Doc# OMA-IM-2005-0129R01-IMPS13---Extend-IM-and-Private-Group-Conversation [image: image8.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-IM-2005-0129R01-IMPS13---Extend-IM-and-Private-Group-Conversation
Change Request

Change Request

	Title:
	Extend IM and Private Group Conversation
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MWG-IM

	Doc to Change:
	OMA-IMPS-WV-CSP-V1_3-20050204-D

	Submission Date:
	2005-03-24

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Azadeh Pourjanaki, SonyEricsson Mobile Communication, azadeh.pourjanaki@sonyericsson.com

	Replaces:
	n/a

1 Reason for Change

This Change request proposes a solution for requirements in IMPS 1.3 Delta RD, chapter 6.11. These requirements are driven by 2 Use cases (UC 5.7 and 5.8) originally presented by Vodafone. The solustion in proposed in this CR is based on an approved contribution(OMA-IM-2005-0012R01-13RD-UC-Private-Group-Conversation-Proposal) covering the same topic.
2 Impact on Backward Compatibility

New functionality in IMPS1.3. No backwards compatibility issues.
3 Impact on Other Specifications

Other CSP related specifications and SSP need to be updated.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend MWG-IM to review and approve this change request.
6 Detailed Change Proposal

9.1.10. Extend one-to-one IM conversation transaction

9.1.10.1 Transaction

[image: image1.emf]Client 1

Server Client 2

Client 3

E

xte

nd

C

on

ve

rsa

tio

n

Re

qu

es

t

CreateGroup

I

nv

ite

U

ser

Re

qu

es

t

JoinGroupResponse

InviteUserRequest

S

t

a

t

u

s

E

xt

en

dC

o

nv

ers

at

ion

R

esp

o

nse

J

o

i

n

G

r

o

u

p

R

e

q

u

e

s

t

S

t

a

tu

s

Sta

tu

s

S

t

a

t

u

s

J

oinG

roupR

eque

st

Jo

inG

r

ou

pR

es

po

ns

e

G

ro

up

Ch

an

g

eN

ot

ice

Figure xx. ExtendConversation transaction
A user can, while having an IM conversation with another user, decide to invite other user to the conversation. The initiating client, in above diagram Client2, sends an ExtendConversationRequest. The ExtendConversationRequest MUST contain a list of User IDs of the contacts that he/she wants to invite to the ongoing conversation. The ExtendConversationReques also includes the ExtendConversation-User-ID which identifies the user, which Client2 already has a conversation with, i.e. Client1.
The client MAY request subscribing to group change notifications. If the Subscribe-Notif element is ‘T’ (true) in the request and the group change notification transaction was agreed during service negotiation, the server MUST subscribe the user to group change notification.
The client MAY define a welcome note in the ExtendConversationRequest. If no welcome note is defined, the server MAY set one.
When the server receives ExtendConversationRequest it MUST create a group with all the following properties defined:
· Type: Public. The group is owned by the server. i.e. no users are allowed to delete the group or update the group properties.
· Accesstype: Open. All participants MUST be allowed to invite other users to join the Private Group Conversation.
· RequireInvitation: ‘T’. The server MUST only allow users who have explicitly been invited to the conversation to join the Private Group Conversation.
· AutoDelete: ‘T’. The server MUST delete the group as soon as the last participant leaves the Private Group Conversation.

· PrivateMessaging: ‘F’. Whispering MUST NOT be allowed within the Private Group Conversation.
· Searchable: ‘F’. The server MUST NOT include Private Group Conversations in search results.
When the group has successfully been created the server MUST respond to Client 2 with Status message. If the server fails to create the group of any reasons (e.g. maximum number of groups reached) it MUST respond with a Status messages including the proper error code.
When the server receives ExtendConversationRequest primitive and no error occurs, it MUST send InviteUserRequest to the user specified in the ExtendConversion-User-ID element, i.e. Client1. The server MUST set the Invite-Type in the InviteUserRequest to ExtendConversation(EC) in order to indicate to the receiving client to handle this invitation seamlessly in the scope of an active IM conversation.If the request is received by Client1 and no errors occur Client1 MUST respond with a Status message. The server MUST ignore InviteUserResponse sent from Client 1, if the Invite-ID refers to invitation with Invite-Type set to ‘EC’ (ExtendConversation).
If User1 accepts the invitation, then Client1 MUST sends a JoinGroupRequest to the server. When the server receives JoinGroupRequest it MUST respond to Client1 with JoinGroupResponse and MUST also send a ExtendConversationResponse to Client2. The ExtendConversationResponse MUST include the Group ID of the created group. At this point both Client2 and the server MUST assume the initiating user to be joined in the group and hence all the messages sent between the two clients MUST be addressed to the Group ID.
When the server sends InviteUserRequest to Client1, it MUST set a timer supervising the response from Client1. The value of the timer is a server implementation issue and MAY differ.
If Client1 does not send a JoinGroupRequest to the server before the timer times out, then the IM conversation will not be extended to a Private Group Conversation. In this case the server MUST send ExtendConversationResponse to Client2 and declare the failure in the Result element. If this happens then the sever MUST NOT send an InviteUserRequest to Client3.
Once the two initial users have joined the group, the server MUST send a InviteUserRequest with Invite-Type defined as ExtendConversation(EC), to all User IDs in the User-ID-List element, e.g. Client3. The server MUST NOT reveal any message history prior to Client 3 participation in the conversation,
The server MUST ignore InviteUserResponse primitives where the Invite-ID refers to invitations with Invite-Type set to ‘EC’ (ExtendConversation).

ExtendConversation Transaction MUST be supported by the server. The client MAY support the ExtendConversation transaction. The service tree leaf that allows negotiation of this transaction is ‘EXCON’.
9.1.10.2. Error conditions
Generic error conditions:

Not logged in. (604)

Service unavailable. (503)
Service not agreed. (506)
Service not supported. (405)

ExtendConversationRequest error conditions:

The maximum number of groups has been reached (server-limit). (815)

Delivery to recipient not available. (410)

Delivery to recipient domain not available. (516)

Recipient unknown (UserID or screen-name). (531)

9.1.10.3. Primitives and information elements

	Primitive
	Direction

	ExtendConversationRequest
	Client (Server

	Status
	Client (Server

	ExtendConversationResponse
	Client (Server

	Status
	Client (Server

Table XX. Primitive directions for extend conversation transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ExtendConversationRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session

	User-ID-List
	M
	Structure
	A list of User ID which identifies the new users who should be invited to the existing conversation

	ExtendConversation-User-ID
	M
	Structure
	Identifies the user who is already in the conversation

	Subscribe-Notif
	M
	Boolean
	A flag indicating that the client wants to activate the group change notifications while joining the group.

	WelcomeNote
	O
	String
	A welcome message for the group.

Table XX. Information elements in ExtendConversationRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ExtendConversationResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session

	Group-ID
	M
	String
	Identifies the group that has been created.

	Result
	M
	Structure
	Result of the request.

Table XX. Information elements in ExtendConversationResponse
**************************************CHANGE2**

7.1 Invitations

7.1.1 Transactions

[image: image2.wmf]Client 1

Server

InviteRequest

Status

Client 2

InviteUserRequest

Status

Figure 13. Invite user(s)

A user MAY invite other user(s) to join a group, to exchange messages, to share presence values list, and to share content and to request to be added to a group’s member list. The client MUST send the InviteRequest primitive to the server containing the ID of the invitation, the ‘Type’ of the invitation, the ID of the subject, the list of user(s) to be invited specified by User-IDs or screen-names, and MAY include the reason for the invitation (a short text) and his/her own screen-name. When the client is requesting group membership, the Recipients element MUST identify the Group-ID. The ID of invitation (Invite-ID) MUST be assigned by the inviting client and MUST be unique during a session.

If the Invite-Type is ‘GR’ (group), Invite-Group element MUST be present in the primitive.

If the Invite-Type is ‘GM’ (group membership), the Sender element in the InviteResponse primitive MUST identify the group ID.

The Recipient user(s) MUST be identified with User-IDs, Screen-names and contact list IDs, or any combination of those.

If Own-Screen-Name is present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain Screen-Name instead of User-ID (of the requesting user). If Own-Screen-Name is not present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain the User-ID of the requesting user. The server MUST validate the User-ID before the InviteUserRequest is sent.

If Invite-Group, Invite-Presence, Invite-Content or Invite-Reason is present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain those as well.
The server MUST respond to InviteRequest primitive with a Status message. The server MUST also send InviteUserRequest message to every user who has been invited by the inviting client. The InviteUserRequest primitive contains the ID of the invitation, the ID or the screen-name (if it exists in the request) of the inviter, the subject and the reason for the invitation (if it is requested). Each invited client MUST reply with a Status primitive.

In case of group membership invitations, the server MUST send the InviteUserRequest to the administrators and moderators of the group.

[image: image3.wmf]InviteUserResponse

InviteResponse

Status

Status

Client 1

Server

Client 2

Figure 14. Invited users’ response

The invitee MAY accept or reject the invitation. The invitee’s client MUST respond with the InviteUserResponse primitive to the server containing the ID of the invitation, the acceptance indicator, the ID of the subject, and MAY also include a short response text and the responding user’s screen-name. When replying to a membership invitation, only the Group-ID is used to identify the sender. The server MUST respond with a Status primitive. The server MUST also send InviteResponse to the inviting client.

The server MUST send the InviteResponse primitive to the inviter containing the ID of the invitation, the ID of the invitee (User-ID or screen-name), the acceptance indicator, the ID of the subject and (if the invitee specified it) the short response text. The inviter’s client MUST respond with a Status primitive.

The recipient client MAY respond with accepting or declining, or ignore the invitation by not responding.However when the client replies it MUST include the original Sender element without any changes in the InviteUserResponse primitive from the corresponding InviteUserRequest primitive.

If Invite-Response is present in the InviteUserResponse primitive, the InviteResponse primitive MUST contain it as well.

While it is OPTIONAL for an invited user to act according to the acceptance indicator of his/her response in the scope of this function, the invited user SHOULD act according to the response of the invited user.

The subject of the invitation MAY be a group, messaging, a shared content, presence or group membership. In case of presence the user MAY include a list of presence attributes that he/she is willing to share with the other party. Note that actual presence attribute sharing is not done; the transaction is only informational. Similarly, in case of group, messaging, or shared content invitations the actual action is not taken, the user MAY do it manually (the invitation is only informational).

The client and the server MAY support the invitation transactions, however when this feature is supported, all of the related transactions MUST be supported – meaning that creation, reception and response of invitations are all supported. The negotiated related services MUST be regarded: a client MUST NOT receive invitation to a group when group feature was not negotiated, and the server MUST NOT allow to send such invitation either. If the invited client does not support the requested feature by the inviting client, the server MUST generate appropriate Invite-Response indicating the lack of support to the inviting client. The Invitation ID (Invite-ID) MUST be the same InviteRequest, InviteUserRequest, InviteUserResponse, and InviteResponse primitives. The service tree leaf that allows negotiation of this transaction is ‘INVIT’.

7.1.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)

InviteRequest error conditions:

· Invalid invitation type. (402)

· Invalid invite-ID. (423)

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (UserID or screen-name). (531)

· Recipient unknown (Contact list). (700)

· Invalid or unsupported presence value. (751)

· Group does not exist. (800)

InviteResponse error conditions:

· Client MAY ignore any error and respond with Successful. (200)

InviteUserRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

InviteUserResponse error conditions:

· Invalid acceptance type. (402)

· Invalid invite-ID. (423)

7.1.3 Primitives and information elements

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	InviteUserRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the requested user’s session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Invite-Type
	M
	Enumerated string
	Indicates the type of the invitation. (Group (GR), Messaging (IM), Presence (PR), ShareContent (SC), Group Membership (GM), ExtendConversation(EC))

	Sender
	M
	Structure
	Identifies the requesting user. (User ID, screen name)

	Invite-Group
	C
	String
	Identifies the related group. (Mandatory if InviteGroup , Group Membership or ExtendConversation)

	Invite-Presence
	C
	Structure
	Identifies the related presence attributes.

	Invite-Content
	C
	Structure
	Identifies the related shared content as a list of URLs.

	Invite-Reason
	O
	String
	Textual description of the invitation.

	Validity
	O
	Integer
	Indicates the time interval in which the invitation is valid. Indicated in seconds.

Table 32. Information elements in InviteUserRequest primitive
***************************CHANGE 3***
10.5.1 Group properties

The values of the group properties MAY be defined by the owner, or by group member(s) with sufficient access rights. Only Administrators MAY modify these group property values. Each group MAY have the following properties:

· Name: a string that MAY be presented to the user as the name of the group (not necessarily same as GroupID!).

Default value MUST be an empty string. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Accesstype:

· Open (for everyone) or

· Restricted (members only).

Default value MUST be ‘open’. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Type
:

· Public (maintained by service provider) or

· Private (maintained by individual user(s)).

· For all user-created groups the server MUST set this property to ‘private’.

· PrivateMessaging:

· T (sending private messages is enabled) or

· F (sending private messages is disabled).

Default value MUST be “F”. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Searchable:

· T (the group MUST be subject to search) or

· F (the group MUST NOT be included in searching).

Default value MUST be “F”. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Topic: a string that describes the subject of discussion in the group. The topic is subject to searching if allowed.

Default value MUST be an empty string. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· ActiveUsers
: an integer number that indicates the number of currently joined users.

· MaxActiveUsers: an integer number that indicates the maximum number of joined users at any given time.

The Default value MUST be set by the GRSE. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· WelcomeNote: a string that is presented as text to the user when he/she joins the group.

Default value MUST be an empty structure. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· History:

· T (message history is supported)

· F (message history is not supported)

If server supports the message history functionality, user/client MAY request it for a new or existing group.

· AutoDelete:

· T (the group will be automatically deleted) - the server MUST verify the ‘Validity’ property. If the ‘Validity’ property was zero (e.g. the validity has expired), the server MUST automatically delete the group when all joined users have left. If the ‘Validity’ property was non-zero (e.g. the group is valid) the server MUST NOT delete the group.

· F (group will not be automatically deleted) – the server MUST ignore the ‘Validity’ property. In this case, the group is considered permanent. The “permanency” of a group is subject to the local policy of maximum lifetime defined by server vendor or operator.

Default value MUST be ‘F’. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Validity: a non-negative integer number that indicates the time period (in minutes) for which the group is valid. When the value is zero the group MUST NOT be valid if and only if all joined user have left the group. The server MUST keep the value up-to-date and the value MUST reflect the remaining time period for which the group is valid. The ‘Validity’ MUST be ignored if ‘AutoDelete’ is ‘F’. Note that the generic XML element of the value of the group property is defined as a String. For this particular ‘Validity’ property, the String MUST be the decimal representation of the non-negative integer number.

Default value MUST be zero. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).
· RequireInvitation
:

· T (Participants MUST be invited in order to be able to join the group) - Server MUST allow users that unintentionally left the Private Group Conversation, to rejoin it for a limited timeout period. After the expiration of the timeout period the server MUST NOT allow the non-intentionally(i.e. without sending a LeaveGroupRequest primitive to the server) dropped-out user to rejoin the on-going Private Group Conversation unless he/she is re-invited by one of the participants. The timeout period is a server-specific value. Server MUST NOT allow the users who have intentionally left the Group Conversation to re-join unless they are invited again by one of the participants.
· F (Participants MAY join the group without explicitly being invited)
Each user MAY have his/her own properties for each group individually. These properties are:

· PrivateMessaging:

· T (sending private messages is enabled) or

· F (sending private messages is disabled).

Default value MUST be “F”. This is an OPTIONAL property (the client does not have to specify it in the CreateGroupRequest primitive).

· IsMember
:

· T (the user is a member of the group) or

· F (the user is not member of the group).

· PrivilegeLevel
:

· User (general user),

· Mod (moderator),

· Admin (administrator).

· AutoJoin

· T (server joins the client automatically to the particular group)

· F (server does not join client automatically to the particular group)

Default value is “F” for every user in every group. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· ShowID

· T (server MAY disclosed the user ID to other users joined to this group)

· F (server MUST NOT disclose the user ID to other users joined to this group)

Default value is “F” for every user in every group. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

Note that moderators and administrators MAY retrieve the user IDs disregarding this setting. See ‘Get Joined Users’ transaction in chapter 10.6.

The XML Syntax DTD - see [CSP XMLS] - has been defined in a manner that allows custom group/own properties. The client and the server SHOULD ignore (without generating an error) the properties they are not able to process (not understood).

Both group members and joined users MAY have own group properties. Properties of non-members MAY be discarded after the user leaves the group whereas members’ properties MUST be kept on the server between separate group sessions.
CHANGE4
10.4. Join group feature

10.4.1. Transactions

[image: image4.wmf]JoinGroupRequest

Client

Server

JoinGroupResponse

Figure 49. Join group transaction

A user MAY join a discussion group at any time. The client MUST send the JoinGroupRequest primitive to the server containing the ID of the group, his/her screen name shown during the discussion, the joined users’ list request and the subscribe to group change notification request. The server MUST respond with the JoinGroupResponse primitive that MUST contain the list of joined users identified by screen names and User-IDs if requested, and MAY contain the Welcome–Note element. If there is an error, the server MUST respond with a Status primitive instead of the expected JoinGroupResponse primitive. Those User-IDs MUST be present only which users have set their ShowID own property to true.

If the Screen Name defined in the JoinGroupRequest is not unique, the server MUST create a unique Screen Name and inform the user about the changed Screen Name by including it in the JoinGroupResponse.

After the user successfully joins the group, the user MAY receive and send messages from/to the particular group.

To retrieve previous messages (history) from the group, the get message list transaction MAY be utilized.

The client and the server MUST support the join group transaction, thus its support is not negotiated.

In order to save extra transactions:

· the client MAY request the joined users’ list to be returned in the response. If the Joined-Request element is ‘T’ (true) in the request, the server MUST include the joined users’ list in the response. For more information about the joined users’ list see the particulars of the ‘Get joined users transaction’ in 10.6.1 Transactions.

· the client MAY request subscribing to group change notifications. If the Subscribe-Notif element is ‘T’ (true) in the request and the group change notification transaction was agreed during service negotiation, the server MUST subscribe the user to group change notification.

· the client MAY include own group properties for the user in the request. If the own group properties are included in the request, the server MUST apply those properties.

The server MUST NOT allow rejected users to join the group from which they are expelled.

The server MUST allow any user – except the rejected users – to join an ‘Open’ group.

The server MUST allow only members to join a ‘Closed’ group.

If the JoinGroupRequest primitive contains the screen name for the user, the server MAY apply the requested screen name, or generate a new screen name. If the screen name was missing from the request, the server MAY generate a new screen name.

If a ‘Welcome Note’ was specified for the group, the server SHOULD include it in the response.

After the user has successfully joined the group, the server MUST start sending all messages that are sent to the group to the newly joined user.

10.4.2. Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

· Invalid/unsupported group properties (806)

JoinGroupRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· User already joined. (807)

· User has been rejected. (809)

· Cannot join with the specified screen name; it is already in use. (811)

· The maximum number of allowed users has been reached. (817)

10.4.3. Primitives and information elements

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	JoinGroupResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the session.

	Joined-Users-List
	C
	Structure
	The list of the currently joined users (screen name, User ID). Present if it was requested.

	Screen-Name
	C
	String
	A unique screen name created by the server. Present if the screen name sent in the JoinGroupRequest was not unique.

	Welcome-Text
	O
	Structure
	A short text to be shown to the user when he/she has joined the group. The structure of the Welcome-Text includes {Content-type, OPTIONAL Content-encoding, and Content-Data}.

Table 101. Information elements in JoinGroupResponse primitive
CHANGE5
10.9. Subscribe to group change

[image: image5.wmf]SubscribeGroupNoticeRequest

Client

Server

SubscribeGroupNoticeResponse

Figure 60. Subscribe group change notification transaction

A user MAY get/set/unset group change subscription status. The client MUST send the SubscribeGroupNoticeRequest primitive to the server. The primitive MUST contain the ID of the group and the ‘Type’ of the requested operation. The answer from the server for the get operation MUST be the SubscribeGroupNoticeResponse primitive, or Status if an error occurs. The answer from the server for the set/unset operation MUST be a Status primitive. While the subscription is active, the user MUST receive GroupChangeNotice primitives.

The client and the server MAY support the ‘subscribe group change notification transaction’. The service tree leaf that allows negotiation of this transaction is ‘SUBGCN’.

If the SubscribeGroupNoticeRequest primitive requests ‘get’ operation, the server MUST NOT update the subscription state on the server, and the current status of the subscription for the requested group MUST be sent in the response.

If the SubscribeGroupNoticeRequest primitive requests ‘set’ operation, the server SHOULD turn on the subscription state for the particular group.

If the SubscribeGroupNoticeRequest primitive requests ‘unset’ operation, the server MUST turn off the subscription state for the particular group.

The server MUST automatically turn the subscription status off when the joined user/member to whom the subscription belongs leaves (or removed from) the particular group.

[image: image6.wmf]Status

Client

Server

GroupChangeNotice

Figure 61. Group change notification

The server MAY send group change notification(s) to the user whenever some other user leaves or joins the group, or the group properties or the user’s own properties have been changed. The server MUST send the GroupChangeNotice primitive to the users (whose group change subscription is active) containing a list of users, identified by their screen names and User-IDs of the recently joined or left users, or the new properties of the group. The server MAY also include a list of the users who have been blocked by the receiving user and who have recently joined or left the group. The server MUST include users in the Joined-Blocked-Users-List or Left-Blocked-Users-List also in the Joined-Users-List or Left-Users-List.
The User-ID MUST be present only if that user has set his ShowID own property to true.

The client and the server MAY support the ‘group change notification transaction’. The service tree leaf that allows negotiation of this transaction is ‘GRCHN’.

When the ‘Welcome Note’ property of the group has been changed, the server MUST NOT send group change notification.

The server MAY maintain an internal ‘Validity’ property of the groups. When this internal ‘Validity’ has been updated, the server MUST NOT send group change notification.

When an administrator/moderator updates the Validity of a group, the server MUST send group change notification to all members (with active subscription) and to all joined users (with active subscription).

When any other properties of a group than ‘Welcome Note’ and ‘Validity’ (server internal update) have been changed, the server MUST send group change notification to all group members (with active subscription) and to all joined users (with active subscription) containing the changed properties.

When a user’s own properties have been changed, the server MUST send group change notification only that particular user (if he/she has active group change subscription).

When some users have left or joined the group, the server MUST send group change notification to all joined users (with active subscription).

The group change notification MUST contain information about the changed properties and/or joined/left users – e.g. empty notifications MUST NOT occur.

10.9.1. Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribeGroupNoticeRequest error conditions:

· Group does not exist. (800)

· Group was not joined before transaction. (808)

GroupChangeNotice error conditions:

· Client MAY ignore any error and respond with Successful. (200)

10.9.2. Primitives and information elements

	Primitive
	Direction

	SubscribeGroupNoticeRequest
	Client (Server

	SubscribeGroupNoticeResponse
	Client (Server

	GroupChangeNotice
	Client (Server

	Status
	Client (Server

Table 120. Primitive directions in subscribe group change notification transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribeGroup
NoticeRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the session.

	Group-ID
	M
	String
	Identification of the group.

	Subscribe-Type
	M
	Enumerated character
	Indicates the type of subscription request. (“G” for Get, “S” for Set, and “U” for Unset.)

Table 121. Information elements in SubscribeGroupNoticeRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribeGroup
NoticeResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the session.

	Subscription-State
	M
	Boolean
	Indicates the status of subscription.

Table 122. Information elements in SubscribeGroupNoticeResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GroupChange
Notice
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the session.

	Group-ID
	M
	String
	Identification of the group.

	Joined-Users-List
	O
	Structure
	A list of the users that recently joined the group (screen name, user ID).

	Left-Users-List
	O
	Structure
	A list of screen names of the users that recently left the group.

	Joined-Blocked-Users-List
	O
	Structure
	A list of the blocked users that recently joined the group (screen name, user ID),

	Left-Blocked-Users-List
	O
	Structure
	A list of the blocked users that recently left the group (screen name, user ID).

	Group-Props
	O
	Structure
	The new properties of the group.

	Own-Props
	O
	Structure
	The new properties of the user in the group.

Table 123. Information elements in GroupChangeNotice primitive

CHANGE 6*
6.8. Service and Capability Negotiation
6.8.1. Transactions

Add a new service tree leaf under called ‘EXCON’ under the Group-Use-Functions.

[image: image7.wmf]WV-CSP

Features

Presence-

Features

IM-Features

Group-

Features

Fundamental-

Features

GLBLU

BLENT

GCLI

CCLI

DCLI

MCLS

CALI

DALI

GALS

GETPR

UPDPR

GETWL

REACT

GETAUT

REJCM

NOTIF

FWMSG

CREAG

DELGR

GETGP

SETGP

ContactList-

Functions

PresenceAuth-

Functions

Presence-

Delivery-

Functions

AttributeList-

Functions

IM-Sending-

Functions

SETD

IM-Auth-

Functions

Group-Mgmt-

Functions

INVIT

CAINV

Service-

Functions

Search-

Functions

Invite-

Functions

GETSPI

GETLM

GETM

MDELIV

SRCH

STSRC

IM-Receiving-

Functions

NEWM

MF (Mandatory

fundamental

functions)

MP (Mandatory

presence

functions)

MM (Mandatory

Messaging

functions)

MG (Mandatory

group

functions)

VRID

VerifyID

CAAUT

GETGM

ADDGM

RMVGM

MBRAC

REJEC

Group-Auth-

Functions

GETJU

SUBGCN

GRCHN

Group-Use-

Functions

EXCON

� This property is read-only (determined by the server) and it cannot be modified.

� This property is read-only (monitored by the server) and it cannot be modified.

� This property is read-only (determined by the server) and it cannot be modified

� This property is read-only (determined by the server) and it cannot be modified.

� This property is read-only (determined by the server) and it cannot be modified.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 16)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

_1068445253.vsd

_1170506046.vsd
WV-CSP Features�

Presence-Features�

IM-Features�

Group-Features�

Fundamental-Features�

GLBLU�

BLENT�

GCLI�

CCLI�

DCLI�

MCLS�

CALI�

DALI�

GALS�

GETPR�

UPDPR�

GETWL�

IM-Receiving-Functions�

REACT�

GETAUT�

REJCM�

NOTIF�

FWMSG�

CREAG�

DELGR�

GETGP�

SETGP�

GETGM�

ADDGM�

RMVGM�

MBRAC�

SUBGCN�

GRCHN�

REJEC�

ContactList-Functions�

PresenceAuth-Functions�

Presence-Delivery-Functions�

AttributeList-Functions�

IM-Sending-Functions�

SETD�

IM-Auth-Functions�

Group-Mgmt-Functions�

Group-Auth-Functions�

NEWM�

�

STSRC�

INVIT�

CAINV�

Service-Functions�

Search-Functions�

Invite-Functions�

Group-Use-Functions�

GETSPI�

GETLM�

GETM�

MDELIV�

SRCH�

MF (Mandatory fundamental
functions)�

MP (Mandatory presence
functions)�

MM (Mandatory Messaging
functions)�

MG (Mandatory group
functions)�

CAAUT�

VRID�

VerifyID�

GETJU�

�

EXCON�

_1172563017.vsd
�

Client 1�

Server�

Client 2�

Client 3�

�

ExtendConversationRequest�

InviteUserRequest�

CreateGroup�

ExtendConversationResponse�

�

�

JoinGroupRequest�

JoinGroupResponse�

JoinGroupRequest�

�

JoinGroupResponse�

�

InviteUserRequest�

�

Status�

�

�

Status�

�

Status�

Status�

GroupChangeNotice�

_1068978170.vsd

_1060608207.vsd

_1068445227.vsd

_1058171765.vsd

