealing with Hash Collisions.

· If not found then store the message locally as an uncorrelated message.

· For small messages, such as SMS messages, all the information on the message will be retrieved in the search. For larger messages, the client will need to retrieve the content by downloading the payload parts of the message – this is done as in [FLOW_OBJDOWNLOAD], but the client will not need to download the message headers as these are returned by the search.

· Add a new request to the worker queue. If the cursor is not blank, add a search request with the new cursor. If it is blank, messages have finished downloading; add an upload request for the first uncorrelated message.

· For an upload request: upload the message using a POST to the /objects endpoint.

· See Diagram 10-6 Object Upload for the flow for uploading a message.

· After receiving a response, add an upload request for the next uncorrelated message to the queue.

· If there are many uncorrelated messages, it is possible to upload multiple messages at once, using a POST to the /objects/operations/bulkCreation endpoint. Clients which choose to use this resource should be aware of the warnings mentioned above (see section 10.5).

· For a notification request, update the local message store with the changed objects. Event notifications contain new, changed or deleted objects. How the client processes such a notification depends on whether the message already exists on the client:

· For messages that already exist on the local store, use the lastModSeq attribute to determine whether to update the local copy of the message.

· Save the latest lastModSeq of every object and folder. If the network copy has a lastModSeq greater than the local one, the client needs to update the local copy to match.

· This does not need any further requests; the updated information is contained in the poll response.

· When updating the local copy of an uncorrelated message in response to a sync, remove that message from the list of uncorrelated messages.

· For messages that do not have a local version, the client will need to download the message from the message store. See [FLOW_OBJDOWNLOAD].

· For a request from the application thread to modify a message

· If the message has been correlated with RESTful message store, the thread should make the update to RESTful message store.

· If the message has not yet been correlated, the update must be delayed until the message has been correlated (which may only be after the First Time Sync process is complete).

· If the message cannot be correlated (e.g. missing correlationId, correlationTag, objectId), ignore and continue

4. Notification Thread

· Start a notification channel and subscription – see [FLOW_SETUPNOTIFY].

· Begin the Steady State long poll flow – see [FLOW_STEADYSTATE].

· Issue poll request. This must be on a separate network connection to the worker thread - pipelining requests on the same HTTP connection is not supported in long polling.

· If the poll returns with an empty notification list or no content, it has timed out - reissue the poll request.

· Otherwise, the poll returns with one or more event notifications. In this case

· Check the index of the notifications returned against the saved index. The smallest of the new indices should be one greater than the saved index; if this is not the case, the client has missed a notification. Follow the Missed Notification flow in [FLOW_MISSEDNOTIF].

· Otherwise, reissue the poll.

· Add the notifications returned to the worker queue for processing.

· The client is responsible for ensuring that the subscription does not time out; the client must keep track of the remaining subscription duration and periodically extend it before it expires.

· The RESTful message store service refreshes notification channels automatically when the client performs a long poll. If the client experiences an outage, the notification channel and/or subscription it is using may expire; for details on how to handle this case, see section 5.2.2 Missed Notification.

4. Steady State Sync

The purpose of the Steady State Sync process is to update the handset with changes made to the subscriber's mailbox. In overview, one thread waits for notifications of incoming messages using a polling request, while another thread is responsible for processing the notifications, upload and downloading messages and performing all correlation of RESTful message store with the local handset store.

NOTE: When processing JSON objects returned from NC API calls, clients should not rely on object ordering. The ordering of objects should not change the final result.

4. Worker Thread

The worker thread monitors a queue of requests. To process a request:

· For a notification request, update the local message store with the changed objects. Event notifications contain new, changed or deleted objects. How the client processes such a notification depends on whether the message already exists on the client:

· For a ResetBox notification see [OMA REST NMS 42]; in summary the RESTful message store client application data (local message cache, counters, etc) should be emptied and the client should perform a first time sync with RESTful message store. See additional guidance in Scenario: the ResetBox Event.

· Perform correlation steps provided in [FLOW_CORRELATIONID] for objects with accompanied by a correlationId and [FLOW_CORRELATIONTAG] if a correlationId does not exist, in which case a correlationTag is provided. If both are provided, use the correlationId. If the message cannot be correlated (e.g. missing correlationId, correlationTag, objectId), ignore.

· For messages that already exist on the local store (in other words, for message that are successfully correlated), use the lastModSeq attribute to determine whether it needs to update its local copy of the message.

· The client should save the latest lastModSeq of every object and folder. If the network copy has a lastModSeq greater than the local one, the client needs to update the local copy to match.

· This does not need any further requests; the updated information is contained in the poll response.

· Outside of First Time Sync, a client should only download message content from the message store when those messages have originated elsewhere (e.g. WUI). The message may reside in the client’s uncorrelated sync objects list, but the client should never present it to the user.

· For a request from the application thread to modify a message, the thread should also make the update to RESTful message store.
##################################### end of first change #####################################
NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20140101-I]

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Page 6 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20130101-I]

