	Error! Style not defined.
	Page 2 V(12)

Change Request

	Title:
	Offline message notification
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-MWG-IM

	Doc to Change:
	OMA-IMPS-CSP-V1_3-20050415-D

	Submission Date:
	11 April 2004

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Frank Helsen, frank.helsen@siemens.com, Zoltán Ördögh, Nokia, zoltan.ordogh@nokia.com

	Replaces:
	OMA-IM-2005-0224-LATE-IMPS-1_3-Offline-Message-Notification

1 Reason for Change

New requirements for IMPS 1.3. This CR introduces the required changes to support following requirements:

· IMR-9: The IMPS system SHOULD support reception of, storage of, and subsequent delivery of Instant Messages from logged-in sender users to the logged-out recipient users.
· IMR-10: The IMPS specifications SHALL specify the type of the off-line message notification for mechanisms such as SMS and WAP push.
· IMR-11: The recipient’s home domain SHALL be responsible for sending off-line message notification. The use of this notification SHALL be optional for the operator.
Added Nokia comments continuing from 2005-0223R01, as Frank is very busy at the moment.

2 Impact on Backward Compatibility

Yes, because the service tree does not include the negotiation of the offline feature. Otherwise it is backwards compatible, as the notifications are not transferred using the CSP protocol.

3 Impact on Other Specifications

Impact on CSP Transport specification. The SSP specification has to be updated to allow remote negotiation of the feature as well (CSP service tree in the SSP DTD).
4 Intellectual Property Rights

The authors of this document do not have knowledge of IPRs related to this contribution.

5 Recommendation

Working group to review and approve the change request.

6 Detailed Change Proposal

##Change1###

	Alias
	The name a user suggests others to use as NickName. Part of the User Presence – available only those who are authorized to retrieve it.

	Auto login
	A user setting within the device that allows the IMPS client to log into the IMPS service automatically without user action (e.g. selecting a "login" function or starting an application). The login sequence may be triggered at the client's discretion in a variety of ways (e.g. at power-on, when the service becomes available after an outage due to coverage, phone calls, use of other services etc.)

	Contact
	The representation of a single user in the IMPS technology – consist of a User-ID and an optional NickName.

	ContactList
	A collection of Contacts that resides on the server, and essential part of presence authoring functions. It is possible to address IMs using the ContactListID as well.

	Contact Details
	A collection of information, which is available for the service provider only, and there is no way to retrieve it by any other user. The information is typically collected when the user buys his/her IMPS subscription.

	Friendly Name
	A name that the user suggests for the general public to use as a nickname and is available to all users at all times.

	Inbox
	A local repository on the client device where the incoming messages are stored.

	MDN
	A Mobile Directory Number (MDN) is used in 3GPP2. An MDN is a dial able number associated with the mobile station through a service subscription. A Mobile Directory Number is not necessarily the same as the mobile station identification on the air interface. An MDN consists of country code, national destination code, and subscriber number. An MDN consists up to 15 digits.

	NickName
	A name that is used internally in a client device to hide the User-ID of contacts from the end-user. It is not possible to address other users using the NickName.

	Offline Message Notification
	A notification used to inform a logged-out recipient about an Instant Message sent to his User-ID and received on the IMPS server from his home domain.

	OnlineStatus
	A presence attribute that indicates whether the client application (and the user) is logged on to an IMPS server or not.

	Private Group Conversation
	A temporary chat group that is the result of extending a one-to-one messaging to many-to-many messaging.

	Phonebook
	A local database in the terminal containing phone numbers, names, etc.

	Private Profile
	A user’s profile information that is not available to anyone including the owner user himself/herself – it is maintained by the service provider and is searchable with some restrictions.

	Public Profile
	A user’s profile information that is available to the public – it is maintained by the owner user and is searchable with some restrictions.

	Publisher
	The user that owns the presence information.

	Registration
	The action or process by which an individual, who generally is a subscriber of the mobile network operator, becomes an active user of the IMPS.

	ScreenName
	A combination of a name a user chooses in a group session, and the Group-ID itself. The user MAY have different ScreenNames for different occasions as well as on different groups. The ScreenName is always connected to a group.

	System Message
	A special type of message sent by the IMPS system for different purposes (e.g. advice of charge, service notifications, advertisements, instructions, etc). System Messages MAY contain a list of possible options and require actions or response from the user.

	User-ID
	Identifier for a single user that is unique across all IMPS services.

##Change2###
6.8Service and Capability Negotiation

6.8.1Transactions

[image: image1.wmf]Client

Server

ServiceRequest

ServiceResponse

Figure 1. Service negotiation

After successful login the client and server MUST set up the context of the session. Service negotiation MUST be done after the successful login transaction, and MAY be repeated during the session at any time.

The response to the client MUST confirm what services the server supports and the client is allowed to use. The server MUST provide the agreed services. The server MUST NOT agree to provide services that are neither subscribed nor requested by the client.

The goals of the service negotiation are:

· To discover the available services.

In order to achieve this goal the client needs to know exactly which services are available on the server. If the client does not know which services are available on the server it MAY request it using the All-Function-Request information element ServiceRequest primitive. If All-Functions-Request element indicates ‘T’ in the ServiceRequest primitive, the server MUST send the list of all services that the server supports in the response. If All-Functions-Request element indicates ‘F’ in the ServiceRequest primitive, the Requested-Functions element MUST be present in the request. If requested, the ServiceResponse primitive will contain the service tree, which gives the information about the available services. Having the tree available the client can select which services it would like to use; it is ready to make an agreement.

· To agree what services will be used.

The client and the server MUST agree which features and functions will be used during the session. The client MUST send its service tree to the server in the Requested-Services element of the ServiceRequest primitive describing what kind of services it would like to use. The server MUST processe the tree, and MUST send back the ServiceResponse primitive containing the inverted tree (meaning that the tree MUST contain the features and functions the client has requested but not allowed to use). The client throughout the whole session MUST NOT use any of the features and functions that the server did not agree to provide: all non-negotiated features and functions MUST fail. Non-negotiated features and functions are the ones that were either not requested by the client, or not agreed by the server for some reason.

The service tree is a set of features and functions structured as a tree, WVCSPFeat being the root (which indicates all available features and functions). The tree MAY have multiple sub-trees (with multiple roots). There is no need to indicate the whole sub-tree when all features or functions are requested/denied under a specific sub-tree: only the sub-root element MUST be present in the tree. However, it is necessary to indicate the sub-tree when certain features (that are part of a sub-root element) are not requested.

When only the mandatory functions of a particular feature are requested, only the corresponding mandatory (MF, MP, MM, MG) element of the feature MUST be present in the service tree. If any other function is requested under a certain feature than the mandatory functions, the MF, MP, MM, MG element MUST NOT be indicated in the tree. When a sub-root element is requested without any elements under it, it means that all features and functions are requested under the particular sub-tree that are either MANDATORY or OPTIONAL.

The client and the server MUST support service negotiation transaction. The server MUST support repeating the service negotiation during the session at any time.

Note that the service tree in Plain Text Syntax [CSP PTS] is handled differently.

The abbreviated names of the service tree elements are described in the sections related to the transactions.

[image: image2.wmf]WV-CSP

Features

Presence-

Features

IM-Features

Group-

Features

Fundamental-

Features

GLBLU

BLENT

GCLI

CCLI

DCLI

MCLS

GETPR

UPDPR

GETWL

REACT

GETAUT

REJCM

NOTIF

FWMSG

CREAG

DELGR

GETGP

SETGP

GETGM

ADDGM

RMVGM

MBRAC

SUBGCN

GRCHN

REJEC

ContactList-

Functions

PresenceAuth-

Functions

Presence-

Delivery-

Functions

IM-Sending-

Functions

SETD

IM-Auth-

Functions

Group-Mgmt-

Functions

Group-Auth-

Functions

INVIT

CAINV

Service-

Functions

Search-

Functions

Invite-

Functions

GETMAP

GETLM

GETM

MDELIV

SRCH

STSRC

IM-Receiving-

Functions

NEWM

Group-Use-

Functions

MF (Mandatory

fundamental

functions)

MP (Mandatory

presence

functions)

MM (Mandatory

Messaging

functions)

MG (Mandatory

group

functions)

VRID

VerifyID

CAAUT

GETJU

GETSPI

EXCON

OFFNOTIF

Figure 2. The service tree
Editors note: OFFNOTIF is added to the service tree

[image: image3.wmf]Client

Server

ClientCapabilityRequest

ClientCapabilityResponse

Figure 3. Client Capability Request

Client capability negotiation MAY be performed after the successful Login transaction – before the Service Negotiation. The server MUST maintain the client capability information during the session, and it MAY cache these capabilities between sessions. If the usage of offline message notification (OFFNOTIF) is agreed during service negotiation, the supported offline message notification bearer (SupportedOfflineBearer) MUST be cached between sessions. If the client capability negotiation is needed after login, the server MUST indicate it in the login response. The client capability negotiation MAY also be repeated any time during a session.

The client capability request sets up the communication preferences for the session, for example the initial IM delivery method.

The ClientCapabilityRequest primitive contains an element “Requested Capabilities” that conveys the client capability information to the server. The client capability information includes:

· ClientType – the type of the client. See Table 7 in [PA].

· InitialDeliveryMethod – the initial IM delivery method that the recipient client prefers in the set of “PUSH” and “Notify/Get”.

· AnyContent – A Boolean value indicating that the client accepts any content types.

· AcceptedContentType – the list of supported content types in the client device, such as “text/plain; charset=us-ascii”. Applicable only when Any-Content is “No” or missing. The server MUST NOT send any instant messages or presence information containing a content type, which is not in this list. The server MUST send however notification about such instant messages providing that the notification transaction was agreed upon during service negotiation.

· AcceptedCharset – the list of supported character sets for plain text documents in the client device. Integer number assigned by IANA (see MIBenum numbers in [IANA]). Applicable only when Any-Content is “Yes”.

· AcceptedTransferEncoding – the supported transfer encoding methods in the client device, such as “base64”.

· AcceptedContentLength – the maximum content size when using “PUSH”. Indicates the character (byte) count of the message content.

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS)

· MultiTrans – Integer value indicating the maximum number of primitives that the client can handle within the same transport message, as well as the maximum number of open transactions from both client and server side at any given time. The value MUST be greater than 0.

· ParserSize – the maximum character (byte) count of XML (WBXML, SMS - depending on the actual encoding) message size that the parser can handle. Multiple transactions in the same message and presence updates (many user in the same message) might generate large XML documents.

· SupportedCIRMethod – the list of supported CIR methods that are supported by the client.

· SupportedOfflineBearer – the list of bearers for offline message notifications (WAP PUSH, SMS) that are supported by the client. The list MUST be in the order that the client prefers for selection of offline bearers. When more than one offline bearer is available between the client and the server, the server MUST select the method with the highest priority when feasible. In order to recover from situations such as loss of PDP context it is RECOMMENDED that the client supplies at least one SMS based CIR method.
· UDPPort – the client MAY indicate that it requests other than the default port for the standalone UDP/IP CIR method. If the client indicates in the request that SUDP is supported, it MUST provide this value in the request as well. It is a decimal integer number. If the client indicates a value of 0 (zero), the server should deduce the IP address and the port number from the HELO message on the UDP/IP CIR channel. See [CSP Trans] for details.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· DefaultLanguage – The current language setting in the client. The language code is specifying that the client prefers to receive text information in the indicated language from the server. The information is OPTIONAL – it is used to override the user profile/presence info language preference.

For the details of the “PUSH” and other message-related information, please refer to section Error! Reference source not found. Error! Reference source not found..

The Client Capability Response contains an element “Agreed Capabilities” that conveys the agreed capability information back to the client. The agreed capability information includes the following derived elements:

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS) that both the client and server support.

· SupportedCIRMethod – the list of CIR methods that both the client and server support.

· SupportedOfflineBearer – the list of bearers for offline message notifications (WAP PUSH, SMS), supported by both client and server that will be used in with this client. The list MUST be in the prioritized order given by the client in the request. The server MUST at any time use the highest priority offline bearer available, and the client SHOULD be able to receive CIR messages by means of all agreed methods.
· TCPAddress – If the client indicates that it supports STCP in the request, the server MUST provide an IP address for standalone TCP/IP CIR method. It is an IP address.

· TCPPort – If the client indicated that it supports STCP in the request the server MUST provide a port number if it is different from the default port for the standalone TCP/IP CIR method. Decimal integer number.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· CIRHTTPAddress – A URL used for HTTP binding of CIR channel. See [CSP Trans] for description on how to use this binding.

· UDPAddress – if the client indicates that it supports SUDP in the request, the server MUST provide an IP address for standalone UDP/IP CIR method. It is an IP address.

· UDPPort – If the client indicated that it supports SUDP in the request the server provides a port number if it is different from the default port for the standalone UDP/IP CIR method. It is a decimal integer number.

The client MAY and the server MUST support client capability negotiation over SMS transport, however the only negotiated capabilities are ‘ClientType’, ‘DefaultLanguage’, ‘MultiTrans’ – which if used by the client MUST result in an empty response: the response from the server MUST NOT contain the ‘Agreed-Capabilities’ element.

The client and server MUST support client capability negotiation over any other transports than SMS.

The client MAY and the server MUST support repeating the client capability negotiation during the session at any time.

The server MUST NOT provide capabilities that were not requested by the client. The server MUST NOT assume and use capabilities that are not supported by the client.

The ClientCapabilityResponse primitive MUST contain the list of capabilities that the server agrees to provide.

If the client indicates the use of WAP SMS or WAP UDP binding for CIR, the server MUST NOT provide the IP-address or TCP port in the response.

The server MUST use the agreed addresses and port numbers for CIR channel.
##Change3###

Editors note: please insert this chapter after the Message Notification transaction
9.1.7 Offline Message Notification
The IMPS system SHOULD support reception of, storage of, and subsequent delivery of Instant Messages from logged-in sender users to the logged-out recipient users – shortly offline messages.
When the user's home server supports offline messages, the home server - and only the home server - SHOULD send an offline message notification whenever the a new instant message arrives while the user is offline (not logged in) providing that the client requested such feature on behalf of the user during service negotiation and an offline bearer has been successfully agreed during client capability negotiation. The details of the offline notification are described in "Transport Binding for Offline Notifications" [CSP Trans].
The client MAY turn the offline notification on and off by performing service negotiation again, however the server MUST use the last valid value after the client has logged out/was disconnected.

·
·
·

·
·
·
·

·
·
·

·
·
5.2.1.1
	
	

	
	

	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

##Change 4###

11.4 4xx – Client Error

The 4xx class of status codes is intended for cases in which the client seems to have erred. The server SHOULD include the explanation of the error situation including whether it is a temporary or permanent condition. The user agents SHOULD be able to display the error description to the user.

11.4.1 400 – Bad Request

The server could not understand the request due to the malformed syntax. The client MUST NOT repeat the request without modification.

11.4.2 401 – Unauthorized

When an authorization request is expected, the presence server will respond with this status code. Properties will contain details of available authorization schemes.

11.4. 3402 – Bad Parameter

The server cannot understand one of the parameters in the request. The client MUST NOT repeat the request without modification.

11.4.4 403 – Forbidden

The server understood the request, but the principal settings denied access to some of the presence, contact information or group. Authorization will not help and the request SHOULD NOT be repeated. This type of response can be returned if user not login in the network yet.

11.4.5 404 – Not Found

The server cannot find anything matching the request. No indication is given of whether the condition is temporary or permanent.

11.4.6 405 – Service Not Supported

The server does not support the service method in the request.

11.4.7 408 – Request Timeout

The client did not produce a request within the time the server was prepared to wait.

11.4.8 409 – Invalid password

The password provided by the client was incorrect; it does not match with the given User-ID. The client MUST NOT repeat the request without modification.

11.4.9 410 – Unable to Deliver

The server cannot deliver the request. The requested resource is no longer available at the server and no forwarding address is known.

11.4.10 411 – Unable to find suitable content type

The server cannot deliver the response because the client does not support any suitable content type. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on a suitable content type.

11.4.11 415 – Unsupported Media Type

The server cannot deliver the request because the client cannot support the format of the entity that it requested.

11.4.12 420 – Invalid Transaction-ID

The server encountered an invalid transaction ID.

11.4.13 422 – User-ID and Client-ID do not match

The User-ID and the Client-ID do not match in the request.

11.4.14 423 – Invalid Invitation-ID

The server encountered an invalid invitation-ID.

11.4.15 424 – Invalid Search-ID

The server encountered an invalid search-ID.

11.4.16 425 – Invalid Search-Index

The server encountered an invalid search index.

11.4.17 426 – Invalid Message-ID

The server encountered an invalid Message-ID.

11.4.18 431 – Unauthorized Group Membership

The user agent is not an authorized member of the group.

11.4.19 432 – Response too large

The response would be larger than the client is capable to handle according to the limitations agreed during client capability negotiation. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on higher limitations.

11.4.20 433 – Invalid notification type

The server encountered an invalid notification type.

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]
Error! Reference source not found.
Error! Reference source not found.

[image: image5.jpg]_1064750288.vsd

_1174280096.vsd
GETSPI�

EXCON�

WV-CSP Features�

Presence-Features�

IM-Features�

Group-Features�

Fundamental-Features�

GLBLU�

BLENT�

GCLI�

CCLI�

DCLI�

MCLS�

GETPR�

UPDPR�

GETWL�

REACT�

GETAUT�

REJCM�

NOTIF�

FWMSG�

CREAG�

DELGR�

GETGP�

SETGP�

GETGM�

ADDGM�

RMVGM�

MBRAC�

SUBGCN�

GRCHN�

REJEC�

ContactList-Functions�

PresenceAuth-Functions�

Presence-Delivery-Functions�

IM-Sending-Functions�

SETD�

IM-Auth-Functions�

Group-Mgmt-Functions�

Group-Auth-Functions�

INVIT�

CAINV�

Service-Functions�

Search-Functions�

Invite-Functions�

GETMAP�

GETLM�

GETM�

MDELIV�

SRCH�

STSRC�

IM-Receiving-Functions�

NEWM�

Group-Use-Functions�

MF (Mandatory fundamental
functions)�

MP (Mandatory presence
functions)�

MM (Mandatory Messaging
functions)�

MG (Mandatory group
functions)�

VRID�

VerifyID�

CAAUT�

GETJU�

OFFNOTIF�

_1174376988.vsd
Client�

Server�

Status�

SetOfflineMessageRequest�

_1060598905.vsd

