	Error! Style not defined.
	Page 2 V(6)

Change Request

	Title:
	CIR method agreement
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA MWG IM

	Doc to Change:
	OMA-IMPS-CSP-V1_3-20050404-D

	Submission Date:
	22 April 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Arild Nilsen, Colibria, nilsen@colibria.com

	Replaces:
	n/a

1 Reason for Change

This proposal addresses the following issues raised in an input contribution from Nokia.

Two issues have been identified when both the client and the server supports numerous CIR channels:

· Which CIR channel will be used from the list and how does the server inform the client about it?

· How can the client change the CIR channel during an existing session?

R01 Updated with comments from Nokia
R02 Updated with comments from Vodafone
2 Impact on Backward Compatibility

Not backwards compatible. The mechanism does not exist in earlier versions.

3 Impact on Other Specifications

CRs for other documentation will be created after approval of this CR.
4 Intellectual Property Rights

The authors of this document do not have knowledge of IPRs related to this contribution.

5 Recommendation

Working group to review and approve the change request.

6 Detailed Change Proposal

6.8.1 Transactions

[image: image1.wmf]Client

Server

ServiceRequest

ServiceResponse

Figure 8. Service negotiation

After successful login the client and server MUST set up the context of the session. Service negotiation MUST be done after the successful login transaction, and MAY be repeated during the session at any time.

The response to the client MUST confirm what services the server supports and the client is allowed to use. The server MUST provide the agreed services. The server MUST NOT agree to provide services that are neither subscribed nor requested by the client.

The goals of the service negotiation are:

· To discover the available services.

In order to achieve this goal the client needs to know exactly which services are available on the server. If the client does not know which services are available on the server it MAY request it using the All-Function-Request information element ServiceRequest primitive. If All-Functions-Request element indicates ‘T’ in the ServiceRequest primitive, the server MUST send the list of all services that the server supports in the response. If All-Functions-Request element indicates ‘F’ in the ServiceRequest primitive, the Requested-Functions element MUST be present in the request. If requested, the ServiceResponse primitive will contain the service tree, which gives the information about the available services. Having the tree available the client can select which services it would like to use; it is ready to make an agreement.

· To agree what services will be used.

The client and the server MUST agree which features and functions will be used during the session. The client MUST send its service tree to the server in the Requested-Services element of the ServiceRequest primitive describing what kind of services it would like to use. The server MUST processe the tree, and MUST send back the ServiceResponse primitive containing the inverted tree (meaning that the tree MUST contain the features and functions the client has requested but not allowed to use). The client throughout the whole session MUST NOT use any of the features and functions that the server did not agree to provide: all non-negotiated features and functions MUST fail. Non-negotiated features and functions are the ones that were either not requested by the client, or not agreed by the server for some reason.

The service tree is a set of features and functions structured as a tree, WVCSPFeat being the root (which indicates all available features and functions). The tree MAY have multiple sub-trees (with multiple roots). There is no need to indicate the whole sub-tree when all features or functions are requested/denied under a specific sub-tree: only the sub-root element MUST be present in the tree. However, it is necessary to indicate the sub-tree when certain features (that are part of a sub-root element) are not requested.

When only the mandatory functions of a particular feature are requested, only the corresponding mandatory (MF, MP, MM, MG) element of the feature MUST be present in the service tree. If any other function is requested under a certain feature than the mandatory functions, the MF, MP, MM, MG element MUST NOT be indicated in the tree. When a sub-root element is requested without any elements under it, it means that all features and functions are requested under the particular sub-tree that are either MANDATORY or OPTIONAL.

The client and the server MUST support service negotiation transaction. The server MUST support repeating the service negotiation during the session at any time.

Note that the service tree in Plain Text Syntax [CSP PTS] is handled differently.

The abbreviated names of the service tree elements are described in the sections related to the transactions.

[image: image2.wmf]WV-CSP

Features

Presence-

Features

IM-Features

Group-

Features

Fundamental-

Features

GLBLU

BLENT

GCLI

CCLI

DCLI

MCLS

GETPR

UPDPR

GETWL

REACT

GETAUT

REJCM

NOTIF

FWMSG

CREAG

DELGR

GETGP

SETGP

GETGM

ADDGM

RMVGM

MBRAC

SUBGCN

GRCHN

REJEC

ContactList-

Functions

PresenceAuth-

Functions

Presence-

Delivery-

Functions

IM-Sending-

Functions

SETD

IM-Auth-

Functions

Group-Mgmt-

Functions

Group-Auth-

Functions

INVIT

CAINV

Service-

Functions

Search-

Functions

Invite-

Functions

GETMAP

GETLM

GETM

MDELIV

SRCH

STSRC

IM-Receiving-

Functions

NEWM

Group-Use-

Functions

MF (Mandatory

fundamental

functions)

MP (Mandatory

presence

functions)

MM (Mandatory

Messaging

functions)

MG (Mandatory

group

functions)

VRID

VerifyID

CAAUT

GETJU

GETSPI

EXCON

Figure 9. The service tree

[image: image3.wmf]Client

Server

ClientCapabilityRequest

ClientCapabilityResponse

Figure 10. Client Capability Request

Client capability negotiation MAY be performed after the successful Login transaction – before the Service Negotiation. The server MUST maintain the client capability information during the session, and it MAY cache these capabilities between sessions. The server MUST store the OfflineETEMHandling and the related Client-ID for the user even after the session has been disconnected. If the client capability negotiation is needed after login, the server MUST indicate it in the login response. The client capability negotiation MAY also be repeated any time during a session.

The client capability request sets up the communication preferences for the session, for example the initial IM delivery method.

The ClientCapabilityRequest primitive contains an element “Requested Capabilities” that conveys the client capability information to the server. The client capability information includes:

· ClientType – the type of the client. See Table 7 in [PA].

· InitialDeliveryMethod – the initial IM delivery method that the recipient client prefers in the set of “PUSH” and “Notify/Get”.

· AnyContent – A Boolean value indicating that the client accepts any content types.

· AcceptedContentType – the list of supported content types in the client device, such as “text/plain; charset=us-ascii”. Applicable only when Any-Content is “No” or missing. The server MUST NOT send any instant messages or presence information containing a content type, which is not in this list. The server MUST send however notification about such instant messages providing that the notification transaction was agreed upon during service negotiation.

· AcceptedCharset – the list of supported character sets for plain text documents in the client device. Integer number assigned by IANA (see MIBenum numbers in [IANA]). Applicable only when Any-Content is “Yes”.

· AcceptedTransferEncoding – the supported transfer encoding methods in the client device, such as “base64”.

· AcceptedContentLength – the maximum content size when using “PUSH”. Indicates the character (byte) count of the message content.

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS)

· MultiTrans – Integer value indicating the maximum number of primitives that the client can handle within the same transport message, as well as the maximum number of open transactions from both client and server side at any given time. The value MUST be greater than 0.

· ParserSize – the maximum character (byte) count of XML (WBXML, SMS - depending on the actual encoding) message size that the parser can handle. Multiple transactions in the same message and presence updates (many user in the same message) might generate large XML documents.

· SupportedCIRMethod – the list of supported CIR methods that are supported by the client. The list SHALL be in the order that the client prefers for selection of CIR method(s). When more than one CIR method has been agreed between the client and the server, the server MUST select, among the methods that are available in that moment, the one with highest priority. The client SHOULD at least support one SMS-bearer based CIR method in order to recover from situations such as loss of PDP context.
· OfflineETEMHandling – enumerated value indicating how the client expects the server to handle end-to-end messages that have been addressed particularly to this client after the client logged out or was disconnected. The client MAY request one of the following values:

· PRIORITYREJECT – the server MUST send all end-to-end messages that have been addressed to this client to another client with the highest priority that supports the content of the end-to-end message, but if no such client exists, the server MUST reject the end-to-end message.

· PRIORITYSTORE – the server MUST send all end-to-end messages that have been addressed to this client to another client with the highest priority that supports the content of the end-to-end message, but if no such client exists, the server MUST store the end-to-end message for later delivery.

· REJECT – the server MUST reject all end-to-end messages that have been address to this client.

· SENDREJECT – the server MUST send all end-to-end messages that have been addressed to this client to all other online clients that supports the content of the end-to-end message, but if no such client exists, the server MUST reject the end-to-end message.

· SENDSTORE – the server MUST send all end-to-end messages that have been addressed to this client to all other online clients that supports the content of the end-to-end message, but if no such client exists, the server MUST store the end-to-end message for later delivery.

· UDPPort – the client MAY indicate that it requests other than the default port for the standalone UDP/IP CIR method. If the client indicates in the request that SUDP is supported, it MUST provide this value in the request as well. It is a decimal integer number. If the client indicates a value of 0 (zero), the server should deduce the IP address and the port number from the HELO message on the UDP/IP CIR channel. See [CSP Trans] for details.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· SessionPriority – an integer number from 0 (lowest) to 65535 (highest) indicating the priority of the session for end-to-end messages – see OfflineETEMHandling. The server MUST guarantee that there are no two clients from the same user with the same priority - the server MAY either decrease the priority of the already existing sessions or it MAY increase the priority of the session that initiated the client capability negotiation. When the server decreased the priority of any existing session, each session MUST be informed using the General Notification mechanism – see [editor to add reference to general notification mechanism] – providing that the client requested to be notified of such events. When the server increases the priority of the session that requested the client capability negotiation, it MUST inform the client about the new priority value using the SessionPriority in the client capability negotiation response. The server MUST publish the agreed value in the ClientInfo/ClientIMPriority presence attribute.

· DefaultLanguage – The current language setting in the client. The language code is specifying that the client prefers to receive text information in the indicated language from the server. The information is OPTIONAL – it is used to override the user profile/presence info language preference.

For the details of the “PUSH” and other message-related information, please refer to section 9 Instant Messaging Feature.

The Client Capability Response contains an element “Agreed Capabilities” that conveys the agreed capability information back to the client. The agreed capability information includes the following derived elements:

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS) that both the client and server support.

· SupportedCIRMethod – the list of CIR methods that both the client and server support. The list MUST be in the prioritized order given by the client in the request. The server MUST at any time use the highest priority CIR method available, the client SHOULD be able to receive CIR messages by means of all agreed methods.
· TCPAddress – If the client indicates that it supports STCP in the request, the server MUST provide an IP address for standalone TCP/IP CIR method. It is an IP address.

· TCPPort – If the client indicated that it supports STCP in the request the server MUST provide a port number if it is different from the default port for the standalone TCP/IP CIR method. Decimal integer number.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· CIRHTTPAddress – A URL used for HTTP binding of CIR channel. See [CSP Trans] for description on how to use this binding.

· OfflineETEMHandling – enumerated value indicating how the client expects the server to handle end-to-end messages that have been addressed particularly to this client after the client logged out or was disconnected. Server that do not offer offline storage MUST change OfflineETEMHandling, however the server MUST NOT include OfflineETEMHandling when no changes have been made to it. The permitted changes are:

· PRIORITYSTORE (PRIORITYREJECT

· SENDSTORE (SENDREJECT

· UDPAddress – if the client indicates that it supports SUDP in the request, the server MUST provide an IP address for standalone UDP/IP CIR method. It is an IP address.

· UDPPort – If the client indicated that it supports SUDP in the request the server provides a port number if it is different from the default port for the standalone UDP/IP CIR method. It is a decimal integer number.

· SessionPriority – an integer number from 0 (lowest) to 65535 (highest) indicating the adjusted priority value of the session. The server MUST NOT include SessionPriority when no changes have been made to it.

· SAPSessionLimit – Integer number indicating the maximum number of concurrent sessions for the user over the SAP that the client is currently using. Since every SAP MUST support concurrent sessions, this value MUST NOT be less than 2. When there is no such limitation, SAPSessionLimit MUST NOT be included in the response.

· UserSessionLimit – Integer number indicating the maximum number of total concurrent sessions for the user. Since every user MUST be given at least two concurrent sessions, this value MUST NOT be less than 2. When there is no such limitation, UserSessionLimit MUST NOT be included in the response.

The client and the server MUST support client capability negotiation over SMS transport, however the only negotiated capabilities are ‘SessionPriority’, ‘ClientType’, ‘DefaultLanguage’, ‘MultiTrans’, ‘OfflineETEMHandling’, ‘ParserSize’, ‘SAPSessionLimit’ and ‘UserSessionLimit’.
The client and server MUST support – with all capabilities – client capability negotiation over any other transports than SMS.

The client MAY and the server MUST support repeating the client capability negotiation during the session at any time.

The server MUST NOT provide capabilities that were not requested by the client. The server MUST NOT assume and use capabilities that are not supported by the client.

The ClientCapabilityResponse primitive MUST contain the list of capabilities that the server agrees to provide or have been updated by the server.

If the client indicates the use of WAP SMS or WAP UDP binding for CIR, the server MUST NOT provide the IP-address or TCP port in the response.

The server MUST use the agreed addresses and port numbers for CIR channel.

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

[image: image4.jpg]"sOMaQa

Open Mobile Alliance

_1064750288.vsd

_1174135709.vsd

_1060598905.vsd

