Doc# OMA-IM-2005-xxxx-SSP_1_3_Baseline.doc[image: image4.jpg]
Input Contribution

Doc# OMA-IM-2005-xxxx-SSP_1_3_Baseline.doc
Input Contribution

Input Contribution

	Title:
	SSP 1.3 Baseline
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MWG IM

	Submission Date:
	09 January 2005

	Source:
	Jon Ingi, OZ Communications

jii@oz.com

	Attachments:
	OMA-IMPS-WV-SSP_Transport-V1_3-20050109-D.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	OMA-IMPS-WV-SSP_XMLS-V1_3-20050109-D.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	
	OMA-IMPS-WV-SSP-V1_3-20050109-D.doc
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

Create a baseline for the OMA IMPS 1.3 SSP specifications

2 Summary of Contribution

This contribution contains a proposed baseline for the OMA IMPS 1.3 SSP specifications

3 Detailed Proposal

Attached are proposed baseline versions of the SSP specifications. Changes from previous version are listed in the change history section of each document.

[image: image1.wmf]OMA-IMPS-WV-SSP_

Transport-V1_3-20050109-D.doc

[image: image2.wmf]OMA-IMPS-WV-SSP_

XMLS-V1_3-20050109-D.doc

[image: image3.wmf]OMA-IMPS-WV-SSP-

V1_3-20050109-D.doc

4 Intellectual Property Rights

No IPRs are known related to this contribution

5 Recommendation

Group to approve the attached OMA IMPS 1.3 specification drafts as a baseline.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 14 (of 14)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

_1166804936.doc
OMA-IMPS-WV-SSP_XMLSSyntax-V1_23-2005010941217-DC
Page 1 V(3)

		[image: image1.jpg]

		

		Server-Server Protocol XML Syntax

		Draft Version 1.3 – 09 Jan 2005

		Open Mobile Alliance

		OMA-IMPS-WV-SSP_XMLS-V1_3-20050109-D

		Continues the Technical Activities

Originated in the Wireless Village Initiative

		[image: image2.jpg]

		

		

		

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5

2.1
Normative References
5

2.2
Informative References
5

3.
Terminology and Conventions
7

3.1
Conventions
7

3.2
Definitions
7

3.3
Abbreviations
7

4.
Introduction
8

5.
Document Type Definition
9

6.
Data Type Assignments for SSP XML ELEMENTS
23

7.
Data Types for XML Elements and attributes
28

7.1
Redefined and new data types
28

7.1.1
Boolean
28

7.1.2
MSISDN
28

7.1.3
URL
28

7.2
Data types for XML Attributes
28

7.3
Data types for XML Terminal Elements
34

7.4
Description of composed XML Elements
37

8.
XML Binding Examples
40

8.1
Login Transaction
40

8.2
Status primitive with details
40

8.3
Logout Transaction
41

8.4
KeepAlive transaction
41

8.5
GetAvailableService transaction
41

8.6
ServiceIndication transaction
42

8.7
SetServiceAgreement transaction
42

8.8
GetUserProfile transaction
43

8.9
UpdateUserProfile transaction
43

9.
Static Conformance Requirements
45

Appendix A.
Change History (Informative)
46

A.1
Approved Version History
46

A.2
Candidate Version 1.2 History
46

1. Scope

The Wireless Village Instant Messaging and Presence Service (IMPS) includes four primary features:

· Presence

· Instant Messaging

· Groups

· Shared Content

Presence is the key enabling technology for IMPS. It includes client device availability (my phone is on/off, in a call), user status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence information is personal, it is only made available according to the user's wishes - access control features put the control of the user presence information in the users' hands.

Instant Messaging (IM) is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and two-way paging are all forms of Instant Messaging. Wireless Village IM will enable interoperable mobile IM in concert with other innovative features to provide an enhanced user experience.

Groups or chat are a fun and familiar concept on the Internet. Both operators and end-users are able to create and manage groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups where end-users can meet each other online.

Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.

These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common interoperable framework.

2. References

2.1 Normative References

		[IOPPROC]

		“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, http://www.openmobilealliance.org/

		[CSP]

		"Client-Server Protocol Session and Transactions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP DataType]

		"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		

		

		[FeaFun]

		"Features and Functions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[PA]

		"Presence Attributes Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[RFC2045]

		“Multipurpose Internet Mail Extensions (MIME) Part one: Format of Internet Message Bodies”. Section 6.8 “Base64 Content-Transfer-Encoding”. URL:http://www.ietf.org/rfc/rfc2045.txt?number=2045

		[RFC2046]

		Borenstein N., and N. Freed, "MIME (Multipurpose Internet Mail Extensions) Part Two: Media Types", November 1996. URL:http://www.ietf.org/rfc/rfc2046.txt?number=2046

		[RFC2119]

		“Keywords for using RFCs to Indicate Requirements levels”, Bradner, S. URL:http://www.ietf.org/rfc/rfc2119.txt?number=2119

		[RFC2396]

		Uniform Resource Identifiers (URI): Generic Syntax. URL:http://www.ietf.org/rfc/rfc2396.txt?number=2396

		[RFC2778]

		“A Model for Presence and Instant Messaging”, February 2000. URL:http://www.ietf.org/rfc/rfc2778.txt?number=2778

		[RFC822]

		“Standard for the Format of ARPA Internet Text Messages”, August 1982.URL:http://www.ietf.org/rfc/rfc0822.txt?number=822

		[XML]

		“Extensible Markup Language 1.0 (Second Edition)”, W3C recommendation, 6-October-2000. URL:http://www.w3c.org/TR/2000/REC-xml-20001006.pdf

2.2 Informative References

		[Arch]

		"System Architecture Model Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[FeaFun]

		"Features and Functions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP]

		"Client-Server Protocol Session and Transactions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP DTD]

		"Client-Server Protocol XML Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP Trans]

		"Client-Server Protocol Transport Bindings Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[CSP DataType]

		"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP SMS]

		"Client-Server Protocol Plain Text Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP WBXML]

		"Client-Server Protocol Binary XML Definition and Examples Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		

		

		[PA]

		"Presence Attributes Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[PA DTD]

		"Presence Attribute XML Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CLP]

		"Command Line Protocol Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP]

		"Server-Server Protocol Semantics Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		

		

		[SSP Trans]

		"Server-Server Protocol Transport Binding Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		

		

		[WAPARCH]

		“WAP Architecture, Version 12-July-2001”. Open Mobile Alliance(. WAP‑210‑WAPArch. http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

None

3.3 Abbreviations

None

4. Introduction

This documents defines the valid XML documents representing a valid Wireless Village SSP protocol message using Document Type Definition mechanism. The base syntactical checking can be done by a validating XML parser. Further syntactical constraints are given in the data types assignment section.

5. Document Type Definition

<!--

WV Server-Server Protocol (WV SSP) V1.3 Document Type Definition

Copyright Open Mobile Alliance Ltd., 2005

 All rights reserved

WV-SSP is an XML language. Typical usage:

 <?xml version="1.0"?>

 <!DOCTYPE WV-SSP PUBLIC "-//OMA//DTD WV-SSP 1.3//EN"

 "http://www.openmobilealliance.org/DTD/WV-SSP.DTD"

 [<?oma-wv-ssp-ver supported-versions="1.3"?>]>

 <WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

 ...

 </WV-SSP-Message>

Terms and conditions of use are available from the

Open Mobile Alliance Ltd. web site at

http://www.openmobilealliance.org/useterms.html

-->

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT WV-SSP-Message (SetupTransaction | Session)>

<!ATTLIST WV-SSP-Message xmlns CDATA #REQUIRED>

<!-- SetupTransaction is a transaction for session setup outside of an existing session -->

<!ELEMENT SetupTransaction (SendSecretToken | LoginRequest | LoginResponse)>

<!ATTLIST SetupTransaction

mode

(Request | Response)
#REQUIRED

transactionID
CDATA

#REQUIRED>

<!-- SendSecretToken is a special request-like message without session and MetaInfo -->

<!ELEMENT SendSecretToken (SecretToken)>

<!ATTLIST SendSecretToken

serviceID

CDATA
#REQUIRED

protocol

CDATA
#FIXED
"WV-SSP"

protocolVersion
CDATA
#FIXED
"1.2">

<!ELEMENT SecretToken (#PCDATA)>

<!ATTLIST SecretToken

encoding

CDATA
"base64">

<!-- LoginRequest is a special response-like message without Session and MetaInfo -->

<!ELEMENT LoginRequest (PasswordDigest)>

<!ATTLIST LoginRequest

serviceID

CDATA
#REQUIRED

redirectHostId
CDATA
#IMPLIED>

timeToLive

CDATA
#IMPLIED>

<!ELEMENT PasswordDigest (#PCDATA)>

<!ATTLIST PasswordDigest

encoding

CDATA
"base64">

<!-- LoginResponse -->

<!ELEMENT LoginResponse (Status, HostsList)>

<!ATTLIST LoginResponse

sessionID

CDATA
#IMPLIED

timeToLive

CDATA
#IMPLIED>

<!-- HostsList -->

<!ELEMENT HostsList (redirectHostId*)>

<!ELEMENT redirectHostId (#PCDATA)>

<!-- Status is contained in every normal response and it may also be a separate message or can be sent in error cases of login phase messages -->

<!ELEMENT Status (StatusDescription?)>

<!ATTLIST Status

code
CDATA
#REQUIRED>

<!ELEMENT StatusDescription (#PCDATA)>

<!-- Session -->

<!ELEMENT Session (Transaction+)>

<!ATTLIST Session

sessionID

CDATA
#REQUIRED>

<!-- Transaction. It is a normal transaction inside an existing session -->

<!ELEMENT Transaction (Status | LogoutRequest | Disconnect | KeepAliveRequest | KeepAliveResponse | GetServiceRequest | ServiceList | ServiceNegotiation | ServiceAgreement | GetUserProfileRequest | UserProfile | UpdateUserProfileRequest | SearchRequest | SearchResponse | StopSearchRequest | InviteRequest | InviteResponse | CancelInviteRequest | VerifyIDRequest | VerifyIDResponse | InviteUserRequest | InviteUserResponse | CancelInviteUserRequest | CreateContactListRequest | DeleteContactListRequest | GetContactListRequest | GetContactListResponse | GetListMemberRequest | AddListMemberRequest | RemoveListMemberRequest | ContactListMemberResponse | GetListPropsRequest | SetListPropsRequest | ContactListPropsResponse | CreateAttrListRequest | DeleteAttrListRequest | GetAttrListRequest | GetAttrListResponse | AuthorizationRequest | AuthorizationResponse | CancelAuthRequest | GetReactiveAuthStatusRequest | GetReactiveAuthStatusResponse | SubscribeRequest | UnsubscribeRequest | SuspendPresenceNotifications | GetWatcherListRequest | GetWatcherListResponse | PresenceNotification | GetPresenceRequest | GetPresenceResponse | UpdatePresenceRequest | SendMessageRequest | SendMessageResponse | ForwardMessageRequest | NewMessage | MessageDelivered | MessageNotification | GetMessageRequest | SetMessageDeliveryMethod | GetMessageListRequest | GetMessageListResponse | RejectMessageRequest | DeliveryStatusReport | BlockUserRequest | GetBlockedRequest | GetBlockedResponse | CreateGroupRequest | DeleteGroupRequest | JoinGroupRequest | JoinGroupResponse | LeaveGroupRequest | LeaveGroupIndication | GetJoinedMemberRequest| GetJoinedMemberResponse | GetGroupMemberRequest | GetGroupMemberResponse | AddGroupMemberRequest | RemoveGroupMemberRequest | MemberAccessRequest | GetGroupPropsRequest | GetGroupPropsResponse | SetGroupPropsRequest | RejectListRequest | RejectListResponse | SubscribeGroupChangeRequest | UnsubscribeGroupChangeRequest | GetGroupSubStatusRequest | GetGroupSubStatusResponse | GroupChangeNotice) >

<!ATTLIST Transaction

mode

(Request | Response)
#REQUIRED

transactionID
CDATA

#REQUIRED>

<!-- MetaInfo is contained in every normal request -->

<!ELEMENT MetaInfo (Requestor) >

<!ATTLIST MetaInfo

clientOriginated
(Yes | No)
"Yes" >

<!ELEMENT Requestor (User?)>

<!ATTLIST Requestor

 serviceID

CDATA

#REQUIRED>

<!ELEMENT User (ClientID?)>

<!ATTLIST User

userID

CDATA

#REQUIRED>

<!ELEMENT ClientID EMPTY >

<!ATTLIST ClientID

url

CDATA

#IMPLIED

MSISDN

CDATA

#IMPLIED>

<!-- Normal PROTOCOL MESSAGES detailed. Element types used first time in the protocol message is defined below the protocol message element type -->

<!-- LogoutRequest -->

<!ELEMENT LogoutRequest EMPTY>

<!-- Disconnect -->

<!ELEMENT Disconnect (Status?)>

<!-- KeepAliveRequest -->

<!ELEMENT KeepAliveRequest EMPTY >

<!ATTLIST KeepAliveRequest

timeToLive

CDATA
#IMPLIED>

<!-- KeepAliveResponse -->

<!ELEMENT KeepAliveResponse (Status)>

<!ATTLIST KeepAliveResponse

timeToLive

CDATA
#IMPLIED>

<!-- GetServiceRequest -->

<!ELEMENT GetServiceRequest EMPTY>

<!-- ServiceList -->

<!ELEMENT ServiceList (Status?, ServiceTree)>

<!-- ServiceTree -->

<!ELEMENT ServiceTree (SRV_SAP?, SRV_Common?, SRV_Presence?, SRV_IM?, SRV_Group?)>

<!ELEMENT SRV_SAP (SRV_ServiceNegotiation?, SRV_UserProfileMgmt?, SRV_ServiceRelay?)>

<!ELEMENT SRV_ServiceNegotiation EMPTY>

<!ELEMENT SRV_UserProfileMgmt EMPTY>

<!ELEMENT SRV_ServiceRelay EMPTY>

<!ELEMENT SRV_Common (SRV_Invite?, SRV_ComplementaryInvite?, SRV_Search?, SRV_VerifyUser?)>

<!ELEMENT SRV_Invite (SRV_InvitePresence?, SRV_InviteSharedContent?, SRV_InviteIM?, SRV_InviteGroup?)>

<!ELEMENT SRV_InvitePresence EMPTY>

<!ELEMENT SRV_InviteSharedContent EMPTY>

<!ELEMENT SRV_InviteIM EMPTY>

<!ELEMENT SRV_InviteGroup EMPTY>

<!ELEMENT SRV_ComplementaryInvite EMPTY>

<!ELEMENT SRV_Search (SRV_Group?, SRV_Other?)>

<!ELEMENT SRV_Other EMPTY>

<!ELEMENT SRV_VerifyUser EMPTY>

<!ELEMENT SRV_Presence (SRV_ContactListGet?, SRV_ContactListUpdate?, SRV_Authorization?, SRV_WatcherList?, SRV_AttributeList?, SRV_ContactListAddress?, SRV_GetReactiveAuthStatus?)>

<!ELEMENT SRV_ContactListGet EMPTY>

<!ELEMENT SRV_ContactListUpdate EMPTY>

<!ELEMENT SRV_Authorization EMPTY>

<!ELEMENT SRV_WatcherList EMPTY>

<!ELEMENT SRV_AttributeList EMPTY>

<!ELEMENT SRV_ContactListAddress EMPTY>

<!ELEMENT SRV_GetReactiveAuthStatus EMPTY>

<!ELEMENT SRV_IM (SRV_SendMessage?, SRV_PushMessage?, SRV_MessageNotification?, SRV_GetMessage?, SRV_SetMessageDeliveryMethod?, SRV_GetMessageList?, SRV_RejectMessage?, SRV_DeliveryReport?, SRV_Blocking?, SRV_GroupHistory?)>

<!ELEMENT SRV_SendMessage (SRV_Group?, SRV_Contacts?)>

<!ELEMENT SRV_Contacts EMPTY>

<!ELEMENT SRV_PushMessage EMPTY>

<!ELEMENT SRV_MessageNotification EMPTY>

<!ELEMENT SRV_GetMessage EMPTY>

<!ELEMENT SRV_SetMessageDeliveryMethod EMPTY>

<!ELEMENT SRV_GetMessageList EMPTY>

<!ELEMENT SRV_RejectMessage EMPTY>

<!ELEMENT SRV_DeliveryReport EMPTY>

<!ELEMENT SRV_Blocking EMPTY>

<!ELEMENT SRV_GroupHistory EMPTY>

<!ELEMENT SRV_Group (SRV_GroupMGMT?, SRV_GetMember?, SRV_MemberMGMT?, SRV_RejectList?)>

<!ELEMENT SRV_GroupMGMT EMPTY>

<!ELEMENT SRV_GetMember EMPTY>

<!ELEMENT SRV_MemberMGMT EMPTY>

<!ELEMENT SRV_RejectList EMPTY>

<!-- ServiceNegotiation -->

<!ELEMENT ServiceNegotiation (ServiceTree) >

<!ATTLIST ServiceNegotiation

subProtocol
CDATA
#IMPLIED

timeToLive

CDATA
#IMPLIED>

<!-- ServiceAgreement -->

<!ELEMENT ServiceAgreement (Status, ServiceTree)>

<!ATTLIST ServiceAgreement

subProtocol
CDATA
#IMPLIED

timeToLive

CDATA
#IMPLIED>

<!-- ***************************
 -->

<!--
 User Profile
 -->

<!-- ***************************
 -->

<!-- GetUserProfileRequest -->

<!ELEMENT GetUserProfileRequest (MetaInfo, UserID+)>

<!ELEMENT UserID EMPTY>

<!ATTLIST UserID

userID
CDATA
#REQUIRED>

<!-- UserProfile -->

<!ELEMENT UserProfile (Status, UserProfileValue+)>

<!ELEMENT UserProfileValue (UPInfo+)>

<!ATTLIST UserProfileValue

userID

CDATA

#REQUIRED>

<!ELEMENT UPInfo (#PCDATA)>

<!ATTLIST UPInfo

attr

CDATA

#REQUIRED>

<!-- UpdateUserProfileRequest -->

<!ELEMENT UpdateUserProfileRequest (MetaInfo, UserProfileValue+)>

<!-- ***************************
 -->

<!--
 GENERAL

 -->

<!-- ***************************
 -->

<!-- SearchRequest -->

<!ELEMENT SearchRequest (MetaInfo, SearchTerm*)>

<!ATTLIST SearchRequest

searchType

(G | U)

#IMPLIED

searchLimit

CDATA

#IMPLIED

searchID

CDATA

#IMPLIED

searchIndex

CDATA

#IMPLIED>

<!ELEMENT SearchTerm EMPTY >

<!ATTLIST SearchTerm

attr

CDATA

#REQUIRED

value

CDATA

#REQUIRED>

<!-- SearchResponse -->

<!ELEMENT SearchResponse (Status, SearchResult?)>

<!ATTLIST SearchResponse

searchID

CDATA
#IMPLIED

searchFindings
CDATA
#REQUIRED

searchIndex

CDATA
#REQUIRED

completed

(Yes | No)
#REQUIRED>

<!ELEMENT SearchResult ((User | ScreenName)* | GroupID+)>

<!ELEMENT GroupID EMPTY >

<!ATTLIST
GroupID

groupID

CDATA

#REQUIRED>

<!ELEMENT ScreenName (#PCDATA) >

<!ATTLIST ScreenName

groupID

CDATA

#REQUIRED>

<!-- StopSearchRequest -->

<!ELEMENT StopSearchRequest (MetaInfo)>

<!ATTLIST StopSearchRequest

searchID

CDATA
#REQUIRED>

<!-- InviteRequest -->

<!ELEMENT InviteRequest (MetaInfo, Inviting, Invited, GroupID?, AttributeList?, ContentIDList?, InviteNote?)>

<!ATTLIST InviteRequest

inviteID

CDATA

#REQUIRED

inviteType

(GR | IM | PR | SC | GM)
#REQUIRED

validity

CDATA

#IMPLIED>

<!ELEMENT Inviting (User | ScreenName)>

<!ELEMENT Invited (User | ScreenName | ContactListID | GroupID)>

<!ELEMENT ContactListID EMPTY>

<!ATTLIST ContactListID

contactListID
CDATA

#REQUIRED>

<!ELEMENT AttributeList (PresenceSubList)>

<!ELEMENT ContentIDList (ContentID+)>

<!ELEMENT ContentID EMPTY >

<!ATTLIST ContentID

url
CDATA
#REQUIRED>

<!ELEMENT InviteNote (#PCDATA)>

<!-- InviteResponse -->

<!ELEMENT InviteResponse (Status, Inviting, Responding, ResponseNote?)>

<!ATTLIST InviteResponse

inviteID

CDATA

#REQUIRED

acceptance

(Yes | No)
#REQUIRED>

<!ELEMENT Responding (User | ScreenName | GroupID)>

<!ELEMENT ResponseNote (#PCDATA)>

<!-- InviteUserRequest -->

<!ELEMENT InviteUserRequest (MetaInfo, Inviting, Invited, GroupID?, AttributeList?, ContentIDList?, InviteNote?)>

<!ATTLIST InviteUserRequest

inviteID

CDATA

#REQUIRED

inviteType

(GR | IM | PR | SC | GM)
#REQUIRED

validity

CDATA

#IMPLIED>

<!-- InviteUserResponse -->

<!ELEMENT InviteUserResponse (Status, Inviting, Responding, ResponseNote?)>

<!ATTLIST InviteUserResponse

inviteID

CDATA

#REQUIRED

acceptance

(Yes | No)
#REQUIRED>

<!-- CancelInviteRequest -->

<!ELEMENT CancelInviteRequest (MetaInfo, Canceling, Canceled?, ContentIDList?, CancelNote?)>

<!ATTLIST CancelInviteRequest

inviteID

CDATA
#REQUIRED>

<!ELEMENT Canceling (User | ScreenName)>

<!ELEMENT Canceled (User | GroupID | ContactListID)>

<!ELEMENT CancelNote (#PCDATA)>

<!-- CancelInviteUserRequest -->

<!ELEMENT CancelInviteUserRequest (MetaInfo, Canceling, Canceled, ContentIDList?, CancelNote?)>

<!ATTLIST CancelInviteUserRequest

inviteID

CDATA
#REQUIRED>

<!-- VerifyIDRequest -->

<!ELEMENT VerifyIDRequest (MetaInfo, WVIDList)>

<!ELEMENT WVIDList (VerifyUserID*, VerifyContactListID*, VerifyGroupID*, VerifyScreenName*, VerifyDomain*)>

<!ELEMENT VerifyUserID (DateTime?)>

<!ATTLIST VerifyUserID

userID
CDATA
#REQUIRED>

<!ELEMENT VerifyContactListID (DateTime?)>

<!ATTLIST VerifyContactListID

contactListID
CDATA
#REQUIRED>

<!ELEMENT VerifyGroupID (DateTime?)>

<!ATTLIST VerifyGroupID

groupID
CDATA
#REQUIRED>

<!ELEMENT VerifyScreenName (DateTime?)>

<!ATTLIST VerifyScreenName

screenName
CDATA
#REQUIRED>

<!ELEMENT VerifyDomain (DateTime?)>

<!ATTLIST VerifyDomain

domain
CDATA
#REQUIRED>

<!ELEMENT DateTime (#PCDATA)>

<!ATTLIST DateTime

format

CDATA

"iso8601">

<!-- VerifyIDResponse -->

<!ELEMENT VerifyIDResponse (Status, WVIDList)>

<!-- ***************************
 -->

<!--
 CONTACT LIST
 -->

<!-- ***************************
 -->

<!—- CreateContactListRequest -->

<!ELEMENT CreateContactListRequest (MetaInfo, ContactUser*)>

<!ATTLIST CreateContactListRequest

contactListID
CDATA
#REQUIRED>

<!ELEMENT ContactUser EMPTY >

<!ATTLIST ContactUser

userID

CDATA

#REQUIRED

nick

CDATA

#IMPLIED>

<!—- DeleteContactListRequest -->

<!ELEMENT DeleteContactListRequest (MetaInfo, ContactListID+)>

<!—- GetContactListRequest -->

<!ELEMENT GetContactListRequest (MetaInfo, Version)>

<!ELEMENT Version (#PCDATA)>

<!ATTLIST Version

format

CDATA

"DateTime">

<!—- GetContactListResponse -->

<!ELEMENT GetContactListResponse (MetaInfo, Version, ContactListID*)>

<!ATTLIST GetListMemberRequest

defaultContactListID

CDATA

#IMPLIED>

<!—- GetListMemberRequest -->

<!ELEMENT GetListMemberRequest (MetaInfo)>

<!ATTLIST GetListMemberRequest

contactListID

CDATA

#REQUIRED>

<!—- AddListMemberRequest -->

<!ELEMENT AddListMemberRequest (MetaInfo, ContactUser+)>

<!ATTLIST AddListMemberRequest

contactListID

CDATA

#REQUIRED>

<!—- RemoveListMemberRequest -->

<!ELEMENT RemoveListMemberRequest (MetaInfo, ContactUserSpec+)>

<!ATTLIST RemoveListMemberRequest

contactListID
CDATA
#REQUIRED>

<!ELEMENT ContactUserSpec EMPTY >

<!ATTLIST ContactUserSpec

userID

CDATA
#IMPLIED

nick

CDATA
#IMPLIED>

<!—- ContactListMemberResponse -->

<!ELEMENT ContactListMemberResponse (Status, ContactUser*)>

<!ATTLIST ContactListMemberResponse

contactListID

CDATA
#REQUIRED>

<!—- GetListPropsRequest -->

<!ELEMENT GetListPropsRequest (MetaInfo)>

<!ATTLIST GetListPropsRequest

contactListID

CDATA
#REQUIRED>

<!—- SetListPropsRequest -->

<!ELEMENT SetListPropsRequest (MetaInfo, ContactListProperties)>

<!ATTLIST SetListPropsRequest

contactListID
CDATA
#REQUIRED>

<!ELEMENT ContactListProperties (Property*)>

<!ELEMENT Property (#PCDATA)>

<!ATTLIST Property

prop

CDATA

#REQUIRED>

<!—- ContactListPropsResponse -->

<!ELEMENT ContactListPropsResponse (Status, ContactListProperties)>

<!—- CreateAttrListRequest -->

<!ELEMENT CreateAttrListRequest (MetaInfo, AttributeList, ContactListID*, UserID*)>

<!ATTLIST CreateAttrListRequest

defaultList
(Yes | No)
#REQUIRED>

<!—- DeleteAttrListRequest -->

<!ELEMENT DeleteAttrListRequest (MetaInfo, ContactListID*, UserID*)>

<!ATTLIST DeleteAttrListRequest

defaultList
(Yes | No)
#REQUIRED>

<!—- GetAttrListRequest -->

<!ELEMENT GetAttrListRequest (MetaInfo, AttributeList, ContactListID*, UserID*)>

<!ATTLIST GetAttrListRequest

defaultList

(Yes | No)
#REQUIRED

exportList

(Yes | No)
#REQUIRED>

<!—- GetAttrListResponse -->

<!ELEMENT GetAttrListResponse (Status, AttributeAssociation*, DefaultAttributeList?)>

<!ATTLIST GetAttrListResponse

defaultList

(Yes | No)
#REQUIRED

exportList

(Yes | No)
#REQUIRED>

<!ELEMENT AttributeAssociation ((UserID | ContactListID), AttributeList)>

<!ELEMENT DefaultAttributeList (PresenceSubList)>

<!-- ***************************
 -->

<!--
 PRESENCE
 -->

<!-- ***************************
 -->

<!-- SubscribeRequest -->

<!ELEMENT SubscribeRequest (MetaInfo, UserID*, ContactListID*, AttributeList? , AutoSubscribe)>

<!ELEMENT AutoSubscribe (#PCDATA)>

<!-- AuthorizationRequest -->

<!ELEMENT AuthorizationRequest (MetaInfo, AuthRequestTuple+)>

<!ELEMENT AuthRequestTuple (Subscribers, Authorizer, AttributeList?)>

<!ATTLIST AuthRequestTuple

authID

CDATA

#REQUIRED>

<!ELEMENT Authorizer EMPTY>

<!ATTLIST Authorizer

userID

CDATA

#REQUIRED>

<!ELEMENT Subscribers (UserID*)>

<!-- AuthorizationResponse -->

<!ELEMENT AuthorizationResponse (MetaInfo, AuthResponseTuple+)>

<!ELEMENT AuthResponseTuple (Authorizer, SubscriberResult+)>

<!ATTLIST AuthResponseTuple

authID

CDATA

#REQUIRED>

<!ELEMENT SubscriberResult (UserID, PresenceSubList?)>

<!ATTLIST SubscriberResult

granted

CDATA

#REQUIRED>

<!-- CancelAuthRequest -->

<!ELEMENT CancelAuthRequest (MetaInfo, UserID*)>

<!-- GetReactiveAuthStatusRequest -->

<!ELEMENT GetReactiveAuthStatusRequest (MetaInfo, UserID*)>

<!ELEMENT GetReactiveAuthStatusResponse (ReactiveAuthStatusList)>

<!ELEMENT ReactiveAuthStatusList (ReactiveAuthStatus*)>

<!ELEMENT ReactiveAuthStatus (UserID, ReactiveAuthState, PresenceSubList?)>

<!ELEMENT ReactiveAuthState (#PCDATA)>

<!-- UnsubscribeRequest -->

<!ELEMENT UnsubscribeRequest (MetaInfo, UserID*, ContactListID*)>

<!-- AttributeList? -->

<!—- SuspendPresenceNotifications -->

<!ELEMENT SuspendPresenceNotifications (MetaInfo, UserID*, ContactListID*)>

<!-- PresenceNotification -->

<!ELEMENT PresenceNotification (MetaInfo, Subscribers, PresenceValue+, Version?)>

<!ELEMENT PresenceValue (PresenceSubList, Version?)>

<!ATTLIST PresenceValue

userID

CDATA

#REQUIRED>

<!ELEMENT PresenceSubList (#PCDATA)>

<!ATTLIST PresenceSubList

xmlns

CDATA

#REQUIRED

xmlns:Ext
CDATA

#IMPLIED>

<!-- GetWatcherListRequest -->

<!ELEMENT GetWatcherListRequest (MetaInfo)>

<!-- GetWatcherListResponse -->

<!ELEMENT GetWatcherListResponse (Status, UserID*)>

<!-- GetPresenceRequest -->

<!ELEMENT GetPresenceRequest (MetaInfo, (VerUserID | VerContactListID)+, AttributeList)>

<!ELEMENT VerUserID (Version?)>

<!ATTLIST VerUserID

userID
CDATA
#REQUIRED>

<!ELEMENT VerContactListID (Version?)>

<!ATTLIST VerContactListID

userID
CDATA
#REQUIRED>

<!-- GetPresenceResponse -->

<!ELEMENT GetPresenceResponse (Status, PresenceValue*, Version?)>

<!-- UpdatePresenceRequest -->

<!ELEMENT UpdatePresenceRequest (MetaInfo, PresenceValue+)>

<!-- ***************************
 -->

<!—-
INSTANT MESSAGE
 -->

<!-- ***************************
 -->

<!-- SendMessageRequest -->

<!ELEMENT SendMessageRequest (MetaInfo, MessageInfo, ContentData)>

<!ATTLIST SendMessageRequest

deliveryReport
(Yes | No)
#REQUIRED >

<!ELEMENT MessageInfo (Recipient+, Sender, DateTime)>

<!ATTLIST MessageInfo

messageID

CDATA

#IMPLIED

messageURI

CDATA

#IMPLIED

contentType

CDATA

#IMPLIED

contentSize

CDATA

#IMPLIED

validity

CDATA

#IMPLIED>

<!ELEMENT Recipient ((User | ScreenName | GroupID | ContactListID), RecipientDisplay?)>

<!ELEMENT Sender ((User | GroupID), SenderDisplay?)>

<!ELEMENT RecipientDisplay (User | ScreenName | GroupID | Name)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT SenderDisplay (UserID | ScreenName | GroupID | Name)>

<!ELEMENT ContentData (#PCDATA)>

<!ATTLIST ContentData

contentType
CDATA

#REQUIRED

encoding

CDATA

"base64">

<!-- SendMessageResponse -->

<!ELEMENT SendMessageResponse (Status)>

<!ATTLIST SendMessageResponse

messageID

CDATA

#REQUIRED>

<!-- ForwardMessageRequest -->

<!ELEMENT ForwardMessageRequest (MetaInfo, Recipient+)>

<!ATTLIST ForwardMessageRequest

messageID

CDATA

#IMPLIED

messageURI

CDATA

#IMPLIED>

<!-- NewMessage -->

<!ELEMENT NewMessage ((MetaInfo | Status), RecipientIDs, MessageInfo, ContentData)>

<!ATTLIST NewMessage

messageID

CDATA

#IMPLIED

messageURI

CDATA

#IMPLIED>

<!ELEMENT RecipientIDs (UserID+)>

<!-- MessageDelivered -->

<!ELEMENT MessageDelivered (MetaInfo | Status)>

<!ATTLIST MessageDelivered

messageID

CDATA

#REQUIRED>

<!-- MessageNotification -->

<!ELEMENT MessageNotification (MetaInfo, MessageInfo, RecipientIDs)>

<!ATTLIST MessageNotification

messageID

CDATA

#REQUIRED>

<!-- GetMessageRequest -->

<!ELEMENT GetMessageRequest (MetaInfo)>

<!ATTLIST GetMessageRequest

messageID

CDATA

#REQUIRED>

<!-- SetMessageDeliveryMethod -->

<!ELEMENT SetMessageDeliveryMethod (MetaInfo)>

<!ATTLIST SetMessageDeliveryMethod

messageID

 CDATA

#REQUIRED

deliveryMethod
 (NotifyGet | Push)
#REQUIRED

acceptedContentLength
 CDATA

#REQUIRED

groupID

 CDATA

#IMPLIED>

<!-- GetMessageListRequest -->

<!ELEMENT GetMessageListRequest (MetaInfo)>

<!ATTLIST GetMessageListRequest

groupID

 CDATA

#IMPLIED

messageCount
 CDATA

#IMPLIED>

<!-- GetMessageListResponse -->

<!ELEMENT GetMessageListResponse (Status, MessageInfo)>

<!-- RejectMessageRequest -->

<!ELEMENT RejectMessageRequest (MetaInfo, MessageSpec*)>

<!ELEMENT MessageSpec EMPTY >

<!ATTLIST MessageSpec

messageID

CDATA

#IMPLIED

messageURI

CDATA

#IMPLIED>

<!-- DeliveryStatusReport -->

<!ELEMENT DeliveryStatusReport (MetaInfo, DeliveryResult, DeliveryTime?, MessageInfo)>

<!ELEMENT DeliveryResult (Status)>

<!ELEMENT DeliveryTime (#PCDATA)>

<!-- BlockUserRequest -->

<!ELEMENT BlockUserRequest (MetaInfo, BlockList?, UnblockList?, GrantList?, UngrantList?)>

<!ATTLIST BlockUserRequest

blockListStatus
(Active | Inactive)
#REQUIRED

grantListStatus
(Active | Inactive)
#REQUIRED>

<!ELEMENT BlockList (UserID*, ScreenName*, GroupID*)>

<!ELEMENT UnblockList (UserID*, ScreenName*, GroupID*)>

<!ELEMENT GrantList (UserID*, ScreenName*, GroupID*)>

<!ELEMENT UngrantList (UserID*, ScreenName*, GroupID*)>

<!-- GetBlockedRequest -->

<!ELEMENT GetBlockedRequest (MetaInfo)>

<!-- GetBlockedResponse -->

<!ELEMENT GetBlockedResponse (Status, BlockList, GrantList)>

<!ATTLIST GetBlockedResponse

blockListStatus
(Active | Inactive)
#REQUIRED

grantListStatus
(Active | Inactive)

#REQUIRED>

<!-- ***************************
 -->

<!—- GROUP

 -->

<!-- ***************************
 -->

<!-- CreateGroupRequest -->

<!ELEMENT CreateGroupRequest (MetaInfo, GroupProperties, ScreenName?)>

<!ATTLIST CreateGroupRequest

groupID

CDATA

#REQUIRED

joinGroup
(Yes | No)
#REQUIRED

subscribeNotif
(Yes | No)
#REQUIRED>

<!ELEMENT GroupProperties (Property+, WelcomeNote?)>

<!ELEMENT WelcomeNote (ContentData)>

<!-- DeleteGroupRequest -->

<!ELEMENT DeleteGroupRequest (MetaInfo)>

<!ATTLIST DeleteGroupRequest

groupID

CDATA

#REQUIRED>

<!-- JoinGroupRequest -->

<!ELEMENT JoinGroupRequest (MetaInfo, ScreenName?, OwnProperties?)>

<!ATTLIST JoinGroupRequest

groupID

CDATA

#REQUIRED

joinedListRequest
(Yes | No)
#REQUIRED

subscribeNotif
(Yes | No)

#REQUIRED>

<!-- JoinGroupResponse -->

<!ELEMENT JoinGroupResponse (Status, JoinedList, WelcomeNote?)>

<!ELEMENT JoinedList (Name*)>

<!-- LeaveGroupRequest -->

<!ELEMENT LeaveGroupRequest (MetaInfo)>

<!ATTLIST LeaveGroupRequest

groupID

CDATA

#REQUIRED>

<!-- LeaveGroupIndication -->

<!ELEMENT LeaveGroupIndication ((MetaInfo | Status), ReasonText)>

<!ELEMENT ReasonText (#PCDATA)>

<!ATTLIST LeaveGroupIndication

groupID

CDATA

#IMPLIED>

<!-- GetJoinedMemberRequest -->

<!ELEMENT GetJoinedMemberRequest (MetaInfo)>

<!ATTLIST GetJoinedMemberRequest

groupID

CDATA

#REQUIRED>

<!-- GetJoinedMemberResponse -->

<!ELEMENT GetJoinedMemberResponse (Status, JoinedUser*)>

<!ELEMENT JoinedUser (#PCDATA)>

<!ATTLIST JoinedUser

userID

CDATA

#REQUIRED>

<!-- GetGroupMemberRequest -->

<!ELEMENT GetGroupMemberRequest (MetaInfo)>

<!ATTLIST GetGroupMemberRequest

groupID

CDATA

#REQUIRED>

<!-- GetGroupMemberResponse -->

<!ELEMENT GetGroupMemberResponse (Status, Admins?, Moderators?, OrdinaryUsers?)>

<!ELEMENT Admins (UserID*)>

<!ELEMENT Moderators (UserID*)>

<!ELEMENT OrdinaryUsers (UserID*)>

<!-- AddGroupMemberRequest -->

<!ELEMENT AddGroupMemberRequest (MetaInfo, UserID*)>

<!ATTLIST AddGroupMemberRequest

groupID

CDATA

#REQUIRED>

<!-- RemoveGroupMemberRequest -->

<!ELEMENT RemoveGroupMemberRequest (MetaInfo, UserID+)>

<!ATTLIST RemoveGroupMemberRequest

groupID

CDATA

#REQUIRED>

<!-- MemberAccessRequest -->

<!ELEMENT MemberAccessRequest (MetaInfo, Admins?, Moderators?, OrdinaryUsers?)>

<!ATTLIST MemberAccessRequest

groupID

CDATA

#REQUIRED>

<!-- GetGroupPropsRequest -->

<!ELEMENT GetGroupPropsRequest (MetaInfo)>

<!ATTLIST GetGroupPropsRequest

groupID

CDATA

#REQUIRED>

<!-- GetGroupPropsResponse -->

<!ELEMENT GetGroupPropsResponse (Status, GroupProperties, OwnProperties)>

<!ELEMENT OwnProperties (Property+)>

<!-- SetGroupPropsRequest -->

<!ELEMENT SetGroupPropsRequest (MetaInfo, GroupProperties?, OwnProperties?)>

<!ATTLIST SetGroupPropsRequest

groupID

CDATA

#REQUIRED>

<!-- RejectListRequest -->

<!ELEMENT RejectListRequest (MetaInfo, AddUsers, RemoveUsers)>

<!ATTLIST RejectListRequest

groupID

CDATA

#REQUIRED>

<!ELEMENT AddUsers (UserID*)>

<!ELEMENT RemoveUsers (UserID*)>

<!-- RejectListResponse -->

<!ELEMENT RejectListResponse (Status, RejectList)>

<!ELEMENT RejectList (UserID*)>

<!-- SubscribeGroupChangeRequest -->

<!ELEMENT SubscribeGroupChangeRequest (MetaInfo)>

<!ATTLIST SubscribeGroupChangeRequest

groupID

CDATA

#REQUIRED>

<!-- UnsubscribeGroupChangeRequest -->

<!ELEMENT UnsubscribeGroupChangeRequest (MetaInfo)>

<!ATTLIST UnsubscribeGroupChangeRequest

groupID

CDATA

#REQUIRED>

<!-- GetGroupSubStatusRequest -->

<!ELEMENT GetGroupSubStatusRequest (MetaInfo)>

<!ATTLIST GetGroupSubStatusRequest

groupID

CDATA

#REQUIRED>

<!-- GetGroupSubStatusResponse -->

<!ELEMENT GetGroupSubStatusResponse (Status)>

<!ATTLIST GetGroupSubStatusResponse

groupID

CDATA

#REQUIRED

subscribed

(Yes | No)

#REQUIRED>

<!-- GroupChangeNotice -->

<!ELEMENT GroupChangeNotice (MetaInfo, Subscribers, Joined?, Left?, GroupProperties?, OwnProperties?)>

<!ATTLIST GroupChangeNotice

groupID

CDATA

#REQUIRED>

<!ELEMENT Joined (Name*)>

<!ELEMENT Left (Name*)>

6. Data Type Assignments for SSP XML ELEMENTS

This section provides the mapping of the informational elements in SSP primitives to XML element constructions or attributes. If the mapped value is an element construction, then the specified element construction inside the transaction element represents the SSP information element. If the mapped value is an attribute, then the information element is represented by the specified attribute of the container element (the transaction element).

		Information Element

		XML Element

		XML Attribute

		Accepted-Content-Length

		

		acceptedContentLength

		Add-User-ID-List

		AddUsers

		

		Agreed-Service-List

		ServiceTree

		

		Agreed-Sub-Protocol

		

		subProtocol

		Agreed-Time-To-Live

		

		timeToLive

		Attribute-Association-List

		AttributeAssociation+

		

		Authorization-Result

		SubscriberResult+

		

		Authorizing-User-ID

		Authorizer

		

		Auto-Subscribe

		AutoSubscribe

		

		Block-List-Status

		

		blockListStatus

		Block-Entity-List

		BlockList

		

		Canceled-Content-ID-List

		ContentIDList

		

		Canceled-User-ID-List

		UserID+

		

		Canceled-User

		Canceled

		

		Canceling-User

		Canceling

		

		Cancel-Reason

		CancelNote

		

		Client-ID

		

		clientID

		Client-Originated

		

		clientOriginated

		Completed

		

		completed

		Contact-List-ID

		

		contactListID

		Contact-List-ID-List

		ContactListID+

		

		Contact-List-ID-List of GetPresenceRequest

		VerContactListID+

		

		Contact-List-Props

		ContactListProperties

		

		Contact-List-Version

		Version

		

		Content

		ContentData

		

		Deafult-Association-List

		DefaultAttributeList

		

		Default-C-List-ID

		

		defaultContactListID

		Default-List

		

		defaultList

		Delivery-Result

		DeliveryReport

		

		Delivery-Report-Request

		

		deliveryReport

		Delivery-Time

		DeliveryTime

		

		Desired-Service-List

		ServiceTree

		

		Desired-Sub-Protocol

		

		subProtocol

		Export-List

		

		exportList

		Grant-List-Status

		

		grantListStatus

		Grant-Entity-List

		GrantList

		

		Group-ID

		

		groupID

		Group-Prop-List

		GroupProperties

		

		Invite-Acceptance

		

		acceptance

		Invite-Content-ID-List

		ContentIDList

		

		Invite-Group-ID

		GroupID

		

		Invite-ID

		

		inviteID

		Invite-Presence-Attribute-List

		AttributeList

		

		Invite-Reason

		InviteNote

		

		Invite-Response

		ResponseNote

		

		Invite-Type

		

		inviteType

		Invited-User

		Invited

		

		Inviting-User

		Inviting

		

		Join-Group

		

		joinGroup

		Joined-Request

		

		joinedListRequest

		Joined-User-Screen-Name-List

		JoinedUser+

		

		Joined-User-Screen-Name-List of GroupChangeNotice

		Joined

		

		Left-User-Screen-Name-List

		Left

		

		List-of-Hosts

		HostsList

		

		List-of-Subscribing-User-ID-and-Presence-Attribute-List

		AuthRequestTuple/Subscribers and AuthRequestTuple/AttributeList

		

		Message-Count

		

		messageCount

		Message-Delivery-Method

		

		deliveryMethod

		Message-ID

		

		messageID

		Message-ID-List

		

		messageID of MessageSpec+

		Message-Info

		MessageInfo

		

		Message-URI

		

		messageURI

		Message-URI-List

		

		messageID of MessageSpec+

		Meta-Information

		MetaInfo

		

		Own-Prop-List

		OwnProperties

		

		Password-Digest

		PasswordDigest

		

		Presence-Attribute-List

		AttributeList

		

		Presence-Value-List

		PresenceValue+

		

		Presence-Value-Version

		Version

		

		Presence-Value-Version-List of GetPresenceRequest

		Version of (VerUserID and VerContactListID

		

		Presence-Value-Version-List

		Version of (PresenceValue+)

		

		Protocol

		

		protocol

		Protocol-Version

		

		protocolVersion

		Reason-Text

		ReasonText

		

		Recipients

		Recipient+

		

		Recipient-UserID-List

		RecipientIDs

		

		Redirect-HostID

		

		redirectHostId

		Reject-User-ID-List

		RejectList

		

		Remove-User-ID-List

		RemoveUsers

		

		Responding-User

		Responding

		

		Screen-Name

		ScreenName

		

		Search-Criteria

		SearchCriteria

		

		Search-Findings

		

		searchFindings

		Search-ID

		

		searchID

		Search-Index

		

		searchIndex

		Search-Limit

		

		searchLimit

		Search-Pair-List

		SearchTerm+

		

		Search-Results

		SearchResult

		

		Search-Type

		

		searchType

		SecretToken

		SecretToken

		

		Service-ID

		

		serviceID

		Service-List

		ServiceTree

		

		Session-ID

		

		sessionID

		Status code

		

		code

		Status description

		

		statusDescription

		Status-Info

		Status

		

		Subscribe-Notif

		

		subscribeNotif

		Subscribing-User-ID-List

		Subscribers

		

		Subscribing-User-ID-List in AuthorizationResponse

		SubscriberResult+

		

		Subscription-Status

		

		subscribed

		Time-To-Live

		

		timeToLive

		Transaction-ID

		

		transactionID

		Unblock-Entity-List

		UnblockList

		

		Ungrant-Entity-List

		UngrantList

		

		Updated-User-Profile-List

		UserProfileValue+

		

		User-ID

		

		userID

		User-ID-List

		UserID+

		

		User-ID-List of GetPresenceRequest

		VerUserID+

		

		User-ID-List of (GetGroupMemberResponse or MemberAccessRequest)

		OrdinaryUsers

		

		User-ID-List-Adm

		Admins

		

		User-ID-List-Mod

		Moderators

		

		User-List

		ContactUser+

		

		User-List in RemoveListMemberRequest

		ContactUserSpec+

		

		User-Profile-List

		UserProfileValue+

		

		Validity

		

		validity

		Welcome-Text

		WelcomeNote

		

		WV-ID-List

		WVIDList

		

7. Data Types for XML Elements and attributes

7.1 Redefined and new data types

7.1.1 Boolean

A boolean value indicates either true or false.

It is encoded to XML as an enumerated type with possible values of:

· "Yes"
: means the specified value is true.

· "No"
: means the specified value is false.

These values are case sensitive. Other values are invalid.

7.1.2 MSISDN

MSISDN is a string containing a valid MSISDN number.

7.1.3 URL

The value of the type is a string of a Uniform Resource Locator. See rfc2396.

7.2 Data types for XML Attributes

The XML attributes of the elements used are defined in this section. Description of the basic types can be found in [SSP].

		XML Attribute

		acceptance

		Data type

		Boolean

		Description

		Specifies if the invited party accepted the invitation.

		XML Attribute

		acceptedContentLength

		Data type

		Integer

		Description

		Maximum size of message that can be pushed to the user. See [SSP].

		XML Attribute

		authID

		Data type

		String

		Description

		Gives an identifier for an authentication request tuple. It is specified by the requestor server. Unique for a session. Case sensitive.

		XML Attribute

		blockListStatus

		Data type

		Enum

		Range

		"Active" | "Inactive"

		Description

		Indicates if the block list is in use (“Active”) or not (“Inactive”). See [SSP].

		XML Attribute

		clientOriginated

		Data type

		Boolean

		Description

		Attribute of the Transaction method. It specifies whether the transaction is originated from a client (Yes) or from a Wireless Village server (No).

		XML Attribute

		code

		Data type

		Integer

		Description

		Defined only in the Status element. It specifies the status code. Possible status codes are defined in the [SSP].

		XML Attribute

		completed

		Data type

		Boolean

		Description

		Indicates the completion of the search on the server. 'No' if still searching and new results may come, 'Yes' if server has finished searching, and new results will not come anymore.

		XML Attribute

		contactListID

		Data type

		String

		Description

		Corresponds to the Contact-List-ID defined in [SSP]. Case insensitive.

		XML Attribute

		contentType

		Data type

		String

		Description

		Specifies the content type of an instant message. Must be in MIME type format.

		XML Attribute

		defaultList

		Data type

		Boolean

		Description

		Specifies if the container attribute list operation element is for the default list of the user ("Yes") or for an ordinary list ("No").

		XML Attribute

		deliveryMethod

		Data type

		Enum

		Range

		"NotifyGet" | "Push"

		Description

		Specifies the method used for message delivery. See [SSP] and [CSP].

		XML Attribute

		deliveryReport

		Data type

		Boolean

		Description

		Specifies if a delivery report is requested for the sended instant message.

		XML Attribute

		encoding

		Data type

		String

		Description

		Defines the used encoding method for the content of the element. Encoding scheme is base64 by default (i.e. when this attribute is not specified).

		XML Attribute

		exportList

		Data type

		Boolean

		Description

		See [SSP].

		XML Attribute

		format

		Data type

		String

		Description

		Defines the format of the container element. In this version this value is only specified for Version, for what the default format is DateTime. This format means a value in DateTime format specified in [SSP].

		XML Attribute

		granted

		Data type

		Boolean

		Description

		Specifies for a user if his authentication request was allowed ("Yes") or not ("No").

		XML Attribute

		grantListStatus

		Data type

		Enum

		Range

		"Active" | "Inactive"

		Description

		Indicates if the grant list is in use (“Active”) or not (“Inactive”). See [SSP].

		XML Attribute

		groupID

		Data type

		String

		Description

		Corresponds to the Group-ID defined in [SSP]. Case insensitive.

		XML Attribute

		inviteID

		Data type

		String

		Description

		See in [SSP]. Case sensitive.

		XML Attribute

		inviteType

		Data type

		Enum

		Range

		"GR" | "IM" | "PR" | "SC" | “GM”

		Description

		Defines the type of the invitation. In case of value "GR", the invitation is for a group, in case of value "IM", the invitation is for instant messaging, in case of "PR", the invitation is for a presence attribute, in case of "SC" the invitation is for a shared content. In case of “GM” the invitation is for group membership.

		XML Attribute

		joinGroup

		Data type

		Boolean

		Description

		Indicates that the newly created group is joined (or not) at creation time.

		XML Attribute

		joinedListRequest

		Data type

		Boolean

		Description

		See in [SSP].

		XML Attribute

		messageCount

		Data type

		Integer

		Description

		The maximum number of message-info structures to be returned.

		XML Attribute

		messageID

		Data type

		String

		Description

		Defines a message identifier that uniquely identifies the message. The generator of the message must guarantee that the message identifier is globally unique. Must be in format msg-id of rfc2822. For the right-hand side of the msg-id, the domain name of the server should be used. Case sensitive.

		XML Attribute

		messageURI

		Data type

		URI

		Description

		Specifies a message by a Uniform Resource Locator.

		XML Attribute

		mode

		Data type

		Integer

		Range

		"Request" | "Response"

		Description

		Attribute of the Transaction method. It specifies whether the transaction is a request of a response without parsing of the content of the transaction.

		XML Attribute

		MSISDN

		Data type

		MSISDN

		Description

		Specifies a valid phone number, by which for example a client can be identified.

		XML Attribute

		nick

		Data type

		String

		Description

		Defines a nickname for a user on the contact list.

		XML Attribute

		prop

		Data type

		String

		Description

		Defines a property name.

		XML Attribute

		protocol

		Data type

		String

		Range

		"WV-SSP"

		Description

		Defines the procotol used. Must be "WV-SSP".

		XML Attribute

		protocolVersion

		Data type

		String

		Range

		"1.3"

		Description

		Defines the version of the procotol used. Must be "1.3".

		XML Attribute

		redirectHostId

		Data type

		String

		Description

		Redirect host DNS name

		XML Attribute

		searchFindings

		Data type

		Integer

		Description

		See in [SSP].

		XML Attribute

		searchID

		Data type

		String

		Description

		See in [SSP]. Case sensitive.

		XML Attribute

		searchIndex

		Data type

		Integer

		Description

		See in [SSP].

		XML Attribute

		searchLimit

		Data type

		Integer

		Description

		See in [SSP].

		XML Attribute

		searchType

		Data type

		Enum

		Range

		"G" | "U"

		Description

		Defines the type of the search. In case of value "G", the search is for a group, in case of value "U", the search is for users.

		XML Attribute

		serviceID

		Data type

		String

		Format

		Defined in [SSP].

		Description

		See [SSP]. Case sensitive.

		XML Attribute

		sessionID

		Data type

		String

		Description

		Specifies the used session identifier. Case sensitive.

		XML Attribute

		subscribed

		Data type

		Boolean

		Description

		Used in a subscription status response. Specifies if the asked entity is subscribed ("Yes") to the group or not ("No").

		XML Attribute

		subscribeNotif

		Data type

		Boolean

		Description

		A flag indicating that the user wants to activate the group change notifications while joining the group.

		XML Attribute

		subProtocol

		Data type

		String

		Description

		During session negotiation it specifies the subprotocol name and version for proprietary extensions.

		XML Attribute

		timeToLive

		Data type

		Integer

		Description

		Defines the time in second how long the containing action is valid.

		XML Attribute

		url

		Data type

		URL

		Description

		Identifies a content or a client by a Uniform Resource Locator.

		XML Attribute

		userID

		Data type

		String

		Description

		Corresponds to the User-ID defined in [SSP]. Case insensitive.

		XML Attribute

		validity

		Data type

		Integer

		Description

		Specifies the time in seconds how long the specified entity is regarded valid.

		XML Attribute

		value

		Data type

		String

		Description

		Specifies the value for the attribute and the operand of the search to be executed.

		XML Attribute

		transactionID

		Data type

		String

		Description

		Identifies a SSP transaction. The initiating party assigns this ID. Case sensitive.

		XML Attribute

		xmlns

		Data type

		URL

		Description

		Specifies the namespace the message is using.

		XML Attribute

		Data Types for XML Elements and attributes

		Data type

		Boolean

		Description

		A flag indicating that the user wants to activate the group change notifications while joining the group.

7.3 Data types for XML Terminal Elements

This section will define the SSP specific or redefined XML elements. Description of the basic types and description of terminal elements common with CSP can be found in [CSP DataType]. If an XML terminal element definition is found in both this document and in [CSP DataType] then the given XML terminal elements is redefined by this document and the definition below must be used. Empty terminal elements representing protocol primitives are not listed here.

For description of the XML terminal elements inside the ServiceTree element see [SSP] document.

		XML ELEMENT

		Authorizer

		Data type

		EMPTY

		Format

		

		Description

		Defines an authorizer user using userid.

		Range

		

Table 1. Authorizer

		XML ELEMENT

		AutoSubscribe

		Data type

		Boolean

		Format

		Defined in section 7.1.1

		Description

		‘Yes’ means that the automatic subscription to the presence attributes is enabled when a new user is added to the contact list, and the automatic unsubscription to the presence attributes is also enabled when the contact list is deleted or when a user is removed from the contact list. ‘No’ means that the automatic subscription / unsubscription is disabled.

		Range

		Defined in section 7.1.1

Table 2. AutoSubscribe

		XML ELEMENT

		CancelNote

		Data type

		String

		Format

		

		Description

		Short desciptive text for canceling of invitation.

		Range

		

Table 3. CancelNote

		XML ELEMENT

		ClientID

		Data type

		EMPTY

		Format

		

		Description

		Container element for possible client identification methods (url, msisdn etc..)

		Range

		

Table 4. ClientID

		XML ELEMENT

		ContactListID

		Data type

		EMPTY

		Format

		

		Description

		Container element for contactListID attribute.

		Range

		

Table 5. ContactListID

		XML ELEMENT

		ContactUser

		Data type

		EMPTY

		Format

		

		Description

		Defines a user in a contact list by user id and nickname.

		Range

		

Table 6. ContactUser

		XML ELEMENT

		ContactUserSpec

		Data type

		EMPTY

		Format

		

		Description

		Uniquely identifies a user in the contact list either by user id or nickname.

		Range

		

Table 7. ContactUserSpec

		XML PCDATA

		ContentID

		Data type

		EMPTY

		Format

		Defined in [CSP].

		Description

		Identifies a shared content by url attribute.

		Range

		

Table 8. ContentID

		XML PCDATA

		DateTime

		Data type

		Date and Time

		Format

		Specified in the forat attribute.

		Description

		Date and time.

		Range

		

Table 9. DateTime

		XML ELEMENT

		DeliveryTime

		Data type

		DateTime

		Format

		Specified in the format attribute

		Description

		Date and time of message delivery.

		Range

		

Table 10. DeliveryTime

		XML ELEMENT

		GroupID

		Data type

		EMPTY

		Format

		

		Description

		Container element for groupID attribute.

		Range

		

Table 11. GroupID

		XML ELEMENT

		JoinedUser

		Data type

		String

		Format

		

		Description

		Specifies a joined user of a group with screen name and UserID. The element contains the actual screen name of the user in the specified group, the userID attribute contains the UserID.

		Range

		

Table 12. JoinedUser

		XML ELEMENT

		MessageSpec

		Data type

		EMPTY

		Format

		

		Description

		Uniquely identifies a message by message id or url.

		Range

		

Table 13. MessageSpec

		XML ELEMENT

		PasswordDigest

		Data type

		Binary

		Format

		Defined in encoding attribute. BASE64 by default.

		Description

		The password digest used in login phase. See [SSP]

		Range

		

Table 14. PasswordDigest

		XML ELEMENT

		PresenceSubList

		Data type

		String

		Format

		As defined in the referred namespace.

		Description

		Presence attribute list with or without values. This element is used to give reference to the namespace (DTD) to be used under this specific tag.

		Range

		The namespace attribute points to a valid Wireless Village presence namespace.

Table 15. PresenceSublist

		XML ELEMENT

		Property

		Data type

		String

		Format

		

		Description

		Text containing a property information identified by the prop attribute and its value is contained in the element value.

		Range

		

Table 16. Property

		XML ELEMENT

		ReasonText

		Data type

		String

		Format

		

		Description

		Text describing a reason of an operation.

		Range

		

Table 17. ReasonText

		XML ELEMENT

		SearchTerm

		Data type

		EMPTY

		Format

		

		Description

		Container element for search terms. Contains an attribute type (attr) and a value which the search operation must be carried out.

		Range

		

Table 18. SearchTerm

		XML ELEMENT

		ScreenName

		Data type

		String

		Format

		

		Description

		Defines the screen name of a user in a group. Group is specified in the groupID attribute. Element content is case insensitive.

		Range

		

Table 19. ScreenName

		XML ELEMENT

		SecretToken

		Data type

		Binary

		Format

		Defined in encoding attribute. By default BASE64 encoded

		Description

		Secret token used in login phase.

		Range

		

Table 20. SecretToken

		XML ELEMENT

		StatusDescription

		Data type

		String

		Format

		

		Description

		Text containing a status description in reponse of a request.

		Range

		

Table 21. StatusDescription

		XML ELEMENT

		UPInfo

		Data type

		String

		Format

		

		Description

		Text containing a user profile information indetified by the attr attribute and its value is contained in the element value.

		Range

		

Table 22. UPInfo

		XML ELEMENT

		UserID

		Data type

		EMPTY

		Format

		

		Description

		Container element for userID attribute.

		Range

		

Table 23. UserID

		XML ELEMENT

		Version

		Data type

		EMPTY

		Format

		

		Description

		Specifies a version in the element vale. Format specified in the format attribute. By default format is DateTime defined in [CSP].

		Range

		

Table 24. Version

7.4 Description of composed XML Elements

In this section will provide the descriptions of the composed XML elements that are neither assigned to an informational element nor are terminal elements.

		XML Element

		AuthRequestTuple

		Description

		This element contains the Authorizer (Authorizing-User-ID informational element), the Subscribers (List-of-Subscribing-User-ID informational element) and the AttributeList (Presence-Attribute-List informational element). It means who (Subscribers) want what information (AttributeList) about which user (Authorizer).

One AuthorizationRequest primitive can contain more AuthRequestTuples. Different AuthRequestTuples represent different authorization requests.

		XML Element

		AuthResponseTuple

		Description

		This element contains the Authorizer (Authorizing-User-ID informational element) and the SubsciberResults (Subscribing-User-ID-List and Authorization-Result informational elements together). It means who responses to the request (Authorizer) and who he allows or not (SubscriberResult).

One AuthorizationResponse primitive can contain more AuthRequestTuples. Different AuthResponseTuples represent different authorization responses.

		XML Element

		PresenceValue

		Description

		Contains a list of presence attributes along with its values (Presence-Value-List informational element) and an optional version information (Presence-Value-Version informational element)

		XML Element

		Recipient

		Description

		Defines the recipient of an instant message. The instant message must be delivered to the address defined in this field. Can contain an optinal RecipientDisplay element descibing what destination should be displayed to the recipient user (e.g. the group name where the message was originally sent).

		XML Element

		Requestor

		Description

		Represents the requestor of a request primitive.

		XML Element

		Sender

		Description

		Describes the sender of an instant message. Can contain the optional SenderDisplay element describing what source should be displayed to the recipient user.

		XML Element

		Session

		Description

		Session element represents transactions sended in the same sessions. Its sessionID attribute dentifies the session between the requestor and the provider server.

		XML Element

		SetupTransaction

		Description

		Contains a transaction outside of n existing session. Possible child elements are the transactions for session setup.

		XML Element

		SubscriberResult

		Description

		Defines the result of one authorization request. Contains the UserID who is allowed/forbidden to access the defined attribute and the granted attribute that defines if the access was allowed or not.

		XML Element

		Transaction

		Description

		Contains an SSP transaction primitive.

		XML Element

		User

		Description

		Represents a specific user using a specific terminal.

		XML Element

		VerUserID

		Description

		Represents a versioned user identifier (User-ID-List informational element). See description of Presence-Value-Version-List in [SSP].

		XML Element

		VerContactListID

		Description

		Represents a versioned contact list identifier (Contact-List-ID-List informational element). See description of Presence-Value-Version-List in [SSP].

		XML Element

		WV-SSP-Message

		Description

		Represents the SSP protocol message

8. XML Binding Examples

Examples of selected SSP transactions are presented in this section.

8.1 Login Transaction

<!-- Message from ServerA to ServerB -->

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

 <SetupTransaction mode="Request" transactionID="0">

 <SendSecretToken serviceID="wv:@operator.hu" protocol="WV-SSP" procotolVersion="1.3">

 <SecretToken encoding="base64">

 R5R5FHJF47RY838289290050W0R989E0ER0R9E0392848GFJF8484JF84839294U745723934U7

 </SecretToken>

 </SendSecretToken>

 </SetupTransaction>

</WV-SSP-Message>

<!-- Message from ServerB to ServerA -->

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

 <SetupTransaction mode="Response" transactionID="0">

 <LoginRequest serviceID="wv:@operator.hu" timeToLive="1314000">

 <PasswordDigest encoding="base64">FJS823HFUGF73HFBNE73BCJED34E60F5504W560001929394

E52</PasswordDigest>

 </LoginRequest>

 </SetupTransaction>

</WV-SSP-Message>

<!-- Message from ServerA to ServerB -->

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

 <SetupTransaction mode="Response" transactionID="0">

 <LoginResponse sessionID="47563@someone.za" timeToLive="1314000">

 <Status code="200"/>

 </LoginResponse>

 </SetupTransaction>

</WV-SSP-Message>

8.2 Status primitive with details

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@pgsm.hu">

 <Transaction mode="Response" transactionID="420042">

 <Status code="400">

 <StatusDescription>Bad request</StatusDescription>

 </Status>

 </Transaction>

 <Transaction mode="Response" transactionID="420043">

 <Status code="200"/>

 </Transaction>

</Session>

</WV-SSP-Message>

8.3 Logout Transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="5006">

 <LogoutRequest/>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="5006">

 <Disconnect>

 <Status code="200"/>

 </Disconnect>

 </Transaction>

</Session>

</WV-SSP-Message>

8.4 KeepAlive transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="5003">

 <KeepAliveRequest timeToLive="3600"/>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="5003">

 <KeepAliveResponse timeToLive="3600">

 <Status code="200"/>

 </KeepAliveResponse>

 </Transaction>

</Session>

</WV-SSP-Message>

8.5 GetAvailableService transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="5002">

 <GetServiceRequest/>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="5002">

 <ServiceList>

 <Status code="200"/>

 <ServiceTree>

<SRV_SAP/>

<SRV_Common/>

<SRV_Presence/>

<SRV_IM/>

<SRV_Group/>

<ServiceTree>

 </ServiceList>

</Transaction>

</Session>

</WV-SSP-Message>

8.6 ServiceIndication transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="5002">

 <ServiceList>

 <Status code="200"/>

<ServiceTree>

<SRV_SAP/>

<SRV_Common/>

<SRV_Presence/>

<SRV_IM/>

<SRV_Group/>

<ServiceTree>

</ServiceList>

</Transaction>

</Session>

</WV-SSP-Message>

8.7 SetServiceAgreement transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="113">

 <ServiceNegotiation timeToLive="3600">

<ServiceTree>

<SRV_SAP/>

<SRV_Common/>

<SRV_Presence/>

<SRV_IM/>

<SRV_Group/>

<ServiceTree>

 </ServiceNegotiation>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="113">

 <ServiceAgreement timeToLive="3600">

 <Status code="200"/>

<ServiceTree>

<SRV_SAP/>

<SRV_Common/>

<SRV_Presence/>

<SRV_IM/>

<SRV_Group/>

<ServiceTree>

 </ServiceAgreement>

</Transaction>

</Session>

</WV-SSP-Message>

8.8 GetUserProfile transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="113">

 <GetUserProfileRequest userID="wv:doboz.bela@operator.za">

 <MetaInfo clientOriginated="Yes">

 <Requestor>

 <User userID="wv:quador@operator.hu">

 <ClientID url="http://www.wireless-village.org/applications/MudServer" />

 </User>

 </Requestor>

 </MetaInfo>

 </GetUserProfileRequest>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="113">

 <UserProfile>

 <Status code="200"/>

 <UserProfileValue userID="wv:doboz.bela@operator.za">

 <UPInfo attr="Services.Presence.Status">ON</UPInfo>

 <UPInfo attr="Services.Common.VHSE">pgsm.hu</UPInfo>

 </UserProfileValue>

 </UserProfile>

 </Transaction>

</Session>

</WV-SSP-Message>

8.9 UpdateUserProfile transaction

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@someone.za">

 <Transaction mode="Request" transactionID="113">

 <UpdateUserProfileRequest userID="wv:doboz.bela@operator.za">

 <MetaInfo clientOriginated="Yes">

 <Requestor>

 <User userID="wv:quador@operator.hu">

 <ClientID url="http://www.wireless-village.org/applications/MudServer" />

 </User>

 </Requestor>

 </MetaInfo>

 <UserProfileValue>

 <UPInfo attr="Services.Presence.Status">ON</UPInfo>

 <UPInfo attr="Services.Common.VHSE">pgsm.hu</UPInfo>

 </UserProfileValue>

 </GetUserProfileRequest>

 </Transaction>

</Session>

</WV-SSP-Message>

<WV-SSP-Message xmlns="http://www.openmobilealliance.org/DTD/WV-SSP1.3">

<Session sessionID="123456@operator.hu">

 <Transaction mode="Response" transactionID="113">

 <Status code="200"/>

 </Transaction>

</Session>

</WV-SSP-Message>

9. Static Conformance Requirements

The notation used in this appendix is specified in [IOPPROC].

		Item

		Function

		Reference

		Status

		Requirement

		

		

		

		

		

Appendix A. Change History
(Informative)

A.1 Approved Version History

		Reference

		Date

		Description

		n/a

		n/a

		No prior version –or- No previous version within OMA

		OMA-WV-SSP_Syntax-V1_1-20021001-A

		01 Oct 2002

		Version 1.1

		OMA-IMPS-WV-SSP_Syntax-V1_2-xxxxxxxx-A

		TBD

		Version 1.2

A.2 Draft/Candidate Version 1.3 History

		Document Identifier

		Date

		Sections

		Description

		Draft Version

OMA-IMPS-WV-SSP_XMLS-V1_3-20050109-D

		9 Jan 2005

		2, 5, 8, 9

		OMA-IMPS-WV-SSP_Syntax-V1_3-20041217-D used as baseline

Name changed from SSP_Syntax to SSP_XMLS

Removed references to SCR documents

Updated references to 1.3 specifications

Updated version reference from 1.2 to 1.3 in examples and DTD

Added SCR table (empty content)

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

_1166804953.doc
OMA-IMPS-WV-SSP-V1_32-2005010920041217-DC
Page 2 V(2)

		[image: image1.jpg]

		

		Server-Server Protocol Semantics

		Draft Version 1.3 – 09 Jan 2005

		Open Mobile Alliance

		OMA-IMPS-WV-SSP-V1_3-20050109-D

		Continues the Technical Activities

Originated in the Wireless Village Initiative

		[image: image2.jpg]

		

		

		

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

111.
Scope

2.
References
12

2.1
Normative References
12

2.2
Informative References
12

3.
Terminology and Conventions
14

3.1
Conventions
14

3.2
Definitions
14

3.3
Abbreviations
14

4.
Introduction
15

5.
Server-Server Protocol
16

5.1
SSP Interoperability Model
16

5.2
SSP Interoperability Rules
18

5.3
SSP Service Agreement and Routing
18

5.4
SSP Interoperability Case Study
18

5.4.1
Case 1 – Two Users are Located in different Home Domains. Each Home Domain has its own SE. Two Home Domains are Connected
19

5.4.2
Case 2 – Two Users are Located in the same Home Domain
19

5.4.3
Case 3 – Domain A and C have Direct SSP Connection while Domain C Provides A with Complementary PSE
20

5.4.4
Case 4 – Two Users are Located in different Home Domains. Each Home Domain has its complementary PSE. Two Home Domains are Connected
20

5.4.5
Special Case Processing
21

5.4.6
Two Users are Located in different Home Domains. Both Home Domains Share the same PSE
21

5.5
SSP Protocol Stack
21

6.
Protocol Introduction
23

6.1
Basics
23

6.1.1
Session
23

6.1.2
Transaction
23

6.1.3
Message
23

6.1.4
Primitive
23

6.2
Session Pair vs. Connections
23

6.3
Addressing
24

6.3.1
General SSP Addressing Schema
24

6.3.2
Address encoding
25

6.3.3
User Addressing and Global-User-ID
25

6.3.4
Contact List Addressing and Contact-List-ID
26

6.3.5
Group Addressing and Group-ID
26

6.3.6
Content Addressing and Content-ID
26

6.3.7
Client Addressing and Client-ID
26

6.3.8
Service Addressing and Service-ID
27

6.3.9
Message and Message-ID
27

6.4
Data Types
27

6.4.1
Char
27

6.4.2
Integer
27

6.4.3
String
28

6.4.4
Boolean
28

6.4.5
Enum
28

6.4.6
DateTime
28

6.4.7
Structure
28

6.5
Infrastructure Elements
28

6.5.1
Host-ID
28

6.5.2
Redirect (Host) Name
28

6.6
Features and Functions
29

6.6.1
Security
29

6.6.2
Connection Management
29

6.6.3
Transaction Management
29

6.6.4
Session Management
29

6.6.5
Service Management
29

6.6.6
User Profile Management
30

6.6.7
Service Relay
30

7.
Security
31

7.1
Trust Models
31

7.2
Access Control
31

7.3
Transport Security
31

7.4
Individual Domain Security
31

8.
TRANSACTION MANAGEMENT
32

8.1
Meta-Information
32

8.2
Status Primitive
32

8.3
Asynchronous Transaction
33

8.4
General Error Handling
33

8.5
Invalid Transaction
33

8.6
Unknown Transaction
33

8.7
General Status Code
34

9.
Session Management
35

9.1
Access Control
35

9.1.1
Session Establishment
35

9.1.2
Session Maintenance
37

9.1.3
Session Termination
37

9.1.4
Session Re-establishment
37

9.2
Primitives
37

9.2.1
The "SendSecretToken" Primitive
37

9.2.2
The “LoginRequest” Primitive
38

9.2.3
The “LoginResponse” Primitive
38

9.2.4
The “LogoutRequest” Primitive
38

9.2.5
The “Disconnect” Primitive
38

9.2.6
The “KeepAliveRequest” Primitive
38

9.2.7
The “KeepAliveResponse” Primitive
40

9.3
Transactions
40

9.3.1
The “Login” Transaction
40

9.3.2
The “Logout” Transaction
41

9.3.3
The “Disconnect” Transaction
42

9.3.4
The “KeepAlive” Transaction
42

9.4
Status Code
43

9.4.1
“Login” Transaction
43

9.4.2
“Logout” / “Disconnect” Transaction
43

10.
Service Management
44

10.1
Service Structure
44

10.2
General
44

10.3
SAP Feature
44

10.4
Common IMPS feature
45

10.5
Presence Feature
46

10.6
IM Feature
46

10.7
Group Feature
47

10.8
Primitives
48

10.8.1
The “GetServiceRequest” Primitive
48

10.8.2
The “ServiceList” Primitive
48

10.8.3
The “ServiceNegotiation” Primitive
48

10.8.4
The “ServiceAgreement” Primitive
48

10.9
Transactions
49

10.9.1
The “GetAvailableService” Transaction
49

10.9.2
The “ServiceIndication” Transaction
49

10.9.3
The “SetServiceAgreement” Transaction
50

10.10
Status Code
50

11.
Interoperability Management – User Profile Management
51

11.1
User Profile
51

11.2
Primitives
52

11.2.1
The “GetUserProfileRequest” Primitive
52

11.2.2
The “UserProfile” Primitive
52

11.2.3
The “UpdateUserProfileRequest” Primitive
53

11.3
Transactions
53

11.3.1
The “GetUserProfile” Transaction
53

11.3.2
The “UpdateUserProfile” Transaction
54

11.4
Status Code
54

12.
Service Relay – Common IMPS Features
55

12.1
Overview
55

12.2
Primitives
55

12.2.1
The “SearchRequest” Primitive
55

12.2.2
The “SearchResponse” Primitive
56

12.2.3
The “StopSearchRequest” Primitive
57

12.2.4
The “InviteRequest” Primitive
57

12.2.5
The “InviteResponse” Primitive
58

12.2.6
The “InviteUserRequest” Primitive
58

12.2.7
The “InviteUserResponse” Primitive
59

12.2.8
The “CancelInviteRequest” Primitive
60

12.2.9
The “CancelInviteUserRequest” Primitive
60

12.2.10
The “VerifyIDRequest” Primitive
61

12.2.11
The “VerifyIDResponse” Primitive
61

12.2.12
The “GetReactiveAuthStatusRequest” Primitive
61

12.2.13
The “GetReactiveAuthStatusResponse” Primitive
62

12.3
Transactions
62

12.3.1
The “GeneralSearch” Transaction
62

12.3.2
The “StopSearch” Transaction
63

12.3.3
The “Invitation” Transaction
63

12.3.4
The “CancelInvitation” Transaction
66

12.3.5
The “VerifyID” Transaction
67

12.3.9
The “GetReactiveAuthStatus” Transaction
67

12.4
Status Code
68

12.4.1
“GeneralSearch” Transaction
68

12.4.2
“StopSearch” Transaction
68

12.4.3
“Invitation” Transaction
68

12.4.4
“CancelInvitation” Transaction
69

12.4.5
VerifyWVID” Transaction
69

13.
Service Relay – Contact List Features
70

13.1
Overview
70

13.2
Primitives
71

13.2.1
The “CreateContactListRequest” Primitive
71

13.2.2
The “DeleteContactListRequest” Primitive
71

13.2.3
The “GetContactListRequest” Primitive
71

13.2.4
The “GetContactListResponse” Primitive
71

13.2.5
The “GetListMemberRequest” Primitive
72

13.2.6
The “AddListMemberRequest” Primitive
72

13.2.7
The “RemoveListMemberRequest” Primitive
72

13.2.8
The “ContactListMemberResponse” Primitive
72

13.2.9
The “GetListPropsRequest” Primitive
73

13.2.10
The “SetListPropsRequest” Primitive
73

13.2.11
The “ContactListPropsResponse” Primitive
73

13.2.12
The “CreateAttrListRequest” Primitive
74

13.2.13
The “DeleteAttrListRequest” Primitive
74

13.2.14
The “GetAttrListRequest” Primitive
74

13.2.15
The “GetAttrListResponse” Primitive
75

13.3
Transactions
75

13.3.1
The “CreateContactList” Transaction
75

13.3.2
The “DeleteContactList” Transaction
76

13.3.3
The “GetContactList” Transaction
76

13.3.4
The “GetListMember” Transaction
76

13.3.5
The “AddListMember” Transaction
77

13.3.6
The “RemoveListMember” Transaction
77

13.3.7
The “GetListProperties” Transaction
78

13.3.8
The “SetListProperties” Transaction
78

13.3.9
The “CreateAttributeList” Transaction
78

13.3.10
The “DeleteAttrList” Transaction
79

13.3.11
The “GetAttrList” Transaction
79

13.4
Status Code
80

13.4.1
Contact List Transactions
80

13.4.2
Attribute List Transactions
80

14.
Service Relay – Presence Features
81

14.1
Overview
81

14.2
Primitives
81

14.2.1
The “SubscribeRequest” Primitive
81

14.2.2
The “AuthorizationRequest” Primitive
81

14.2.3
The “AuthorizationResponse” Primitive
82

14.2.4
The “UnsubscribeRequest” Primitive
82

14.2.5
The “PresenceNotification” Primitive
83

14.2.6
The “GetWatcherListRequest” Primitive
83

14.2.7
The “GetWatcherListResponse” Primitive
83

14.2.8
The “GetPresenceRequest” Primitive
83

14.2.9
The “GetPresenceResponse” Primitive
84

14.2.10
The “UpdatePresenceRequest” Primitive
84

14.2.11
The “CancelAuthRequest” Primitive
84

14.2.12
The “SuspendRequest” Primitive
84

14.3
Transactions
85

14.3.1
The “Subscribe” Transaction
85

14.3.2
The “ReactiveAuthorization” Transaction
86

14.3.3
The “Unsubscribe” Transaction
86

14.3.4
The “PresenceNotification” Transaction
87

14.3.5
The “GetWatcherList” Transaction
87

14.3.6
The “GetPresence” Transaction
88

14.3.7
The “UpdatePresence” Transaction
88

14.3.8
The “CancelAuthorization” Transaction
89

14.3.9
The “Suspend” Transaction
89

14.4
Status Code
90

14.4.1
“ReactiveAuthorization” Transaction
90

14.4.2
“GetPresence” Transaction
90

14.4.3
“UpdatePresence” Transaction
90

14.4.4
Other Presence Transactions
90

15.
Service Relay – Instant Messaging Features
91

15.1
Overview
91

15.2
Primitives
91

15.2.1
The “SendMessageRequest” Primitive
91

15.2.2
The “SendMessageResponse” Primitive
91

15.2.3
The “ForwardMessageRequest” Primitive
91

15.2.4
The “NewMessage” Primitive
92

15.2.5
The “MessageDelivered” Primitive
92

15.2.6
The “MessageNotification” Primitive
93

15.2.7
The “GetMessageRequest” Primitive
93

15.2.8
The “SetMessageDeliveryMethod” Primitive
93

15.2.9
The “GetMessageListRequest” Primitive
94

15.2.10
The “GetMessageListResponse” Primitive
94

15.2.11
The “RejectMessageRequest” Primitive
94

15.2.12
The “DeliveryStatusReport” Primitive
95

15.2.13
The “BlockUserRequest” Primitive
95

15.2.14
The “GetBlockedRequest” Primitive
96

15.2.15
The “GetBlockedResponse” Primitive
96

15.3
Transactions
96

15.3.1
The “SendMessage” Transaction
96

15.3.2
The “ForwardMessage” Transaction
97

15.3.3
The “PushMessage” Transaction
97

15.3.4
The “MessageNotification” Transaction
98

15.3.5
The “GetMessage” Transaction
98

15.3.6
The “SetMessageDeliveryMethod” Transaction
99

15.3.7
The “GetMessageList” Transaction
99

15.3.8
The “RejectMessage” Transaction
100

15.3.9
The “NotifyDeliveryStatusReport” Transaction
100

15.3.10
The “BlockUser” Transaction
100

15.3.11
The “GetBlockedList” Transaction
101

15.4
Status Code
101

15.4.1
“SendMessage” Transaction
101

15.4.2
“SetMessageDeliveryMethod” Transaction
102

15.4.3
“GetMessageList” Transaction
102

15.4.4
“RejectMessage” Transaction
102

15.4.5
“NewMessage” Transaction
102

15.4.6
“GetMessage” Transaction
102

15.4.7
“NotifyDeliveryStatusReport” Transaction
102

15.4.8
“ForwardMessage” Transaction
102

15.4.9
Block Transactions
103

16.
Service Relay – Group Features
104

16.1
Primitives
104

16.1.1
The “CreateGroupRequest” Primitive
104

16.1.2
The “DeleteGroupRequest” Primitive
104

16.1.3
The “JoinGroupRequest” Primitive
105

16.1.4
The “JoinGroupResponse” Primitive
105

16.1.5
The “LeaveGroupRequest” Primitive
105

16.1.6
The “LeaveGroupIndication” Primitive
106

16.1.7
The “GetJoinedMemberRequest” Primitive
106

16.1.8
The “GetJoinedMemberResponse” Primitive
106

16.1.9
The “GetGroupMemberRequest” Primitive
107

16.1.10
The “GetGroupMemberResponse” Primitive
107

16.1.11
The “AddGroupMemberRequest” Primitive
107

16.1.12
The “RemoveGroupMemberRequest” Primitive
107

16.1.13
The “MemberAccessRequest” Primitive
108

16.1.14
The “GetGroupPropsRequest” Primitive
108

16.1.15
The “GetGroupPropsResponse” Primitive
108

16.1.16
The “SetGroupPropsRequest” Primitive
109

16.1.17
The “RejectListRequest” Primitive
109

16.1.18
The “RejectListResponse” Primitive
109

16.1.19
The “SubscribeGroupChangeRequest” Primitive
110

16.1.20
The “UnsubscribeGroupChangeRequest” Primitive
110

16.1.21
The “GetGroupSubStatusRequest” Primitive
110

16.1.22
The “GetGroupSubStatusResponse” Primitive
110

16.1.23
The “GroupChangeNotice” Primitive
111

16.2
Transactions
111

16.2.1
The “CreateGroup” Transaction
111

16.2.2
The “DeleteGroup” Transaction
112

16.2.3
The “JoinGroup” Transaction
112

16.2.4
The “LeaveGroup” Transaction
113

16.2.5
The “ServerInitiatedLeaveGroup” Transaction
113

16.2.6
The “GetJoinedMember” Transaction
114

16.2.7
The “GetGroupMember” Transaction
114

16.2.8
The “AddGroupMember” Transaction
114

16.2.9
The “RemoveGroupMember” Transaction
115

16.2.10
The “MemberAccess” Transaction
115

16.2.11
The “GetGroupProps” Transaction
116

16.2.12
The “SetGroupProps” Transaction
116

16.2.13
The “RejectList” Transaction
117

16.2.14
The “SubscribeGroupChange” Transaction
117

16.2.15
The “UnsubscribeGroupChange” Transaction
117

16.2.16
The “GetGroupSubStatus” Transaction
118

16.2.17
The “NotifyGroupChange” Transaction
118

16.3
Status Code
119

16.3.1
“CreateGroup” Transaction
119

16.3.2
“DeleteGroup” Transaction
119

16.3.3
“JoinGroup” Transaction
119

16.3.4
“LeaveGroup” Transaction
119

16.3.5
Group Membership Transactions
119

16.3.6
Group Properties Transactions
119

16.3.7
“RejectList” Transaction
120

16.3.8
Group Change Transactions
120

16.3.9
“GetJoinedMember” Transaction
120

17.
Status Codes and Descriptions
121

17.1
1xx – Informational
121

17.1.1
100 – Continue
121

17.1.2
101 – Queued
121

17.1.3
102 – Started
121

17.1.4
104 – Server Queued
121

17.2
2xx – Successful
121

17.2.1
200 – Successful
121

17.2.2
201 – Partially Successful
121

17.2.3
202 – Accepted
121

17.3
4xx – Client Error
122

17.3.1
400 – Bad Request
122

17.3.2
401 – Unauthorized
122

17.3.3
402 – Bad Parameter
122

17.3.4
403 – Forbidden
122

17.3.5
404 - Not Found
122

17.3.6
405 – Service Not Supported
122

17.3.7
410 – Unable to Delivery
122

17.3.8
415 – Unsupported Media Type
122

17.3.9
420 – Invalid Transaction-ID
122

17.3.10
422 – User-ID and Client-ID Does Not Match
122

17.3.11
423 – Invalid Invitation-ID
122

17.3.12
424 – Invalid Search-ID
123

17.3.13
425 – Invalid Search-Index
123

17.3.14
426 – Invalid Message-ID
123

17.3.15
431 – Unauthorized Group Membership
123

17.4
5xx – Server Error
123

17.4.1
500 – Internal Server Error
123

17.4.2
501 – Not Implemented
123

17.4.3
503 – Service Unavailable
123

17.4.4
504 – Invalid Timeout
123

17.4.5
505 – Version Not Supported
123

17.4.6
506 – Service Not Agreed
123

17.4.7
507 – Message Queue is Full
123

17.4.8
516 – Domain Not Supported
123

17.4.9
521 – Unresponded Presence Request
124

17.4.10
522 – Unresponded Group Request
124

17.4.11
531 – Unknown User
124

17.4.12
532 –Recipient Blocked the Sender
124

17.4.13
533 – Message Recipient Not Logged in
124

17.4.14
534 – Message Recipient Unauthorized
124

17.4.15
535 – Search Timed Out
124

17.4.16
536 – Too many hits.
124

17.4.17
537 – Too broad search criteria
124

17.5
6xx – Session
124

17.5.1
600 – Session Expired
124

17.5.2
601 – Forced Logout
124

17.5.3
604 – Invalid Session / Not Logged In
124

17.5.4
606 – Invalid Service-ID
124

17.5.5
607 – Redirection Refused
125

17.5.6
608 – Invalid Password
125

17.5.7
609 – Connection Expired
125

17.5.8
610 – Server Search Limit is Exceeded
125

17.5.9
620 – Invalid Server Session
125

17.6
7xx – Presence and contact list
125

17.6.1
700 – Contact List Does Not Exist
125

17.6.2
701 – Contact List Already Exists
125

17.6.3
702 – Invalid or Unsupported User Properties
125

17.6.4
750 – Invalid or Unsupported Presence Attributes
125

17.6.5
751 – Invalid or Unsupported Presence Value
125

17.6.6
752 – Invalid or Unsupported Contact List Property
125

17.6.7
760 – Automatic Subscription / Unsubscription is not supported
125

17.7
8xx – Groups
126

17.7.1
800 – Group Does Not Exist
126

17.7.2
801 – Group Already Exists
126

17.7.3
802 – Group is Open
126

17.7.4
803 – Group is Closed
126

17.7.5
804 – Group is Public
126

17.7.6
805 – Group Private
126

17.7.7
806 – Invalid / Unsupported Group Properties
126

17.7.8
807 – Group is Already Joined
126

17.7.9
808 – Group is Not Joined
126

17.7.10
809 – Rejected
126

17.7.11
810 – Not a Group Member
126

17.7.12
811 – Screen Name Already in Use
126

17.7.13
812 – Private Messaging is Disabled for Group
127

17.7.14
813 – Private Messaging is Disabled for User
127

17.7.15
814 – The Maximum Number of Groups Has Been Reached for the User
127

17.7.16
815 – The Maximum Number of Groups Has Been Reached for the Server
127

17.7.17
816 – Insufficient Group Privileges
127

17.7.18
817 – The Maximum Number of Joined Users Has Been Reached
127

17.7.19
821 – History is Not Supported
127

17.7.20
822 - Cannot have searchable group without name or topic.
127

17.8
9xx – General errors
127

17.8.1
900 – Multiple errors
127

17.8.2
901 – General Address Error
127

18.
Static Conformance Requirements
128

Appendix A.
Change History (Informative)
129

A.1
Approved Version History
129

A.2
Candidate Version 1.2 History
129

1. Scope

The Wireless Village Instant Messaging and Presence Service (IMPS) includes four primary features:

· Presence

· Instant Messaging

· Groups

· Shared Content

Presence is the key enabling technology for IMPS. It includes client device availability (my phone is on/off, in a call), user status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence information is personal, it is only made available according to the user's wishes - access control features put the control of the user presence information in the users' hands.

Instant Messaging (IM) is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and two-way paging are all forms of Instant Messaging. Wireless Village IM will enable interoperable mobile IM in concert with other innovative features to provide an enhanced user experience.

Groups or chat are a fun and familiar concept on the Internet. Both operators and end-users are able to create and manage groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups where end-users can meet each other online.

Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.

These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common interoperable framework.

2. References

2.1 Normative References

		[IOPPROC]

		“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, http://www.openmobilealliance.org/

		

		

		[FIPS 180-1]

		“Secure Hash Standard”, April 1995 URL:http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf

		[E.164]

		ITU-T Recommendation E.164 (05/97) The international Public Telecommunication Numbering Plan. URL:http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-E.164-199705-I

		[RFC1321]

		“The MD5 Message-Digest Algorithm”, April 1992. URL:http://www.ietf.org/rfc/rfc1321.txt?number=1321

		[RFC2045]

		Multipurpose Internet Mail Extensions (MIME) Part one: Format of Internet Message Bodies. Section 6.8 “Base64 Content-Transfer-Encoding”, November 1996. URL:http://www.ietf.org/rfc/rfc2045.txt?number=2045

		[RFC2046]

		Borenstein N., and N. Freed, "MIME (Multipurpose Internet Mail Extensions) Part Two: Media Types", November 1996. URL:http://www.ietf.org/rfc/rfc2046.txt?number=2046

		[RFC2119]

		“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

		[RFC2234]

		“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell.
November 1997. URL:http://www.ietf.org/rfc/rfc2234.txt

		[RFC822]

		“Standard for the Format of ARPA Internet Text Messages”.August 1982. URL:http://www.ietf.org/rfc/rfc0822.txt?number=822

		

		

		[XML]

		“Extensible Markup Language 1.0 (Second Edition)”, W3C recommendation, October 2000. URL:http://www.w3.org/TR/2000/REC-xml-20001006.pdf

2.2 Informative References

		[Arch]

		"System Architecture Model Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[FeaFun]

		"Features and Functions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP]

		"Client-Server Protocol Session and Transactions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP DTD]

		"Client-Server Protocol DTD and Examples Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP Trans]

		"Client-Server Protocol Transport Bindings Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[CSP DataType]

		"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP SMS]

		"Client-Server Protocol SMS Binding Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP WBXML]

		"Client-Server Protocol Binary Definition and Examples Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		

		

		[PA]

		"Presence Attributes Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[PA DTD]

		"Presence Attribute DTD and Examples Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CLP]

		"Command Line Protocol Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP]

		"Server-Server Protocol Semantics Document Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP Syntax]

		"Server-Server Protocol XML Syntax Document Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP Trans]

		"Server-Server Protocol Transport Binding Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		

		

		[WAPARCH]

		“WAP Architecture, Version 12-July-2001”. Open Mobile Alliance(. WAP‑210‑WAPArch. http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

The following definitions are for terms specific to the Wireless Village and general terms that may have some special context within the documentation. These definitions are provided to enhance the use of this documentation.

		Home Domain

		refers to the home IMPS system, which the user subscribes to, and in which the user is authenticated and authorized to use IMPS services

		Primary Service Element

		refers to a Service Element of an IMPS service for a client. A PSE may be in the Home Domain of the client, or in the other domain.

		Complementary Service

		refers to a situation in which the Primary Service Element (PSE) is NOT in the Home Domain. Instead, the PSE is in another domain.

		Provider Server

		the WV server, which provides the services for the Requestor Server in the frame of a session after the successful service agreement is negotiated.

		Requestor Server

		the WV server, which requests the services from the Provider Server in the frame of a session after the successful service agreement is negotiated.

		Service Request

		it is initiated from the Requestor Server to the Provider Server

		Service Notification

		it is initiated from the Provider Server to the Requestor Server

The terms MAY, SHOULD, MUST are consistent with the definitions in RFC 2119.

3.3 Abbreviations

		ARPA

		Advanced Research Projects Agency

An agency of the United States Department of Defense, ARPA underwrote the development of the Internet beginning in 1969. A precursor to IETF.

		DTD

		Document Type Definition

		HTTP

		Hypertext Transfer Protocol

		IANA

		Internet Assigned Number Authority

		IETF

		Internet Engineering Task Force

A society of engineers and developers dedicated to designing and advancing standards for internet use.

		WAP

		Wireless Application Protocol

A specification for a set of communication protocols to standardize the way that wireless devices, such as cellular telephones and radio transceivers, can be used for Internet access

4. Introduction

The Wireless Village (WV) Server-Server Protocol (SSP) provides the communication and interaction means between different IMPS service domains. SSP allows the WV clients to subscribe to the IMPS services provided by different service providers that are distributed across the network. SSP allows the WV clients to communicate with existing proprietary Instant Messaging networks through the Proprietary Gateway. The interoperability between different devices and service providers is achieved in a way that user #1 that subscribes to Wireless Village services at Service Provider A can communicate with user #2 that is a client of Service Provider B. The goal of SSP is to support the distributed interoperable complementary IMPS services across service provider domains.

5. Server-Server Protocol

5.1 SSP Interoperability Model

The term “Home Domain” is the domain the client subscribes to, and is authenticated and authorized to use the IMPS services.

The term “Primary Service Element” (PSE) is the primary SE of an IMPS service for a client. PSE may be in the Home Domain of the client, or be in a remote domain.

[image: image3.wmf]

Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Wireless Village Server - Domain B

CSP or CLP

SSP

IM Service

Service Access Point

Service Access Point

Group / Chat

IM Service

Presence Service

Group / Chat

Shared Content

Figure 1. The SSP Minimum Interoperability Model

SSP supports server interoperability at different levels. At the lowest level, two users located at two different home domains are able to communicate with each other, as shown in Figure 1. At the highest level, SSP supports a complete set of IMPS services that are assembled from complementary IMPS services across service provider domains, as shown in Figure 2. SSP defines the rules for the PSE to take appropriate actions to achieve the interoperability and provide distributed IMPS services.

To allow the service providers to have the flexibility to choose the appropriate level of interoperability and set up different service agreements between themselves, SSP mandates a minimum set of interoperable features and functions. To guarantee interoperability it is required that two interacting servers provide the same subset of services.

In the example in Figure 1, client 1 is located in home domain A, and client 2 is located in home domain B. Domain A implements IM and Group service elements, and domain B implements the full set of Wireless Village service elements. The common subset of services is IM and Group, i.e. client 1 and client 2 are interacting across domains via the minimum set of interoperable IM and Group features and functions in SSP.

The full set of interoperability features includes the Interoperability Management and the IMPS Service Relay. The Interoperability Management includes a Security Model, Transaction Management, Session Management, Service Management and User Profile Management. The IMPS Service Relay includes Common IMPS Features, Contact List Features, Presence Features, Instant Messaging Features, Group Features and Shared Content Features.

[image: image4.wmf]Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Group / Chat

Wireless Village Server - Domain B

CSP or CLP

SSP

Presence Service

Service Access Point

Service Access Point

IM Service

Shared Content

Figure 2. The SSP Full Interoperability Model

In the example in Figure 2, client 1 is located in home domain A, and Client 2 is located in home domain B. Domain A implements the presence and group service elements and domain B the IM and shared content service elements. The Wireless Village interoperability model allows client 1 and 2 to utilize the complete set of features and interact with each other via the SSP.

In SSP Interoperability, the Home Domains must have direct SSP connection to interoperate with each other. However, SSP supports the routing of “Service Relay” between the Home Domain and the PSE. The route from Home Domain B to its PSE is shown in Figure 3, where the PSE domain that provides the actual service element, e.g. IM service, is at the end of the route. All intermediate domains are relaying the service request to the next hop. The intermediate nodes act as the "logical" Service Provider role for each downstream domain, and act as the “logical” Service Requestor role for each upstream domain.

[image: image5.wmf]

IM PSE

WVS

Provider

H(n)

WVS

Requestor

Provider

H(1)

WVS

Requestor

Home

Domain B

Client B

Home

Domain A

Client A

Upstream

Provider

Figure 3. The SSP Service Relay

At each Wireless Village server, the Service Access Point (SAP) should maintain a Service Table that keeps track of the service agreements to appropriately relay the SSP service request on a per-service basis and forward the SSP service result on a per-domain basis. Being the “logical” Service Provider, the SAP should maintain a Session Record for each Service Requestor. Being the “logical” Service Requestor, the SAP should maintain a Transaction Record for each Service Provider. The SAP should maintain a Transaction Table to map each requested transaction from its Service Requestor to the initiated transaction to its Service Provider. The Transaction Table should be the uniquely one-one match. Therefore, the Service Relay flow and Result Forward flow at each SAP is clearly and uniquely identified by the transaction flows.

The SAP at a Home Domain shall appropriately map the CSP/CLP service request from the client to the SSP service request, and/or map the SSP service result to CSP/CLP service result to the client.

5.2 SSP Interoperability Rules

In SSP Interoperability, the Home Domains must have direct SSP connections to interoperate with each other. However, SSP supports the routing of “Service Relay” between the Home Domain and the PSE. The basic IOP rules are:

Rule 1: At the Home Domain, each user-initiated service request and the relayed service request from another Home Domain shall be routed / relayed from this Home Domain to its PSE for the first and primary processing. PSE is the primary and default service element to provide the user with the service.

Rule 2: If PSE needs more information from another SE in another Home Domain, but the service agreement between them does not support such information exchange, the PSE shall relay the service request to that Home Domain for further processing. Before a service request is relayed to a SE in another Home Domain, all information elements of local scope must be replaced with those of global scope. For example, a local User-ID is replaced with a global User-ID. Moreover, if the information element is a reference to a local object, it must be replaced by the actual information, e.g. a reference to a Contact-List must be replaced by a list of global User-ID's.

Rule 3: At the PSE, each PSE-initiated transaction shall be routed / relayed from the PSE back to its Home Domain, from which the PSE-initiated transaction is triggered (by the user-initiated or relayed service request). The PSE-initiated transaction shall be next relayed from the Home Domain to the destination Home Domain via the direct SSP connection between them (e.g. Figure 7 in section 5.4.4). If two Home Domains provide each other with the complementary PSE, the direct routing / relay is allowed from the complementary PSE to the destination domain (e.g. Figure 6 in section 5.4.3).

An intermediate domain shall route / relay the service request to the PSE and from the PSE based on its service agreement. A routing table is allowed in the intermediate domain. The routing table shall be offline configured based on the service agreement. If the routing table is used in PSE, it shall override the routing Rule 3 (e.g. Figure 8 in section 5.4.6).

5.3 SSP Service Agreement and Routing

The exchange of messages between Wireless Village domains is normally performed in one hop over an established direct SSP connection. However, Wireless Village does support routing of messages between the Home Domain and the PSE. The SSP routing between domains is based on the SSP IOP rules and the business agreements between the domains. The business agreements must be established among all domains that are involved in the handling of SSP service relays between two end points.

After the business agreements are made between the domains, each domain shall be able to route and relay the services between the domains along the path. The routing table is created based on the business and service agreement.

In conclusion, the SSP IOP routing is defined by offline business agreements and service agreements that contains routing agreements and configuration. Each Wireless Village Server (WVS) holds a static list of direct connected neighbors. The list specifies the agreed domains that may be forwarded to one of the direct connected WVS’s.

5.4 SSP Interoperability Case Study

There are different situations in SSP interoperability. This section illustrates different interoperability models and the transaction flows based on the IOP rules described in 5.2.

5.4.1 Case 1 – Two Users are Located in different Home Domains. Each Home Domain has its own SE. Two Home Domains are Connected

[image: image6.wmf]

User 2

User 1

Home Domain A

SAP

IMSE

CSP: SendMessage

SSP: SendMessage

CSP: NewMessage

Home Domain B

SAP

IMSE

Figure 4. The SSP IOP Case One

In the example in Figure 4, client 1 is located in home domain A, and client 2 is located in home domain B. A’s IM PSE is located in Domain A, and B’s PSE is located in Domain B. This is the minimal interoperability case. The transaction flow of sending a message from client 1 to client 2 is:

1. C1 -> DA: CSP-SendMessage

2. DA -> DB: SSP-SendMessage

3. DB -> C2, SSP-NewMessage (after checking block list etc.)

5.4.2 Case 2 – Two Users are Located in the same Home Domain

[image: image7.wmf]

User 2

User 1

Home

Domain A

SAP

PSE Domain

B

IMSE

SAP

Intermediate

Domains

CSP: SendMessage

SSP: SendMessage

SSP: NewMessage

CSP: NewMessage

Figure 5. The SSP IOP Case Two

In the example in Figure 5, both client 1 and 2 are located in home domain A. The IM PSE is located in Domain B. Domain A and B are connected via some intermediate domains. The transaction flow of sending a message from client 1 to client2 is:

1. C1 -> DA: CSP-SendMessage

2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)

3. DB -> DA, SSP-NewMessage (after checking block list etc.)

4. DA -> C2, CSP-NewMessage

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage from A to B, and one SSP-NewMessage from B to A.

If Domain A and Domain B are connected through several intermediate domains, there will be several SSP-SendMessages from A to B, one for each hop. Each intermediate domain will relay the SSP-SendMessage to the next hop. There will also be several SSP-NewMessages from B to A, one for each hop. Each intermediate domain will forward the SSP-NewMessage to the next hop.

5.4.3 Case 3 – Domain A and C have Direct SSP Connection while Domain C Provides A with Complementary PSE

[image: image8.wmf]

User 2

User 1

Home Domain A

SAP

PSE Domain B

IMSE

SAP

CSP: SendMessage

SSP: SendMessage

SSP: NewMessage

CSP: NewMessage

Home Domain C

SAP

SSP: SendMessage

Figure 6. The SSP IOP Case Three

In the example in Figure 6, Domain A and C have a direct SSP connection, and Domain C provides A with complementary IM PSE in Domain B. The transaction flow of sending a message from client 1 to client 2 is:

1. C1 -> DA: CSP-SendMessage

2. DA -> DC: SSP-SendMessage

3. DC -> DB: SSP-SendMessage (through intermediate domains via routing)

4. DB -> DC, SSP-NewMessage (after checking block list etc.)

5. DC -> C2, CSP-NewMessage

5.4.4 Case 4 – Two Users are Located in different Home Domains. Each Home Domain has its complementary PSE. Two Home Domains are Connected

[image: image9.wmf]

User 2

User 1

Home Do

main A

SAP

PSE Domain B

IMSE

SAP

Intermediate

Domains

CSP: SendMessage

SSP: SendMessage

SSP: NewMessage

CSP: NewMessage

Home Domain C

SAP

PSE Domain D

IMSE

SAP

SSP: SendMessage

SSP: SendMessage

SSP: SendMessage

Figure 7. The SSP IOP Case Four

In the example in Figure 7, client 1 is located in home domain A, and client 2 is located in home domain C. A’s IM PSE is located in Domain B, and C’s PSE is located in Domain D. Home domain A and home domain C are connected via some intermediate domains. The transaction flow of sending a message from client 1 to client 2 is:

1. C1 -> DA: CSP-SendMessage

2. DA -> DB: SSP-SendMessage (through intermediate domains via routing)

3. DB -> DA: SSP-SendMessage (through intermediate domains via routing)

4. DA -> DC: SSP-SendMessage

5. DC -> DD: SSP-SendMessage (through intermediate domains via routing)

6. DD -> DC, SSP-NewMessage (after checking block list etc.)

7. DC -> C2, CSP-NewMessage

5.4.5 Special Case Processing

The special cases include the situations in which offline agreement overrides the IOP Rule 3. The following example illustrates the processing for this type of special case.

5.4.6 Two Users are Located in different Home Domains. Both Home Domains Share the same PSE

[image: image10.wmf]

User 2

User 1

Home Domain A

SAP

PSE Domain B

IMSE

SAP

Intermediate

Domains

CSP: SendMessage

SSP: SendMessage

SSP: NewMessage

CSP: NewMessage

Home Domain C

SAP

Figure 8. The SSP IOP Special Case

In the example in Figure 8, client 1 is located in home domain A, client 2 is located in home domain C. Both Domain A and Domain C share the IM PSE located in Domain B. Domain A and B are connected via some intermediate domains. Domain C and B are connected via some intermediate domains. The transaction flow of sending a message from client 1 to client2 is:

6. C1 -> DA: CSP-SendMessage

7. DA -> DB: SSP-SendMessage (through intermediate domains via routing)

8. DB -> DC, SSP-NewMessage (after checking block list etc.)

9. DC -> C2, CSP-NewMessage

Note that the transaction flow is based on the offline configuration in PSE Domain B, which allows the direct relay from A to B to C without the direct SSP connection between Home Domain A and C based on their off-line routing agreement. IOP Rule 3 does not apply to this case.

If Domain A and Domain B are directly connected, there will be one SSP-SendMessage from A to B. If Domain A and Domain B are connected through several intermediate domains, there will be several SSP-SendMessages from A to B, one for each hop. Each intermediate domain will relay the SSP-SendMessage to the next hop.

If Domain C and Domain B are directly connected, there will be one SSP-NewMessage from B to C. If Domain C and Domain B are connected through several intermediate domains, there will be several SSP-NewMessages from B to C, one for each hop. Each intermediate domain will forward the SSP-NewMessage to the next hop.

5.5 SSP Protocol Stack

The SSP protocol stack is divided into three layers as follows.

[image: image11.wmf]

SSP Semantics Layer

–

 Features and Functions

SSP Syntax Layer

–

 XML DTD

SSP Transport Layer

–

 HTTP

Figure 9. The SSP Protocol Stack

SSP Semantics Layer defines the complete set of features and functions that SSP intends to address in the full interoperability model among the WV domains. The nature of the features and functions, i.e. mandatory or optional or conditional, is also defined in the SSP Semantics Layer. The details of the features and functions are described in the transactions, primitives and information elements in the SSP Semantics Layer.

SSP Syntax Layer defines the “communication language” for the WV SAP’s to understand the information between each other and accomplish the interoperability of the features and functions defined in SSP Semantics Layer. SSP Syntax Layer is the set of XML DTD specification.

SSP Transport Layer defines the “communication method” that conveys the “communication language” between the WV SAP’s to achieve the interoperability. SSP Transport Layer v1.0 is HTTP.

This document describes the SSP Semantics Layer.

The term “Server” in this document represents the logical server cluster in one service provider domain. The term “Server” is interpreted as the single access point of the domain, which may be physically a Local Director, or a Proxy, or a Routing Proxy, or anything else that represents the domain. The term “Server” is not interpreted as any physical server entity of the deployment within the domain.

6. Protocol Introduction

SSP is based on the architecture model described in the “System Architecture Model” document [Arch] and focuses on the communication and interaction among the WV domains. The semantics of SSP is consistent with the functional description of the Service Access Point (SAP) in the architecture model. The semantics of SSP implements the server interoperability described in the “Features and Functions” document [FeaFun]. The semantics of SSP supports the semantics of Client to Server Protocol (CSP) [CSP] in a distributed environment to achieve full interoperability.

6.1 Basics

6.1.1 Session

The server interoperability is accomplished in the frame of two SSP sessions. An SSP session is the period during which the servers conduct interactions and interoperations for the Service Provider to provide the Service Requestor with the negotiated IMPS services.

Each Provider Server maintains one session for each Requestor Server. There are two sessions between two domains. Each server maintains one session to provide the other with its own negotiated IMPS services.

6.1.2 Transaction

The SSP semantics are accomplished by “transactions”. An SSP transaction is the sequence of interactions to complete a specific SSP feature or function. The SSP transactions include one-way transactions, two-way transactions, and multi-way transactions. A one-way transaction consists of a service request. A two-way transaction consists of a service request and a service response. A multi-way transaction consists of a sequence of service requests and responses.

6.1.3 Message

Both service requests and service responses are called SSP “messages”. An SSP message is the syntax unit in one interaction.

An SSP message must contain some meta-information including the protocol information (e.g. version), the session information (e.g. Session-ID), the transaction information (e.g. Transaction-ID) and the attribute information (e.g. one-way / two-way, request / response). The “response” message in a two-way transaction must contain the same Transaction-ID as the corresponding “request” message. All transactions during one session must contain the same Session-ID.

6.1.4 Primitive

Each SSP message includes one or more SSP “primitives” with appropriate parameters. An SSP primitive is the semantics unit in one message.

Each service request message contains one functional primitive. Each service response message includes a status primitive as well as the optional, one or more SSP primitive(s).

6.2 Session Pair vs. Connections

There are two sessions between two domains. Each domain maintains one session to provide the other with its own negotiated IMPS services. The two sessions are established through session establishment.

There are at least two physical connections, namely the connection pair, to carry the service traffic of the session pair. The servers may establish more than one connection pair to support the same session pair.

The physical connection carries the service requests from the Requestor server to the Provider Server in one direction, and / or the notifications from the Provider Server to the Requestor Server in the other direction.

Connections are reusable. Each session may use some or all of the connections to transport its transactions. Each connection may be used by only one session, or reused by both sessions.

An SSP transaction (request and response) must be completed using the same connection pair.

Please refer to the SSP Transport Binding Document [SSP Trans] about how the connection (pair) is bound to the underlying transport.

6.3 Addressing

SSP addressing schema uses the uniform Wireless Village addressing model in a unique Wireless Village address space. SSP addressing schema is consistent with that in CSP.

The definition of SSP address is based on the URI [RFC2396]. The addressable entities are:

· User

· Contact List

· Group (public and private)

· Content (public and private)

· Message

· Service (SSP unique)

The other address spaces may be used to interoperate with other systems. The use of other address spaces is up to the implementation and out of scope of Wireless Village.

6.3.1 General SSP Addressing Schema

The general SSP addressing schema is based on URI [RFC2396]. The “wv” schema in the URI indicates the Wireless Village address space. The generic syntax is defined as follows:

WV-Address
= Service-ID | Message-ID | Other-Address

Other-Address
= [“wv:”] [User-ID] [“/” Resource] “@” Domain

Global-User-ID
= User-ID “@” Domain

Resource

= Group-ID | Contact-List-ID | Content-ID

Domain

= sub-domain *(“.” sub-domain)

where User-ID refers to the identification of the Wireless Village user inside the domain. Domain is a set of the Wireless Village entities that have the same “Domain” part in their Wireless Village addresses. Domain identifies the point of the Wireless Village server domain to which the IMPS service requests must be delivered if the requests refer to this domain. Resource further identifies the public or private resource within the domain. The sub-domain is defined in [RFC822]. The Service-ID is globally unique to identify a Server (either a WV server or a Proprietary Gateway), which is defined in section 6.3.7.

When the Global-User-ID is present without the Resource, the address refers to the user. In SSP, the user is always identified in the global scope.

When the Global-User-ID is present with Resource, the address refers to the private resource of the user. When the User-ID is not present, the Domain and the Resource must always be present, and then the address refers to a public resource within the domain.

The domain must always be present in SSP addressing to globally identify the user or resources, and used for address resolution of those network entities.

The schema part is optional. When it is not present, the default schema “wv:” is assumed.

The addresses are case insensitive.

6.3.2 Address encoding

As per URI [RFC2396], certain reserved characters must be escaped if they occur within the User-ID, Resource, or Domain portions of a Wireless Village address. This includes the characters “;”, “?”, “:”, “&”, “=”, “+”, “$” and “,”. For example, a valid Wireless Village address for the user “$mith” in the “server.com” domain is:

wv:%24mith@server.com

Certain characters are not permitted to occur in the User-ID portion of Wireless Village addresses (see 6.3.3 below). This includes the characters “/”, “@”, “+”, “ “ and TAB. This restriction is independent of the encoding of a User-ID within a Wireless Village address. For example, this Wireless Village address is not permissible:

wv:john%40aol.com@server.com

This address is not permissible because after URI-decoding, the User-ID portion contains a forbidden character (“@”). If a server’s internal representation of a username permits the occurrence of forbidden characters, such characters must be double-escaped when they occur in a Wireless Village address, such that they do not occur unescaped in the User-ID portion after URI-decoding, or they must be escaped via some other scheme that does not employ forbidden characters.

6.3.3 User Addressing and Global-User-ID

SSP uses User-ID’s to uniquely identify a WV User. The User-ID refers to either the Internet-type address or to a mobile number of the user. If it refers to the mobile number of the user, the user name always starts either with digit or with '+' sign. User name referring to Internet-type address may not start with '+' sign or digit.

The syntax of the User-ID is defined as follows:

User-ID

= Mobile-Identity | Internet-Identity

Internet-Identity
= *alpha

Mobile-Identity
= (digit | "+") *digit

digit

= "0" | "1" | "2" |"3" |"4" |"5" |"6" |"7" |"8" | "9"

alpha

= Any non-control ASCII character (decimal 32 – 126,

 inclusive) except specials

specials

= "/" | "@" | "+" | " " | TAB

When the User-ID refers to the mobile number address, the User-ID preceded with a ‘+’ sign refers to the international numbering in The International Public Telecommunication Numbering Plan [E.164]. Without a ‘+’ sign, it refers to the national numbering in the [E.164].

Examples of the User-ID’s are:

Local-User-ID:
wv:Jon.Smith

wv:+358503655121

wv:0503655121

Global-User-ID:
wv:Jon.Smith@imps.com

wv:+358503655121@imps.com

wv:0503655121@imps.com

SSP always uses Global-User-ID to identify the users.

The users may also be identified by screen names, nicknames and aliases. These identifiers explicitly and implicitly refer to the User-ID.

ScreenName – the combination of a name a user chooses in a group session, and the Group-ID itself. The user may have different ScreenNames on different occasions as well as on different groups. The ScreenName is always connected to a group.

NickName – A name that is used internally in a client to hide the UserID of contacts. When ContactList is stored on the server, the NickName must have a space, but it is not possible to address a NickName.

Alias – The name a user suggest others to use as NickName. Part of the User Presence.

The definition of User-ID in SSP is consistent with that in CSP.

6.3.4 Contact List Addressing and Contact-List-ID

SSP uses Contact-List-ID’s to uniquely identify any contact list of any user. The syntax of Contact-List-ID is defined as follows:

Contact-List-ID = *alpha

Examples of the contact list address with Contact-List-ID are:

wv:john/colleagues@imps.com

wv:/managers@imps.com

SSP always identifies the contact list globally.

The definition of Contact-List-ID in SSP is consistent with that in CSP.

6.3.5 Group Addressing and Group-ID

SSP uses Group-ID’s to uniquely identify any group. The syntax of the Group-ID is defined as follows:

Group-ID = *alpha

Examples of the group address with Group-ID are:

wv:john/mygroup@imps.com

wv:/technical_forum@imps.com

SSP always identifies the group globally.

The definition of Group-ID in SSP is consistent with that in CSP.

6.3.6 Content Addressing and Content-ID

SSP uses Content-ID’s to uniquely identify any content. The syntax of the Content-ID is defined as follows:

Content-ID = *alpha

Examples of the content address with the Content-ID are:

wv:john/WV_presentation@imps.com

wv:/wvspec@imps.com

SSP always identifies the content globally.

The definition of Content-ID in SSP is consistent with that in CSP.

6.3.7 Client Addressing and Client-ID

The Client-ID uniquely identifies the WV client as an application as well as its addressing that allows the access to the WV services. The client-ID is intended to allow:

· Multiple accesses from the same user

· Direct application-to-application communication

The Client-ID consists of

· Optional application identifier such as a URL identifying the application and its addressing,

· Optional mobile device identity (such as international mobile number [E.164]).

The definition of Client-ID in SSP is consistent with that in CSP.

6.3.8 Service Addressing and Service-ID

The Service-ID in SSP is equivalent in the semantic role to the User-ID in CSP. The Service-ID in SSP uniquely identifies a Server. The syntax of Service-ID is defined as follows.

Service-ID = “wv:”@ Domain

Domain is a set of the WV entities that have the same Domain part in their WV addresses. The Domain is associated with one WV server (the unique access point) to which the IMPS service requests must be delivered if the addressed network entities refer to this Domain.

The Service-ID is used in the session establishment (refer to section 9.1.1, 9.2.2 and 9.3.1) and other SSP management functions.

The Service-ID is used as part of the meta-information in the SSP transactions (refer to section 8.1).

An examples of the Service-ID is:

Service-ID:
wv:@imps.com

6.3.9 Message and Message-ID

The Message-ID in SSP is globally unique to identify a message. The syntax of Message-ID is defined as follows:

Message-ID = Local-Message-ID “@” Domain

Where the “Local-Message-ID” uniquely identifies a message within the IMSE domain, and subject to the implementation.

An example of the Message-ID is:

12345678@imps.com.

The definition of Message-ID in SSP is consistent with that in CSP.

6.4 Data Types

SSP defines four basic data types, namely “Char”, “Integer”, “String” and “Boolean”, and three structured date types namely “Enum”, “DateTime” and “Structure”.

An information element is “String” type by default unless specified.

6.4.1 Char

A “Char” type element is a single character encoded in UTF-8.

6.4.2 Integer

An “Integer” type element is a 32-bit decimal number ranging in [0, 232 - 1].

6.4.3 String

A “String” type element is a sequence of “Char” elements.

6.4.4 Boolean

A “Boolean” type element is either “True” or “False”.

6.4.5 Enum

An “Enum” type element is one of the pre-defined set of values.

6.4.6 DateTime

A “DateTime” type element follows the ISO-8601 specification and is expressed in a “String” type element. The date and time format shall be complete date and time using the basic format. There shall be no time-zone indication, but the time may indicate if the time is Coordinated Universal Time (UTC) or local time. The examples are:

Local time: 20011019T125031

UTC: 20011019T095031Z

6.4.7 Structure

A “Structure” type element is the combination of other types of elements as specified.

6.5 Infrastructure Elements

Infrastructure elements are required in the end-to-end solution of server interoperability. Infrastructure elements may not be carried within information elements in SSP protocol. However, the implementation shall be able to support the infrastructure elements to ensure the server interoperability.

6.5.1 Host-ID

The Host-ID is the primary (Master) host address of the SAP of the WV server or Proprietary Gateway. The Host-ID must be used for establishing the session with this WV server or Proprietary Gateway.

The Host-ID is referenced in the form of DNS host name. The Host-ID may be stored inside the environment for DNS A RR host address resolution, or may be retrieved from the Service-ID by the DNS SRV RR based address resolution.

The Host-ID cannot be changed during a session.

An example of Host-ID is:

host1.imps.com

6.5.2 Redirect (Host) Name

When the WV server in a domain can be accessed through several SAP’s distributed in different physical hosts, this WV server may provide a list of those hosts for the other WV server to share the load at the session establishment. This list is called Redirect List and contains the redirect host DNS names. A Redirect (Host) Name in SSP uniquely identifies a physical host in the WV Server or a Proprietary Gateway domain.

The Redirect (Host) Names may be configured statically based on offline agreement between two domains. The Redirect (Host) Addresses may be notified dynamically during session establishment over Master Connection Pair (9.1.1).

An example of a Redirect (Host) Address is:

host2.serviceprovider.com.

6.6 Features and Functions

SSP supports the server interoperability features and functions defined and described in features and functions document.

6.6.1 Security

The scope of security in the server interoperability is the server-to-server communication at the IMPS application level, i.e. to ensure that the data sent and/or received on behalf of an End User in a given IMPS domain is actually originating from and/or terminating at the server in that domain.

SSP supports the security requirement in the server interoperability through the CALLBACK connection establishment and access control across session management and transaction management. Please refer to section 6.1.1 for details of CALLBACK connection establishment.

SSP supports the security requirement in the server interoperability through the underlying transport layer whenever possible.

The individual domain security enhances the overall security level in the server interoperability.

6.6.2 Connection Management

SSP connection management ensures the authenticated connections to transport SSP transactions during SSP sessions. Connection management includes connection establishment, connection termination and connection maintenance.

SSP supports CALLBACK connection establishment.

SSP supports the implicit connection termination and connection maintenance through session management. SSP session maintenance covers connection maintenance, and SSP session termination covers connection termination. Connection termination causes the session termination if no more connection exists.

6.6.3 Transaction Management

The transaction management defines the necessary common information elements in the service requests and service responses at transaction level, regulates the behavior in the transaction flows, and handles the exception and error conditions at transaction level.

6.6.4 Session Management

SSP supports the authentication among the WV SAP’s. The WV SAP’s must authenticate each other before they can provide each other with the IMPS services.

SSP supports the authorization and access control among the WV SAP’s so that the servers and the gateways are allowed to access the IMPS services provided by each other.

SSP session management includes session establishment, session termination and session maintenance. The CALLBACK connection establishment shall be used in the session establishment. The access control is supported in the whole session management.

6.6.5 Service Management

SSP supports service discovery among the WV domains. The services include Common Services, Presence Service, Instant Messaging (IM) Service, Group Service and Shared Content Service that are defined in the “Features and Functions” document. However, those services are discovered in the element level rather than the protocol level. SSP only provides a protocol method and facilitates the message exchange to support the service discovery.

SSP supports the service negotiation and agreement among the WV domains. The service agreement may be made either online or offline. The service agreement must be made before they can provide each other with the IMPS services.

6.6.6 User Profile Management

SSP supports the exchange of user profile information among the WV domains including the list of services to which a user subscribes, the service status (active / inactive), privacy status with regard to network service capabilities (e.g. user location, user interaction), terminal capabilities, the user account status etc.

User Profile Management features can support various functions based on the exchange of user profile information.

6.6.7 Service Relay

SSP supports the service relay among the WV domains including the functional relay of the common IMPS features, presence features, IM features, group features and shared content features that are defined in “Features and Functions” document. The goal of SSP is to support the distributed interoperable complementary IMPS services across service provider domains.

Due to the nature of the server interoperation, the SSP has its own requirement on meta-information and information elements in the primitives at transaction level. The complete primitives and transaction flows at SSP semantics level have been defined in the following sections including functional relay services.

Please refer to the CSP document so as to conclude how to relay the complete IMPS features from client-server interaction (CSP) to server-server interoperation (SSP).

7. Security

The scope of security in the server interoperability is the server-to-server communication at the IMPS application level, i.e., to ensure that the data sent and/or received on behalf of an End User in a given IMPS domain is actually originating from and/or terminating to the servers in that domain.

7.1 Trust Models

A TRUST model is assumed between the WV SAP and the Service Elements within a single IMPS domain.

A TRUST model is assumed for the network infrastructure such as DNS.

The TRUST model is mutual, i.e., A trusts B if and only if B trusts A.

The TRUST model is created between domain A and domain B if and only if they have been authenticated and authorized by each other. A TRUST model must be created between two domains before they can provide each other with interoperable complementary IMPS services.

7.2 Access Control

The authentication and authorization between the servers in different domains are accomplished by the access control at each server. The scope of access control covers online session management, transaction management and offline configuration agreement.

The online session management includes the initial CALLBACK connection establishment, authentication and authorization to start a session, session maintenance and session termination.

The transaction management supports the access control by the transaction authentication based on the information elements specified in each service request and service response.

The offline configuration agreement includes, but is not limited to, server identity registration, Host-ID, account creation, password protection, configurable parameters, SAP Service Routing Table, etc. through provisioning and / or administration interface.

7.3 Transport Security

The security requirement in the transport layer and other underlying layers, such as data integrity and confidentiality, is out of the scope of SSP. However, whenever possible, current security approach including SSL / TLS, PGP, PKI, digital certificates, etc. in the underlying transport layer should be used to ensure the secure transmission in the underlying layers to prevent from out-of-scope security issues. The deployed security technology is negotiated between the service providers through the offline configuration agreement.

7.4 Individual Domain Security

The security of an individual domain enhances the inter-domain security. A single IMPS domain is encouraged to use firewalls or other precautions to ensure the highest possible level of security.

8. TRANSACTION MANAGEMENT

The transaction management defines the necessary common information elements in the service requests and service responses at transaction level, regulates the behavior in the transaction flows, and handles the exception and error conditions at the transaction level.

8.1 Meta-Information

The SSP service requests must contain the meta-information as defined in table 1.

		Information Element

		Req

		Type

		Description

		Client-Originated

		M

		Boolean

		Indicates whether the request is originated from the client (“True”) or from the service element (“False”).

		Session-ID

		M

		String

		Identifies the session managed by the Provider Server.

		Transaction-ID

		M

		String

		Identifies the transaction originated from the transaction initiator (either requestor server, or provider server).

		Service-ID

		M

		String

		Identifies the initiator domain (and the service element if needed).

		User-ID

		C

		String

		Identifies the user represented by the requestor server domain. It is present if the request is originated from a client.

		Client-ID

		O

		String

		Identifies the Client-ID of the user. It optionally present if the request is originated from a client.

Table AUTONUM Information elements in Meta-information primitive

The Session-ID is unique for each session at the Provider Server.

The Transaction-ID is unique for each transaction originated from the server that initiates the transaction.

An SSP service response in a two-way transaction must contain the same Session-ID and the Transaction-ID as those in the service request.

Some implementation notes are as follows.

1. The SAP at the service provider server should maintain a Session Record for each service requestor.

2. The SAP at the service requestor should maintain a Transaction Record for each service provider.

3. The SAP at each server should maintain a Transaction Table to map each requested transaction from its Service Requestor to the initiated transaction to its Service Provider. The Transaction Table should be the uniquely one-one match. Therefore, the Service Relay flow and Result Forward flow at each hop is clearly and uniquely identified by the transaction flows.

8.2 Status Primitive

The status primitive in the service response is defined as follows in table 2.

		Information Element

		Req

		Type

		Description

		Session-ID

		M

		String

		Identifies the session. It should be consistent with the Session-ID in the Meta-Information in the request.

		Transaction-ID

		M

		String

		Identified the transaction. It should be consistent with the Transaction-ID in the Meta-Information in the request.

		Status code

		M

		String

		Status code of the processing result.

		Status description

		O

		String

		Textual description of the status.

Table AUTONUM Information elements in Status primitive

8.3 Asynchronous Transaction

The server shall support asynchronous transactions.

8.4 General Error Handling

In two-way transactions, after a transaction is initiated, the originating server is expecting the response from the processing server. In multi-way transactions, after a transaction is initiated, one server is expecting the response from the other server.

Whenever an error occurs, the processing server shall handle the exception based on its own policy. In addition, the processing server shall inform the other server involved in this transaction of such an exception by sending the Status primitive with an appropriate Status Code and optional Status Description. More precisely if the processing server sends Status Code 2XX then it SHALL be sent in the response primitive specified for the transaction. Otherwise Status primitive SHALL be used.

8.5 Invalid Transaction

A transaction is considered “valid” if the transaction completes within a reasonable period. The transaction validity time is the sum of the network latency, transaction processing time and an adjustable offset. Those three elements must be configurable at each service domain by the operator. Each operator shall define and configure the reasonable value of the three elements based on the network, hardware and software capacity to ensure the quality and performance of the service as well as the security.

A transaction is considered “invalid” if the transaction cannot complete within the validity time.

If an invalid transaction occurs, the service requestor shall not receive a response from the provider domain. The service requestor shall repeat the transaction for reasonable times until the transaction completes or the repeat times expire. If the transaction completes, the session shall go on for the future transactions. If the repeat times expire, the session shall be terminated by the requestor for security reason. In addition, the requestor-maintained session, which provides the other side with its own service, shall be terminated also.

The repeat times must be configurable at each service domain by the operator. Each operator shall define and configure a reasonable value of repeat times to ensure the quality and performance of the service as well as the security. The repeat times may be zero (0) if security is the major concern.

8.6 Unknown Transaction

A transaction is considered “unknown” if (1) the request message has syntactic error (e.g. not XML well-formed, XML invalid, data value error); or (2) any of the information elements of the Meta-Information is invalid; or (3) the service request refers to a service that doesn't correspond to the service agreement between the service requester and provider; or (4) the service response cannot be associated with the original service request.

If an unknown transaction happens in a service request, the provider domain shall return a status code indicating an “Unknown Transaction” error. If the unknown transaction happens frequently, the provider domain shall terminate the session as well as the session maintained by the requestor for security reasons.

The definition of “Unknown Transaction Frequency” is up to each server implementation. However, the value of “Unknown Transaction Frequency” must be configurable at each service domain by the operator. Each operator shall define and configure a reasonable value of “Unknown Transaction Frequency” to ensure the quality and performance of the service as well as the security. The server may terminate the sessions immediately after an unknown transaction happens if security is the major concern.

If an unknown transaction happens in a service response, the requestor shall perform the same behavior as that in handling “invalid transaction”.

8.7 General Status Code

All SSP transactions may return the following status codes:

· Continue (100) – for all complementary transactions

· Queued (101) – for all complementary transactions

· Started (102) – for all complementary transactions

· Server queued (104)

· Bad Request (400)

· Service not supported (405) – for all complementary transactions

· Service Unavailable (503)

· Invalid Timeout (504)

· Service not agreed (506) – except transactions required for the service agreement

· Internal Server Error (500)

· Invalid server session (620) – except transactions allowed outside of a session

· Multiple errors (900)

· Not logged in (604)

· Bad parameter (402)

· Forbidden (403)

· Not found (404)

9. Session Management

SSP session management includes session establishment, session termination and session maintenance. The CALLBACK connection establishment is used in the session establishment. The access control is supported in the whole session management.

9.1 Access Control

9.1.1 Session Establishment

The session is established through the connection establishment and initial authentication and authorization between the servers in different domains.

The CALLBACK connection establishment is used in the session establishment. The basic session establishment with the CALLBACK connection is as follows.

Prerequisites:

· A-Host-ID represents the unique access point to domain A.

· B-Host-ID represents the unique access point to domain B.

· Offline configuration agreement has been established between Server A and Server B.

· In Server A, Server B’s identity is registered with at least { B-Host-ID, B-Service-ID, B-password } tuple. An empty B-password is valid.

· In Server B, Server A’s identity is registered with at least { A-Host-ID, A-Service-ID, A-password } tuple. An empty A-password is valid.

· Both servers has registered and supported a common digest schema such as MD5 or SHA.

The basic steps are:

1. Server A originates a connection 1 to Server B based on its own registration record about Server B, containing { A-Service-ID, A-secret-token} tuple.

2. Server B looks for { A-Service-ID} in its own registration record. If it is not found, Server B closes the connection.

3. Server B initiates connection 2 to the Server A containing { B-Service-ID, B-secret-token }.

4. Server A looks for { B-Service-ID } in its own registration record. If it is not found, Server A closes the connection.

5. Server A sends the LoginRequest to Server B through connection 1, containing { A-Service-ID, A-password-digest }. The “A-password-digest” is generated with A-password and B-secret-token based on the common digest schema in the registration record.

6. Server B sends the LoginRequest to Server A through connection 2, containing { B-Service-ID, B-password-digest }. The “B-password-digest” is generated with B-password and A-secret-token based on the common digest schema in the registration record.

7. Server B verifies the A-password-digest. If the verification fails, it closes the connection.

8. Server B responds to Server A with the LoginResponse through connection 2, containing the status of the transaction and the new session information maintained by Server B. The LoginResponse may contain an optional list of Redirect (Host) Names. This is also called the Redirect List.

9. Server A verifies the B-password-digest. If the verification fails, it closes the connection.

10. Server A responds to Server B with the LoginResponse through connection 1, containing the status of the transaction and the new session information maintained by Server A. The LoginResponse may contain an optional list of Redirect (Host) Names. This is also called the Redirect List.

The secret-token is a random string generated by the connection originator at each server.

After step 10 succeeds, two domains are authenticated with each other. The session pair between Server A and Server B are established with trust over two connections, i.e. the connection pair. The connection pair (1 and 2) between A-Host-ID and B-Host-ID is called “Master Connection Pair”.

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the server does not include the “Redirect List” in its LoginResponse, the server does not support the redirect, and the server intends to use the “Master Connection Pair” to support the session. In this case, the other server shall not try the connection pair establishment unless a new redirect process takes place. Therefore, even if the server does not have its own “Redirect List”, but if the server supports the redirect of the other server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the “Redirect List” contains only its original Host-ID.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and Step 10, the redirect takes place. Otherwise the Master Connection Pair (1 and 2) shall be used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the domains want to use the new “Redirect List” as the physical connections to support the session. The connection pair(s) shall be handed over to the actual physical nodes, and the Master Connection Pair (1 and 2) shall be disconnected. If there is more than one Redirect (Host) Names in either of the “Redirect List”, a mesh of redirect connection pairs shall be initiated to support the session pair. A mesh means that every single host connects to all remote hosts.

[image: image12.wmf]

Figure 10. Mesh of redirect connection pairs

After establishing a session there may be an optional online service negotiation and service agreement depending on the offline agreement between two domains. If the online service negotiation and service agreement is needed, it shall be the first transaction in the session pair.

Two servers will provide each other with the IMPS services after the authorization (i.e. online service negotiation and service agreement) if needed, or otherwise right after the session establishment.

There are at least two connections, the connection pair, to carry the session pair. The servers may establish more than one connection pair to support the same session pair. The redirect connection pair between two redirect physical hosts in two domains is established through the same steps except that the redirect connection pair shall be bound to the existing session pair between two domains. The “Redirect List” in Step 8 and Step 10 of session establishment may have set up a mesh of more than one redirect connection pair. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be repeated except that the Master Connection Pair shall be bound to the existing session pair and no new session shall be created. The “Redirect List” shall initiate the establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is only allowed over the Master Connection Pair. Also note that no new session shall be established when setting up redirect connection pairs. There is always one session pair between two domains no matter how many redirect connection pairs are created. When creating redirect connection pairs online service negotiation and service agreements may not be made.

Connections are reusable. Each session may use some or all of the connections to transport its transactions. Each connection may be used by only one session, or reused by both sessions. In the simplest case, one possiblity is that Connection 1 will be used for the service session provided and managed by Server B, and connection 2 will be used for the service session provided and managed by Server A.

SSP Transport Binding document [SSP Trans] shall define how to bind session pairs to reusable connections by the underlying transport.

9.1.2 Session Maintenance

Server A and Server B shall maintain the session and keep the session alive by exchanging the live traffic if needed during the session. The initial interval is negotiated during session establishment. The interval may be adjusted by negotiating a new interval when exchanging the live traffic.

The session maintenance may be required periodically as an intermediary (e.g. proxy) may break the connection, resulting in terminating the session, if there is no data traffic for a reasonable time period. The session maintenance may also be required periodically in the case where the server policy requires the termination of the session if there is no transaction activity for a reasonable time period. If session maintenance is required for one session, it is usually also required for the other (reciprocal) session.

The interval must be configurable at each service domain by the operator. The operators shall define and configure a reasonable value of “interval” to ensure the quality and performance of the service as well as the security. The interval configuration must be adjustable on-the-fly.

The session maintenance shall be performed over all of the connections used by the current session, thus covering the connection maintenance.

9.1.3 Session Termination

The session shall be able to be terminated by either Server A or Server B at any time. Both of the sessions managed by Server A and Server B must be terminated to ensure security.

A session may be terminated normally. For example, if the service agreement expires, or the session expires. If any of the service agreements expires, or any of the sessions expire, both of the sessions are terminated.

A session may be terminated abnormally. For example, if an invalid session occurs, or the connection (due to the underlying transport) breaks. If all of the connections of one session break, both of the sessions are terminated. However, even if some connections are terminated due to load balancing or some other reason, as long as there is at least one connection for each session, the session pair SHALL NOT be terminated.

The session termination covers and implies the connection termination. Whenever the session is terminated, all of the connections used by this session shall also be terminated.

9.1.4 Session Re-establishment

If the sessions are terminated, two servers may re-establish the session based on their offline service agreement. The session re-establishment means creating a new session pair, and follows the same steps in establishing the session.

9.2 Primitives

9.2.1 The "SendSecretToken" Primitive

The "SendSecretToken" primitive is issued by the requestor server to send the secret token for the provider server as the first step of the CALLBACK connection establishment.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SendSecretToken

		Message identifier

		Transaction-ID

		M

		String

		Identifies the transaction originated from the initiating provider server.

		Service-ID

		M

		String

		Identifies the requestor server.

		Protocol

		M

		“WV-SSP”

		SSP protocol.

		Protocol-Version

		M

		“1.2”

		SSP protocol version.

		SecretToken

		M

		String

		Secret token originated by the requestor.

Table AUTONUM Information elements in SendSecretToken Primitive

9.2.2 The “LoginRequest” Primitive

The LoginRequest primitive is issued from the requestor server to create a new session or a new connection pair inside the existing session with the provider server. The LoginRequest primitive specifies initial status of the requestor server. The LoginRequest primitive MAY also contain the time-to-live attribute, which specifies the time that the session or the connection will expire. If time-to-live attribute is omitted, the requestor server requests an infinite session or connection until the service agreement expires.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		LoginRequest

		Message identifier

		Session-ID

		C

		String

		Identifies the session. It is present when creating additional redirect connection pairs within the existing session.

		Transaction-ID

		M

		String

		Identifies the transaction. It should be consistent with the Transaction-ID in the SendSecretToken originated from the provider server.

		Service-ID

		M

		String

		Identifies the requestor server.

		Redirect-HostID

		O

		String

		Identifies the requestor host if the connection is a redirected connection pair.

		Password-Digest

		M

		String

		The password digest generated with password and secret token based on a common digest schema (MD5 or SHA).

		Time-To-Live

		O

		Integer in Seconds

		Interval for a valid session or connection before expired. If omitted, the requestor server requests an infinite session or connection.

Table AUTONUM Information elements in LoginRequest Primitive

9.2.3 The “LoginResponse” Primitive

The LoginResponse primitive is issued from the provider server to accept the session creation or connection pair creation with the requestor server. In the response the provider server MAY specify the time-to-live of the current session. This time-to-live may be different from that in the LoginRequest from the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		LoginResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The necessary status information in a service response defined in 8.2.

		Time-To-Live

		O

		Integer in Seconds

		Interval for a valid session or connection before expired. This time may be any value other than zero.

		List-of-Hosts

		O

		Structure

		“Redirect” list, which indicates the actual connection addresses in its own domain.

Table AUTONUM Information elements in LoginResponse Primitive

9.2.4 The “LogoutRequest” Primitive

The LogoutRequest primitive allows the requestor server to close the session with the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		LogoutRequest

		Message identifier

		Session-ID

		M

		String

		Identifies the session.

		Transaction-ID

		M

		String

		Identifies the transaction.

Table AUTONUM Information elements in LogoutRequest

9.2.5 The “Disconnect” Primitive

The Disconnect primitive allows the provider server to indicate that it accepts the LogoutRequest from the requestor server and closes the session.

If the provider server does not receive any session maintenance update within the time-to-live interval (see KeepAlive primitive) from requestor server, the provider server will also close this session by sending the Disconnect message to the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		Disconnect

		Message identifier

		Session-ID

		C

		String

		Identifies the session. Present if the provider server initiates the Disconnect.

		Transaction-ID

		C

		String

		Identifies the transaction. Present if the provider server initiates the Disconnect.

		Status-Info

		C

		Structure of Status-Primitive

		The status information (see 8.2). Present if the requestor server Logout.

Table AUTONUM Information Elements in Disconnect Primitive

9.2.6 The “KeepAliveRequest” Primitive

The “KeepAliveRequest“ primitive allows the requestor server to maintain the session and update the time-to-live interval with the provider server. The session maintenance shall be performed over all of the connections used by this session, thus implies and covers the connection maintenance for each connection. The TTL may have different values for different connections.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		KeepAliveRequest

		Message identifier

		Session-ID

		M

		String

		Identifies the session.

		Transaction-ID

		M

		String

		Identifies the transaction.

		Time-to-live

		O

		Integer in Seconds

		Indicates the time-to-live of the session over this connection.

Table AUTONUM Information Elements in KeepAliveRequest Primitive

9.2.7 The “KeepAliveResponse” Primitive

The KeepAliveResponse primitive allows the provider server to maintain the session and update the time-to-live interval with the requestor server. The session maintenance shall be performed over all of the connections used by this session, thus implies and covers the connection maintenance for each connection. The TTL may have different value for different connection.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		KeepAliveResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Time-to-live

		O

		Integer in Seconds

		Indicates the time-to-live of the session over this connection.

Table AUTONUM Information Elements in KeepAliveResponse Primitive

9.3 Transactions

9.3.1 The “Login” Transaction

[image: image13.wmf]Step 1: A sends A's SendSecretToken in Connection 1

Server A

Server B

Step 3: B sends B's SendSecretToken in Connection 2

Step 5: A sends A's LoginRequest in Connection 1

Step 6: B sends B's LoginRequest in Connection 2

Step 8: B sends A's LoginResponse in Connection 2

Step 10: A sends B's LoginResponse in Connection 1

Figure 11. The “Login” Transaction

Session establishment and additional redirect connection establishment are achieved through a “Login” transaction.

The Server A performs Step 1 and sends A’s SendSecretToken to Server B through Connection 1. After the Server B performs Step 2, the Server B performs Step 3 and sends B’s SendSecretToken to Server A through Connection 2. After the Server A performs Step 4, the Server A performs Step 5 and sends A’s LoginRequest to Server B through Connection 1. The Server B performs Step 6 and sends B's LoginRequest to Server A through Connection 2. Finally, the Server B performs Steps 7 & 8, and replies with A’s LoginResponse to Server A through Connection 2, and A performs Steps 9 & 10 and replies with B’s LoginResponse to Server B through Connection 1.

Step 1, Step 6 and Step 10 share the same Transaction-ID that is generated by Server A in step 1.

Step 3, Step 5 and Step 8 share the same Transaction-ID that is generated by Server B in step 3.

After step 10 succeeds, two domains are authenticated with each other. The session pair between Server A and Server B is established with trust over two connections, i.e. the connection pair. The connection pair (1 and 2) between A-Host-ID and B-Host-ID is called “Master Connection Pair”.

The “Redirect List” reflects the server’s desire and capability to handle the redirect. If the server does not include the “Redirect List” in its LoginResponse, the server does not support the redirect, and the server intends to use the “Master Connection Pair” to support the session. In this case, the other server shall not try a connection pair establishment unless a new redirect process takes place. Therefore if the server does not have its own “Redirect List”, but if the server supports the redirect of the other server, it MUST provide a “Redirect” List in the LoginResponse. In this case, the “Redirect List” contains its original Host-ID only.

If the “Redirect List” is included in both of the LoginResponses, i.e. in both Step 8 and Step 10, the redirect takes place. Otherwise the Master Connection Pair (1 and 2) shall be used to support the session.

If the “Redirect List” is included in the LoginResponse in Step 8 and Step 10, both of the domains should use the new “Redirect List” as the physical connections to support the session. The connection pair(s) shall be handed over to the actual physical nodes, and the Master Connection Pair (1 and 2) shall be disconnected. If there are more than one Redirect (Host) Names in either of the “Redirect List”, a mesh of redirect connection pairs shall be initiated to support the session pair.

There are at least two connections, the connection pair, to carry the session pair. The servers may establish more than one connection pair to support the same session pair. The redirect connection pair between two redirect physical hosts in two domains is established through the same steps except that the redirect connection pair shall be bound to the existing session pair between the two domains. The “Redirect List” in Step 8 and Step 10 of session establishment may have set up a mesh of more than one redirect connection pair. Within the session, if additional (mesh of) redirect connection pair(s) is needed, the same Session Establishment steps with the “Redirect List” in Step 8 and Step 10 shall be repeated except that the Master Connection Pair shall be bound to the existing session pair and no new session shall be created. The “Redirect List” shall initiate the establishment of a new mesh of redirect connection pairs. Note that the “Redirect List” is only allowed over Master Connection Pair. Also note that no new session shall be established when setting up redirect connection pairs. There is always one session pair between two domains no matter how many redirect connection pairs are created. While creating redirect connection pairs an online service negotiation and service agreement may not be made.

		Primitive

		Direction

		SendSecretToken

		Requestor Server (Provider Server

		LoginRequest

		Requestor Server (Provider Server

		LoginResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for Login Transaction

9.3.2 The “Logout” Transaction

[image: image14.wmf]LogoutRequest

Requestor

Server

Provider

Server

Disconnect

Disconnect (for the other session)

Figure 12. The “Logout” Transaction

Session termination is achieved through “Logout” and “Disconnect” transactions. All of the connections used by this session shall be terminated as well after the session is finished.

The requestor server can logout from the provider server and close the session through a “Logout” transaction. In addition the requestor also shall terminate the other session through a “Disconnect” transaction that is illustrated in the dashed line.

The requestor server sends a LogoutRequest request to the provider server. After the provider server finishes processing the request, it sends a Disconnect response to the requestor server to indicate the close of the session.

		Primitive

		Direction

		LogoutRequest

		Requestor Server (Provider Server

		Disconnect

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for Logout Transaction

9.3.3 The “Disconnect” Transaction

[image: image15.wmf]Requestor

Server

Provider

Server

Disconnect

LogoutRequest (for the other session)

Disconnect (for the other session)

Figure 13. The “Disconnect” Transaction

The provider server may close the session through a “Disconnect” transaction. Under such conditions the provider also shall terminate the other session through a “Logout” transaction that is illustrated in the dash lines.

		Primitive

		Direction

		Disconnect

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for Disconnect Transaction

9.3.4 The “KeepAlive” Transaction

[image: image16.wmf]KeepAliveRequest

Requestor

Server

Provider

Server

KeepAliveResponse

Figure 14. The “KeepAlive” Transaction

Session maintenance is achieved through the “KeepAlive” transaction. A “KeepAlive” transaction shall be performed over all of the connections used by this session, thus implies and covers the connection maintenance for each connection. The TTL may have different value for different connection.

The requestor server updates the time-to-live interval and keeps the session and the connection(s) alive through the “KeepAlive” transaction(s).

The requestor server sends a KeepAliveRequest request to the provider server. After the provider server finishes processing the request, it sends a KeepAliveResponse response to the requestor server to indicate the status of the session over this connection. The KeepAliveRequest may carry a new time-to-live interval. The time-to-live value returned in the KeepAliveResponse response may differ from that in the request.

The “KeepAlive” transaction may be required periodically in case an intermediary (e.g. proxy) breaks the connection, resulting in terminating the session, if there is no data traffic for a reasonable time period.

The “KeepAlive” transaction may be required periodically in case the server policy requires the termination of the session if there is no transaction activity for a reasonable time period.

If “KeepAlive” is required for one session, it is usually also required for the other, complementary, session.

		Primitive

		Direction

		KeepAliveRequest

		Requestor Server (Provider Server

		KeepAliveResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for KeepAlive Transaction

9.4 Status Code

9.4.1 “Login” Transaction

· Unknown Service-ID (606)

· Redirection refused (607)

· Invalid password. (608)

9.4.2 “Logout” / “Disconnect” Transaction

· Session Expired (600)

· Connection expired (609)

10. Service Management

The service management in SSP enables the Wireless Village servers to mutually agree on the usable Wireless Village services. The usable services offered by a server are arranged in a negotiation tree.

10.1 Service Structure

The Wireless Village services are organized in a hierarchy:

· Features – a specific set of related functionality

· Functions – defines a set of related transactions for each feature

· Transactions – defines a set of related primitives for each function

· Information Elements – the lowest level building blocks of the transactions

A Wireless Village server may support all or a subset of the features. However, if a WV server supports a feature, some functions and transactions must be supported to ensure minimal interoperability [SSP SCR]. The remaining functions and transactions are optional. Moreover, there are multiple choices in the semantics for some of the functions and transactions, e.g. the general search transaction with search-type USER-ID is mandatory while all other search types are optional.

The optional functions, transactions, and choices offered by a server are arranged in a service tree, as shown in Figure 14. Each node in the tree specifies the functions, transactions, and choices that must be supported by the server that includes that node in its Service-List.

Each node in the service tree defines a group of one or several transactions or choices. The content of each node and how the tree should be interpreted are described below. The transactions that are not described are considered mandatory functions that must be always supported in the servers.

10.2 General

If a Feature node is included in the Service-List, all mandatory requirements for that specific feature must be supported as specified in [SSP SCR].

If a lower level node is included in the Service-List, all transactions or choices specified by that node must be supported.

10.3 SAP Feature

· Service Negotiation node includes the following transactions

· GetAvailableService

· ServiceIndication

· SetServiceAgreement

· User Profile management node includes the following transactions

· GetUserProfile

· UpdateUserProfile

· Service Relay node indicates if the SAP supports service relay including routing

[image: image17.wmf]

WV SSP Services

Common IMPS

Feature

SAP

 Feature

IM

 Feature

Service

 negotiation

User Profile

 management

Invite cases

Presence

attributes

Shared

contents

Instant

messages

Group

Search

User

Group

Auth-

orization

Watcher List

Attribute List

Send

Message

Groups

Contacts

Push msg

Get msg

Notify msg

Delivery Mtd

Reject msg

Get msg list

Delivery Report

Group Mgmt

Get member

Member mgmt

Reject list

Group

Feature

Complement

Invite

Presence

 Feature

Contact List

Addr

Blocking

Contact List

Get

Contact List

Update

VerifyUser

Group History

Service Relay

Msg List

Figure 15: SSP Service tree

10.4 Common IMPS feature

· Invite node includes the Invitation/Cancel-Invitation transactions

· All supported invite types must be included in the Service List (Presence, IM, Shared Content, Group)

· Complementary Invite node includes the Complementary Invitation/Cancel-Invitation transactions

· If the Complementary invite node is included in the Service-List, the Invite cases node must be included as well.

· Search node includes the optional choices for the GeneralSearch. All supported search types must be included in the Service List i.e.

· User: Support Presence attributes criteria

· Group: Support Group related criteria

· VerifyUser node includes the following transactions:

· VerifyWVID

10.5 Presence Feature

· Contact List Get node includes the following transactions:

· GetContactList

· GetListMember

· GetListProperties

· Contact List Update node includes the following transactions:

· CreateContactList

· DeleteContactList

· AddListMember

· RemoveListMember

· SetListProperties

· Authorization node includes the following transactions

· ReactiveAuthorizarion

· CancelAuthorization

· GetReactiveAuthStatus

· Watcher List node includes the following transaction

· GetWatcherList

· Attribute List node includes the following transactions

· CreateAttributeList

· DeleteAttributeList

· GetAttributeList

· Contact List Addr node indicates if the contacts list is valid for addressing users in the following transactions

· Subscribe

· UnSubscribe

· GetPresence

· UpdatePresence

· Suspend Presence

10.6 IM Feature

· Send Msg node includes the optional choices for the SendMessage and ForwardMessage transactions. All supported ID types must be included in the Service List i.e.

· Group-ID: Support recipient as Group-ID and addressing by screen name

· ContactList-ID: Support recipients listed by Contact List ID

· Push Msg node includes the following transaction

· PushMessage

· Notify Msg node includes the following transaction

· MessageNotification

· Get Msg node includes the following transaction

· GetMessage

· Delivery Mtd node includes the following transaction

· SetMessageDeliveryMethod

· Get Msg List node includes the following transaction

· GetMessageList without group functionality

· Reject Msg node includes the following transaction

· RejectMessage

· Delivery Report node includes the following transaction

· NotifyDeliveryStatusReport

· Blocking node includes the following transactions

· BlockUser

· GetBlockedList

· Group History node indicates if the IM service element supports group chat cashing functionality.

· Msg List node includes the optional choices for the GetMessageList transaction (Undelivered messages)

10.7 Group Feature

· Group Mgmt node includes the following transactions

· CreateGroup

· DeleteGroup

· Get Member node includes the following transaction

· GetJoinedMember

· Member mgmt node includes the following transactions

· AddGroupMember

· GetGroupMember

· RemoveGroupMember

· MemberAccess

· Reject list node includes the following transactions

· RejectList

10.8 Primitives

10.8.1 The “GetServiceRequest” Primitive

The GetServiceRequest primitive is issued from the requestor server to discover the available services provided by the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetServiceRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-information

		The necessary meta-information in a service request defined in 8.1.

Table AUTONUM Information elements in GetServiceRequest Primitive

10.8.2 The “ServiceList” Primitive

The ServiceList primitive is issued from the provider server to indicate its available services.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ServiceList

		Message identifier

		Meta-Information

		C

		Structure of Meta-information

		The necessary meta-information in a service request defined in 8.1. Present if the provider initiates ServiceIndication.

		Status-Info

		C

		Structure of Status-Primitive

		The status information (see 8.2). Present if the requestor initiates GetServiceRequest.

		Service-List

		M

		Structure

		List of available services in a tree structure.

Table AUTONUM Information elements in ServiceList Primitive

10.8.3 The “ServiceNegotiation” Primitive

The ServiceNegotiation primitive is issued from the requestor server to negotiate the desired services that will be committed and provided by the provider server. The provider server sends the ServiceAgreement primitive to confirm the agreed services with the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ServiceNegotiation

		Message identifier

		Meta-Information

		M

		Structure of Meta-information

		The necessary meta-information in a service request defined in 8.1.

		Desired-Service-List

		M

		Structure

		List of desired services in a tree structure

		Desired-Sub-Protocol

		O

		String

		Desired sub-protocol and its version for proprietary protocol extensions

		Time-to-live

		O

		Integer in Seconds

		Indicates the desired time-to-live of the service agreement

Table AUTONUM Information elements in ServiceNegotiation Primitive

10.8.4 The “ServiceAgreement” Primitive

After the provider server receives the ServiceNegotiation primitive from the requestor server, the provider server shall send the ServiceAgreement primitive to confirm the agreed services with the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ServiceAgreement

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Agreed-Service-List

		M

		Structure

		List of agreed services in a tree structure

		Agreed-Sub-Protocol

		O

		String

		Agreed sub-protocol and its version for proprietary protocol extensions

		Agreed-Time-to-live

		O

		Integer in Seconds

		Indicates the agreed time-to-live of the service agreement

Table AUTONUM Information elements in ServiceAgreement Primitive

10.9 Transactions

10.9.1 The “GetAvailableService” Transaction

[image: image18.wmf]GetServiceRequest

Requestor

Server

Provider

Server

ServiceList

Figure 16. The “GetAvailableService” Transaction

SSP supports service discovery among the WV domains. The services include Common Features, Presence Service, Instant Messaging (IM) Service, Group Service and Shared Content Service that are defined in “Features and Functions” document.

The requestor server discovers the available services provided by the provider server through a “GetAvailableService” Transaction.

The requestor server sends a GetServiceRequest request to the provider server inquring about the available services. After the provider server finishes processing the request, it sends a ServiceList response to the requestor server with the available service information.

		Primitive

		Direction

		GetServiceRequest

		Requestor Server (Provider Server

		ServiceList

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetAvailableService Transaction

10.9.2 The “ServiceIndication” Transaction

[image: image19.wmf]Requestor

Server

Provider

Server

ServiceList

Figure 17. The “ServiceIndication” Transaction

The provider server also informs the requestor server of any change in the available services through a “ServiceIndication” Transaction. It depends on the offline service agreement between two domains to decide what the subsequent actions to be taken are.

The provider server sends a ServiceList request to the requestor server and indicates the available services on-the-fly.

		Primitive

		Direction

		ServiceList

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for ServiceIndication Transaction

10.9.3 The “SetServiceAgreement” Transaction

[image: image20.wmf]ServiceNegotiation

Requestor

Server

Provider

Server

ServiceAgreement

Figure 18. The “SetServiceAgreement” Transaction

The service agreement between the requestor and provider servers is established through a “SetServiceAgreement” Transaction.

The ServiceNegotiation request is issued from the requestor server to request and negotiate the agreement on the services that will be committed to and provided by the provider server. The provider server sends the ServiceAgreement response to confirm the agreement with the requestor server.

After a service agreement is confirmed, the servers may perform interoperable IMPS services.

		Primitive

		Direction

		ServiceNegotiation

		Requestor Server (Provider Server

		ServiceAgreement

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SetServiceAgreement Transaction

10.10 Status Code

· Version Not Supported (505)

11. Interoperability Management – User Profile Management

These transactions are needed for the complementary services.

11.1 User Profile

User Profile consists of general user information and service-specific user information. The general user information includes the services to which the user subscribes, the service status (active / inactive), the privacy status with regard to network service capabilities (e.g. user location, user interaction), terminal capabilities, user account status, etc. The service-specific user information includes the user-related information for each specific service element.

The general user information is defined as follows:

		General UP Attribute

		Value

		Description

		User.Account.Status

		“ON” | “OFF”

		Status of user account – active or inactive

		User.Privacy.Location

		“ON” | “OFF”

		Status of location privacy – private or not

		User.Privacy.Interaction

		“ON” | “OFF”

		Status of Interaction privacy – private or not

		Services.Common

		“YES” | “NO”

		Whether or not Common service is subscribed

		Services.Common.PSE

		Domain

		PSE of Common service. See 6.3.1 for Domain definition.

		Services.Common.Status

		“ON” | “OFF”

		Status of Common service – active or inactive

		Services.IM

		“YES” | “NO”

		Whether or not IM service is subscribed

		Services.IM.PSE

		Domain

		PSE of IM service. See 6.3.1 for Domain definition.

		Services.IM.Status

		“ON” | “OFF”

		Status of IM service – active or inactive

		Services.Presence

		“YES” | “NO”

		Whether or not Presence service is subscribed

		Services.Presence.PSE

		Domain

		PSE of Presence service. See 6.3.1 for Domain definition.

		Services.Presence.Status

		“ON” | “OFF”

		Status of Presence service – active or inactive

		Services.Group

		“YES” | “NO”

		Whether or not Group service is subscribed

		Services.Group.PSE

		Domain

		PSE of Group service. See 6.3.1 for Domain definition.

		Services.Group.Status

		“ON” | “OFF”

		Status of Group service – active or inactive

		Services.Content

		“YES” | “NO”

		Whether or not Content service is subscribed

		Services.Content.PSE

		Domain

		PSE of Content service. See 6.3.1 for Domain definition.

		Services.Content.Status

		“ON” | “OFF”

		Status of Content service – active or inactive

		Terminal.Delivery

		“PUSH” | “NOTIFY”

		Preferred message delivery method in client

		Terminal.Content.type

		MIME {, MIME }

		Supported MIME types in client. See RFC 2045, RFC 2046 and WAP Forum for standard MIME.

		Terminal.Content.encoding

		encoding {, encoding }

		Supported transfer encoding in client. See RFC 2045 for standard “transfer-encoding”.

		Terminal.Content.length

		Integer in Byte

		Supported message size in client for “PUSH”

		Terminal.Content.protocol

		Protocol {, Protocol }

		Supported out-band protocol in client for binary message retrieval.

		x.key

		String

		A service provider may define new key-values. These service provider specific keys are prefixed with x[.].

Table AUTONUM General User Profile

Each piece of user profile information is organized in a “(name, value)” pair. The General User Profile is the list of “(name, value)” pairs, which are separated with “; ”. An example of a General User Profile is as follows:

(User.Account.Status, ON); (Services.IM, ON); (Services.IM.PSE, im.wv.com); (Services.IM.Status, ON); (Terminal.Delivery, PUSH); (Terminal.Content.type, text/plain; charset=US-ASCII, text/xml; charset=UTF-8, image/wbmp); (Terminal.Content.encoding, BASE64); (Terminal.Content.length, 256); (Terminal.Content.protocol, HTTP, SIP, RTP, RTSP)); (x.MaxNumberOfConatctLists, 100)

11.2 Primitives

11.2.1 The “GetUserProfileRequest” Primitive

The GetUserProfileRequest primitive is issued to discover the available user profile information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetUserProfileRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-information

		The necessary meta-information in a service request defined in 8.1.

		User-ID-List

		M

		Structure

		Identifies the users whose User Profiles are requested. If it is empty, all users’ User Profiles are requested.

Table AUTONUM Information elements in GetUserProfileRequest Primitive

11.2.2 The “UserProfile” Primitive

The UserProfile primitive is issued from the provider server to provide the user profile information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		UserProfile

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		User-Profile-List

		M

		Structure of User-Profile

		A list of User Profiles. Each User profile contains User-ID and a list of (name, value) pairs.

Table AUTONUM Information elements in UserProfile Primitive

11.2.3 The “UpdateUserProfileRequest” Primitive

The UpdateUserProfileRequest primitive is issued to update the user profile information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		UpdateUserProfileRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Updated-User-Profile-List

		M

		Structure of User-Profile

		A list of User Profiles. Each User profile contains User-ID and a list of (name, value) pairs.

Table AUTONUM Information elements in UpdateUserProfileRequest Primitive

11.3 Transactions

11.3.1 The “GetUserProfile” Transaction

[image: image21.wmf]GetUserProfileRequest

Requestor

Server

Provider

Server

UserProfile

Figure 19. The “GetUserProfile” Transaction

SSP supports the exchange of user profile information among the WV domains including the list of services to which a user subscribes, the service status (active / inactive), privacy status with regard to network service capabilities (e.g. user location, user interaction), terminal capabilities etc. The user profile information is discovered through a “GetUserProfile” transaction.

The GetUserProfileRequest request is issued from the requestor server to request the user profile information from the provider server. The provider server sends the UserProfile response to provide the requestor server with the user profile information.

		Primitive

		Direction

		GetUserProfileRequest

		Requestor Server (Provider Server

		UserProfile

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetUserProfile Transaction

11.3.2 The “UpdateUserProfile” Transaction

[image: image22.wmf]Status

Requestor

Server

Provider

Server

UpdateUserProfile

Figure 20. The “UpdateUserProfile” Transaction

The requestor server may update the user profile information in the provider server through an “UpdateUserProfile” Transaction.

The requestor server sends an UpdateUserProfile request to the provider server and provides the updated user profile information. After the provider server finishes processing the request, it sends a Status response to the requestor server and confirms that it has updated the user profile information.

		Primitive

		Direction

		UpdateUserProfile

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for UpdateUserProfile Transaction

11.4 Status Code

· Unknown user (531)

12. Service Relay – Common IMPS Features

SSP supports the service relay among the WV servers and the SSP Gateways including the functional relay of the common IMPS features, contact list, presence features, IM features, group features and shared content features that are defined in the “Features and Functions” document.

12.1 Overview

This chapter focuses on the functional relay of common IMPS features. Because of the server interoperation nature, the SSP has its own requirement on meta-information and information elements in the primitives at transaction level. The complete primitives and transaction flows of common IMPS features at SSP semantics level are defined in the following two sections.

Please refer to the CSP document to determine how to relay the common IMPS features from client-server interaction (CSP) to server-server interoperation (SSP).

12.2 Primitives

12.2.1 The “SearchRequest” Primitive

The SearchRequest primitive allows a user to search for users or groups based on different properties of the user or group. The user may limit the number of search results retrieved at one time. The user may continue the search and go through all the results.

The search is performed using a list of one or more Search-Pairs. A Search-Pair consists of a Search-Element and a Search-String. The Search-Element indicates which property of the user / group shall be searched for the Search-String. When more than one search pair is specified in the primitive, a logical AND operation is assumed among the different pairs. Every Search-Element may be present only once within the same search request.

The search result is restricted in the same manner presence information is restricted when requested. If the searching user is not proactively authorized to see certain presence values for a user included in the search result, that presence value shall not be included. If the unauthorized presence attribute is part of the search criteria, that user shall not be included in the search result at all. Users that want to have certain presence attributes searchable should expose them through their default attribute list.

The result of a user search is always user-ID. Similarly, the result of a group search is always group-ID.

Search-Element for User Search (the result is always user-ID) is listed as follows:

		Search-Element

		Description

		USER_ID

		The Search-String is a substring of a user-ID.

		USER_FIRST_NAME

		The Search-String is a substring of a user’s firstname.

		USER_LAST_NAME

		The Search-String is a substring of a user’s lastname.

		USER_EMAIL_ADDRESS

		The Search-String is a substring of a user’s e-mail address.

		USER_ALIAS

		The Search-String is a substring of a user’s alias.

		USER_MOBILE_NUMBER

		The Search-String is a mobile number. [E.164].

		USER_ONLINE_STATUS

		The Search-String is an online status value.

Search-Element for Group Search (the result is always group-ID) is listed as follows:

		Search-Element

		Description

		GROUP_ID

		The Search-String is a substring of a group-ID.

		GROUP_NAME

		The Search-String is a substring of a group’s name (part of group properties).

		GROUP_TOPIC

		The Search-String is a substring of a group’s topic (part of group properties).

		GROUP_USER_ID_JOINED

		The Search-String is a substring of a user-ID.

		GROUP_USER_ID_OWNER

		The Search-String is a user-ID. Search result contains the list of groups owned by the specified user.

		GROUP_USER_ID_AUTOJOIN

		The Search-String is a user-ID. Search result contains the list of groups that have the AutoJoin property set to “T” for the specified user.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SearchRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Search-Pair-List

		C

		Structure

		Search criteria in terms of properties. It is present only in the 1st search request.

		Search-Limit

		C

		Integer

		Indicates the number of maximum search results that can be received at one time. It is Present only in the 1st search request.

		Search-ID

		C

		String

		Uniquely identifies a search transaction. The server assigns this ID when the first search is performed, thus it is not present in the 1st search request.

		Search-Index

		C

		Integer

		Indicates that the results shall be sent starting from this particular index. It is present only when the search is continued.

Table AUTONUM Information elements in SearchRequest Primitive

12.2.2 The “SearchResponse” Primitive

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SearchResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Search-ID

		C

		String

		Uniquely identifies a search transaction. The server assigns this ID when the 1st search is performed successfully.

		Search-Findings

		M

		Integer

		Indicates the number of current findings.

		Completed

		M

		Boolean

		Indicates if the client can expect new results. ‘No’ if server may provide new results (still searching), ‘Yes’ if new results will not be provided.

		Search-Index

		M

		Integer

		Indicates the index of the last result. This provides the user with the information of where to continue the next search.

		Search-Results

		C

		Structure

		Search results.

Table AUTONUM Information elements in SearchResponse Primitive

12.2.3 The “StopSearchRequest” Primitive

The StopSearchRequest primitive allows a user in the requestor server to indicate to the provider server that the search and / or its result is not needed any more from a previously issued search request.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		StopSearchRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Search-ID

		M

		String

		Identifies the search to be invalidated.

Table AUTONUM Information elements in StopSearchRequest Primitive

12.2.4 The “InviteRequest” Primitive

The InviteRequest primitive allows the user in the requestor server to invite a list of other users to join a discussion / chat group, or to exchange messages, or to share presence information, or to share content.

The invited user may be a single user identified by its User-ID or Screen-Name. A list of users may be invited using a Contact-List-ID or Group-ID. If Invite-Type is GM, the Invited-User is the group ID.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		InviteRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Invite-ID

		M

		String

		Identifies this invitation.

		Invite-Type

		M

		Enum {“GR”, “IM”, “PR”, “SC”,“GM”}

		Inviting for Group/chat (GR), Messaging (IM), Presence (PR), Content (SC)) or Group Membership (GM).

		Inviting-User

		M

		Structure

		Identifies the requesting user who sends the invitation (User-ID and / or Screen-Name)

		Invited-User

		M

		Structure

		Identifies the user(s) to be invited (User-ID and / or Screen-Name, or Contact-List-ID). If Invite-Type is GM, identifies the group ID.

		Invite-Group-ID

		C

		String

		Identifies the group. It is mandatory if InviteGroup (GR) or Group Membership (GM). Otherwise, not present.

		Invite-Presence-Attribute-List

		CO

		Structure

		Identifies the Presence Attributes that the inviter wants to share with the invitees. It is optional if InvitePresence (PR). Otherwise, not present.

		Invite-Content-ID-List

		CO

		Structure

		Identifies the related shared content as a list of URLs. It is optional if InviteContent (SC). Otherwise, not present.

		Invite-Reason

		O

		String

		Textual description of the invitation.

		Validity

		O

		Integer in seconds

		Indicates the interval over which the invitation is valid.

Table AUTONUM Information elements in InviteRequest Primitive

12.2.5 The “InviteResponse” Primitive

The InviteResponse primitive allows the provider server to return the result of the invitation to the requestor server, representing the inviting user.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		InviteResponse

		Message identifier.

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Invite-ID

		M

		String

		Identifies this invitation.

		Inviting-User

		M

		Structure

		Identifies the requesting user who sends the invitation (User-ID and / or Screen-Name)

		Invite-Acceptance

		M

		Boolean

		Indicates if the user accepts the invitation or not.

		Responding-User

		M

		Structure

		Identifies the responding invited user (User-ID and / or Screen-Name). If Invite-Type was GM, identifies the group ID.

		Invite-Response

		O

		String

		Textual description, why the invited user accepted/rejected the invitation.

Table AUTONUM Information elements in InviteResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one “InviteResponse” primitive if the provider server is able to collect the response from the invited users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

12.2.6 The “InviteUserRequest” Primitive

The InviteUserRequest primitive allows the provider server to invite the user(s) in the requestor server to join a discussion / chat group, or to exchange messages, or to share presence information, or to share content or to become a group member.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		InviteUserRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Invite-ID

		M

		String

		Identifies this invitation.

		Invite-Type

		M

		Enum { “GR”, “IM”, “PR”, “SC” , “GM” }

		Inviting for Group/chat (GR), Messaging (IM), Presence (PR), Content (SC) or Group Membership (GM).

		Inviting-User

		M

		Structure

		Identifies the requesting user who sends the invitation (User-ID and / or Screen-Name)

		Invited-User

		M

		Structure

		Identifies the user(s) to be invited (User-ID and / or Screen-Name, or List-of-User-IDs)

		Invite-Group-ID

		C

		String

		Identifies the group. It is mandatory if InviteGroup (GR) or Group Membership (GM). Otherwise, not present.

		Invite-Presence-Attribute-List

		CO

		Structure

		Identifies the Presence Attributes that the inviter wants to share with the invitees. It is optional if InvitePresence (PR). Otherwise, not present.

		Invite-Content-ID-List

		CO

		Structure

		Identifies the related shared content as a list of URLs. It is optional if InviteContent (SC). Otherwise, not present.

		Invite-Reason

		O

		String

		Textual description of the invitation.

		Validity

		O

		Integer in seconds

		Indicates the interval in which the invitation is valid.

Table AUTONUM Information elements in InviteUserRequest Primitive

12.2.7 The “InviteUserResponse” Primitive

The InviteUserResponse primitive allows the requestor server, representing the invited users, to return the result of the invitation to the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		InviteUserResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Invite-ID

		M

		String

		Identifies this invitation.

		Inviting-User

		M

		Structure

		Identifies the requesting user who sends the invitation (User-ID, Screen-Name)

		Invite-Acceptance

		M

		Boolean

		Indicates if the user accepts the invitation or not.

		Responding-User

		M

		Structure

		Identifies the responding invited user (User-ID and / or Screen-Name). If Invite-Type was GM, identifies the group ID.

		Invite-Response

		O

		String

		Textual description, why the invited user accepted/rejected the invitation.

Table AUTONUM Information elements in InviteUserResponse Primitive

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one “InviteUserResponse” primitive if the requestor server, which represents the invited users, is able to collect the response from the invited users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

12.2.8 The “CancelInviteRequest” Primitive

The CancelInviteRequest primitive allows the user in the requestor server to cancel its previous invitation.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CancelInviteRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Invite-ID

		M

		String

		Identifies the invitation.

		Canceling-User

		M

		Structure

		Identifies the requesting user who cancels the invitation (User-ID and / or Screen-Name)

		Canceled-User

		M

		Structure

		Identifies the user(s) to whom the invitation will be canceled (User-ID and / or Screen-Name, or Contact-List-ID)

		Canceled-Content-ID-List

		C

		Structure

		Identifies the related shared content as a list of URLs which will be canceled.

		Cancel-Reason

		O

		String

		Textual description of the cancel.

Table AUTONUM Information elements in CancelInviteRequest Primitive

12.2.9 The “CancelInviteUserRequest” Primitive

The CancelInviteUserRequest primitive allows the provider server to cancel its previous invitation to the users in the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CancelInviteUserRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Invite-ID

		M

		String

		Identifies the invitation.

		Canceling-User

		M

		Structure

		Identifies the requesting user who cancels the invitation (User-ID and / or Screen-Name)

		Canceled-User

		C

		Structure

		Identifies the user(s) to whom the invitation will be canceled (User-ID and / or Screen-Name, or List-of-User-IDs). Not present if the invitation was to a group membership

		Canceled-Content-ID-List

		C

		Structure

		Identifies the related shared content as a list of URLs which will be canceled.

		Cancel-Reason

		O

		String

		Textual description of the cancel.

Table AUTONUM Information elements in CancelInviteUserRequest Primitive

12.2.10 The “VerifyIDRequest” Primitive

The VerfiyIDRequest primitive allows the requestor server to verify that userid(s) are valid in the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		VeifyIDRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		WV-ID-List

		M

		Structure

		The list contains the WV-ID’sto be verified, and optionally the time when the WV ID was created

Table AUTONUM Information elements in VerfifyIDRequest Primitive

12.2.11 The “VerifyIDResponse” Primitive

The VerifyIDResponse primitive allows the provider server to return the result of the verification, and the list of valid WV IDs along with the time when the valid WV ID was created.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		VerifyUseridResponse

		Message identifier.

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		WV-ID-List

		M

		Structure

		The list contains the valid WV Ids along with the time when the valid WV ID was created.

Table AUTONUM Information elements in VerifyIDResponse Primitive

12.2.12 The “GetReactiveAuthStatusRequest” Primitive

The “GetReactiveAuthStatusRequest“ primitive is used for the requestor server to retrieve the current status of reactive authorizations.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetReactiveAuthStatusRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 5.1).

		User-ID-List

		O

		Structure

		Identifies the user(s) to retrieve the reactive authorization status for.

Table 1 Information elements in CancelAuthRequest Primitive

12.2.13 The “GetReactiveAuthStatusResponse” Primitive

The “GetReactiveAuthStatusResponse“primitive is used for the provider server to send the current reactive authorization status to the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetReactiveAuthStatusResponse

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 5.1).

		ReactiveAuthStatus-List

		M

		Structure

		List of users and presence attributes and corresponding state of the reactive authorization function.

Table 1 Information elements in CancelAuthRequest Primitive

12.3 Transactions

12.3.1 The “GeneralSearch” Transaction

[image: image23.wmf]SearchRequest (1st)

Requestor

Server

Provider

Server

SearchResponse

SearchRequest (continued)

SearchResponse

Figure 21. The “GeneralSearch” Transaction

The requestor server sends the SearchRequest message to the provider server including the Search-Pair-List, the Search-Online-Status (T-Online, F-Offline, N/A-both), the type of the search and the Search-Limit (maximum number of results at a time). The provider server responds with the SearchResponse message, which includes the Status of the search. If the search is successful, it includes the Search-ID, the Search-Index (a continuation index to indicate where the search should be continued), the Search-Findings (the number of items found that match the criteria so far), and the Search-Results (the actual data).

The requestor server may continue the search. In this case the SearchRequest message includes only the Search-ID and the Search-Index. The provider server responds with the SearchResponse, but the message includes only the Result, the Search-Index, the Search-Findings and the Search-Results.

The requestor server may modify the Search-Index value, so that the search may be continued at a different place. The Search-Index is valid until a new search is performed or the session ends (a previous search is invalidated when a new search is started).

		Primitive

		Direction

		SearchRequest

		Requestor Server (Provider Server

		SearchResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GeneralSearch Transaction

12.3.2 The “StopSearch” Transaction

[image: image24.wmf]StopSearchRequest

Requestor

Server

Provider

Server

Status

Figure 22. The “StopSearch” Transaction

The “StopSearch” transaction allows the requestor server to indicate to the provider server that the search and / or the results are not needed from a previously issued search request. The requestor server sends the StopSearchRequest message to the provider server including the Search-ID. The provider server invalidates the indicated search, and replies with a Status message. The invalidated Search-ID cannot be used after invalidation.

		Primitive

		Direction

		StopSearchRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for StopSearch Transaction

12.3.3 The “Invitation” Transaction

A user may invite other user(s) to join a discussion / chat group, or to exchange messages, or to share presence values list, or to share content.

There are two service models with corresponding transaction flows.

12.3.3.1 Basic Invitation transaction

[image: image25.wmf]

Inviting

Client

Requestor

Server 1

Provider

Server

Invited

Client

InviteRequest/CSP

InviteRequest

InviteUserRequest/CSP

InviteResponse/CSP

InviteResponse

Status/CSP

InviteUserResponse/CSP

Status/CSP

Status/CSP

Status

Status

Status/CSP

Figure 23. The “Basic Invitation” Transaction

The requestor server 1 is the Home Domain of the inviting user, the provider server is the Home Domain of the invited user.

		Primitive

		Direction

		InviteRequest

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

		InviteResponse

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

Table AUTONUM Primitive Directions for Basic Invitation Transaction

12.3.3.2 Complementary Invitation transaction

[image: image26.wmf]InviteUserResponse

Status

Status

InviteResponse

InviteResponse/CSP

Status/CSP

Status/CSP

InviteRequest/CSP

Status

InviteUserRequest

InviteUserRequest/CSP

Status/CSP

InviteUserResponse/CSP

Status/CSP

InviteRequest

Status

Inviting

Client

Requestor

Server 1

Provider

Server

Requestor

Server 2

Invited

Client

Figure 24. The “Complementary Invitation” Transaction

In this service model the requestor server 1 is the Home Domain of the inviting user, the provider server is the PSE of the invited user in another Domain, and the requestor server 2 is the Home Domain of the invited user. The transaction flow is as follows.

		Primitive

		Direction

		InviteRequest

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

		InviteUserRequest

		Provider Server (Requestor Server 2

		Status

		Provider Server (Requestor Server 2

		InviteUserResponse

		Provider Server (Requestor Server 2

		Status

		Provider Server (Requestor Server 2

		InviteResponse

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

Table AUTONUM Primitive Directions for Complementary Invitation transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the InviteRequest message with the ID of the invitation, the invitation type, the inviting User-ID and/or Screen-Name, the list of user(s) to be invited specified by User-IDs and/or Screen-Names, the ID of the subject, and optionally the reason for the invitation (a short text).

The provider server responds to the requestor server 1 with a Status message. The provider server also sends InviteUserRequest message to every requestor server 2, which represents one or several of the invited users. The InviteUserRequest message contains the ID of the invitation, the invitation type, the inviting User-ID and/or Screen-Name, the list of user(s) to be invited specified by User-IDs and/or Screen-Names, the ID of the subject, and optionally the reason for the invitation (a short text).

Each requestor server 2 responds to the provider server with a Status message.

The invited user may accept or reject the invitation, and the requestor server 2, which represents the invited users, responds to the provider server with the InviteUserResponse message with the ID of the invitation, the acceptance indicator, the User-ID and/or Screen-Name of the responding invited user, and optionally the short response text.

The provider server responds to the requestor server 2 with a Status message. The provider server will send the InviteResponse message to the requestor server 1, which represents the inviting user. The InviteResponse message contains the ID of the invitation, the acceptance indicator, the User-ID and/or Screen-Name of the responding invited user, and optionally the short response text.

The requestor server 1 responds to the provider server with a Status message.

Each tuple { Invite-Acceptance, Responding-User, Invite-Response } represents the response from one invitee. There may be multiple tuples { Invite-Acceptance, Responding-User, Invite-Response } in one InviteUserResponse or InviteResponse primitive if the requestor server 2 or the provider server is able to collect the responses from the invited users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

While in general there is no mandatory requirement about how an invited user shall act according to the acceptance indicator within its response in the scope of this function, it is recommended that the invited user should act consistently in accordance with its response.

The subject of the invitation may be a group, messaging, a shared content, or presence. In case of presence the user may include a list of presence attributes that he/she is willing to share with the other party. Note that there is no actual presence attribute sharing that has been done, the transaction is only informational. Similarly, in case of group, messaging, or shared content invitations the actual action is not taken, it is up to the user to share presence attributes manually (the invitation is only informational).

12.3.4 The “CancelInvitation” Transaction

A user may cancel any previous invitations.

12.3.4.1 Basic Cancel Invitation transaction

[image: image27.wmf]Cancellation

receiver Client

Cancellation

 sender Client

CancelInviteRequest/CSP

CancelInviteRequest

Status/CSP

Status

CancelInviteUserRequest/CSP

Status/CSP

Provider

 Server

Requestor

 Server 1

Figure 25. The “Basic CancelInvitation” Transaction

The requestor server 1 is the Home Domain of the invitation canceling user, the provider server is the Home Domain of the invitation cancellation receiver user.

		Primitive

		Direction

		CancelInviteRequest

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

Table AUTONUM Primitive Directions for Basic CancelInvitation Transaction

12.3.4.2 Complementary Cancel Invitation transaction

[image: image28.wmf]CancelInviteRequest/CSP

CancelInviteRequest

CancelInviteUserRequest

CancelInviteUserRequest/CSP

Status/CSP

Status

Status

Status/CSP

Cancellation

 sender Client

Requestor

 Server 1

Provider

Server

Requestor

 Server 2

Cancellation

receiver Client

Figure 26. The “Complementary CancelInvitation” Transaction

In this service model the requestor server 1 is the Home Domain of the invitation canceling user, the provider server is the PSE of the invitation cancellation recipient in another Domain, and the requestor server 2 is the Home Domain of the invitation cancellation recipient. The transaction flow is as follows.

		Primitive

		Direction

		CancelInviteRequest

		Requestor Server 1 (Provider Server

		Status

		Requestor Server 1 (Provider Server

		CancelInviteUserRequest

		Provider Server (Requestor Server 2

		Status

		Provider Server (Requestor Server 2

Table AUTONUM Primitive Directions for Complementary CancelInvitation Transaction

The general description of the transactions

The requestor server 1, which represents the inviting user, sends the provider server the CancelnviteRequest message with the ID of the invitation, the inviting User-ID and/or Screen-Name, the list of user(s) to be notified about the cancellation specified by User-IDs and/or Screen-Names, and optionally the reason for the cancellation (a short text).

The provider server responds to the requestor server 1 with a Status message. The provider server also sends CancelnviteUserRequest message to every requestor server 2, which represents one or several of the invited users. The CancelnviteUserRequest message contains the ID of the invitation, the inviting User-ID and/or Screen-Name, the list of user(s) to be notified about the cancellation specified by User-IDs and/or Screen-Names, and optionally the reason for the invitation (a short text).

The requestor server 2, which represents the canceled users, responds to the provider server with the Status message.

Note that the “CancelInvitation” transaction makes sense only for the scope of presence sharing and content sharing invitations.

12.3.5 The “VerifyID” Transaction

[image: image29.wmf]Requestor

 Server

Provider

 Server

VerifyIDRequest

VerifyIDResponse

Figure 27. The “VerifyWVID” Transaction

The “VerifyWVIDUserid” transaction is used by the requestor server to verify that a list of WV IDsUser-ID is in use are valid at the provider server, i.e. the Home Domain of the WV User-IDs. The transaction is used before the WV IDUser-ID is stored in the requestor sever to ensure that all locally stored WV IDsUser-ID’s are valid. The VerifyWVIDUserid response contains the result of the verification, and a list of WV IDs along withsubset of User-ID’(s) in use and the time when the valid WV User-ID was created. The time information is used to verify that the locally stored WV User-ID belongs to the same end-user on both the requestor and provider server or if it has been recycled on the provider side and given to a new end-user. If the time is not present in the request it is assumed that the requestor server just want to verify if the WV that the User-IDs isare validin use.

		Primitive

		Direction

		VerifyIDRequest

		Requestor Server (Provider Server

		VerifyIDResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for the VerifyUserid Transaction

12.3.9 The “GetReactiveAuthStatus” Transaction

[image: image30.wmf]GetReactiveAuthStatusRequest

Requestor

Server

Provider

Server

GetReactiveAuthStatusResponse

Figure 28. The “GetReactiveAuthStatus” Transaction

The purpose of the “GetReactiveAuthStatus“ transaction is for the requestor server to retrieve the status of the reactive authorization function for a particular user.

The requestor server sends a “GetReactiveAuthStatusRequest” to the provider server for the reactive authorization status of the publishing users. A “GetReactiveAuthStatusResponse” message from the provider server will contain the current status of the reactive authorization function.

		Primitive

		Direction

		GetReactiveAuthStatusRequest

		Requestor Server (Provider Server

		GetReactiveAuthStatusResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetReactiveAuthStatus Transaction

12.4 Status Code

12.4.1 “GeneralSearch” Transaction

· Unable to parse criteria. (Invalid Search-Element) (402)

· Initial search request was not sent (Invalid Search-ID) (424).

· Invalid Search-Index (out of range) (425)

· Search timeout (in case of continued search the subsequent request primitive is late). (535)

· Server search limit is exceeded (610)

· Too many hits (536)

· Too broad search criteria (537)

12.4.2 “StopSearch” Transaction

· Service Not Supported (405)

· Invalid Search-ID (424)

12.4.3 “Invitation” Transaction

· Invalid invitation type(402).

· Unknown user (ID or screen-name) (531).

· Group does not exist (800).

· Invalid invite-ID. (423)

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (Contact list). (700)

· Invalid or unsupported presence value. (751)

12.4.4 “CancelInvitation” Transaction

· Invalid invitation type (402).

· Invalid invitation ID (423).

· Unknown user (ID or screen-name) (531).

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (Contact list). (700)

12.4.5 VerifyWVID” Transaction

· Domain not found (404).

· Service Not Supported (405)

· Unknown user (531).

· Contact list does not exist (700).

· Group does not exist (800).

· General address error (901)

13. Service Relay – Contact List Features

13.1 Overview

A “contact list“ is a list created and maintained by a User so that the User may send messages to the “contact list“ as a recipient. The message will be delivered to every member in the particular “contact list”. However, except the owner User, the other members of the “contact list” do not have any knowledge about the “contact list”. Nor do the members of the list conduct any group functions.

In concept, the “contact list“ is a special case and subset of Private Group, and is also a special case of Restricted Group. In practice, the “contact list“ has two cases:

Address book – the “contact list“ contains a list of addresses, nicknames, and other relevant information of family members, friends, colleagues or other frequently contacted persons.

Presence – the “contact list“ is closely tied to the presence service. It allows proactive presence authorization (the people on the list can get these presence attributes), and presence update (presence attributes of the people on the list).

A user may have any number of contact lists, thus the contact lists has their own IDs. The users do not know about (and cannot access) each other’s contact list(s).

There are two properties for Contact List:

Display-Name: a free text string given by user that can be presented in the user interface of the client.

Default: a Boolean set by user that indicates that the particular contact list is the default contact list.

When the user creates his/her first contact list, the server automatically sets that contact list as the default. The server may also create the first list automatically.

When the user has more than one contact lists in the system, the user may set any of his/her contact lists as the default contact list. When the user sets “Default” property of a contact list to “True”, the “Default” property of the previously default contact list must be automatically set to “False” by the server.

Watchers list is a system defined contact list with the functionality limited to holding users that have subscribed to presence information including the subscribed attributes.

All users that have subscribed to presence information are present in the Watchers list, i.e. a user that is present in a contact list and has subscribed to one or more presence attributes is always present in the watchers list. A user whose reactive authorization request is accepted shall also be present in the watchers list. If the user does not indicate specific attributes in his reactive authorization request, the Default Public Attribute List will be used for this user. Otherwise, the specific attribute list shall be associated with the subscriber.

The server shall maintain one Watcher List for each user.

This chapter focuses on the functional relay of Contact List features. Because of the server interoperation nature, the SSP has its own requirements on meta-information and information elements in the primitives at the transaction level. The complete primitives and transaction flows of Contact List features at SSP semantics level have been defined in the following two sections.

Please refer to the CSP document understand how to relay the Contact List features from client-server interaction (CSP) to server-server interoperation (SSP).

The transactions below belong to the complementary service.

13.2 Primitives

13.2.1 The “CreateContactListRequest” Primitive

The CreateContactListRequest primitive is used to create a contact list.

In addition to the “Contact-List-ID” which identifies the contact list, the CreateContactListRequest primitive contains the initial properties (Display-Name, Default) and a “User-List” which identifies the initial users to be added to the contact list (User-ID, Nickname).

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CreateContactListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

		Contact-List-Props

		O

		Structure

		The initial properties of the contact list (Display-Name, Default).

		User-List

		O

		Structure

		Identifies the initial users to be added to the contact list (User-ID, Nickname).

Table AUTONUM Information elements in CreateContactListRequest Primitive

13.2.2 The “DeleteContactListRequest” Primitive

The DeleteContactListRequest primitive is used to delete the contact list(s).

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		DeleteContactListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID-List

		M

		Structure

		Identifies the contact list(s).

Table AUTONUM Information elements in DeleteContactListRequest Primitive

13.2.3 The “GetContactListRequest” Primitive

The GetContactListRequest primitive allows a user in the requestor server to retrieve the list of all Contact-List-IDs.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetContactListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

Table AUTONUM Information elements in GetContactListRequest Primitive

13.2.4 The “GetContactListResponse” Primitive

The GetContactListResponse primitive returns a list of all Contact-List-IDs.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetContactListResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Contact-List-ID-List

		C

		Structure

		The list of the Contact-List-IDs.

		Default-C-List-ID

		C

		String

		Identifies the default contact list.

Table AUTONUM Information elements in GetContactListResponse Primitive

13.2.5 The “GetListMemberRequest” Primitive

The GetListMemberRequest primitive is used to retrieve the all members of a contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetListMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

Table AUTONUM Information elements in GetListMemberRequest Primitive

13.2.6 The “AddListMemberRequest” Primitive

The AddListMemberRequest primitive is used to add the members to a contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		AddListMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

		User-List

		M

		Structure

		Identifies the users to be added to the contact list (User-ID, Nickname).

Table AUTONUM Information elements in AddListMemberRequest Primitive

13.2.7 The “RemoveListMemberRequest” Primitive

The RemoveListMemberRequest primitive is used to remove members from the contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		RemoveListMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

		User-List

		M

		Structure

		Identifies the users to be removed from the contact list (User-ID, Nickname).

Table AUTONUM Information elements in RemoveListMemberRequest Primitive

13.2.8 The “ContactListMemberResponse” Primitive

The ContactListMemberResponse primitive returns a list of all members in the contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ContactListMemberResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		User-List

		M

		Structure

		Identifies the users in the contact list (User-ID, Nickname).

Table AUTONUM Information elements in ContactListMemberResponse Primitive

13.2.9 The “GetListPropsRequest” Primitive

The GetListPropRequest primitive is used to retrieve the properties of a contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetListPropsRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

Table AUTONUM Information elements in GetListPropsRequest Primitive

13.2.10 The “SetListPropsRequest” Primitive

The SetListPropRequest primitive is used to set the properties of a contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SetListPropsRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Contact-List-ID

		M

		String

		Identifies the contact list.

		Contact-List-Props

		M

		Structure

		The properties (Display-Name, Default) to be set.

Table AUTONUM Information elements in SetListPropsRequest Primitive

13.2.11 The “ContactListPropsResponse” Primitive

The ContactListPropsResponse primitive returns a list of all members in a contact list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ContactListPropsResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Contact-List-Props

		M

		Structure

		The properties of the contact list (Display-Name, Default).

Table AUTONUM Information elements in ContactListPropsResponse Primitive

13.2.12 The “CreateAttrListRequest” Primitive

The CreateAttrListRequest primitive is used to create an attribute list, and attach the attribute list to some contact list(s) and / or user(s).

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CreateAttrListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Presence-Attribute-List

		M

		Structure

		A list of presence attributes.

		Default-List

		M

		“Yes” | “No”

		Indicates if the attributes are targeted to the default attribute list instead of a separate attribute list.

		Contact-List-ID-List

		C

		Structure

		Contact list(s) which the attribute list should be attached to.

		User-ID-List

		C

		Structure

		User(s) which the attribute list should be attached to.

Table AUTONUM Information elements in CreateAttrListRequest Primitive

13.2.13 The “DeleteAttrListRequest” Primitive

The DeleteAttrListRequest primitive is used to delete an attribute list(s).

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		DeleteAttrListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Default-List

		M

		“Yes” | “No”

		Indicates if the default attribute list should be cleared.

		Contact-List-ID-List

		C

		Structure

		Identifies the contact list(s) to remove the attribute list association

		User-ID-List

		C

		Structure

		Identifies the user(s) to remove the attribute list association

Table AUTONUM Information elements in DeleteAttrListRequest Primitive

13.2.14 The “GetAttrListRequest” Primitive

The GeAttrListRequest primitive is used to retrieve the published or subscribed attributes associated with specific contact list(s) and / or user(s). If the user(s) or contact list(s) are not specified, the response shall include all user-specific and contact list-specific attributes.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetAttrListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Default-List

		M

		“Yes” | “No”

		Indicates if the default attribute list should be retrieved (“YES”) or not.

		Contact-List-ID-List

		O

		Structure

		Identifies the contact list(s) to retrieve the attribute list association

		User-ID-List

		O

		Structure

		Identifies the user(s) to retrieve the attribute list association

Table AUTONUM Information elements in GetAttrListRequest Primitive

13.2.15 The “GetAttrListResponse” Primitive

The GetAttrListResponse primitive returns the presence attributes.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetAttrListResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		The status information (see 8.2).

		Attribute-Association-List

		O

		Structure

		A list of attribute list associations with the user and / or the contact list.

		Default-Association-List

		O

		Structure

		The list of presence attributes associated with the default list.

Table AUTONUM Information elements in GetAttrListResponse Primitive

13.3 Transactions

13.3.1 The “CreateContactList” Transaction

[image: image31.wmf]CreateContactListRequest

Requestor

Server

Provider

Server

Status

Figure 29. The “CreateContactList” Transaction

The requestor server sends a CreateContactListRequest to the provider server. The provider server shall create the contact list and respond with a Status message to the requestor server.

A user is able to create more than one contact list. There may be system specific limitations for the maximum number of lists per user. After a contact list is created, a user may create an attribute list for the contact list.

		Primitive

		Direction

		CreateContactListRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for CreateContactList Transaction

13.3.2 The “DeleteContactList” Transaction

[image: image32.wmf]DeleteContactListRequest

Requestor

Server

Provider

Server

Status

Figure 30. The “DeleteContactList” Transaction

The requestor server sends a DeleteContactListRequest to the provider server. The provider server shall delete the contact lists(s) and respond with a Status. The server should not unsubscribe the members implicitly; if a contact list that has been subscribed to is deleted, the presence subscriptions should not be cancelled for the particular users.

A user may delete more than one contact list in one transaction.

		Primitive

		Direction

		DeleteContactListRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for DeleteContactList Transaction

13.3.3 The “GetContactList” Transaction

[image: image33.wmf]GetContactListRequest

Requestor

Server

Provider

Server

GetContactListResponse

Figure 31. The “GetContactList” Transaction

The “GetContactList“ transaction allows the requestor server to retrieve the list of all Contact-List-IDs of the user. The requestor server sends a GetContactListRequest request. The provider server returns a GetContactListResponse primitive with a list of all Contact-List-ID’s and the default contact list ID of the user.

		Primitive

		Direction

		GetContactListRequest

		Requestor Server (Provider Server

		GetContactListResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetContactList Transaction

13.3.4 The “GetListMember” Transaction

[image: image34.wmf]GetListMemberRequest

Requestor

Server

Provider

Server

ContactListMemberResponse

Figure 32. The “GetListMember” Transaction

The “GetListMember” transaction is used to retrieve all members of a contact list. The requestor server sends a GetListMemberRequest to the provider server. The provider responds to the requestor server with a ContactListMemberResponse containing the list of all members of the contact list.

		Primitive

		Direction

		GetListMemberRequest

		Requestor Server (Provider Server

		ContactListMemberResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetListMember Transaction

13.3.5 The “AddListMember” Transaction

[image: image35.wmf]AddListMemberRequest

Requestor

Server

Provider

Server

ContactListMemberResponse

Figure 33. The “AddListMember” Transaction

The requestor server sends an AddListMemberRequest to the provider server to add one or more members in a contact list. The provider server shall respond to the requestor server with a ContactListMemberResponse containing the list of all members of the contact list.

		Primitive

		Direction

		AddListMemberRequest

		Requestor Server (Provider Server

		ContactListMemberResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for AddListMember Transaction

13.3.6 The “RemoveListMember” Transaction

[image: image36.wmf]RemoveListMemberRequest

Requestor

Server

Provider

Server

ContactListMemberResponse

Figure 34. The “RemoveListMember” Transaction

The requestor server sends a RemoveListMemberRequest to the provider server. The provider server shall delete the specified user(s) from the specified contact list, and return a list of all members of the contact list in the ContactListMemberResponse.

		Primitive

		Direction

		RemoveListMemberRequest

		Requestor Server (Provider Server

		ContactListMemberResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for RemoveListMember Transaction

13.3.7 The “GetListProperties” Transaction

[image: image37.wmf]GetListPropsRequest

Requestor

Server

Provider

Server

ContactListPropsResponse

Figure 35. The “GetListProperties” Transaction

The “GetListProperties” transaction is used to retrieve the properties of a contact list (Display-Name, Default). The requestor server sends a GetListPropsRequest to the provider server. The provider responds with a ContactListPropsResponse to the requestor server containing the properties.

		Primitive

		Direction

		GetListPropsRequest

		Requestor Server (Provider Server

		ContactListPropsResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetListProperties Transaction

13.3.8 The “SetListProperties” Transaction

[image: image38.wmf]SetListPropsRequest

Requestor

Server

Provider

Server

ContactListPropsResponse

Figure 36. The “SetListProperties” Transaction

The “SetListProperties” transaction is used to set the properties of a contact list (Display-Name, Default), i.e. to set the display name, or to set a default contact list. The requestor server sends a SetListPropsRequest to the provider server. The provider responds with a ContactListPropsResponse to the requestor server containing the new properties.

		Primitive

		Direction

		SetListPropsRequest

		Requestor Server (Provider Server

		ContactListPropsResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SetListProperties Transaction

13.3.9 The “CreateAttributeList” Transaction

[image: image39.wmf]CreateAttrListRequest

Requestor

Server

Provider

Server

Status

Figure 37. The “CreateAttributeList” Transaction

A user may create a specific attribute list for a contact list, or a member in a contact list through “CreateAttributeList” transaction. The requestor server sends a CreateAttrListRequest to the provider server. The provider server shall create an attribute list, and attach the attribute list to specified contact list(s) and / or user(s).

In order to modify an attribute list, it can be overwritten by creating a new one for the same user or contact list. (It is not necessary to delete it first.)

		Primitive

		Direction

		CreateAttrListRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for CreateAttributeList Transaction

13.3.10 The “DeleteAttrList” Transaction

[image: image40.wmf]DeleteAttrListRequest

Requestor

Server

Provider

Server

Status

Figure 38. The “DeleteAttrList” Transaction

A user may delete an attribute list from a user and / or a contact list through “DeleteAttrList” transaction. The requestor server sends a DeleteAttrListRequest to the provider server. The provider server shall remove the associations of the attribute lists with the contact list(s) and / or user(s). If an attribute list is not associated with any contact list or user, it shall be cleared from the provider server (garbage collection).

		Primitive

		Direction

		DeleteAttrListRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for DeleteAttrList Transaction

13.3.11 The “GetAttrList” Transaction

[image: image41.wmf]GetAttrListRequest

Requestor

Server

Provider

Server

GetAttrListResponse

Figure 39. The “GetAttrList” Transaction

The “GetAttrList“ transaction is used to retrieve the published or subscribed attributes associated with specific contact list(s) and / or user(s). The provider server returns the requested attributes. If the user(s) or contact list(s) are not specified in the request, the response shall include all user-specific and contact list-specific attributes.

		Primitive

		Direction

		GetAttrListRequest

		Requestor Server (Provider Server

		GetAttrListResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetAttrList Transaction

13.4 Status Code

13.4.1 Contact List Transactions

· Unknown user ID (531)

· Contact list does not exist (700)

· Contact list already exists (701)

· Invalid or unsupported contact list property. (752)

13.4.2 Attribute List Transactions

· Unknown user ID (531)

· Contact list does not exist (700).

· Unknown presence attribute (not defined in [PA]) (750).

14. Service Relay – Presence Features

14.1 Overview

This chapter focuses on the functional relay of Presence features. Because of the server interoperation nature, the SSP has its own requirements on meta-information and information elements in the primitives at transaction level. The complete primitives and transaction flows of Presence features at SSP semantics level have been defined in the following two sections.

Please refer to the CSP document to understand how to relay the Presence features from client-server interaction (CSP) to server-server interoperation (SSP).

14.2 Primitives

14.2.1 The “SubscribeRequest” Primitive

The SubscribeRequest primitive is used to create subscriptions to obtain notifications about changes of the PRESENCE INFORMATION and attributes of other PRINCIPALS. The scope of subscription is either a single user or a contact list that refers to a list of users. If the requesting client subscribes to a contact list, the requesting client may request the server to automatically subscribe to the presence attributes when a new user is added to this contact list, and automatically unsubscribe to the presence attributes when the contact list is deleted or when a user is removed from the contact list. Note that the automatic subscription / unsubscription is merely a characteristics of the subscription / unsubscription itself.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SubscribeRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		User-ID-List

		C

		Structure

		Identifies the IM users to be subscribed.

		Contact-List-ID-List

		C

		Structure

		Identifies the set of users.

		Presence-Attribute-List

		O

		Structure

		A list of presence attributes to which are subscribed. An empty list or missing list indicates all presence attributes are desired.

		Auto-Subscribe

		M

		Boolean

		‘Yes’ means that the automatic subscription to the presence attributes is enabled when a new user is added to the contact list, and the automatic unsubscription to the presence attributes is also enabled when the contact list is deleted or when a user is removed from the contact list. ‘No’ means that the automatic subscription / unsubscription is disabled.

Table AUTONUM Information elements in SubscribeRequest Primitive

14.2.2 The “AuthorizationRequest” Primitive

The AuthorizationRequest primitive allows the provider server to perform the reactive authorization with the requestor server that represents the publishing users.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		AuthorizationRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Authorizing-User-ID

		M

		String

		Identifies the user who can grant the authorization to the requesting users.

		List-of-Subscribing-User-ID-and-Presence-Attribute-List

		M

		Structure

		A list of elements in which each node specifies the user-ID and the presence attributes subscribed to. An empty attribute list indicates that all presence attributes are desired.

Table AUTONUM Information elements in AuthorizationRequest Primitive

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-Presence-Attribute-List } in one AuthorizationRequest primitive if the provider server is able to combine the multiple reactive authorizations in one primitive in order to reduce the traffic overhead between the servers.

14.2.3 The “AuthorizationResponse” Primitive

The AuthorizationResponse primitive returns the authorization result from the responding authorizing users.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs, Authorization-Result } in one AuthorizationResponse primitive if the provider server is able to collect the responses from the authorizing users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		AuthorizationResponse

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Authorizing-User-ID

		M

		String

		Identifies the user who can grant the authorization to the requesting users.

		Subscribing-User-ID-List

		M

		Structure

		Identifies the requesting users who want to subscribe

		Authorization-Result(s)

		M

		Structure

		Authorization results from the authorizing user per subscribing user.

Table AUTONUM Information elements in AuthorizationResponse Primitive

14.2.4 The “UnsubscribeRequest” Primitive

The UnsubscribeRequest primitive is used to cancel the current subscription.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		UnsubscribeRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		User-ID-List

		C

		Structure

		Identifies the IM users to be unsubscribed.

		Contact-List-ID-List

		C

		Structure

		Identifies the set of users.

Table AUTONUM Information elements in UnsubscribeRequest Primitive

14.2.5 The “PresenceNotification” Primitive

The PresenceNotification primitive allows the provider server to send the notifications about changes of presence information to the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		PresenceNotification

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Subscribing-User-ID-List

		M

		Structure

		Identifies the users who subscribed to the presence change.

		Presence-Value-List

		M

		Structure

		List of User IDs and corresponding presence values.

Table AUTONUM Information elements in PresenceNotification Primitive

14.2.6 The “GetWatcherListRequest” Primitive

The GetWatcherListRequest primitive allows the requestor server to retrieve the list of users that subscribed to its presence information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetWatcherListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

Table AUTONUM Information elements in GetWatcherRequest Primitive

14.2.7 The “GetWatcherListResponse” Primitive

The GetWatcherListResponse primitive allows the provider server to return the subscriber list to the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetWatcherListResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		User-ID-List

		C

		Structure

		Identifies the subscribers.

Table AUTONUM Information elements in GetWatcherListResponse Primitive

14.2.8 The “GetPresenceRequest” Primitive

The GetPresenceRequest primitive allows the requestor server to retrieve the updated presence information. If the presence attribute list is missing from the request, the server sends all available presence information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetPresenceRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		User-ID-List

		C

		Structure

		Identifies the publishing users.

		Contact-List-ID-List

		C

		Structure

		Identifies the set of publishing users.

		Presence-Attribute-List

		O

		Structure

		A list of presence attributes to be retrieved. An empty or missing list indicates all presence attributes are desired.

Table AUTONUM Information elements in GetPresenceRequest Primitive

14.2.9 The “GetPresenceResponse” Primitive

The GetPresenceResponse primitive allows the provider server to send the updated presence information to the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetPresenceResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Presence-Value-List

		O

		Structure

		List of User IDs and corresponding presence values.

Table AUTONUM Information elements in GetPresenceResponse Primitive

14.2.10 The “UpdatePresenceRequest” Primitive

The UpdatePresenceRequest primitive allows the requestor server to update presence information for the publishing user. Only the updated attributes and their values need to be carried in this primitive, the omitted attributes are not modified.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		UpdatePresenceRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Presence-Value-List

		M

		Structure

		A list of presence values to update.

Table AUTONUM Information elements in UpdatePresenceRequest Primitive

14.2.11 The “CancelAuthRequest” Primitive

The CancelAuthRequest primitive allows the publishing user to cancel its previous reactive authorizations, and remove the subscriber from its Watcher List.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CancelAuthRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Canceled-User-ID-List

		M

		Structure

		Identifies the users who will be cancelled authorization.

Table AUTONUM Information elements in CancelAuthRequest Primitive

14.2.12 The “SuspendRequest” Primitive

The “SuspendRequest“ primitive is used to suspend presence notifications..

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SuspendRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 5.1).

		User-ID-List

		C

		Structure

		Identifies the IM users whos presence notifications to be suspended.

		Contact-List-ID-List

		C

		Structure

		Identifies the set of users.

Table 82 Information elements in SuspendRequest Primitive

14.3 Transactions

14.3.1 The “Subscribe” Transaction

[image: image42.wmf]SubscribeRequest

Requestor

Server

Provider

Server

Status

Figure 40. The “Subscribe” Transaction

The subscription for obtaining the notification about the changes of the presence information is accomplished through a “Subscribe” transaction.

The requestor server sends a SubscribeRequest request to the provider server for subscribing to the notification about the changes of the presence information of some publishing users. The provider server shall determine whether or not the reactive authorization is needed based on whether or not the subscribing user is proactively authorized in the publishing user’s contact list. The provider server shall return a Status message indicating that the provider server has accepted and processed the request.

The provider server shall perform “ReactiveAuthorization” transactions with the publishing users if the individual reactive authorizations are needed.

If the subscription succeeds, the requestor server shall receive immediately the current presence information through a “PresenceNotification” transaction. The requestor server shall also receive the presence changes in the future.

The scope of the subscription is either a single user or a contact list referring to multiple users. The requesting user may subscribe to only part of the presence information and, correspondingly, the user whose presence information is subscribed may allow only part of the presence information to be delivered. The subscription may be persistent through different sessions.

		Primitive

		Direction

		SubscribeRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for Subscribe Transaction

14.3.2 The “ReactiveAuthorization” Transaction

[image: image43.wmf]AuthorizationResponse

Requestor

Server

Provider

Server

AuthorizationRequest

Status

Status

Figure 41. The “ReactiveAuthorization” Transaction

If the reactive authorization is needed in the “Subscribe” transaction from the subscribing user, the provider server shall perform the “ReactiveAuthorization” transactions with the requestor servers that represent the publishing users. The publishing user may accept or reject the request for authorization to subscribe to its presence information.

There may be multiple tuples { Authorizing-User-ID, List-of-Subscribing-User-ID-and-Presence-Attribute-List } in one AuthorizationRequest primitive if the provider server is able to combine the multiple reactive authorizations in one primitive in order to reduce the traffic overhead between the servers.

There may be multiple tuples { Authorizing-User-ID, Subscribing-User-IDs, Authorization-Result } in one AuthorizationResponse primitive if the provider server is able to collect the response from the authorizing users in a reasonable time and combine the multiple responses in one primitive in order to reduce the traffic overhead between the servers.

A new authorization will overwrite the existing one. Any attribute previously granted or denied that is not specified in the new authorization will not be changed. An exception is an empty list, which will overwrite all authorizations.

This transaction belongs to the complementary service.

		Primitive

		Direction

		AuthorizationRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

		AuthorizationResponse

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for ReactiveAuthorization Transaction

14.3.3 The “Unsubscribe” Transaction

[image: image44.wmf]UnsubscribeRequest

Requestor

Server

Provider

Server

Status

Figure 42. The “Unsubscribe” Transaction

The cancellation of a current subscription is accomplished through an “Unsubscribe” transaction. The provider server shall return a Status message indicating that the provider server has accepted and processed the request.

		Primitive

		Direction

		UnsubscribeRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for Unsubscribe Transaction

14.3.4 The “PresenceNotification” Transaction

[image: image45.wmf]Requestor

Server

Provider

Server

PresenceNotification

Status

Figure 43. The “PresenceNotification” Transaction

The requestor server is informed of the change of the presence information through a “PresenceNotification” transaction originated by the provider server.

		Primitive

		Direction

		PresenceNotification

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for PresenceNotification Transaction

14.3.5 The “GetWatcherList” Transaction

[image: image46.wmf]GetWatcherListRequest

Requestor

Server

Provider

Server

GetWatcherListResponse

Figure 44. The “GetWatcherList” Transaction

The purpose of the GetWatcherList transaction is to allow the requestor server to retrieve the list of users that subscribed to its presence information.

The requestor server sends a GetWatcherListRequest to the provider server. A GetWatcherListResponse message from the provider server contains a list of subscribers.

This transaction belongs to the complementary service.

		Primitive

		Direction

		GetWatcherListRequest

		Requestor Server (Provider Server

		GetWatcherListResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetWatcherList Transaction

14.3.6 The “GetPresence” Transaction

[image: image47.wmf]GetPresenceRequest

Requestor

Server

Provider

Server

GetPresenceResponse

Figure 45. The “GetPresence” Transaction

The purpose of the GetPresence transaction is to allow the requestor server to retrieve the presence information of other users.

The requestor server sends a GetPresenceRequest to the provider server for the updated presence information of the publishing users. A GetPresenceResponse message from the provider server will contain result code(s) and if the request was successful it will relay the requested PRESENCE INFORMATION.

		Primitive

		Direction

		GetPresenceRequest

		Requestor Server (Provider Server

		GetPresenceResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetPresence Transaction

14.3.7 The “UpdatePresence” Transaction

[image: image48.wmf]UpdatePresenceRequest

Requestor

Server

Provider

Server

Status

Figure 46. The “UpdatePresence” Transaction

An owner of the presence data or a user with sufficient privileges may update presence attributes and their values through a “UpdatePresence” transaction.

The requestor server sends an UpdatePresenceRequest message to the provider server. The provider server returns a Status response.

		Primitive

		Direction

		UpdatePresenceRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for UpdatePresence Transaction

14.3.8 The “CancelAuthorization” Transaction

[image: image49.wmf]CancelAuthRequest

Requestor

Server

Provider

Server

Status

Figure 47. The “CancelAuthorization” Transaction

A publishing user may cancel the reactive authorization and subscription, and remove the subscriber from the Watcher List through “CancelAuthorization” transaction.

Please note that the proactive authorization is cancelled by removing the subscriber from the contact list, or by removing the associated attribute list, or by making the associated attribute list empty.

The requestor server sends a CancelAuthRequest message to the provider server. The provider server returns aStatus esponse.

This transaction belongs to the complementary service.

		Primitive

		Direction

		CancelAuthRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for CancelAuthorization Transaction

14.3.9 The “Suspend” Transaction

[image: image50.wmf]SuspendRequest

Requestor

Server

Provider

Server

Status

Figure 48. The “Suspend” Transaction

The suspension of presence notification to current subscription is accomplished through a Suspend transaction. The notifications are delivered again when a new Subscribed is preformed. The difference of Suspend and Unsubscribe is that the user remains in the watcher list when a suspend is requested but is removed with an Unsubscribe. The provider server shall return a “Status” message indicating that the provider server has accepted and processed the request.

		Primitive

		Direction

		SuspendRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table 90. Primitive Directions for Suspend Transaction

14.4 Status Code

14.4.1 “ReactiveAuthorization” Transaction

· Unknown presence attribute (not defined in [PA]). (750)

· Unknown authorization request or user ID. (531)

14.4.2 “GetPresence” Transaction

· Unknown presence attribute (not defined in [PA]) (750)

· Unknown user ID. (531)

· Contact list does not exist. (700)

14.4.3 “UpdatePresence” Transaction

· Unknown presence attribute (not defined in [PA]) (750)

· Unknown presence value (not defined in [PA]) (751)

14.4.4 Other Presence Transactions

· Unknown user ID (531)

· Unknown contact list (700).

· Unknown presence attribute (not defined in [PA]). (750)

· Unknown presence value (not defined on the [PA])(751).

· Automatic subscription / unsubscription is not supported (760)

15. Service Relay – Instant Messaging Features

15.1 Overview

This chapter focuses on the functional relay of IM features. Because of server interoperation, the SSP has its own requirements on meta-information and information elements in the primitives at transaction level. The complete primitives and transaction flows of IM features at SSP semantics level have been defined in the following two sections.

Please refer to the CSP document to understand how to relay the IM features from client-server interaction (CSP) to server-server interoperation (SSP).

15.2 Primitives

15.2.1 The “SendMessageRequest” Primitive

The SendMessageRequest primitive allows the requesting server to send the instant messages to the users through the requested server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SendMessageRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Delivery-Report-Request

		M

		“Yes” | “No”

		Indicates if the user wants delivery report.

		Message-Info

		M

		Structure

		Message information data, including { Message-ID or Message-URI, Content-type / MIME, encoding, size, sender and recipients (User-ID and/or Client-ID and/or Screen-Name and/or Group-ID and/or Contact-List-ID), date and time, validity }. Message-ID is NOT present if the request is relayed from the user’s Home Domain to its PSE. Otherwise, Message-ID is present.

		Content

		C

		String or Binary data

		The content of the instant message.

Table AUTONUM Information elements in SendMessageRequest Primitive

15.2.2 The “SendMessageResponse” Primitive

The SendMessageResponse primitive allows the requested server to inform the requesting server of the message sending result.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SendMessageResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Message-ID

		C

		String

		Server generated message id for this message.

Table AUTONUM Information elements in SendMessageResponse Primitive

15.2.3 The “ForwardMessageRequest” Primitive

The ForwardMessageRequest primitive allows the requesting server to forward the non-retrieved instant messages.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		ForwardMessageRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Message-ID

		M

		String

		Identifies the message (either Message-ID or Message-URI).

		Recipients

		M

		Structure

		Identifies the users to whom the message is forwarded (User-ID-List, Contact-List-ID-List, Screen-Name-List and Group-ID-List)

Table AUTONUM Information elements in ForwardMessageRequest Primitive

15.2.4 The “NewMessage” Primitive

The NewMessage primitive allows the provider server to deliver the instant message to the users through the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		NewMessage

		Message identifier.

		Meta-Information

		C

		Structure of Meta-Information

		The meta-information (see 8.1). Present if in PushMessage transaction.

		Status-Info

		C

		Structure of Status-Primitive

		Status information (see 8.2). Present if in GetMessage transaction.

		Recipient-User-ID-List

		M

		Structure

		Identifies the recipients with a list of User-ID’s.

		Message-Info

		M

		Structure

		Message information data, including { Message-ID or Message-URI, Content-type / MIME, encoding, size, sender and recipients (User-ID and optionally the Client-ID and/or Screen-Name and/or Group-ID and/or Contact-List-ID), date and time, validity }.

		Content

		M

		String or Binary data

		Message data.

Table AUTONUM Information elements in NewMessage Primitive

15.2.5 The “MessageDelivered” Primitive

The MessageDelivered primitive allows the requestor server to confirm that the message has been delivered.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		MessageDelivered

		Message identifier.

		Meta-Information

		C

		Structure of Meta-Information

		The meta-information (see 8.1). Present if in GetMessage transaction.

		Status-Info

		C

		Structure of Status-Primitive

		Status information (see 8.2). Present if in PushMessage transaction.

		Message-ID

		M

		String

		ID of message that has been delivered

Table AUTONUM Information elements in MessageDelivered Primitive

15.2.6 The “MessageNotification” Primitive

The MessageNotification primitive allows the provider server to notify the user of the new messages through the requestor server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		MessageNotification

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Recipient-User-ID-List

		M

		Structure

		Identifies the recipients with a list of User-ID’s.

		Message-Info

		M

		Structure

		Message information data, including { Message-ID or Message-URI, Content-type / MIME, encoding, size, sender and recipients (User-ID and optionally the Client-ID and/or Screen-Name and/or Group-ID and/or Contact-List-ID), date and time, validity }.

Table AUTONUM Information elements in MessageNotification Primitive

15.2.7 The “GetMessageRequest” Primitive

The GetMessageRequest primitive allows the requestor server to get the instant message from the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetMessageRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Message-ID

		M

		String

		ID of message to retrieve

Table AUTONUM Information elements in GetMessageRequest Primitive

15.2.8 The “SetMessageDeliveryMethod” Primitive

The SetMessageDeliveryMethod primitive allows user in the requestor server to set the instant message delivery method.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SetMessageDeliveryMethod

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Message-Delivery-Method

		M

		“Notify/Get” | “Push”

		Determines the type of message delivery. Push means that complete message is transferred in the notification. Notify/Get means that only the message-ID or message-URI is transferred in the notification the message is then retrieved using a GetMessage transaction.

		Accepted-Content-Length

		O

		Integer

		Maximum size of message that can be pushed to the user.

		Group-ID

		O

		String

		Group ID if Delivery method refers to a group.

Table AUTONUM Information elements in SetMessageDeliveryMethod Primitive

15.2.9 The “GetMessageListRequest” Primitive

If the provider server offers a space where messages are stored, the user can retrieve an undelivered message list or group history list. The GetMessageListRequest primitive allows the requestor server to get the stored Message-ID’s or Message-URI’s so that they can be used in GetMessage or RejectMessage transactions. If “Group-ID” is present, the user will have the group history list. Otherwise, the user will have the undelivered message list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetMessageListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		C

		String

		List the messages to the group(s) (to retrieve the history).

		Message-Count

		O

		Integer

		The maximum number of message-info structures to be returned.

Table AUTONUM Information elements in GetMessageListRequest Primitive

15.2.10 The “GetMessageListResponse” Primitive

The GetMessageListResponse primitive allows the provider server to return a list of message information.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetMessageListResponse

		Message identifier.

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Message-Info-List

		M

		Structure

		Message information data, including { Message-ID or Message-URI, Content-type / MIME, encoding, size, sender and recipients (User-ID and/or Client-ID and/or Screen-Name and/or Group-ID and/or Contact-List-ID), date and time, validity }.

Table AUTONUM Information elements in GetMessageListResponse Primitive

15.2.11 The “RejectMessageRequest” Primitive

The RejectMessageRequest primitive allows the requestor server to remove the unwanted and / or stored messages in the provider server.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		RejectMessageRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Message-ID-List

		M

		Structure

		Identifies the messages (either Message-ID-List or Message-URI-List).

Table AUTONUM Information elements in RejectMessageRequest Primitive

15.2.12 The “DeliveryStatusReport” Primitive

The DeliveryStatusReport primitive allows the provider server to give the sender the message delivery status report. The delivery report can also inform the client about an unsuccessful delivery attempt due to detected error conditions on the receiving side.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		DeliveryStatusReport

		Message identifier.

		Meta-Information

		M

		Structure of Meta-Information

		Meta-information (see 8.1).

		Delivery-Result

		M

		Structure of Status-Primitive

		The delivery result shares the same structure as Status (see 8.2).

		Delivery-Time

		O

		DateTime

		Date and time of delivery

		Message-Info

		M

		Structure

		Message information data, including { Message-ID or Message-URI, Content-type / MIME, encoding, size, sender and recipients (User-ID and/or Client-ID and/or Screen-Name and/or Group-ID and/or Contact-List-ID), date and time, validity }.

Table AUTONUM Information elements in DeliveryStatusReport Primitive

15.2.13 The “BlockUserRequest” Primitive

The BlockUserRequest primitive allows the blocking groups or users (specified by UserID or ScreenName) in the requesting server to prevent message or invitations delivery from certain sources. None of the message or invitations from the blocked entity will be delivered to the blocking user.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		BlockUserRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Block-Entity-List

		O

		 Structure

		A list of entities to be added to the block list.

		Unblock-Entity-List

		O

		 Structure

		A list of entities to be removed from the block list.

		Block-List-Status

		M

		“Active” | “Inactive”

		Indicates if the block list is in use (“Active”) or not (“Inactive”).

		Grant-Entity-List

		O

		Structure

		The list of entities to be added to the grant list.

		Ungrant-Entity-List

		O

		 Structure

		The list of entities to be removed from the grant list.

		Grant-List-Status

		M

		“Active” | “Inactive”

		Indicates if the grant list is in use (“Active”) or not (“Inactive”).

Table AUTONUM Information elements in BlockUserRequest Primitive

15.2.14 The “GetBlockedRequest” Primitive

The GetBlockedRequest primitive allows the blocking user in the requestor server to get its own list of blocked and granted entities, and the status of the grant list and block list.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetBlockedRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

Table AUTONUM Information elements in GetBlockedRequest Primitive

15.2.15 The “GetBlockedResponse” Primitive

The GetBlockedResponse primitive allows the provider server to return a list of blocked entities and granted users, and the list status.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetBlockedResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Block-Entity-List

		C

		 Structure

		The list of currently blocked entities.

		Block-List-Status

		M

		“Active” | “Inactive”

		If the block list is in use (“Active”) or not (“Inactive”).

		Grant-Entity-List

		C

		 Structure

		The list of currently granted entities.

		Grant-List-Status

		M

		“Active” | “Inactive”

		If the grant list is in use (“Active”) or not (“Inactive”).

Table AUTONUM Information elements in GetBlockedResponse Primitive

15.3 Transactions

15.3.1 The “SendMessage” Transaction

[image: image51.wmf]SendMessageRequest

Requestor

Server

Provider

Server

SendMessageResponse

Figure 49. The “SendMessage” Transaction

The purpose of “SendMessage” transaction is to allow the requestor server to send the instant messages through the provider server. The user may send message to a group or to other user(s) at any suitable time.

The requestor server sends a SendMessageRequest message to the provider server. The provider server returns a SendMessageRsponse response containing the result and the message ID.

		Primitive

		Direction

		SendMessageRequest

		Requestor Server (Provider Server

		SendMessageResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SendMessage Transaction

15.3.2 The “ForwardMessage” Transaction

The purpose of “ForwardMessage” transaction is to allow the requestor server to forward instant messages through the provider server.

The requestor server sends a ForwardMessageRequest message to the provider server. The provider server returns a Status response containing the result.

This transaction belongs to the complementary service.

[image: image52.wmf]ForwardMessageRequest

Requestor

Server

Provider

Server

Status

Figure 50. The “ForwardMessage” Transaction

		Primitive

		Direction

		ForwardMessageRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for ForwardMessage Transaction

15.3.3 The “PushMessage” Transaction

[image: image53.wmf]MessageDelivered

Requestor

Server

Provider

Server

NewMessage

Figure 51. The “PushMessage” Transaction

The purpose of “PushMessage” transaction is to allow the provider server to deliver the messages to users through the requestor server.

The provider server sends a NewMessage primitive to the requestor server. The requestor server returns a MessageDelivered response containing the result and the message ID.

This transaction belongs to the complementary service.

		Primitive

		Direction

		NewMessage

		Requestor Server (Provider Server

		MessageDelivered

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for PushMessage Transaction

15.3.4 The “MessageNotification” Transaction

[image: image54.wmf]Status

Requestor

Server

Provider

Server

MessageNotification

Figure 52. The “MessageNotification” Transaction

The purpose of “MessageNotification” transaction is to allow the provider server to notify the users of new messages through the requestor server.

The provider server sends a MessageNotification primitive to the requestor server. The requestor server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		MessageNotification

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for MessageNotification Transaction

15.3.5 The “GetMessage” Transaction

[image: image55.wmf]GetMessageRequest

Requestor

Server

Provider

Server

NewMessage

MessageDelivered

Status

Figure 53. The “GetMessage” Transaction

The purpose of the “GetMessage” transaction is to allow the requestor server to retrieve a new message from the provider server.

The requestor server sends a GetMessageRequest message with a message ID to the provider server. The provider server returns a NewMessage response containing the new message.

This transaction belongs to the complementary service.

		Primitive

		Direction

		GetMessageRequest

		Requestor Server (Provider Server

		NewMessage

		Requestor Server (Provider Server

		MessageDelivered

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetMessage Transaction

15.3.6 The “SetMessageDeliveryMethod” Transaction

[image: image56.wmf]SetMessageDeliveryMethod

Requestor

Server

Provider

Server

Status

Figure 54. The “SetMessageDeliveryMethod” Transaction

The purpose of the “SetMessageDeliveryMethod” transaction is to allow the user in the requestor server to set the appropriate message delivery method from the provider server.

The requestor server sends a SetMessageDeliveryMethod request to the provider server. The provider server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		SetMessageDeliveryMethod

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SetMessageDeliveryMethod Transaction

15.3.7 The “GetMessageList” Transaction

[image: image57.wmf]GetMessageListRequest

Requestor

Server

Provider

Server

GetMessageListResponse

Figure 55. The “GetMessageList” Transaction

The purpose of the “GetMessageList” transaction is to allow the requestor server to get the stored Message-ID’s or Message-URI’s so that they can be used in GetMessage or RejectMessage transactions. This transaction can be used to retrieve the message history of the group if the GetMessageListRequest contains the Group ID.

The requestor server sends a GetMessageListRequest to the provider server. The provider server returns a GetMessageListResponse.

This transaction belongs to the complementary service if the undelivered messages are requested.

		Primitive

		Direction

		GetMessageListRequest

		Requestor Server (Provider Server

		GetMessageListResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetMessageList Transaction

15.3.8 The “RejectMessage” Transaction

[image: image58.wmf]RejectMessageRequest

Requestor

Server

Provider

Server

Status

Figure 56. The “RejectMessage” Transaction

This transaction belongs to the complementary service.

		Primitive

		Direction

		RejectMessageRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for RejectMessage Transaction

15.3.9 The “NotifyDeliveryStatusReport” Transaction

[image: image59.wmf]Requestor

Server

Provider

Server

DeliveryStatusReport

Status

Figure 57. The “NotifyDeliveryStatusReport” Transaction

		Primitive

		Direction

		DeliveryStatusReport

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for NotifyDeliveryStatusReport Transaction

15.3.10 The “BlockUser” Transaction

[image: image60.wmf]BlockUserRequest

Requestor

Server

Provider

Server

Status

Figure 58. The “BlockUser” Transaction

A user may block/un-block any other user at any suitable time. The purpose of the “BlockUser” transaction is to allow the blocking user in the requestor server to prevent getting the messages or invitations from the blocked users in the provider server.

The requestor server sends a BlockUserRequest request to the provider server containing the list of users to be blocked / unblocked . The provider server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		BlockUserRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for BlockUser Transaction

15.3.11 The “GetBlockedList” Transaction

[image: image61.wmf]GetBlockedRequest

Requestor

Server

Provider

Server

GetBlockedResponse

Figure 59. The “GetBlockedList” Transaction

A user may get its own list of blocked users at any suitable time. The purpose of the “GetBlockedList” transaction is to allow the blocking user in the requestor server to get its own list of blocked users and granted users.

The requestor server sends a GetBlockedRequest request to the provider server. The provider server returns a GetBlockedResponse response containing the list of blocked users.

This transaction belongs to the complementary service.

		Primitive

		Direction

		GetBlockedRequest

		Requestor Server (Provider Server

		GetBlockedResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetBlockedList Transaction

15.4 Status Code

15.4.1 “SendMessage” Transaction

· Unknown content-type (415)

· Message queue full (507)

· Recipient user does not exist. (531)

· Recipient user blocked the sender (532)

· Recipient user is not logged in (533)

· Contact list does not exist. (700)

· Recipient group does not exist (800)

· Sender has not joined the group (or kicked) (808)

· Private messaging is disabled in the group (812)

· Private messaging is disabled for the recipient (813)

· Domain not supported. (516)

15.4.2 “SetMessageDeliveryMethod” Transaction

· Group does not exist. (800)

15.4.3 “GetMessageList” Transaction

· Group does not exist. (800)

· Group is not joined (808)

· History is not supported (821)

15.4.4 “RejectMessage” Transaction

· Invalid Message-ID (426)

15.4.5 “NewMessage” Transaction

· Invalid Message-ID (426)

· Client will not accept the message delivery. (410)

· Client does not support the content type. (415)

15.4.6 “GetMessage” Transaction

· Invalid Message-ID (426)

15.4.7 “NotifyDeliveryStatusReport” Transaction

· Unsupported content-type. (415)

· Domain not supported. (516)

· Contact list does not exist. (700)

· Recipient user does not exist. (531)

· Recipient user blocked the sender. (532)

· Recipient user is not logged in. (533)

· Message queue full. (507)

· Recipient group does not exist. (800)

· Sender has not joined the group (or kicked). (808)

· Private messaging is disabled in the group. (812)

· Private messaging is disabled for the recipient. (813)

15.4.8 “ForwardMessage” Transaction

· Message queue full. (507)

· Recipient user does not exist. (531)

· Recipient user blocked the sender. (532)

· Recipient user is not logged in. (533)

· Contact list does not exist. (700)

· Recipient group does not exist. (800)

· Sender has not joined the group (or kicked). (808)

· Private messaging is disabled in the group. (812)

· Private messaging is disabled for the recipient. (813)

· Invalid Message-ID. (426)

· Unsupported content-type. (415)

· Domain not supported. (516)

15.4.9 Block Transactions

· Unknown user ID (531)

· Unknown group-ID (800)

16. Service Relay – Group Features

This chapter focuses on the functional relay of Group features. Because of the server interoperation nature, the SSP has its own requirement on meta-information and information elements in the primitives at transaction level. The complete primitives and transaction flows of Group features at SSP semantics level has been defined in the following two sections.

Please refer to the CSP document so as to conclude how to relay the Group features from client-server interaction (CSP) to server-server interoperation (SSP).

16.1 Primitives

16.1.1 The “CreateGroupRequest” Primitive

The CreateGroupRequest primitive is used for the user in the requestor server to create a private user group at any suitable time. The CreateGroupRequest primitive contains the User-ID, Group-ID, the initial properties of the group, the user's intention of joining to the created group, getting the group change notifications and optionally to define the screen name as well. The provider server creates the group with the specified properties, and responds with aStatus essage.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		CreateGroupRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

		Group-Props

		M

		 Structure

		The properties of the group.

		Join-Group

		M

		Boolean

		A flag indicating that the user creating the group joins the group at the same time.

		Screen-Name

		O

		Structure

		Screen name of the user in the group.

		Subscribe-Notif

		M

		Boolean

		A flag indicating that the user wants to activate the group change notifications while joining the group.

Table AUTONUM Information elements in CreateGroupRequest Primitive

16.1.2 The “DeleteGroupRequest” Primitive

The DeleteGroupRequest primitive allows the user with sufficient access rights in the requestor server to delete a private user group at any suitable time. The DeleteGroupRequest primitive contains the Group-ID. The provider server removes all currently joined users from the group (ServerInitiatedLeaveGroup transaction), deletes the specified group, and responds with a Status message.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		DeleteGroupRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in DeleteGroupRequest Primitive

16.1.3 The “JoinGroupRequest” Primitive

The JoinGroupRequest primitive allows the user in the requestor server to join a discussion group at any suitable time. The JoinGroupRequest primitive contains the Group-ID, its screen name shown during the discussion, the joined users’ list request and the user's intention of getting the group change notifications.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		JoinGroupRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

		Joined-Request

		M

		“Yes” | “No”

		Indicates if the user wants the list of currently joined users (“Yes”) or not (“No”).

		Screen-Name

		O

		String

		Screen name of the user in the group.

		Subscribe-Notif

		M

		Boolean

		A flag indicating that the user wants to activate the group change notifications while joining the group.

		Own-Prop-List

		O

		Structure

		The list of the user’s properties in that group.

16.1.4 The “JoinGroupResponse” Primitive

The JoinGroupResponse primitive allows the provider server to return the processing result with the list of currently joined users (if requested), and optionally a welcome note.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		JoinGroupResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Joined-User-Screen-Name-List

		C

		 Structure

		The list of currently joined users identified by their Screen-Name’s. Present if it was requested.

		Welcome-Text

		O

		String

		A short text to be shown to the user when he/she has joined the group.

Table AUTONUM Information elements in JoinGroupResponse Primitive

16.1.5 The “LeaveGroupRequest” Primitive

The LeaveGroupRequest primitive allows the user in the requestor server to leave a discussion group at any suitable time. The LeaveGroupRequest primitive contains the Group-ID.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		LeaveGroupRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in LeaveGroupRequest Primitive

16.1.6 The “LeaveGroupIndication” Primitive

The LeaveGroupIndication primitive allows the provider server to return the group leaving result requested from the requestor server. The LeaveGroupIndication primitive is also used for the provider server to initiate the group leaving due to user kickout, group deletion etc.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		LeaveGroupIndication

		Message identifier

		Meta-Information

		C

		Structure of Meta-Information

		Meta-information (see 8.1). Present if in ServerInitiatedLeaveGroup transaction

		Status-Info

		C

		Structure of Status-Primitive

		Status information (see 8.2). Present if in LeaveGroup transaction.

		Reason-text

		M

		String

		Indicate why the user has to leave.

		Group-ID

		C

		String

		Identification of the group that has been left. Present if in ServerInitiatedLeaveGroup transaction.

Table AUTONUM Information elements in LeaveGroupIndication Primitive

16.1.7 The “GetJoinedMemberRequest” Primitive

The GetJoinedMemberRequest primitive allows the requestor server to retrieve the joined member list of a group. This primitive (and transaction) has no corresponding CSP primitive (and transaction).

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetJoinedMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in GetJoinedMemberRequest Primitive

16.1.8 The “GetJoinedMemberResponse” Primitive

The GetJoinedMemberResponse primitive allows the provider server to return the result with a list of joined group members.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetJoinedMemberResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Joined-User-List

		M

		 Structure

		A list of joined members identified by their { User-ID, Screen-Name } pairs.

Table AUTONUM Information elements in GetJoinedMemberResponse Primitive

16.1.9 The “GetGroupMemberRequest” Primitive

The GetGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to retrieve the member list of a group. The GetGroupMemberRequest primitive contains the Group-ID.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in GetGroupMemberRequest Primitive

16.1.10 The “GetGroupMemberResponse” Primitive

The GetGroupMemberResponse primitive allows the provider server to return the result with a list of all group members.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupMemberResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		User-ID-List-Adm

		O

		 Structure

		The list of users that are in the “Administrator” list.

		User-ID-List-Mod

		O

		 Structure

		The list of users that are in the “Moderator” list.

		User-ID-List

		O

		 Structure

		The list of users that are ordinary members.

Table AUTONUM Information elements in GetGroupMemberResponse Primitive

16.1.11 The “AddGroupMemberRequest” Primitive

The AddGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to add the other user(s) to a group. The AddGroupMemberRequest primitive contains the Group-ID and the list of user(s) to be added. All of the newly added users are the ordinary members.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		AddGroupMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

		User-ID-List

		O

		Structure

		The list of users to be added.

Table AUTONUM Information elements in AddGroupMemberRequest Primitive

16.1.12 The “RemoveGroupMemberRequest” Primitive

The RemoveGroupMemberRequest primitive allows the user with sufficient access rights in the requestor server to remove users from a group. The RemoveGroupMemberRequest primitive contains the Group-ID and the list of user(s) to be removed.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		RemoveGroupMemberRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (8.1).

		Group-ID

		M

		String

		Identifies the group

		User-ID-List

		M

		 Structure

		A list of removed users.

Table AUTONUM Information elements in RemoveGroupMemberRequest Primitive

16.1.13 The “MemberAccessRequest” Primitive

The MemberAccessRequest primitive allows the user with sufficient access rights in the requestor server to change the access privileges of other users.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		MemberAccessRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (8.1).

		Group-ID

		M

		String

		Identifies the group

		User-ID-List-Adm

		O

		 Structure

		The list of users to be set in the “Administrator” list.

		User-ID-List-Mod

		O

		 Structure

		The list of users to be set in the “Moderator” list.

		User-ID-List

		O

		 Structure

		The list of users to be set as ordinary members.

Table AUTONUM Information elements in MemberAccessRequest Primitive

16.1.14 The “GetGroupPropsRequest” Primitive

The GetGropPropsRequest primitive allows the user with sufficient access rights in the requestor server to retrieve the properties of a group, and its own properties in that particular group. The GetGropPropsRequest primitive contains the Group-ID.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupPropsRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in GetGroupPropsRequest Primitive

16.1.15 The “GetGroupPropsResponse” Primitive

The GetGroupPropsResponse primitive allows the provider server to return the result with a list of group properties and its own properties of the specified group.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupPropsResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Group-Prop-List

		M

		 Structure

		The list of group properties.

		Own-Prop-List

		M

		 Structure

		The list of the user’s properties in that group.

Table AUTONUM Information elements in GetGroupPropsResponse Primitive

16.1.16 The “SetGroupPropsRequest” Primitive

The SetGroupPropsRequest primitive allows the user with sufficient access rights in the requestor server to update the properties of a group, and/or its own properties in that particular group. The SetGroupPropsRequest primitive contains the Group-ID, the new properties of the group and/or the new user properties.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SetGroupPropsRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

		Group-Prop-List

		O

		 Structure

		The list of group properties.

		Own-Prop-List

		O

		 Structure

		The list of the user’s properties in that group.

Table AUTONUM Information elements in SetGroupPropsRequest Primitive

16.1.17 The “RejectListRequest” Primitive

The RejectListRequest primitive allows the user with sufficient access rights in the requestor server to retrieve / update the reject list of a group. Users on the reject list cannot join the group.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		RejectListRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

		Add-User-ID-List

		O

		 Structure

		The list of users to be added to the reject list

		Remove-User-ID-List

		O

		 Structure

		The list of users to be removed from the reject list.

Table AUTONUM Information elements in RejectListRequest Primitive

16.1.18 The “RejectListResponse” Primitive

The RejectListResponse primitive allows the provider server to return the reject list of the group.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		RejectListResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Reject-User-ID-List

		O

		 Structure

		A list of users in the reject list.

Table AUTONUM Information elements in RejectListResponse Primitive

16.1.19 The “SubscribeGroupChangeRequest” Primitive

The SubscribeGroupChangeRequest primitive allows the user in the requestor server to subscribe to a group change notice whenever another user leaves or joins the group, or the group properties have been changed.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		SubscribeGroupChangeRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in SubscribeGroupChangeRequest Primitive

16.1.20 The “UnsubscribeGroupChangeRequest” Primitive

The UnsubscribeGroupChangeRequest primitive is used to cancel the current subscription.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		UnsubscribeGroupChangeRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in UnsubscribeGroupChangeRequest Primitive

16.1.21 The “GetGroupSubStatusRequest” Primitive

The GetGroupSubStatusRequest primitive allows the user in the requestor server to retrieve its subscription status to the group change notice. The GetGroupSubStatusRequest primitive contains the Group-ID.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupSubStatusRequest

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Group-ID

		M

		String

		Identifies the group

Table AUTONUM Information elements in GetGroupSubStatusRequest Primitive

16.1.22 The “GetGroupSubStatusResponse” Primitive

The GetGroupSubStatusResponse primitive allows the provider server to return the result with its current subscription status to a group change notice.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GetGroupSubStatusResponse

		Message identifier

		Status-Info

		M

		Structure of Status-Primitive

		Status information (see 8.2).

		Group-ID

		M

		String

		Identifies the group

		Subscription-Status

		M

		’S’ | ‘U’

		Indicates the subscription status – subscribed (‘S’) or not (‘U’).

Table AUTONUM Information elements in GetGroupSubStatusResponse Primitive

16.1.23 The “GroupChangeNotice” Primitive

The GroupChangeNotice primitive allows the provider server to send notifications to the subscribed users whenever users leave or join the group, or the group properties have been changed.

		Information Element

		Req

		Type

		Description

		Message-Type

		M

		GroupChangeNotice

		Message identifier

		Meta-Information

		M

		Structure of Meta-Information

		The meta-information (see 8.1).

		Subscribing-User-ID-List

		M

		 Structure

		Identifies the users who subscribed to the group change.

		Group-ID

		M

		String

		Identification of the group.

		Joined-User-Screen-Name-List

		O

		 Structure

		A list of users that have joined the group since last notification. The users are identified by their screen names

		Left-User-Screen-Name-List

		O

		 Structure

		A list of users that have left the group since last notification. The users are identified by their screen names

		Group-Prop-List

		O

		 Structure

		The new properties of the group.

		Own-Props

		O

		Structure

		The new properties of the user in the group.

Table AUTONUM Information elements in GroupChangeNotice Primitive

16.2 Transactions

16.2.1 The “CreateGroup” Transaction

[image: image62.wmf]CreateGroupRequest

Requestor

Server

Provider

Server

Status

Figure 60. The “CreateGroup” Transaction

A user may create its own private group at any suitable time. The purpose of “CreateGroup” transaction is to allow the user in the requestor server to create the user’s own private group.

The requestor server sends a CreateGroupRequest request to the provider server with the specified properties. The provider server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		CreateGroupRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for CreateGroup Transaction

16.2.2 The “DeleteGroup” Transaction

[image: image63.wmf]DeleteGroupRequest

Requestor

Server

Provider

Server

Status

Figure 61. The “DeleteGroup” Transaction

A user with sufficient access rights may delete a private user group at any suitable time.

The requestor server sends a DeleteGroupRequest request to the provider server with the Group-ID. The provider server removes all currently joined users from the group (ServerInitiatedLeaveGroup transaction), deletes the specified group, and responds with a Status message.

This transaction belongs to the complementary service.

		Primitive

		Direction

		DeleteGroupRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for DeleteGroup Transaction

16.2.3 The “JoinGroup” Transaction

[image: image64.wmf]JoinGroupRequest

Requestor

Server

Provider

Server

JoinGroupResponse

Figure 62. The “JoinGroup” Transaction

A user may join a discussion group at any suitable time.

The requestor server sends a JoinGroupRequest request to the provider server with the Group-ID, its screen name shown during the discussion, and the joined users’ list request. The provider server returns a JoinGroupResponse response including the processing result with the list of currently joined users (if requested), and optionally a welcome note.

After a user successfully joins the group, the user may receive / send messages from / to the particular group.

		Primitive

		Direction

		JoinGroupRequest

		Requestor Server (Provider Server

		JoinGroupResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for JoinGroup Transaction

16.2.4 The “LeaveGroup” Transaction

[image: image65.wmf]LeaveGroupRequest

Requestor

Server

Provider

Server

LeaveGroupIndication

Figure 63. The “LeaveGroup” Transaction

A user may leave a discussion group at any suitable time.

The requestor server sends a LeaveGroupRequest request to the provider server with the Group-ID. The provider server returns a LeaveGroupIndication response.

		Primitive

		Direction

		LeaveGroupRequest

		Requestor Server (Provider Server

		LeaveGroupIndication

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for LeaveGroup Transaction

16.2.5 The “ServerInitiatedLeaveGroup” Transaction

[image: image66.wmf]Requestor

Server

Provider

Server

LeaveGroupIndication

Status

Figure 64. The “ServerInitiatedLeaveGroup” Transaction

A server may initiate a group leaving due to user kickout, group deletion etc.

The provider server sends a LeaveGroupIndication request to the requestor server.

		Primitive

		Direction

		LeaveGroupIndication

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for ServerInitiatedLeaveGroup Transaction

16.2.6 The “GetJoinedMember” Transaction

[image: image67.wmf]GetJoinedMemberRequest

Requestor

Server

Provider

Server

GetJoinedMemberResponse

Figure 65. The “GetJoinedMember” Transaction

This transaction belongs to the complementary service.

		Primitive

		Direction

		GetJoinedMemberRequest

		Requestor Server (Provider Server

		GetJoinedMemberResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetJoinedMember Transaction

16.2.7 The “GetGroupMember” Transaction

[image: image68.wmf]GetGroupMemberRequest

Requestor

Server

Provider

Server

GetGroupMemberResponse

Figure 66. The “GetGroupMember” Transaction

A user with sufficient access rights may retrieve the member list of a group.

The requestor server sends a GetGroupMemberRequest request to the provider server with the Group-ID. The provider server returns a GetGroupMemberResponse response with the list of all group members.

This transaction belongs to the complementary service.

		Primitive

		Direction

		GetGroupMemberRequest

		Requestor Server (Provider Server

		GetGroupMemberResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetGroupMember Transaction

16.2.8 The “AddGroupMember” Transaction

[image: image69.wmf]A

d

d

G

r

o

u

p

M

e

m

b

e

r

R

e

q

u

e

s

t

Requestor

Server

Provider

Server

Status

Figure 67. The “AddGroupMember” Transaction

A user with sufficient access rights may add user(s) to the member list of a group.

The requestor server sends a AddGroupMemberRequest request to the provider server with the Group-ID and the list(s) of users to be added. The provider server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		AddGroupMemberRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for AddGroupMember Transaction

16.2.9 The “RemoveGroupMember” Transaction

[image: image70.wmf]RemoveGroupMemberRequest

Requestor

Server

Provider

Server

Status

Figure 68. The “RemoveGroupMember” Transaction

A user with sufficient access rights may remove user(s) from the member list of a group.

The requestor server sends a RemoveGroupMemberRequest request to the provider server with the Group-ID and the list(s) of users to be removed. The provider server returns a Status response.

This transaction belongs to the complementary service.

		Primitive

		Direction

		RemoveGroupMember
Request

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for RemoveGroupMember Transaction

16.2.10 The “MemberAccess” Transaction

[image: image71.wmf]MemberAccessRequest

Requestor

Server

Provider

Server

Status

Figure 69. The “MemberAccess” Transaction

This transaction belongs to the complementary service.

		Primitive

		Direction

		MemberAccessRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for MemberAccess Transaction

16.2.11 The “GetGroupProps” Transaction

[image: image72.wmf]GetGroupPropsRequest

Requestor

Server

Provider

Server

GetGroupPropsResponse

Figure 70. The “GetGroupProps” Transaction

A user with sufficient access rights may retrieve the properties of a group, and it’s the user’s own properties in that particular group.

The requestor server sends a GetGroupPropsRequest request to the provider server with the Group-ID. The provider server returns a GetGroupPropsResponse response with the list of group properties and the user’s own properties for the specified group.

		Primitive

		Direction

		GetGroupPropsRequest

		Requestor Server (Provider Server

		GetGroupPropsResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetGroupProps Transaction

16.2.12 The “SetGroupProps” Transaction

[image: image73.wmf]SetGroupPropsRequest

Requestor

Server

Provider

Server

Status

Figure 71. The “SetGroupProps” Transaction

A user with sufficient access rights may update the properties of a group, and/or it’s the user’s own properties in that particular group.

The requestor server sends a SetGroupPropsRequest request to the provider server with the Group-ID, the new properties of the group and/or the new user properties. The provider server returns a Status response.

		Primitive

		Direction

		SetGroupPropsRequest

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SetGroupProps Transaction

16.2.13 The “RejectList” Transaction

[image: image74.wmf]RejectListRequest

Requestor

Server

Provider

Server

RejectListResponse

Figure 72. The “RejectList” Transaction

This transaction belongs to the complementary service.

		Primitive

		Direction

		RejectListRequest

		Requestor Server (Provider Server

		RejectListResponse

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for RejectList Transaction

16.2.14 The “SubscribeGroupChange” Transaction

[image: image75.wmf]SubscribeGroupChangeRequest

Requestor

Server

Provider

Server

Status

Figure 73. The “SubscribeGroupChange” Transaction

A user may subscribe to a group change notice whenever another user leaves or joins the group, or the group properties have been changed.

The requestor server sends a SubscribeGroupChangeRequest request to the provider server with the Group-ID and an optional subscription expiration time. The provider server returns a Status response.

		Primitive

		Direction

		SubscribeGroupChange
Request

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for SubscribeGroupChange Transaction

16.2.15 The “UnsubscribeGroupChange” Transaction

[image: image76.wmf]U

n

s

u

b

s

c

r

i

b

e

G

r

o

u

p

C

h

a

n

g

e

R

e

q

u

e

s

t

Requestor

Server

Provider

Server

Status

Figure 74. The “UnsubscribeGroupChange” Transaction

A user may cancel the subscription to the group change notice.

The requestor server sends a UnsubscribeGroupChangeRequest request to the provider server with the Group-ID. The provider server returns a Status response.

		Primitive

		Direction

		UnsubscribeGroupChange
Request

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for UnsubscribeGroupChange Transaction

16.2.16 The “GetGroupSubStatus” Transaction

[image: image77.wmf]GetGroupSubStatusRequest

Requestor

Server

Provider

Server

GetGroupSubStatusResponse

Figure 75. The “GetGroupSubStatus” Transaction

A user may retrieve its subscription status to a group change notice.

The requestor server sends a GetGroupSubStatusRequest request to the provider server with the Group-ID. The provider server returns a GetGroupSubStatusResponse response with the user’s current subscription status to a group change notice.

		Primitive

		Direction

		GetGroupSubStatusRequest

		Requestor Server (Provider Server

		GetGroupSubStatus
Response

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for GetGroupSubStatus Transaction

16.2.17 The “NotifyGroupChange” Transaction

[image: image78.wmf]Requestor

Server

Provider

Server

GroupChangeNotice

Status

Figure 76. The “NotifyGroupChange” Transaction

The server may send group change notification(s) to the subscribed users whenever a user leaves or joins the group, or the group properties have been changed.

The provider server sends a GroupChangeNotice request to the requestor server with a list of recently joined or left users, or the new properties of the group.

		Primitive

		Direction

		GroupChangeNotice

		Requestor Server (Provider Server

		Status

		Requestor Server (Provider Server

Table AUTONUM Primitive Directions for NotifyGroupChange Transaction

16.3 Status Code

16.3.1 “CreateGroup” Transaction

· Group already exists (801)

· Invalid group attribute(s) (806)

· The maximum number of groups has been reached (user limit) (814)

· The maximum number of groups has been reached for the server (815)

· Cannot have searchable group without name or topic. (822)

16.3.2 “DeleteGroup” Transaction

· Group does not exist (800)

· Group is public (804)

· Insufficient group privileges (816)

16.3.3 “JoinGroup” Transaction

· Group does not exist (800)

· Invalid/unsupported group properties (806)

· User already joined (807)

· Cannot join: “rejected”(809)

· Cannot join with the specified screen name; it is already in use (811)

· Insufficient group privileges (816)

· The maximum number of allowed users has been reached (817)

16.3.4 “LeaveGroup” Transaction

· Group was not joined before transaction (808)

16.3.5 Group Membership Transactions

· Unknown user (531)

· Group does not exist (800)

· Insufficient group privileges (816)

· Group was not joined before transaction. (808)

16.3.6 Group Properties Transactions

· Group does not exist (800).

· Invalid group attribute(s) (806).

· Insufficient group privileges (816).

· Cannot have searchable group without name or topic. (822)

16.3.7 “RejectList” Transaction

· User unknown (531).

· Group does not exist (800).

· Insufficient group privileges (816).

16.3.8 Group Change Transactions

· Group does not exist (800)

· Group was not joined before transaction. (808)

16.3.9 “GetJoinedMember” Transaction

· Group does not exist (800).

17. Status Codes and Descriptions

SSP uses the concept and paradigm of HTTP/1.1 response to define the status code. However, there is no logical or semantic relationship between the status codes in SSP and the status codes in HTTP. The following sections define the general categories as well as each status code.

17.1 1xx – Informational

The client or server MUST be prepared to accept one or more 1xx status codes prior to a regular response even if the client does not expect a 100 “Continue” status code. A client or server agent SHALL ignore unexpected 1xx status code. This category of the status codes does not complete a transaction.

17.1.1 100 – Continue

The client SHOULD continue with its request. The server has accepted the request for processing, but the processing has not been completed. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request. The “100” response is used when time of completion will be too long, possibly causing the server and client connection to break.

17.1.2 101 – Queued

The client SHOULD continue with its request. The server has accepted the request, but does not have resources to start processing. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request.

17.1.3 102 – Started

The client SHOULD continue with its request. The server has accepted the request for processing. The “102” response is used when server needs to start additional transactions in order to process the request. The server MUST send a final response again upon completing the request.

17.1.4 104 – Server Queued

The client MAY continue with its next requests. The server has accepted the request, but does not have resources to start processing. This status is used to indicate the overload of the server and therefore it is expected, that the client will (re)direct the next requests to other possible connections between the servers. The request processing will take place and the server MUST send a final response again upon completing the request.

17.2 2xx – Successful

The 2xx class of status codes indicates that the client’s request was successfully received, understood and accepted.

17.2.1 200 – Successful

This is used to indicate that the request succeeded.

17.2.2 201 – Partially Successful

This is used to indicate that the request was successfully completed, but some parts were not completed due to certain errors. The details of the error case(s) are indicated in the response.

17.2.3 202 – Accepted

This is used to indicate that server accepted the request, but not able to receive acknowledgment about delivery to client device. The request might or might not eventually be acted upon. There is no facility for re-sending a status code from an asynchronous operation such as this.

17.3 4xx – Client Error

The 4xx class of status codes is intended for cases in which the client seems to have erred. The server SHOULD include the explanation of the error situation including whether it is a temporary or permanent condition. The user agents should be able to display the error description to the user.

17.3.1 400 – Bad Request

The server could not understand the request due to the malformed syntax. The client SHALL NOT repeat the request without modification.

17.3.2 401 – Unauthorized

When an authorization request is expected, the presence server will respond with this status code. Properties will contain details of available authorization schemes.

17.3.3 402 – Bad Parameter

The server cannot understand one of the parameters in the request. The client SHALL NOT repeat the request without modification.

17.3.4 403 – Forbidden

The server understood the request, but the principal settings denied access to some of the presence, contact information, or group. Authorization will not help and the request SHOULD NOT be repeated. This type of response is also returned if user not logged into the network.

17.3.5 404 - Not Found

The server cannot find anything matching the request. No indication is given of whether the condition is temporary or permanent.

17.3.6 405 – Service Not Supported

The server does not support the service method in the request.

17.3.7 410 – Unable to Delivery

The server cannot deliver the request. The requested resource is no longer available at the server and no forwarding address is known.

17.3.8 415 – Unsupported Media Type

The server cannot deliver the request, because the client cannot support the format of the entity that it requested.

17.3.9 420 – Invalid Transaction-ID

The server encountered an invalid Transaction-ID.

17.3.10 422 – User-ID and Client-ID Does Not Match

The User-ID and the Client-ID do not match in the request.

17.3.11 423 – Invalid Invitation-ID

The server encountered an invalid invitation ID.

17.3.12 424 – Invalid Search-ID

The server encountered an invalid search ID.

17.3.13 425 – Invalid Search-Index

The server encountered an invalid search index.

17.3.14 426 – Invalid Message-ID

The server encountered an invalid Message-ID.

17.3.15 431 – Unauthorized Group Membership

The user agent is not an authorized member of the group.

17.4 5xx – Server Error

The 5xx class of status codes is intended for cases in which the server is aware that it has erred or is incapable of performing the request.

17.4.1 500 – Internal Server Error

The provider server encountered an unexpected condition that prevented it from fulfilling the request.

17.4.2 501 – Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response when the server does not recognize the request method, and it is not capable of supporting it for any resources.

17.4.3 503 – Service Unavailable

The server is currently unable to handle the request due to a temporally overloading of the server.

17.4.4 504 – Invalid Timeout

The provider server has not returned the response within the repeat time.

17.4.5 505 – Version Not Supported

The server does not support, or refuses to support, the request version that was used. The response should contain the preferred supported version.

17.4.6 506 – Service Not Agreed

The service request refers to a service that does not correspond to the service agreement between the service requestor and provider server. The requestor server SHALL NOT repeat the request without a new service negotiation.

17.4.7 507 – Message Queue is Full

The server cannot fulfill the request because its message queue is full. The client MAY repeat the request.

17.4.8 516 – Domain Not Supported

The server does not support forwarding to different a domain space.

17.4.9 521 – Unresponded Presence Request

The presence information provider does not respond to the presence service specified in the request.

17.4.10 522 – Unresponded Group Request

The group service provider does not respond to the requested group transaction.

17.4.11 531 – Unknown User

The specified user is unknown / User-ID is invalid.

17.4.12 532 –Recipient Blocked the Sender

The recipient of the message or invitation blocked the sender.

17.4.13 533 – Message Recipient Not Logged in

The recipient of the message is not logged in.

17.4.14 534 – Message Recipient Unauthorized

The recipient of the message is not authorized.

17.4.15 535 – Search Timed Out

The server has invalidated the requested search-request.

17.4.16 536 – Too many hits.

 The query returned too many hits. The client needs to narrow the query.

17.4.17 537 – Too broad search criteria

The query cannot be processed since it is too broad.

17.5 6xx – Session

The 6xx class status code indicates the session-related status.

17.5.1 600 – Session Expired

The server connection was disconnected because the time-to-live parameter of provider session has expired.

17.5.2 601 – Forced Logout

The provider server has disconnected the requestor server.

17.5.3 604 – Invalid Session / Not Logged In

There is no such user session. (Previously not logged in, disconnected, or logged out.)

17.5.4 606 – Invalid Service-ID

Unknown Service-ID.

17.5.5 607 – Redirection Refused

The redirected connection is refused.

17.5.6 608 – Invalid Password

The password provided by the requestor server was incorrect; it does not match with the given Service-ID. The requestor SHALL NOT repeat the request without modification.

17.5.7 609 – Connection Expired

The connection was disconnected because the time-to-live parameter has expired. This is NOT the last active connection pair.

17.5.8 610 – Server Search Limit is Exceeded

The search limit exceeds the server limit.

17.5.9 620 – Invalid Server Session

There is no such session. (Previously not logged in, disconnected, or logged out.) If only the session-ID is invalid in the Meta-information, this error indication should be used instead of Unknown transaction.

17.6 7xx – Presence and contact list

The 7xx class indicates the presence and contact list related status codes.

17.6.1 700 – Contact List Does Not Exist

The contact list specified in the request does not exist.

17.6.2 701 – Contact List Already Exists

The contact list specified in the request already exists.

17.6.3 702 – Invalid or Unsupported User Properties

The user properties specified in the request are invalid or not supported.

17.6.4 750 – Invalid or Unsupported Presence Attributes

The presence attributes specified in the request are invalid or not supported.

17.6.5 751 – Invalid or Unsupported Presence Value

The presence value(s) specified in the request are invalid or not supported. The client SHOULD NOT repeat the request without modification.

17.6.6 752 – Invalid or Unsupported Contact List Property

One or more contact list properties specified in the request are invalid or not supported. The client SHOULD NOT repeat the request without modification.

17.6.7 760 – Automatic Subscription / Unsubscription is not supported

The server does not support the automatic subscription when adding a user to the contact list, and does not support the automatic unsubscription when deleting the contact list or removing a user from the contact list.

17.7 8xx – Groups

The 8xx class indicates the group-related status codes.

17.7.1 800 – Group Does Not Exist

The group specified in the request does not exist.

17.7.2 801 – Group Already Exists

The group specified in the request already exists.

17.7.3 802 – Group is Open

The group specified in the request is an open group.

17.7.4 803 – Group is Closed

The group specified in the request is a closed group.

17.7.5 804 – Group is Public

The group specified in the request is public.

17.7.6 805 – Group Private

The group specified in the request is private.

17.7.7 806 – Invalid / Unsupported Group Properties

The group properties specified in the request are invalid or not supported.

17.7.8 807 – Group is Already Joined

The group specified in the request is already joined. If the server does not allow the same user to join a group more than once, this error code is used to indicate that the user is already joined to the particular group.

17.7.9 808 – Group is Not Joined

The request cannot be processed, because it requires the user to be joined to the group.

17.7.10 809 – Rejected

The user has been rejected from the particular group. He/she is forced to leave the group and cannot join.

17.7.11 810 – Not a Group Member

The request cannot be processed because the user is not a member of the specified closed group.

17.7.12 811 – Screen Name Already in Use

The screen name specified in the request is already in use. If the server does not allow the same screen name to be used in a group more than once then this error code is used to indicate that the screen name is already in use. The requesting user may try to change his/her screen name and repeat the transaction.

17.7.13 812 – Private Messaging is Disabled for Group

The client requested private message delivery, but the private messaging is disabled in the particular group.

17.7.14 813 – Private Messaging is Disabled for User

The client requested private message delivery, but the private messaging is disabled for the particular user.

17.7.15 814 – The Maximum Number of Groups Has Been Reached for the User

The server limits the maximum number of groups per user. The limit has been reached; additional groups cannot be created. The client SHOULD NOT repeat the request until a group that belongs to the particular user has been deleted.

17.7.16 815 – The Maximum Number of Groups Has Been Reached for the Server

The maximum number of groups is limited on the server. The server limit has been reached; additional groups cannot be created. The client MAY repeat the request.

17.7.17 816 – Insufficient Group Privileges

The user does not have sufficient privileges in the particular group to perform the requested operation. The client SHOULD NOT repeat the request until the user has been authorized properly.

17.7.18 817 – The Maximum Number of Joined Users Has Been Reached

The maximum number of joined users has been reached in the requested group. The client MAY repeat the request.

17.7.19 821 – History is Not Supported

The server does not support group message history caching.

17.7.20 822 - Cannot have searchable group without name or topic.

The server cannot perform group search without group name or group topic. Either group name or group topic or both must be non-empty to support group search.

17.8 9xx – General errors

The 9xx class indicates status codes too general to fit into other classes.

17.8.1 900 – Multiple errors

No part of the transaction was successfully processed for several reasons, thus not only one other status code can indicate the errors. The details of the error cases are indicated in the response.

17.8.2 901 – General Address Error

The general address is not supported. No specific error is given due to security or privacy reason.

18. Static Conformance Requirements

The notation used in this appendix is specified in [IOPPROC].

		Item

		Function

		Reference

		Status

		Requirement

		

		

		

		

		

Appendix A. Change History
(Informative)

A.1 Approved Version History

		Reference

		Date

		Description

		n/a

		n/a

		No prior version –or- No previous version within OMA

		OMA-WV-SSP -V1_1-20021001-A

		01 Oct 2002

		Version 1.1

		OMA-IMPS-WV-SSP-V1_2-xxxxxxxx-A

		TBD

		Version 1.2

A.2 Draft/Candidate Version 1.3 History

		Document Identifier

		Date

		Sections

		Description

		Draft Version

OMA-IMPS-WV-SSP-V1_3-20050109-D

		09 Jan 2005

		2, 18

		OMA-IMPS-WV-SSP-V1_2-20041217-C used as baseline

Removed references to SCR documents

Updated references to 1.3 specifications

Added SCR table (empty content)

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

_1065594184.vsd

SetGroupPropsRequest�

Requestor Server�

Provider Server�

Status�

_1069106674.vsd

ForwardMessageRequest�

Requestor Server�

Provider Server�

Status�

_1072678766.vsd

�

Step 1: A sends A's SendSecretToken in Connection 1�

Server A�

Server B�

Step 3: B sends B's SendSecretToken in Connection 2�

Step 5: A sends A's LoginRequest in Connection 1�

Step 6: B sends B's LoginRequest in Connection 2�

Step 8: B sends A's LoginResponse in Connection 2�

Step 10: A sends B's LoginResponse in Connection 1�

_1089206053.doc

[image: image1.wmf]IM PSE

WVS

Provider

H(n)

WVS

Requestor

Provider

H(1)

WVS

Requestor

Home

Domain B

Client B

Home

Domain A

Client A

Upstream

Provider

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]IM PSE

WVS

Provider

H(n)

WVS

Requestor

Provider

H(1)

WVS

Requestor

Home

Domain B

Client B

Home

Domain A

Client A

Upstream

Provider

_1074529089.vsd

text�

�

�

text�

�

IM PSE
WVS�

Provider�

Client B�

H(1)
WVS�

Requestor�

�

Home Domain B�

Home Domain A�

H(n)
WVS�

Requestor�

Client A�

Provider�

Upstream�

�

�

Provider�

_1089213008.doc

SSP: SendMessage

SSP: SendMessage

SSP: SendMessage

SAP

IMSE

PSE Domain D

SAP

Home Domain C

CSP: NewMessage

SSP: NewMessage

SSP: SendMessage

CSP: SendMessage

Intermediate Domains

SAP

IMSE

PSE Domain B

SAP

Home Domain A

User 1

User 2

_1089476425.doc

[image: image1.wmf]Inviting

Client

Requestor

Server 1

Provider

Server

Invited

Client

InviteRequest/CSP

InviteRequest

InviteUserRequest/CSP

InviteResponse/CSP

InviteResponse

Status/CSP

InviteUserResponse/CSP

Status/CSP

Status/CSP

Status

Status

Status/CSP

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Inviting

Client

Requestor

Server 1

Provider

Server

Invited

Client

InviteRequest/CSP

InviteRequest

InviteUserRequest/CSP

InviteResponse/CSP

InviteResponse

Status/CSP

InviteUserResponse/CSP

Status/CSP

Status/CSP

Status

Status

Status/CSP

_1074713111.vsd

_1095497756.vsd

_1097650830.vsd

_1101731280.vsd

_1094031592.vsd

_1089213885.doc

SSP Transport Layer – HTTP

SSP Syntax Layer – XML DTD

SSP Semantics Layer – Features and Functions

_1089469248.doc

[image: image1.wmf]WV SSP Services

Common IMPS

Feature

SAP

 Feature

IM

 Feature

Service

 negotiation

User Profile

 management

Invite cases

Presence

attributes

Shared

contents

Instant

messages

Group

Search

User

Group

Auth-

orization

Watcher List

Attribute List

Send

Message

Groups

Contacts

Push msg

Get msg

Notify msg

Delivery Mtd

Reject msg

Get msg list

Delivery Report

Group Mgmt

Get member

Member mgmt

Reject list

Group

Feature

Complement

Invite

Presence

 Feature

Contact List

Addr

Blocking

Contact List

Get

Contact List

Update

VerifyUser

Group History

Service Relay

Msg List

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]WV SSP Services

Common IMPS

Feature

SAP

 Feature

IM

 Feature

Service

 negotiation

User Profile

 management

Invite cases

Presence

attributes

Shared

contents

Instant

messages

Group

Search

User

Group

Auth-

orization

Watcher List

Attribute List

Send

Message

Groups

Contacts

Push msg

Get msg

Notify msg

Delivery Mtd

Reject msg

Get msg list

Delivery Report

Group Mgmt

Get member

Member mgmt

Reject list

Group

Feature

Complement

Invite

Presence

 Feature

Contact List

Addr

Blocking

Contact List

Get

Contact List

Update

VerifyUser

Group History

Service Relay

Msg List

_1074512093.vsd

_1089213560.doc

SAP

Home Domain C

CSP: NewMessage

SSP: NewMessage

SSP: SendMessage

CSP: SendMessage

Intermediate Domains

SAP

IMSE

PSE Domain B

SAP

Home Domain A

User 1

User 2

_1089211444.doc

CSP: NewMessage

SSP: NewMessage

SSP: SendMessage

CSP: SendMessage

Intermediate Domains

SAP

IMSE

PSE Domain B

SAP

Home Domain A

User 1

User 2

_1089212350.doc

SSP: SendMessage

SAP

Home Domain C

CSP: NewMessage

SSP: NewMessage

SSP: SendMessage

CSP: SendMessage

SAP

IMSE

PSE Domain B

SAP

Home Domain A

User 1

User 2

_1089210884.doc

IMSE

SAP

Home Domain B

CSP: NewMessage

SSP: SendMessage

CSP: SendMessage

IMSE

SAP

Home Domain A

User 1

User 2

_1074685670.vsd

CancelInviteRequest/CSP�

CancelInviteRequest�

Status/CSP�

Status�

CancelInviteUserRequest/CSP�

Status/CSP�

Cancellation
receiver Client�

Provider
 Server�

Requestor
 Server 1�

Cancellation
 sender Client�

_1089205685.doc

[image: image1.wmf]Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Wireless Village Server - Domain B

CSP or CLP

SSP

IM Service

Service Access Point

Service Access Point

Group / Chat

IM Service

Presence Service

Group / Chat

Shared Content

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Wireless Village Server - Domain B

CSP or CLP

SSP

IM Service

Service Access Point

Service Access Point

Group / Chat

IM Service

Presence Service

Group / Chat

Shared Content

_1073808283.vsd

�

�

�

�

Client 2�

Group / Chat�

IM Service�

CSP or CLP�

Client 1�

Presence Service�

Group / Chat�

Shared Content�

CSP or CLP�

Service Access Point�

SSP�

Service Access Point�

IM Service�

Wireless Village Server - Domain B�

Wireless Village Server - Domain A�

_1089205760.doc

[image: image1.wmf]Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Group / Chat

Wireless Village Server - Domain B

CSP or CLP

SSP

Presence Service

Service Access Point

Service Access Point

IM Service

Shared Content

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Wireless Village Server - Domain A

Client 1

Client 2

CSP or CLP

Group / Chat

Wireless Village Server - Domain B

CSP or CLP

SSP

Presence Service

Service Access Point

Service Access Point

IM Service

Shared Content

_1069095063.vsd

_1074685697.vsd

CancelInviteRequest/CSP�

CancelInviteRequest�

CancelInviteUserRequest�

CancelInviteUserRequest/CSP�

Status/CSP�

Status�

Status�

Status/CSP�

Cancellation
 sender Client�

Requestor
 Server 1�

Provider
Server�

Requestor
 Server 2�

Cancellation receiver Client�

_1074616608.vsd

SetListPropsRequest�

Requestor Server�

Provider Server�

ContactListPropsResponse�

_1074684215.vsd

�

�

InviteUserResponse�

Status�

Status�

InviteResponse�

InviteResponse/CSP�

Status/CSP�

Status/CSP�

InviteRequest/CSP�

Status�

InviteUserRequest�

InviteUserRequest/CSP�

Status/CSP�

InviteUserResponse/CSP�

Status/CSP�

InviteRequest�

Status�

Inviting
Client�

Requestor Server 1�

Provider Server�

Requestor Server 2�

Invited
Client�

_1074616366.vsd

GetListPropsRequest�

Requestor Server�

Provider Server�

ContactListPropsResponse�

_1069111749.vsd

Requestor Server�

Provider Server�

GroupChangeNotice�

Status�

_1070176242.vsd

LogoutRequest (for the other session)�

Requestor Server�

Provider Server�

Disconnect�

Disconnect (for the other session)�

_1070295964.vsd

Requestor Server�

Provider Server�

LeaveGroupIndication�

Status�

_1070176092.vsd

LogoutRequest�

Requestor Server�

Provider Server�

Disconnect�

Disconnect (for the other session)�

_1069110681.vsd

GetJoinedMemberRequest�

Requestor Server�

Provider Server�

GetJoinedMemberResponse�

_1069111420.vsd

RejectListRequest�

Requestor Server�

Provider Server�

RejectListResponse�

_1069110190.vsd

MemberAccessRequest�

Requestor Server�

Provider Server�

Status�

_1069096959.vsd

RemoveListMemberRequest�

Requestor Server�

Provider Server�

ContactListMemberResponse�

_1069103080.vsd

AuthorizationResponse�

Requestor Server�

Provider Server�

AuthorizationRequest�

Status�

Status�

_1069105776.vsd

GetMessageRequest�

Requestor Server�

Provider Server�

NewMessage�

MessageDelivered�

Status�

_1069106069.vsd

Requestor Server�

Provider Server�

DeliveryStatusReport�

Status�

_1069104838.vsd

RejectMessageRequest�

Requestor Server�

Provider Server�

Status�

_1069100571.vsd

Requestor Server�

Provider Server�

PresenceNotification�

Status�

_1069101284.vsd

GetWatcherListRequest�

Requestor Server�

Provider Server�

GetWatcherListResponse�

_1069097577.vsd

CreateAttrListRequest�

Requestor Server�

Provider Server�

Status�

_1069082060.vsd

StopSearchRequest�

Requestor Server�

Provider Server�

Status�

_1069096545.vsd

GetListMemberRequest�

Requestor Server�

Provider Server�

ContactListMemberResponse�

_1069096835.vsd

AddListMemberRequest�

Requestor Server�

Provider Server�

ContactListMemberResponse�

_1069094411.vsd

CreateContactListRequest�

Requestor Server�

Provider Server�

Status�

_1065596532.vsd

UnsubscribeGroupChangeRequest�

Requestor Server�

Provider Server�

Status�

_1065596636.vsd

GetGroupSubStatusRequest�

Requestor Server�

Provider Server�

GetGroupSubStatusResponse�

_1065596389.vsd

SubscribeGroupChangeRequest�

Requestor Server�

Provider Server�

Status�

_1065530975.vsd

_1065554426.vsd

CreateGroupRequest�

Requestor Server�

Provider Server�

Status�

_1065564561.vsd

GetGroupMemberRequest�

Requestor Server�

Provider Server�

GetGroupMemberResponse�

_1065564775.vsd

RemoveGroupMemberRequest�

Requestor Server�

Provider Server�

Status�

_1065564869.vsd

GetGroupPropsRequest�

Requestor Server�

Provider Server�

GetGroupPropsResponse�

_1065564763.vsd

AddGroupMemberRequest�

Requestor Server�

Provider Server�

Status�

_1065564240.vsd

JoinGroupRequest�

Requestor Server�

Provider Server�

JoinGroupResponse�

_1065564368.vsd

LeaveGroupRequest�

Requestor Server�

Provider Server�

LeaveGroupIndication�

_1065564122.vsd

DeleteGroupRequest�

Requestor Server�

Provider Server�

Status�

_1065538613.vsd

_1065541621.vsd

_1065541750.vsd

_1065539623.vsd

_1065537054.vsd

_1065537376.vsd

_1065535261.vsd

_1065446555.vsd

_1065526366.vsd

_1065529638.vsd

_1065530039.vsd

_1065528578.vsd

_1065459054.vsd

_1065514950.vsd

_1065447557.vsd

_1065362674.vsd

_1065364274.vsd

_1065367403.vsd

_1065364062.vsd

_1065362031.vsd

_1065362315.vsd

_1065353552.vsd

_1166804921.doc
OMA-IMPS-WV-SSP_Transport-V1_32-2005010920041217-DC
Page 2 V(2)

		[image: image1.jpg]

		

		Server-Server Protocol Transport Binding

		Draft Version 1.3 – 09 Jan 2005

		Open Mobile Alliance

		OMA-IMPS-WV-SSP_Transport-V1_3-20050109-D

		Continues the Technical Activities

Originated in the Wireless Village Initiative

		[image: image2.jpg]

		

		

		

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5

2.1
Normative References
5

2.2
Informative References
5

3.
Terminology and Conventions
7

3.1
Conventions
7

3.2
Definitions
7

3.3
Abbreviations
7

4.
Introduction
8

5.
The HTTP / HTTPS over TCP binding
9

5.1
Connection Pair
9

5.2
Connection Pair Reuse
10

5.3
Multiple Connection Pairs
11

5.4
SSP Message Content Type
11

5.5
HTTP / HTTPS Redirection
11

5.6
Header Extensions for HTTP / HTTPS Binding
11

6.
Static Conformance Requirements
12

Appendix A.
Change History (Informative)
13

A.1
Approved Version History
13

A.2
Candidate Version 1.2 History
13

1. Scope

The Wireless Village Instant Messaging and Presence Service (IMPS) includes four primary features:

· Presence

· Instant Messaging

· Groups

· Shared Content

Presence is the key enabling technology for IMPS. It includes client device availability (my phone is on/off, in a call), user status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence information is personal, it is only made available according to the user's wishes - access control features put the control of the user presence information in the users' hands.

Instant Messaging (IM) is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and two-way paging are all forms of Instant Messaging. Wireless Village IM will enable interoperable mobile IM in concert with other innovative features to provide an enhanced user experience.

Groups or chat are a fun and familiar concept on the Internet. Both operators and end-users are able to create and manage groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups where end-users can meet each other online.

Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.

These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common interoperable framework.

2. References

2.1 Normative References

		[IOPPROC]

		“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, http://www.openmobilealliance.org/

		

		

		[RFC0793]

		"Transmission Control Protocol", Jon Postel, September 1981.URL:http://www.ietf.org/rfc/rfc793.txt

		[RFC2119]

		"Key words for use in RFCs to Indicate Requirement Levels", Bradner, S., March 1997. URL:http://www.ietf.org/rfc/rfc2119.txt

		[RFC2616]

		“Hypertext Transfer Protocol – HTTP/1.1”, Fielding R.; Gettys J.; Mogul J.; Frystyk H.; Masinter L.; Leach P.; Berners-Lee T., June 1999. URL:http://www.ietf.org/rfc/rfc2616.txt

		

		

2.2 Informative References

		[Arch]

		"System Architecture Model Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[FeaFun]

		"Features and Functions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP]

		"Client-Server Protocol Session and Transactions Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP DTD]

		"Client-Server Protocol XML Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP Trans]

		"Client-Server Protocol Transport Bindings Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[CSP DataType]

		"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP SMS]

		"Client-Server Protocol Plain Text Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CSP WBXML]

		"Client-Server Protocol Binary XML Definition and Examples Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		

		

		[PA]

		"Presence Attributes Version 1.3". Open Mobile Alliance.
http://www.openmobilealliance.org/

		[PA DTD]

		"Presence Attribute XML Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[CLP]

		"Command Line Protocol Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP]

		" Server-Server Protocol Semantics Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		[SSP Syntax]

		"Server-Server Protocol XML Syntax Version 1.3". Open Mobile Alliance. http://www.openmobilealliance.org/

		

		

		

		

		[WAPARCH]

		“WAP Architecture, Version 12-July-2001”. Open Mobile Alliance(. WAP‑210‑WAPArch. http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

None

3.3 Abbreviations

None

4. Introduction

The SSP messages are carried and transmitted by the reliable HTTP / HTTPS over TCP transport protocol. The physical connections carry the service requests of the Requestor Server and the notification requests of the Provider Server.

The SSP transactions are independent of the underlying transport protocol transactions, i.e., one SSP transaction may be carried by two transport protocol transactions.

The SSP transaction identifier is always generated by the initiator of the transaction request. The SSP response MUST include the same transaction identifier, which was transmitted in the request. The SSP transaction request and response carry the identifier of the service provisioning session.

5. The HTTP / HTTPS over TCP binding

5.1 Connection Pair

The HTTP / HTTPS protocol is an asymmetrical protocol, therefore two physical TCP connections are needed for the HTTP / HTTPS binding. One TCP connection is originated as the HTTP / HTTPS client from the Requestor Server to the Provider Server, i.e., the physical connection 1, and similarly another TCP connection is originated as an HTTP / HTTPS client from the Provider Server to the Requestor Server, i.e., the physical connection 2. HTTP v1.1 is required [RFC2616].

The physical connection 1 shall carry the service requests from the Requestor Server to the Provider Server and the physical connection 2 the notification requests from the Provider Server to the Requestor Server.

The HTTP / HTTPS transport for SSP requires persistent TCP connection between the servers. HTTP / HTTPS requests and responses are pipelined on the TCP connection. Pipelining allows a HTTP / HTTPS client to make multiple requests without waiting for each response, but the HTTP / HTTPS server must send its responses to those requests in the same order that the requests were received.

The pipelining behavior of the persistent TCP connection may decrease the service provisioning throughput, because one request whose response needs more processing time may block all the other ready responses belonging to later requests. For this the reason the SSP transaction is separated from the HTTP / HTTPS transaction on the manner shown on Figure 1.

The SSP transaction request and the reply are delivered only by HTTP / HTTPS POST requests. The SSP request is carried in the HTTP / HTTPS body. The HTTP /HTTPS POST reply is a dummy reply, i.e., the body is empty (status code= OK).

The SSP transaction request initiated by the Requestor Server is transmitted on the physical connection 1, and the response of the same SSP transaction is delivered on the physical connection 2. The transaction identifier associates the two transaction halves.

Similarly the SSP notification transaction request initiated by the Provider Server is transmitted on the physical connection 2, and the response of the same SSP transaction is delivered on the physical connection 1.

[image: image3.wmf]Requestor Server A

Provider Server B

SSP SREQAB(HTTP POST), SSP NRESPAB(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP NREQAB(HTTP POST), SSP SRESPAB(HTTP POST)

TCP connection 2

HTTP client: Server B

Figure 1. HTTP / HTTPS Binding for One Session Provisioned by Server B

In this example server A is the Requestor Server and server B is the Provider Server.

SREQAB:

service request from A to service provider B

NRESPAB:
notification response from server A to service provider B

NREQAB:

notification request from B to service requester A

SRESPAB:
service response from B to service requester A

In this example server A is the Provider Server and server B is the Requestor Server as shown on Figure 2.

[image: image4.wmf]

Provider Server A

Requestor Server B

SSP NREQBA(HTTP POST), SSP SRESPBA(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP SREQBA(HTTP POST), SSP NRESPBA(HTTP POST)

TCP connection 2

HTTP client: Server B

Figure 2. HTTP / HTTPS Binding for the Other Session Provisioned by Server A

where:

SREQBA:

service request from B to service provider A

NRESPBA:
notification response from server B to service provider A

NREQBA:

notification request from A to service requester B

SRESPBA:
service response from A to service requester B

5.2 Connection Pair Reuse

If the connection pair is (re)used by the two sessions, the physical connection 1 carries:

for session 1

the SSP service transaction requests from Requestor Server A to Provider Server B

the SSP notification responses from Requestor Server A to Provider Server B

for session 2

the SSP service transaction response from Provider Server A to Requestor Server B

the SSP notification request from Provider Server A to Requestor Server B

and similarly the physical connection 2 carries:

for session 1

the SSP service transaction response from Provider Server B to Requestor Server A

the SSP notification request from Provider Server B to Requestor Server A

for session 2

the SSP service transaction request from Requestor Server B to Provider Server A

the SSP notification responses from Requestor Server B to Provider Server A

5.3 Multiple Connection Pairs

Servers may open additional connection pairs belonging to the same session pair if the SSP redirection is allowed.

5.4 SSP Message Content Type

The content type of the SSP message is:

Content-Type:
application/vnd.wv.ssp.xml

5.5 HTTP / HTTPS Redirection

The WV domain must understand standard HTTP / HTTPS redirection codes [RFC2616] and associated information headers. HTTP / HTTPS redirection allows WV server to redirect to other servers based on existing load balancer.

HTTP / HTTPS redirection is only allowed in Step 1 and / or Step 3 of the connection establishment, i.e., the first SendSecretToken primitive after the TCP connection is set up.

5.6 Header Extensions for HTTP / HTTPS Binding

The following two headers are extensions for faster dispatching of the SSP messages to spare the XML document parsing.

This header extension must be used to carry the transaction identifier in all HTTP / HTTPS POST requests:

header = x-wv-transactionid ":" header-value CRLF

header-value = 1*alphanum

alphanum = alpha | digit | "_"

This header extension must be used to carry the session identifier in all HTTP / HTTPS POST requests if the session is established:

header = x-wv-sessionid ":" header-value CRLF

header-value = 1*alphanum

alphanum = alpha | digit | "_"

alpha = lowalpha | upalpha

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |

 "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

 "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

 "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

 "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

 "8" | "9"

The character "*" preceding an element indicates repetition. The full form is "<n>*element" indicating at least <n> occurrences of the element; "1*element" requires at least one.

Elements separated by a bar ("|") are alternatives, e.g., "yes | no" will accept yes or no.

Elements separated by a bar ("|") are alternatives, e.g., "yes | no" will accept yes or no.

6. Static Conformance Requirements

The notation used in this appendix is specified in [IOPPROC].

		Item

		Function

		Reference

		Status

		Requirement

		

		

		

		

		

Appendix A. Change History
(Informative)

A.1 Approved Version History

		Reference

		Date

		Description

		n/a

		n/a

		No prior version –or- No previous version within OMA

		OMA-WV-SSP_Transport-V1_1-20021001-A

		01 Oct 2002

		Version 1.1

		OMA-IMPS-WV-SSP_Transport-V1_2-xxxxxxxx-A

		TBD

		Version 1.2

A.2 Draft/Candidate Version 1.3 History

		Document Identifier

		Date

		Sections

		Description

		Draft Version

OMA-IMPS-WV-SSP_Transport-V1_3-20050109-D

		09 Jan 2005

		2, 5, 6

		OMA-IMPS-WV-SSP_Transport-V1_2-20041217-C used as baseline

Removed reference to SCR documents

Updated references to 1.3 specifications

Added SCR table (empty content)

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]

_1089552614.doc

[image: image1.wmf]Requestor Server A

Provider Server B

SSP SREQAB(HTTP POST), SSP NRESPAB(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP NREQAB(HTTP POST), SSP SRESPAB(HTTP POST)

TCP connection 2

HTTP client: Server B

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Requestor Server A

Provider Server B

SSP SREQAB(HTTP POST), SSP NRESPAB(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP NREQAB(HTTP POST), SSP SRESPAB(HTTP POST)

TCP connection 2

HTTP client: Server B

_1068918241.vsd

_1089553108.doc

[image: image1.wmf]Provider Server A

Requestor Server B

SSP NREQBA(HTTP POST), SSP SRESPBA(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP SREQBA(HTTP POST), SSP NRESPBA(HTTP POST)

TCP connection 2

HTTP client: Server B

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Provider Server A

Requestor Server B

SSP NREQBA(HTTP POST), SSP SRESPBA(HTTP POST)

TCP connection 1

HTTP client: Server A

SSP SREQBA(HTTP POST), SSP NRESPBA(HTTP POST)

TCP connection 2

HTTP client: Server B

_1068918667.vsd

