[image: image23.jpg]Doc# OMA-IM-2005-0097-IMPS-1_3-Presence-Authorization-Model
Submitted to OMA IM WG
Submission Date: 14 Februari 2005

Doc# OMA-IM-2005-0097-IMPS-1_3-Presence-Authorization-Model
Submitted to OMA IM WG
Submission Date: 14 Februari 2005

Change Request

	Title:
	Presence Authorization Model
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA IM WG

	Doc to Change:
	OMA-IMPS-WV-CSP-V1_3-20050107-D.doc

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Frank Helsen, Siemens, +3214252573 frank.helsen@siemens.com

	Replaces:
	n/a

1 Reason for Change

The authorization of presence attributes was not specified in any formal document. Only an informal explanation in features and functions no longer available in 1.3. This change request incorporates the required specification for the authorization of presence attributes
2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights Considerations

The authors of this change request do not have knowledge of any IPR related to this contribution.

5 Recommendation

Working group to review and approve the change request.

6 Detailed Change Proposal

8 Presence Feature

The relation of contact list and attribute list is described in Appendix A of [Arch].

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.3.1 Subscribed Presence Transactions
The rest of the presence-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

8.1 Contact List

8.1.1 Contact List Properties

There are two properties for Contact List:

· DisplayName: a free text string given by user that can be presented in the user interface of the client.

· Default: a string set by user, ‘T’ (true) indicates that the particular contact list is the default contact list and ‘F’ (false) indicates that the list is not the default contact list.

When the user creates his/her first contact list, the server MUST automatically set that contact list as the default (even if the user specifies that the ‘Default’ property SHOULD be set to ‘F’). The server MAY also create the first list automatically.

When the user has more than one contact list in the system, the user MAY set any of his/her contact lists as the default contact list (see ListManageRequest primitive). When the user sets ‘Default’ property of a contact list to ‘T’, the ‘Default’ property of the previously default contact list MUST be set to ‘F’ automatically by the server.

If the user tries to set the ‘Default’ property of the default contact list to ‘F’, the server MUST silently ignore this. If the user deletes the default contact list, the server MUST select another contact list as default.It is a server preference how the new default contact list is selected.

8.1.2 Transactions

[image: image1.wmf]Client

Server

GetListRequest

GetListResponse

Figure 17. Get list of contact list IDs transaction

The user MAY retrieve the list of all his/her own contact list IDs at once. The default contact list ID MUST be indicated in a separate information element. The client MUST send the GetListRequest primitive to the server. The server MUST reply with a GetListResponse primitive, which MUST contain the list of all contact list IDs owned by the user, as well as the default Contact-List-ID. In case there is some error, the server MUST respond with a Status primitive instead of the expected GetListResponse primitive.

The client and the server MAY support the get list of contact list IDs transaction. The service tree leaf that allows negotiation of this transaction is ‘GCLI’.

[image: image2.wmf]Client

Server

CreateListRequest

Status

Figure 18. Create contact list transaction

A user MAY create more than one contact list, but there MAY be implementation-specific limitations for the maximum number of lists per user.

The client MUST send the CreateListRequest primitive to the server including the ID of the contact list, and MAY include the initial contact list properties and a list of initial users that SHOULD be added to the list. The server MUST create the contact list, and respond with a Status primitive.

The create contact list transaction MAY be supported by the client and the server. The service tree leaf that allows negotiation of this transaction is ‘CCLI’.

In order to save extra transactions:

· the client MAY request a list of users to be added to the contact list initially by specifying those users in the User-Nick-List element of the request. For more information about adding users to the contact list please refer to ‘Manage contact list transaction’ in 8.1.2. If a list of initial users is supplied in the request, the server MUST add all of those users to the contact list. If the server is not able to add all users to the contact list due to some error, the server MUST reply with a ‘201’ (partially successful) result code in the Status primitive.

· the client MAY request initial properties to be applied to a contact list by specifying those properties in the Contact-List-Props element of the request. For more information about applying properties to the contact list please refer to ‘Manage contact list transaction’ in 8.1.2. If any contact list properties are supplied in the request, the server MUST apply these to the list with one exception: If the list created is the first contact list of the user, the server MUST set the ‘Default’ contact list property to ‘T’ regardless of what the client requests. If the properties cannot be applied to the list due to some error, the server MUST reply with a ‘201’ (partially successful) result code in the Status primitive.

If the contact list already exists on the server, the server MUST indicate the error in the Status primitive.

If the contact list does not exist on the server yet, the server MUST create it disregarding success or failure that originates from adding users and applying properties to the contact list.

[image: image3.wmf]Client

Server

DeleteListRequest

Status

Figure 19. Delete contact list transaction

A user MAY delete a contact list at any time.

The client and the server MAY support the delete contact list transaction. The service tree leaf that allows negotiation of this transaction is ‘DCLI’.

The client sends the DeleteListRequest primitive to the server containing the ID of the contact list to be deleted. The server MUST remove the indicated contact list and respond with a Status primitive. If the contact list does not exist, the server MUST respond with a status code of 700.

If the server does not support the automatic presence subscription/un-subscription feature, the server SHOULD NOT implicitly remove presence subscription to those users that are on a contact list when the contact list is deleted.

If the server supports the feature of automatic presence subscription / un-subscription and ‘AutoSubscribe’ is ‘T’ for the contact list being deleted, the server MUST unsubscribe the presence attributes associated with the contact list to each user in this contact list. However the server MUST NOT unsubscribe presence attributes that are otherwise subscribed to via other contact list subscriptions. If the “AutoSubscribe” is ‘F’ the subscription of users contained in the deleted contact list MUST NOT be altered.

[image: image4.wmf]Client

Server

ListManageRequest

ListManageResponse

Figure 20. Manage contact list transaction

The user MAY retrieve one contact list at a time; add or remove members; change the name of a contact list and set the contact list as the default contact list. The client MUST send the ListManageRequest primitive to the server. The server MUST perform the requested operations, and then reply with a ListManageResponse primitive. If there is an error, the server MUST respond with a Status primitive instead of the expected ListManageResponse primitive.

The manage contact list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘MCLI’.

The user MAY manage only his/her own contact list(s). The User-IDs MUST be used to manage the users on the contact list – the NickName part is OPTIONAL and informational.

The request primitive MUST either contain:

· Contact-List-ID and Receive-List (to retrieve the contact list) – Receive-List MUST be ‘T’ in this case, or

· Contact-List-ID and Receive-List and Contact-List-Props (to update the properties), or

· Contact-List-ID and Receive-List and Add-Nick-List (to add users), or

· Contact-List-ID and Receive-List and Remove-Nick-List (to remove users).

If the Receive-List is ‘T’, the server MUST include the Nick-List containing the actual content of the contact list in the response. The Nick-List MUST reflect the contact list state after any other operations in the List-Manage operation has been carried out.

If the Receive-List is ‘F’, the server MUST NOT include the Nick-List in the response.

If the request contains:

· Contact-List-ID and Receive-List (client requests retrieval of the contact list), the server MUST return the properties and the User-Nick-List of the requested contact list.

· Contact-List-ID and Receive-List and Contact-List-Props (client requests updating some properties of the contact list), the server MUST apply the new properties to the requested contact list and the response MUST contain the new properties. If a contact list’s ‘Default’ property has been changed from ‘F’ to ‘T’, the previous default contact list’s ‘Default’ property MUST be changed from ‘T’ to ‘F’. The server MUST ignore requests from the client that attempts to set the ‘Default’ property of a contact list from ‘T’ to ‘F’.

· Contact-List-ID and Receive-List and Add-Nick-List (client requests adding users to the contact list), and

· a requested User-ID does not exist in the contact list, the server MUST add the specified User-IDs and nicknames to the contact list.

· a requested User-ID already exists in the contact list, the server MUST replace the NickName for those User-IDs that already exist in the contact list.

· Contact-List-ID and Receive-List and Remove-Nick-List (client requests removing users from the contact list), the server MUST remove the specified user-IDs and their corresponding nicknames from the contact list. If there are User-IDs in the Remove-Nick-List that do not exist in the contact list, the transaction MUST NOT fail.

Whenever a new User-ID is added to the contact list and the server supports the feature of automatic subscription / un-subscription and “AutoSubscribe” has been requested ‘T’, the server MUST subscribe to the presence attributes (specified in the original subscription request for the contact list – see 8.3.1 Subscribed Presence Transactions) of this user.

Whenever a User-ID is removed from one of the contact list, and the server supports the feature of automatic subscription / un-subscription, and more than one contact list that “AutoSubscribe” has been requested ‘T’ contains the same User-ID, the server MUST unsubscribe all of those presence attributes of the user that do not apply to the user's other subscriptions but only apply to this contact list from which the user is removed.

If the server does not support the “AutoSubscribe” feature, the server MUST NOT alter any presence subscriptions when users are added or removed.
8.1.3 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetListRequest error conditions:

· None except the generic error conditions.

CreateListRequest error conditions:

· Contact list already exists. (701)

· Invalid or unsupported contact list property. (752)

· Unknown user ID. (531)

· The maximum number of contact lists has been reached for the user (753)

DeleteListRequest error conditions:

· Contact list does not exist. (700)

ListManageRequest error conditions:

· Contact list does not exist. (700)

· Invalid or unsupported contact list property. (752)

· Unknown user ID. (531)

· The maximum number of contacts has been reached for the user (754)

8.1.4 Primitives and information elements

	Primitive
	Direction

	GetListRequest
	Client (Server

	GetListResponse
	Client (Server

	CreateListRequest
	Client (Server

	Status
	Client (Server

	DeleteListRequest
	Client (Server

	Status
	Client (Server

	ListManageRequest
	Client (Server

	ListManageResponse
	Client (Server

Table 39. Primitive directions for contact list management

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

Table 40. Information elements in GetListRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID-List
	C
	Structure
	The list of all contact-list IDs except the default contact list. If empty or omitted, no contact lists exist.

	Default-CList-ID
	C
	String
	Identifies the default contact list. If omitted, no default contact list exists.

Table 41. Information elements in GetListResponse primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID
	M
	String
	Identifies the contact list to be created.

	Contact-List-Props
	O
	Structure
	The initial properties of the contact list.

	User-Nick-List
	O
	Structure
	Identifies the initial users to be added to the contact list (User-ID, Nickname).

Table 42. Information elements in CreateListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID
	M
	String
	Identifies the contact list to be deleted.

Table 43. Information elements in DeleteListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ListManageRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID
	M
	String
	Identifies the contact list.

	Add-Nick-List
	C
	Structure
	Identifies the users to be added to the contact list. (User-ID, Nickname)

	Remove-Nick-List
	C
	Structure
	Identifies the users to be removed from the contact list (User-ID).

	Contact-List-Props
	C
	Structure
	The properties of the contact list to be set.

	Receive-List
	M
	Boolean
	Indicates if the client wants to receive the User-Nick-List in the ListManageResponse.

Table 44. Information elements in ListManageRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ListManage
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Result
	M
	Structure
	The result of the request.

	Contact-List-Props
	C
	Structure
	The properties of the contact list.

	User-Nick-List
	C
	Structure
	Contains the list of users on the contact list. (User-ID, Nickname)

Table 45. Information elements in ListManageResponse primitive.

8.2 Authorization of Presence Attributes

8.2.1 Overview

The authorization of presence values are divided into two models: proactive authorization in which the IMPS user authorizes presence attributes before anyone has requested the attributes, and reactive authorization in which the IMPS user authorizes presence attributes on request.

The model and tools for authorization of the presence attributes is presented in Figure 1.

[image: image5.wmf]Watcher List

Contact List

User List

User

Attribute

List

User List

Attribute

List

Figure 1. Authorization model for presence attributes

In the proactive authorization model, authorization is done proactively, without a specific request for information. In this case, the authorization MAY be targeted to either individual users or to a group of users through a Contact List. The reactive authorization MUST apply to individual users only.

In the proactive authorization, the actual attributes that are authorized MUST be defined in the attribute list. In reactive authorization, the requesting user MUST either specifies the attributes he wants to receive or requests all attributes.

The term “publisher” represents the user who manages his or her own Contact Lists.

8.2.2 Proactive Authorization

In the proactive authorization model, the publisher MAY create (a) Contact List(s) and adds users into the Contact List(s).
After creating a Contact List, the publisher MAY specify a list of presence attributes to be associated with the Contact List. The list of attributes of the Contact List MUST accessible by all members in that Contact List.

After adding a user to a Contact List, the publisher MAY specify a list of the presence attributes to be associated with that user, even if the Contact List has its own attributes list. The attributes list of the user MUST be accessible only by that user.

When the user has his or her own list of attributes (i.e. A), while the Contact List has another list of attributes (i.e. B), the individual authorization MUST have priority over Contact List’s authorization, i.e. the individual’s attributes override the attributes of the Contact List.

When a user is in multiple Contact Lists that have separate attribute lists attached, the combination of the attributes in all attribute lists MUST be accessible to this user.

The management functions include the update of presence attributes for Contact Lists and users, and the removal of presence attributes for the users.

The publisher MAY also use some supporting functions to facilitate contact list management such as “create attribute lists”, “delete attribute lists”, “get attribute lists”, “update attribute list”, “attach and/or detach attribute lists to users and/or contact lists”.
8.2.3 Attribute list

The publisher MAY specify a list of presence attributes to be associated with a contact list – there MAY be only one presence association list per contact list. The list of presence attributes that is associated with the contact list MUST be accessible by all users in that contact list. When a user is in multiple contact lists that have separate attribute lists attached, the combination of the attributes in all attribute lists MUST be authorized to this user.

The publisher MAY specify a list of the presence attributes to be associated also with users, even if the contact list has its own attribute list – there MAY be only one presence association list per user. Users that have such list assigned MAY access only the presence attributes on this association list as the attribute lists have the highest priority when a user requesting presence has a specific list of attributes assigned, the individual authorization(s) always have priority over contact list’s authorization, i.e. the individual’s attributes override the attributes of the contact list.

The publisher MAY specify a list of default presence attributes. These presence attributes are available for all users except those that have a specific list of presence attributes assigned.

8.2.4 Reactive Authorization

In the reactive authorization model, the requesting IMPS user MAY either request specific attributes or request all attributes. The presence service element MUST sends an authorization request to the IMPS user who can grant or deny access to his presence attributes. The publisher MAY specify a list of attributes to which access is granted or denied. The attributes specified MUST be added to the list of attributes to which access is granted or denied as appropriate, overwriting any previous authorization for the specified attributes. The publisher MAY also specify that access to all presence attributes should be granted or denied.

The publisher MAY also cancel any previous authorizations or denials. This results in new notifications for any future requests.

8.2.4 Combination of Proactive and Reactive Authorization

The server MAY implement various combinations of the proactive and reactive authorization models. Proactive authorization MUST have priority over reactive authorization. If some attributes are authorized proactively for the user, reactive authorization MUST NOT be allowed, even if other proactively authorized attributes are requested.

8.2.5 Transactions

[image: image6.wmf]Client

Server

CreateAttributeListRequest

Status

Figure 21. Create attribute list transaction

The user MAY create user or contact-list specific attribute list(s), but only one attribute lists per user or per contact list.

Changing an authorization MUST NOT cancel already active subscriptions. The subscriber MUST NOTreceive notifications of attributes that are unauthorized, but if the attributes are reauthorized the subscriber MUST receive notifications without the need for re-subscription.

The create attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘CALI’.

If the requested attribute list does not exist on the server, the server MUST create it. In order to modify (update) an attribute list, it MUST be overwritten by creating another attribute list for the same User-ID or contact list ID (e.g. there is no need to delete first) – if the attribute list exists on the server, the server MUST overwrite it without indicating error.

If the ‘Default-List’ element is ‘T’, the server MUST associate the supplied attribute list with the default attribute list.

If the attribute list is empty (i.e.: it does not contain any presence attributes), the server MUST regard this as a valid – but empty – attribute list to be associated with the indicated user(s), contact list(s) and/or default list.

[image: image7.wmf]Client

Server

DeleteAttributeListRequest

Status

Figure 22. Delete attribute list transaction

A user MAY delete the default attribute list and /or the attribute list from a set of users and/or contact lists.

The delete attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘DALI’.

The server MUST delete the attribute list from every user specified in the User-ID-List element and every user contact list specified in the Contact-List-ID-List element.

If the specified attribute list(s) does not exist on the server, it MUST be silently ignored without generating an error.

If the Default-List element indicates ‘T’, the server MUST clear the default attribute list.

[image: image8.wmf]Client

Server

GetAttributeListRequest

GetAttributeListResponse

Figure 23. Get attribute list(s) transaction

The publisher MAY retrieve the attributes he/she associates with a specific contact list(s) or user(s), or the default attribute list.

The get attribute list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘GALS’.

If the Default-List element indicates ‘T’ the server MUST include the default attribute list in the response even if it is empty – which ultimately means clearing the default attribute list.

If the request contains:

· Contact-List-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular contact list(s).

· User-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular user(s).

If the request does not contain the Contact-List-ID-List element or the User-ID-List element, then the server MUST deliver all contact list and User-ID associations in the response.

[image: image9.wmf]Status

PresenceAuthRequest

Server

Client

Figure 29. Reactive presence authorization request transaction

If the publisher has not proactively authorized some of the presence information that a subscriber requests (either get or subscribe) and the publisher is online and has negotiated reactive presence authorization support, the server MUST request reactive presence authorization from the publisher by sending a PresenceAuthRequest primitive to the publisher client containing the UserID of the requesting user (which later on identifies the authorization request also) and the list of requested presence attributes (not present if all of them are requested). The client MUST respond with a Status primitive. Authorization MUST NOT take place upon response to this primitive – this transaction is a notification only. Authorization MAY take place when the client explicitly sends PresenceAuthUser primitive to the server.

The client and the server MAY support the reactive presence transactions. The service leaf that allows negotiation of these transactions is ‘REACT’. Note that this feature includes two transactions: “Reactive presence authorization request transaction” and “Reactive presence authorization of user transaction” which are negotiated using the same service tree leaf.

The Presence-Attribute-List element MAY be empty or missing – indicating that all presence attributes are requested.

[image: image10.wmf]PresenceAuthUser

Status

Server

Client

Figure 30. Reactive presence authorization of user transaction

The client MAY respond to a reactive authorization request from the server in a separate transaction with a PresenceAuthUser primitive that MUST contain the User-ID of the requesting user, and MAY include the list of attributes to add to the list of granted or denied presence attributes. The server MUST reply with a Status primitive.

From this authorization status the requesting user MAY access the authorized presence information.

The User-ID in the PresenceAuthUser primitive MUST identify the same user that the server requested using the PresenceAuthRequest primitive.

If the Acceptance element indicates ‘T’, the server MUST allow the specific user to access the presence attributes specified in the Presence-Attribute-List element. If the Acceptance element indicates ‘F’, the server MUST NOT allow the specific user to access the presence attributes specified in the Presence-Attribute-List element.

The Presence-Attribute-List element MAY be empty or missing. When the Presence-Attribute-List element is missing, it is indicating that all available presence attributes are requested.

A new authorization MUST overwrite the existing one. Any attribute previously granted or denied that is not specified in the new authorization MUST NOT be changed – those attributes that have been requested but not specified in the response Presence-Attribute-List element MUST remain in their original state. An exception is the empty – but not missing – Presence-Attribute-List element, which MUST overwrite any authorizations: when the Presence-Attribute-List element is empty, the server MUST ignore the Acceptance element and it MUST NOT grant any presence information to the specified user.

[image: image11.wmf]CancelAuthRequest

Status

Server

Client

Figure 31. Cancel presence authorization transaction

A user MAY cancel a previous reactive presence authorization. The client MUST send CancelAuthRequest primitive to the server containing the User-ID. The server MUST respond with a Status primitive.

The client and the server MAY support the cancel authorization transaction. The service leaf that allows negotiation of this transaction is ‘CAAUT’.

When the transaction has been successfully completed, the server MUST remove the previous reactive presence authorization. After canceling the reactive presence authorization the server MUST send new reactive authorization request if the specified user attempts to request the publisher’s unauthorized presence attributes.

[image: image12.wmf]GetReactiveAuthStatusRequest

Client

Server

GetReactiveAuthStatusResponse

Figure 32. Get reactive authorization status transaction

A client MAY retrieve a list of users that he has granted or denied authorization to along with a list of pending reactive authorization requests. The client MUST send a GetReactiveAuthStatusRequest primitive to the server. The server MUST return the current reactive authorization status.

The client and the server MAY support the ‘get reactive authorization status’ transaction. The service leaf that allows negotiation of this transaction is ‘GETAUT’.

If the request includes the User-ID-List element, the server MUST include the reactive authorization status for each requested User-ID. If the request does not include User-ID-List element, the server MUST provide the status for all reactively authorized users. If a reactive authorization applies to all available presence attributes, the server MUST omit the PresenceSubList element.

8.2.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

CreateAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· The maximum number of attribute lists has been reached for the user (755)

DeleteAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

GetAttributeListRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

PresenceAuthRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

PresenceAuthUser error conditions:

· Unknown authorization request or user ID. (531)

CancelAuthRequest error conditions:

· Unknown authorization request or user ID. (531)

8.2.3 Primitives and information elements

	Primitive
	Direction

	CreateAttributeListRequest
	Client (Server

	Status
	Client (Server

	DeleteAttributeListRequest
	Client (Server

	Status
	Client (Server

	GetAttributeListRequest
	Client (Server

	GetAttributeListResponse
	Client (Server

	PresenceAuthRequest
	Client (Server

	Status
	Client (Server

	PresenceAuthUser
	Client (Server

	Status
	Client (Server

	CancelAuthRequest
	Client (Server

	Status
	Client (Server

	GetReactiveAuthStatusRequest
	Client (Server

	GetReactiveAuthStatusResponse
	Client (Server

Table 46. Primitive directions for attribute list management

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateAttribute
ListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Presence-Attribute-List
	M
	Structure
	A list of presence attributes. These will be authorized to the user.

	User-ID-List
	O
	Structure
	Identifies the user(s) to assign the attribute list association.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to assign the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the attributes are targeted to the default attribute list in addition to the lists specified by the fields User-ID-List and Contact-List-ID-List above.

Table 47. Information elements in CreateAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to remove the attribute list association

	User-ID-List
	O
	Structure
	Identifies the user(s) to remove the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the default attribute list SHOULD be cleared.

Table 48. Information elements in DeleteAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Default-List
	M
	Boolean
	Indicates if the default attribute list is requested.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to retrieve the associated attribute lists for.

	User-ID-List
	O
	Structure
	Identifies the user(s) to retrieve the associated attribute lists for.

Table 49. Information elements in GetAttributeListRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Result
	M
	Structure
	Result of the request.

	Attribute-Association-List
	O
	Structure
	The list of user, and contact-list presence attribute associations.

	Default-Association-List
	O
	Structure
	The list of presence attributes associated with the default list.

Table 50. Information elements in GetAttributeListResponse primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	PresenceAuthRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies for session.

	User-ID
	M
	String
	Identification of the requesting IM user (and the authorization request).

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

Table 61. Information elements in PresenceAuthRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	PresenceAuthUser
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	User-ID
	M
	String
	Identifies the authorization request (and the user).

	Acceptance
	M
	Boolean
	Indicates whether the user accepts (authorize) or declines (not authorize) the request.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes that is to be added to the granted list or denied list.

Table 62. Information elements in PresenceAuthUser primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CancelAuthRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	User-ID
	M
	String
	Identifies the authorization request (and the user).

Table 63. Information elements in CancelAuthRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetReactiveAuth
StatusRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	User-ID-List
	O
	String
	Identifies the user(s) to retrieve the reactive authorization status for.

Table 64. Information elements in GetReactiveAuthStatusRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetReactiveAuth
StatusResponse
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	ReactiveAuthStatus-List
	M
	Structure
	Reactive authorization status list.

Table 65. Information elements in GetReactiveAuthStatusResponse primitive

8.3 Presence Information delivery
8.3.1 Presence Information

Presence information is not easily defined due to the vast amount of information that can be considered as presence information. To ensure interoperability, a set of interoperable presence attributes MUST be defined. This is accomplished by dividing the presence information into client status and user status classes described below and by defining the most common presence attributes within these classes.

The semantics for each defined presence attribute MUST be described as well. The semantics definition allows the implementers to derive functionality from the value of the presence attributes instead of just presenting the value to the user. The presence delivery mechanism allows the delivery of presence attributes beyond the defined attributes, but semantics of those attributes are beyond the scope of the IMPS specifications.

8.3.1.1 Client Status Attributes

The client status attributes MUST describe the status of the running IMPS client software as well as the hardware device. They include presence attributes that describe the status of the IMPS client and device in relation to the mobile or fixed network as well as more detailed information about the client itself, such as version and capabilities.

The network status of the client includes the registration and online status of the client to the network as well as the location and address information of the client.

8.3.1.2 User Status Attributes

The user status attributes MUST describe the status of the IMPS user. They include attributes describing the user availability and preferred contact methods as well as the contact information of the user.

The user status attributes also include information that MAY be used to describe textual free-format status, status with content and the emotional state of the user, such as mood.

8.3.2 Subscribed Presence Transactions

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.3.1.1Subscribe Presence transaction

· 8.3.1.1 Unsubscribe Presence transaction

· 8.3.1.1 Presence Notification transaction

The rest of the presence information delivery-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

8.3.2.1 Transactions

[image: image13.wmf]SubscribePresenceRequest

Client

Server

Status

Figure 24. Subscribe presence transaction

The requesting client MAY send a SubscribePresenceRequest primitive to the server. The server MUST respond with a Status primitive. After a successful ‘subscribe presence transaction’ the server MUST deliver the initial set of presence attributes in a ‘presence notification transaction’. Later on the server MAY deliver only those presence attributes in the ‘presence notification transaction’ that have been updated or newly authorized.

The subscription MUST NOT be persistent through different sessions.

The subscribe presence transaction MUST be supported by the client and the server, thus its support is not negotiated Even though the “AutoSubscribe” is often referred to as a feature, it is merely a characteristic of the subscription / un-subscription itself – servers and client implementations MAY decide whether it can be used or not, and it is not negotiated.

The scope of the subscription MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or contact list IDs, but it MUST NOT refer to screen name(s). If the request refers to contact list ID(s), the server MUST subscribe each individual users separately that are currently in the contact list(s).
The requesting user MAY subscribe also only a part of the presence information by including the Presence-Attribute-List element containing the desired attributes. Absence of the Presence-Attribute-List in the request indicates to the server that all available presence information is requested. The server MUST subscribe the user(s) to the set of presence attributes supplied in the request or, if the Presence-Attribute-List is absent from the request the server MUST subscribe all of the presence attributes.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

When the requesting client subscribes to contact list(s), the requesting client MAY also request the server to enable the ‘AutoSubscribe’ feature for the contact list(s). The ‘AutoSubscribe’ means automatic subscription of presence attributes when a new user is added to this contact list, and automatic un-subscription of presence attributes when the contact list is deleted or when a user is removed from the contact list – these actions are described in 8.1.2. When a user is added to the contact list, the server MUST subscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on. When a user is removed from the contact list or the contact list is removed, the server MUST unsubscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on and do not conflict with ‘AutoSubscribed’ presence attributes on other contact lists. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list succeeds, the server MUST return a partial success response (201), which includes the detailed error code 760 “AutoSubscribe not supported”. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list fails, the server MUST return a multiple error response (900), which MUST include the detailed error code 760 “AutoSubscribe not supported”. If the "AutoSubscribe" is ‘F’, the server MUST perform the normal subscription behavior to the contact list(s) and – if the server supports the ‘AutoSubscribe’ feature –, the feature MUST be disabled for the contact list(s).

If there are any presence attributes in the request that are already subscribed, the server MUST ignore those silently without generating an error.

After a successful subscription the server MUST initially send all available and authorized attributes to the requesting client using the ‘presence notification transaction’. While there are active subscriptions the server MUST send subsequent presence notifications when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. In order to save bandwidth, the server MAY choose not to send the initial presence notification when – and only when – all presence attributes in the request are already subscribed.

[image: image14.wmf]UnsubscribePresenceRequest

Client

Server

Status

Figure 25. Unsubscribe presence transaction

When the requesting user does not want to receive presence notifications anymore, he/she MAY unsubscribe the presence information. The server MUST stop delivering all presence information for the un-subscribed user, even if the user is included in a contact list that has the ‘AutoSubscribe’ feature turned on. The server MUST respond to an UnsubscribePresenceRequest primitive with a Status primitive.

The scope of the unsubscribe presence transaction MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or contact list IDs, but it MUST NOT refer to screen name(s). If the request refers to contact list ID(s), the server MUST unsubscribe each individual users separately that are currently in the contact list(s).
The unsubscribe presence transaction MUST be supported by the client and the server.

The server MUST stop delivering presence notifications of the un-subscribed users.

[image: image15.wmf]Status

PresenceNotificationRequest

Server

Client

Figure 26. Presence notification

As long as an authorization and subscription is valid, the requesting user MUST receive new presence information when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. The server sends PresenceNotificationRequest primitive to the client containing the updated presence information. The client MUST respond with a Status primitive. The server MUST identify the users with User-IDs – contact list IDs, and screen name(s) MUST NOT be used. The server MUST NOT include users in the presence notification that have not been subscribed.

The client and the server MUST support the presence notification transaction, thus its support is not negotiated.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

If the subscription did not contain the Presence-Attribute-List element, the PresenceNotificationRequest MUST contain all available and authorized presence attributes. If the subscription did contain the Presence-Attribute-List element, the server MUST deliver only the authorized subset of the requested attributes. See the ‘subscribe presence transaction’ for more information.

[image: image16.wmf]GetWatcherListRequest

Client

Server

GetWatcherListResponse

Figure 27. Get watcher list transaction

The user MAY get the list of users that subscribe to his/her presence attributes. The requesting client MUST send a GetWatcherListRequest primitive to the server. If no error occurs, the server MUST respond with a GetWatcherListResponse primitive including the list of the subscribing users, otherwise the server MUST respond with a Status primitive.

The client and the server MAY support the get watcher list transaction. The service leaf that allows negotiation of this transaction is ‘GETWL.

The server MUST include the User-ID and Watcher-Status of all subscribers; the server MAY also include the History-Period in the response.

Note: There are no ways of retrieving exactly what attributes every user subscribes to, but the GetAttributeList transaction can tell what attributes the users are authorized to see.

8.3.2.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribePresenceRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· Automatic subscription / un-subscription is not supported (760)

UnSubscribePresenceRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

PresenceNotificationRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

GetWatcherListRequest error conditions:

· None except the generic error conditions.

8.3.2.3 Primitives and information elements

	Primitive
	Direction

	SubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	UnSubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	PresenceNotificationRequest
	Client (Server

	Status
	Client (Server

	GetWatcherListRequest
	Client (Server

	GetWatcherListResponse
	Client (Server

Table 51. Primitive directions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribePresence
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Session ID for session.

	User-ID-List
	C
	Structure
	Identifies the IM user(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set(s) of users for subscription.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

	Auto-Subscribe
	M
	Boolean
	‘T’ means that the automatic subscription to the presence attributes is enabled when a new user is added to the contact list, and the automatic un-subscription to the presence attributes is also enabled when the contact list is deleted or when a user is removed from the contact list. ‘F’ means that the automatic subscription / un-subscription is disabled.

Table 52. Information elements in SubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UnSubscribe
PresenceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	User-ID-List
	C
	Structure
	Identifies the IM users(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set of users to be un-subscribed.

Table 53. Information elements in UnsubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Presence
NotificationRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session.

	Presence-Value-List
	M
	Structure
	List of User IDs and its corresponding presence values.

Table 54. Information elements in PresenceNotificationRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Session ID for session.

	History Period
	O
	Integer
	Indicates the time period in seconds on the longest possible history of the watcher (from the time of request) that SHOULD be returned. In case of absence, it indicates the user request the watcher list at the time of the request only. The value 0 MUST NOT be used.

	MaxWatcherList
	O
	Integer
	Indicates the maximum number of Watcher elements in GetWatcherListResponse.

Table 55. Information elements in GetWatcherListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Session ID for session.

	History-Period
	O
	Integer
	Indicates the time period in seconds in which the watcher history has been accumulated. This value MUST NOT be larger than the requested period. Absence indicates that the Watcher information element (see below) returns only the current subscribers at the time of the request even if the history log is requested. The value 0 MUST NOT be used.

	Watcher
	O
	Structure
	Identifies the watchers and their status from the history period.
If this element is not present at all within the response, it indicates that the server does not give any watcher information at this time. The number of this element in GetWatcherListResponse MUST NOT be larger than Max Watcher List value in the corresponding GetWatcherListRequest.

Table 56. Information elements in GetWatcherListResponse primitive

8.3.3 Get Presence Transactions

8.3.3.1 Transactions

[image: image17.wmf]GetPresenceRequest

Client

Server

GetPresenceResponse

Figure 28. Get Presence transaction

A user MAY, if authorized, get another user’s presence information at any time. The client MUST send a GetPresenceRequest primitive to the server containing a set of User-IDs and/or a set of contact list IDs, and MAY include the list of requested presence attributes. The request MAY refer to UserID(s) and contact list IDs, but it MUST NOT refer to screen name(s).

The client and the server MAY support the get presence transaction. The service leaf that allows negotiation of this transaction is ‘GETPR’.

The requesting user MAY retrieve only part of the presence information and, correspondingly, the user whose presence information is retrieved MAY allow only part of the presence information to be delivered. Absence of the Presence-Attribute-List element in the request indicates to the server that all available presence information is requested. If no information is available about a particular presence attribute, the corresponding presence attribute MUST NOT be returned in the GetPresenceResponse message. The server MUST distribute only those attributes that are pro- or reactively authorized for the requesting user. If the request does not contain the Presence-Attribute-List element, the server MUST deliver all available and authorized presence attributes. If the request contains the Presence-Attribute-List element, the server MUST deliver only the available and authorized subset of the requested attributes.

In case of success, the server MUST respond with a GetPresenceResponse primitive containing the result of the request and the presence attributes for every requested User-ID(s). The server MUST resolve the requested contact list ID(s) into separate User-IDs that are used to identify the presence state.

If the Result element indicates unsuccessful transaction, the Presence-Value-List element MUST NOT be present in the response primitive.

8.3.3.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetPresenceRequest error conditions:

· Unknown user ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

8.3.3.3 Primitives and information elements

	Primitive
	Direction

	GetPresenceRequest
	Client (Server

	GetPresenceResponse
	Client (Server

Table 57. Primitive directions for getting presence

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPresenceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	User-ID-List
	C
	Structure
	List of identifications of the requested IM users.

	Contact-List-ID-List
	C
	Structure
	Identifies the set of Users IDs.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

Table 58. Information elements in GetPresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPresenceResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	O
	String
	Identifies the session.

	Result
	M
	Structure
	Result of the request.

	Presence-Value-List
	O
	Structure
	List of User IDs and its corresponding presence values.

Table 59. Information elements in GetPresenceResponse primitive

·
·
·

·

·

·

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

8.3.4 Update Presence Transactions

8.3.4.1 Transactions

[image: image22.wmf]UpdatePresenceRequest

Client

Server

Status

Figure 33. Update presence transaction

A publisher MAY update any of his/her own presence attributes and their values by sending an UpdatePresenceRequest primitive to the server. The server MUST respond with a Status primitive. Only the updated attributes and their values MUST be carried in this primitive, the omitted attributes MUST NOT bemodified. The server MUST update the provided values into the PRSE.

The client and the server MAY support the update presence transaction. The service leaf that allows negotiation of this transaction is ‘UPDPR’.

8.3.4.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

UpdatePresenceRequest error conditions:

· Unknown presence attribute (not defined in [PA]). (750)

· Unknown presence value (not defined in [PA]). (751)

8.3.4.3 Primitives and information elements

	Primitive
	Direction

	UpdatePresenceRequest
	Client (Server

	Status
	Client (Server

Table 66. Primitive directions for UpdatePresenceRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UpdatePresence
Request
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	Update-Value-List
	M
	Structure
	A list of presence values to update.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 31)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20031003]

© 2003 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 31)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20031003]

_1064827106.vsd

_1068449672.vsd

_1072862126.vsd

_1099401409.vsd

_1068887787.vsd

_1068020210.vsd

_1068020244.vsd

_1067432631.vsd

_1064827107.vsd

_1064916641.vsd

_1061102509.vsd

_1061102510.vsd

_1064827105.vsd

_1060430573.vsd

_1060596853.vsd

_1058270011.vsd

_1058278541.vsd

_1058268915.vsd

