Doc# OMA-IM-2005-0373R02-IMPS-13-MaxWatcherList.doc[image: image5.jpg]
Change Request

Doc# OMA-IM-2005-0373R02-IMPS-13-MaxWatcherList.doc

Change Request

Change Request

	Title:
	MaxWatcherList exceeded
	

	To:
	OMA-MWG-IM

	Doc to Change:
	OMA-IMPS-CSP-V1_3-20050425-D;

	Submission Date:
	02 Juin 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Frank Helsen, frank.helsen@siemens.com

	Replaces:
	n/a

1 Reason for Change

If the user requested his watcherlist with indication of MaxWatcherList to specify the maximum length of the list of watchers, the user will not be informed if the received list is not completed. If the nr of watchers is bigger then MaxWatcherList, the user will receive a sublist of his watcher without being aware that it is not the entire list. This CR introduces a integer value to give the nr of watchers on the watcherlist in case MaxWatcherList is exceeded.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

These will be updated after this is agreed
4 Intellectual Property Rights

The authors of this document do not have knowledge of IPRs related to this contribution.

5 Recommendation

Review and agree
6 Detailed Change Proposal
7.5 Presence Information delivery

7.5.1 Presence Information

To ensure interoperability, sets of interoperable presence attributes are defined. This is accomplished by dividing the presence information into client status and user status classes by defining the most common presence attributes within these classes. See [PA] for more information.

7.5.2 Subscribed Presence Transactions

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.3.2.1 Subscribe Presence transaction

· 8.3.2.1 Unsubscribe Presence transaction

· 8.3.2.1 Presence Notification transaction

The rest of the presence information delivery-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

5.2.1.1 Transactions

[image: image1.wmf]SubscribePresenceRequest

Client

Server

Status

Figure 41. Subscribe presence transaction

The requesting client MAY send a SubscribePresenceRequest primitive to the server. The server MUST respond with a Status primitive. After a successful subscription the server MUST initially send all available and authorized attributes (See 8.2 Authorization of presence attributes) to the requesting client using the ‘presence notification transaction’ – when there are no such attributes, the server MUST send an empty presence notification. While there are active subscriptions, the server MUST send subsequent presence notifications when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. The server MAY deliver only those presence attributes in the ‘presence notification transaction’ that have been updated or newly authorized.

The subscription MUST NOT be persistent through different sessions.

The subscribe presence transaction MUST be supported by the client and the server, thus its support is not negotiated Even though the “AutoSubscribe” is often referred to as a feature, it is merely a characteristic of the subscription / un-subscription itself – servers and client implementations MAY decide whether it can be used or not, and it is not negotiated.

The scope of the subscription MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or ContactList-IDs, but it MUST NOT refer to screen name(s). If the request refers to ContactList-ID(s), the server MUST subscribe each individual users separately that are currently in the contact list(s).
The requesting user MAY subscribe also only a part of the presence information by including the Presence-Attribute-List element containing the desired attributes. Absence of the Presence-Attribute-List in the request indicates to the server that all available presence information is requested. The server MUST subscribe the user(s) to the set of presence attributes supplied in the request or, if the Presence-Attribute-List is absent from the request the server MUST subscribe all of the presence attributes.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

When the requesting client subscribes to contact list(s), the requesting client MAY also request the server to enable the ‘AutoSubscribe’ feature for the contact list(s). The ‘AutoSubscribe’ means automatic subscription of presence attributes when a new user is added to this contact list, and automatic un-subscription of presence attributes when the contact list is deleted or when a user is removed from the contact list – these actions are described in 8.1.2. When a user is added to the contact list, the server MUST subscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on. When a user is removed from the contact list or the contact list is removed, the server MUST unsubscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on and do not conflict with ‘AutoSubscribed’ presence attributes on other contact lists. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list succeeds, the server MUST return a partial success response (201), which includes the detailed error code 760 “AutoSubscribe not supported”. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list fails, the server MUST return a multiple error response (900), which MUST include the detailed error code 760 “AutoSubscribe not supported”. If the "AutoSubscribe" is ‘F’, the server MUST perform the normal subscription behavior to the contact list(s) and – if the server supports the ‘AutoSubscribe’ feature –, the feature MUST be disabled for the contact list(s).

If there are any presence attributes in the request that are already subscribed, the server MUST ignore those silently without generating an error.

In order to save bandwidth, the server MAY choose not to send the initial presence notification when – and only when – all presence attributes in the request are already subscribed.

[image: image2.wmf]UnsubscribePresenceRequest

Client

Server

Status

Figure 42. Unsubscribe presence transaction

When the requesting user does not want to receive presence notifications anymore, he/she MAY unsubscribe the presence information. Upon reception of such request the server MUST stop delivering all presence information for the un-subscribed user, even if the user is included in a contact list that has the ‘AutoSubscribe’ feature turned on. The server MUST respond to an UnsubscribePresenceRequest primitive with a Status primitive.

The scope of the unsubscribe presence transaction MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or ContactList-IDs, but it MUST NOT refer to screen name(s). If the request refers to ContactList-ID(s), the server MUST unsubscribe each individual users separately that are currently in the contact list(s).
The unsubscribe presence transaction MUST be supported by the client and the server.

The server MUST stop delivering presence notifications of the un-subscribed users.

[image: image3.wmf]Status

PresenceNotificationRequest

Server

Client

Figure 43. Presence notification

As long as an authorization and subscription is valid, the requesting user MUST receive new presence information when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. The server sends PresenceNotificationRequest primitive to the client containing the updated presence information. The client MUST respond with a Status primitive. The server MUST identify the users with User-IDs – ContactList-IDs, and screen name(s) MUST NOT be used. The server MUST NOT include users in the presence notification that have not been subscribed.

The client and the server MUST support the presence notification transaction, thus its support is not negotiated.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

If the subscription did not contain the Presence-Attribute-List element, the PresenceNotificationRequest MUST contain all available and authorized presence attributes. If the subscription did contain the Presence-Attribute-List element, the server MUST deliver only the authorized subset of the requested attributes. See the ‘subscribe presence transaction’ for more information.

[image: image4.wmf]GetWatcherListRequest

Client

Server

GetWatcherListResponse

Figure 44. Get watcher list transaction

The user MAY get the list of watchers. Watchers are users that currently or formerly subscribed to his/her presence attributes or used the GetPresence transaction to obtain presence information. The requesting client MUST send a GetWatcherListRequest primitive to the server. If no error occurs, the server MUST respond with a GetWatcherListResponse primitive including the list of the subscribing users, otherwise the server MUST respond with a Status primitive.

The client and the server MAY support the get watcher list transaction. The service leaf that allows negotiation of this transaction is ‘GETWL.

The server MUST include the User-ID and Watcher-Status of all subscribers if MaxWatcherList is not defined or the number of watchers does not exceed MaxWatcherList. If the number of watchers exceeds MaxWatcherList, the server MUST return a subset of all watchers, containing as many watchers as the MaxWatcherList value permits and an integer value giving the total number of watchers. The server MAY also include the History-Period in the response.

Note: There are no ways of retrieving exactly what attributes every user subscribes to, but the GetAttributeList transaction can tell what attributes the users are authorized to see.

5.2.1.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribePresenceRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· The maximum number of users in watcher list has been reached for the user. (758)
· Automatic subscription / un-subscription is not supported (760)

UnSubscribePresenceRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

PresenceNotificationRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

GetWatcherListRequest error conditions:

· None except the generic error conditions.

5.2.1.3 Primitives and information elements

	Primitive
	Direction

	SubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	UnSubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	PresenceNotificationRequest
	Client (Server

	Status
	Client (Server

	GetWatcherListRequest
	Client (Server

	GetWatcherListResponse
	Client (Server

Table 73. Primitive directions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribePresence
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	C
	Structure
	Identifies the IM user(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set(s) of users for subscription.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

	Auto-Subscribe
	M
	Boolean
	‘T’ means that the automatic subscription to the presence attributes is enabled when a new user is added to the contact list, and the automatic un-subscription to the presence attributes is also enabled when the contact list is deleted or when a user is removed from the contact list. ‘F’ means that the automatic subscription / un-subscription is disabled.

Table 74. Information elements in SubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UnSubscribe
PresenceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	C
	Structure
	Identifies the IM users(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set of users to be un-subscribed.

Table 75. Information elements in UnsubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Presence
NotificationRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Segment-Info
	O
	Structure
	Contains segmentation information when the primitive is segmented.

	Session-ID
	M
	String
	Identifier for the session.

	Presence-Value-List
	M
	Structure
	List of User-IDs and its corresponding presence values.

Table 76. Information elements in PresenceNotificationRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	History Period
	O
	Integer
	Indicates the time period in seconds on the longest possible history of the watcher (from the time of request) that SHOULD be returned. In case of absence, it indicates the user request the watcher list at the time of the request only. The value 0 MUST NOT be used.

	MaxWatcherList
	O
	Integer
	Indicates the maximum number of Watcher elements in GetWatcherListResponse.

Table 77. Information elements in GetWatcherListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Segment-Info
	O
	Structure
	Contains segmentation information when the primitive is segmented.

	Session-ID
	M
	String
	Identifier for the session.

	History-Period
	O
	Integer
	Indicates the time period in seconds in which the watcher history has been accumulated. This value MUST NOT be larger than the requested period. Absence indicates that the Watcher information element (see below) returns only the current subscribers at the time of the request even if the history log is requested. The value 0 MUST NOT be used.

	WatcherCount
	C
	Integer
	Indicates the total number of watchers. WatcherCount is only returned if the number of entries is bigger than MaxWatcherList

	Watcher
	O
	Structure
	Identifies the watchers and their status from the history period.
If this element is not present at all within the response, it indicates that the server does not give any watcher information at this time. The number of this element in GetWatcherListResponse MUST NOT be larger than Max Watcher List value in the corresponding GetWatcherListRequest.

Table 78. Information elements in GetWatcherListResponse primitive

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 1)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

_1060430573.vsd

_1068887787.vsd

_1068449672.vsd

_1058278541.vsd

