	OMA-IMPS-CSP-V1_3-200504043204-D
	Page 43 V(167)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Client-Server Protocol Session and Transactions

	Draft Version 1.3 – 04 Apr 2005

	Open Mobile Alliance

	OMA-IMPS-CSP-V1_3-20050404-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

161.
Scope

2.
References
17
2.1
Normative References
17
2.2
Informative References
18
3.
Terminology and Conventions
19
3.1
Conventions
19
3.2
Definitions
19
3.3
Abbreviations
20
4.
Introduction
21
5.
IMPS session
22
5.1
Session management
22
5.2
Version Management
23
5.3
Addressing
23
5.3.1
Addressing introduction
23
5.3.2
Generic address format
24
5.3.3
Address encoding
24
5.3.4
User addressing
25
5.3.5
Contact List Addressing
25
5.3.6
User Group
26
5.3.7
Content Addressing
26
5.3.8
Client Addressing
26
5.4
Transaction management
27
6.
Fundamental primitives and transactions
28
6.1
Status Primitive
28
6.2
PollingRequest Primitive
29
6.3
Version Discovery Transaction
29
6.3.1
Transactions
29
6.3.2
Primitives and information elements
30
6.4
Logging in
31
6.4.1
Transactions
31
6.4.2
Error conditions
32
6.4.3
Primitives and information elements
32
6.5
Logging out and Disconnecting
34
6.5.1
Transactions
34
6.5.2
Error conditions
34
6.5.3
Primitives and information elements
35
6.6
Keep Alive
35
6.6.1
Transactions
35
6.6.2
Error conditions
36
6.6.3
Primitives and information elements
36
6.7
Get Service Provider Info
37
6.7.1
Transactions
37
6.7.2
Error conditions
37
6.7.3
Primitives and information elements
37
6.8
Service and Capability Negotiation
38
6.8.1
Transactions
38
6.8.2
Error conditions
45
6.8.3
Primitives and information elements
46
7.
Common features
48
7.1
General notification transactions
48
7.1.1
Transactions
48
7.1.2
Error conditions
49
7.1.3
Primitives and information elements
49
7.2
Public Profile
50
7.2.1
Extending the Public profile
52
7.2.2
Transactions
52
7.2.3
Error conditions
53
7.2.4
Primitives and information elements
54
7.3
General search transactions
55
7.3.1
Transactions
55
7.3.2
Advanced search mechanism
58
7.3.3
Error conditions
58
7.3.4
Primitives and information elements
59
7.4
Invitations
60
7.4.1
Transactions
60
7.4.2
Error conditions
62
7.4.3
Primitives and information elements
62
7.5
Canceling invitations
64
7.5.1
Transactions
64
7.5.2
Error conditions
65
7.5.3
Primitives and information elements
65
7.6
Get Map
66
7.6.1
Transactions
66
7.6.2
Error Conditions
67
7.6.3
Primitives and information elements
67
7.7
Verify ID
68
7.7.1
Transactions
68
7.7.2
Error Conditions
68
7.7.3
Primitives and information elements
68
8.
Presence Feature
70
8.1
Contact List
70
8.1.1
Contact List Properties
70
8.1.2
Transactions
70
8.1.3
Error conditions
73
8.1.4
Primitives and information elements
74
8.2
Attribute list
75
8.2.1
Transactions
76
8.2.2
Error conditions
77
8.2.3
Primitives and information elements
77
8.3
Presence Information delivery
79
8.3.1
Subscribed Presence Transactions
79
8.3.2
Get Presence Transactions
84
8.3.3
Reactive presence authorization
86
8.3.4
Update Presence Transactions
89
9.
Instant Messaging Feature
91
9.1
Delivery Transactions
91
9.1.1
Send Message Transaction
91
9.1.2
Set Delivery Method transaction
93
9.1.3
Get List Of Messages Transactions
95
9.1.4
Reject Message Transactions
97
9.1.5
New Message Transactions
98
9.1.6
Message Notification Transactions
100
9.1.7
Get Message Transactions
101
9.1.8
Delivery Status Report Transaction
103
9.1.9
Forward message transaction
104
9.1.10
Extend one-to-one IM conversation transactions
106
9.2
Message-Info Structure
109
9.3
Access Control Transactions
109
9.3.1
Blocking Incoming Messages and Invitations Transaction
109
9.4
Message Content Format
112
10.
Group Feature
114
10.1
Group models
114
10.1.2
Private group model
115
10.1.3
Public group model
115
10.1.4
Access privileges
115
10.1.5
Group properties
115
10.2
Create group feature
118
10.2.1
Transactions
118
10.2.2
Error Conditions
119
10.2.3
Primitives and information elements
119
10.3
Delete group feature
120
10.3.1
Transactions
120
10.3.2
Error Conditions
120
10.3.3
Primitives and information elements
120
10.4
Join group feature
121
10.4.1
Transactions
122
10.4.2
Error conditions
123
10.4.3
Primitives and information elements
123
10.5
Leave group feature
124
10.5.1
Transactions
124
10.5.2
Error conditions
125
10.5.3
Primitives and information elements
125
10.6
Members’ list management
126
10.6.1
Transactions
126
10.6.2
Error Conditions
128
10.6.3
Primitives and information elements
129
10.7
Modify group properties
131
10.7.1
Transactions
131
10.7.2
Error Conditions
132
10.7.3
Primitives and information elements
132
10.8
Rejecting user(s) from group feature
133
10.8.1
Transactions
133
10.8.2
Error conditions
134
10.8.3
Primitives and information elements
134
10.9
Subscribe to group change
135
10.9.1
Error Conditions
136
10.9.2
Primitives and information elements
136
11.
Status Codes and Descriptions
138
11.1
1xx – Informational
138
11.1.1
100 – Continue
138
11.1.2
101 – Queued
138
11.1.3
102 – Started
138
11.2
2xx – Successful
138
11.2.1
200 – Successful
138
11.2.2
201 – Partially successful
138
11.2.3
202 – Accepted
138
11.2.4
203 – Extension block ignored
138
11.3
3xx – Redirection
139
11.4
4xx – Client Error
139
11.4.1
400 – Bad Request
139
11.4.2
401 – Unauthorized
139
11.4.3
402 – Bad Parameter
139
11.4.4
403 – Forbidden
139
11.4.5
404 – Not Found
139
11.4.6
405 – Service Not Supported
139
11.4.7
408 – Request Timeout
139
11.4.8
409 – Invalid password
139
11.4.9
410 – Unable to Deliver
139
11.4.10
411 – Unable to find suitable content type
139
11.4.11
415 – Unsupported Media Type
140
11.4.12
420 – Invalid Transaction-ID
140
11.4.13
422 – User-ID and Client-ID do not match
140
11.4.14
423 – Invalid Invitation-ID
140
11.4.15
424 – Invalid Search-ID
140
11.4.16
425 – Invalid Search-Index
140
11.4.17
426 – Invalid Message-ID
140
11.4.18
431 – Unauthorized Group Membership
140
11.4.19
432 – Response too large
140
11.4.20
433 – Invalid notification type
140
11.5
5xx – Server Error
140
11.5.1
500 – Internal server or network error
141
11.5.2
501 – Not Implemented
141
11.5.3
503 – Service Unavailable
141
11.5.4
504 – Timeout
141
11.5.5
505 – Version Not Supported
141
11.5.6
506 – Service not agreed
141
11.5.7
507 – Message queue is full
141
11.5.8
516 – Domain Not Supported
141
11.5.9
517 – Location Not Supported
141
11.5.10
521 – Un-responded Presence Request
141
11.5.11
522 – Un-responded Group Request
141
11.5.12
531 – Unknown user
141
11.5.13
532 – Recipient Blocked the Sender
141
11.5.14
533 – Message Recipient Not Logged in
142
11.5.15
534 – Message Recipient Unauthorized
142
11.5.16
535 – Search timed out
142
11.5.17
536 – Too many hits
142
11.5.18
537 – Too broad search criteria
142
11.5.19
538 – Message has been rejected
142
11.5.20
540 – Header encoding not supported
142
11.5.21
541 – Message has been forwarded
142
11.5.22
542 – Message has expired
142
11.5.23
543 – No matching digest scheme supported
143
11.5.24
544 – Too many elements in advanced criteria
143
11.5.25
545 – Too many levels of nesting in advanced criteria
143
11.6
6xx – Session
143
11.6.1
600 – Session Expired
143
11.6.2
601 – Forced Logout
143
11.6.3
603 – Already Logged in
143
11.6.4
604 – Invalid session (not logged in).
143
11.6.5
605 – New value not accepted.
143
11.6.6
606 – Some services are not available
143
11.7
7xx – Presence and contact list
143
11.7.1
700 – Contact list does not exist
143
11.7.2
701 – Contact list already exists
144
11.7.3
702 – Invalid or unsupported user properties
144
11.7.4
750 – Invalid or unsupported presence attribute
144
11.7.5
751 – Invalid or unsupported presence value
144
11.7.6
752 – Invalid or unsupported contact list property
144
11.7.7
753 – The maximum number of contact lists has been reached for the user
144
11.7.8
754 – The maximum number of contacts has been reached for the user
144
11.7.9
755 – The maximum number of attribute lists has been reached for the user
144
11.7.10
760 – Automatic Subscription / Un-subscription is not supported
144
11.8
8xx – Groups
144
11.8.1
800 – Group does not exist
144
11.8.2
801 – Group already exists
144
11.8.3
802 – Group is open
145
11.8.4
803 – Group is restricted
145
11.8.5
804 – Group is public
145
11.8.6
805 – Group private
145
11.8.7
806 – Invalid/unsupported group properties
145
11.8.8
807 – Group is already joined
145
11.8.9
808 – Group is not joined
145
11.8.10
809 – User has been rejected
145
11.8.11
810 – Not a group member
145
11.8.12
811 – Screen name already in use
145
11.8.13
812 – Private messaging is disabled for group
145
11.8.14
813 – Private messaging is disabled for user
145
11.8.15
814 – The maximum number of groups has been reached for the user
145
11.8.16
815 – The maximum number of groups has been reached for the server
146
11.8.17
816 – Insufficient group privileges
146
11.8.18
817 – The maximum number of joined users has been reached
146
11.8.19
818 – Minimum age requirement not fulfilled
146
11.8.20
821 – History is not supported.
146
11.8.21
822 – Cannot have searchable group without name or topic
146
11.8.22
823 – The maximum number of group members has been reached
146
11.8.23
824 – Own Request
146
11.9
9xx General Errors
146
11.9.1
900 Multiple Errors
146
11.9.2
901 General Address Error
146
11.9.3
902 – Not enough credit to complete requested operation
147
11.9.4
903 – Operation requires a higher class of service
147
11.9.5
904 – Missing mandatory field(s) of requesting user
147
11.9.6
905 – Missing mandatory field(s) of requested user
147
11.9.7
906 – Too many public profiles requested
147
12.
Extension Framework
148
12.1
Extending Existing Primitives
148
12.2
Introducing New Primitives
148
Appendix A.
Change History (Informative)
149
A.1
Approved Version History
149
A.2
Draft/Candidate Version History
149
Appendix B.
Static Conformance Requirements (Normative)
151
B.1
OMA IMPS Service requirements
151
B.1.1
Clients
151
B.1.2
Servers
151
B.2
Addressing requirements
151
B.2.1
Clients
151
B.2.2
Servers
151
B.3
Session requirements
152
B.3.1
Clients
152
B.3.2
Servers
152
B.4
Transaction requirements
153
B.4.1
Clients
153
B.4.2
Servers
154
B.5
Service Access Point (SAP) requirements
155
B.5.1
Functional requirements
155
B.5.1.1
Clients
155
B.5.1.2
Servers
156
B.5.2
Login transaction requirements
158
B.5.2.1
Clients
158
B.5.2.2
Servers
158
B.5.3
Logout transaction requirements
158
B.5.3.1
Clients
158
B.5.3.2
Servers
158
B.5.4
Keep-alive transaction requirements
158
B.5.4.1
Clients
158
B.5.4.2
Servers
158
B.5.5
Get Service Provider Info transaction requirements
158
B.5.5.1
Clients
158
B.5.5.2
Servers
158
B.5.6
Service negotiation transaction requirements
159
B.5.6.1
Clients
159
B.5.6.2
Servers
159
B.5.7
Client capability negotiation transaction requirements
159
B.5.7.1
Clients
159
B.5.7.2
Servers
159
B.5.8
General search transaction requirements
159
B.5.8.1
Clients
159
B.5.8.2
Servers
159
B.5.9
Invitation transaction requirements
159
B.5.9.1
Clients
159
B.5.9.2
Servers
160
B.6
Presence Service Element (PRSE) requirements
160
B.6.1
Functional requirements
160
B.6.1.1
Clients
160
B.6.1.2
Servers
160
B.6.2
Create contact list transaction requirements
161
B.6.2.1
Clients
161
B.6.3
Manage contact list transaction requirements
162
B.6.3.1
Clients
162
B.6.3.2
Servers
162
B.6.4
Get watcher list transaction requirements
162
B.6.4.1
Clients
162
B.6.4.2
Servers
162
B.7
Instant Messaging Service Element (IMSE) requirements
162
B.7.1
Functional requirements
162
B.7.1.1
Clients
162
B.7.1.2
Servers
163
B.7.2
Set delivery method transaction requirements
163
B.7.2.1
Clients
163
B.7.2.2
Servers
163
B.7.3
Send message transaction requirements
163
B.7.3.1
Clients
163
B.7.3.2
Servers
164
B.7.4
Get list of messages transaction requirements
164
B.7.4.1
Clients
164
B.7.4.2
Servers
164
B.7.5
NewMessage primitive requirements
164
B.7.5.1
Clients
164
B.7.5.2
Servers
164
B.7.6
Get message transaction requirements
165
B.7.6.1
Clients
165
B.7.6.2
Servers
165
B.7.7
Block entities transaction requirements
165
B.7.7.1
Clients
165
B.7.7.2
Servers
165
B.8
Group Service Element (GRSE) requirements
165
B.8.1
Functional requirements
165
B.8.1.1
Clients
165
B.8.1.2
Servers
166
B.8.2
Set group properties transaction requirements
166
B.8.2.1
Clients
166
B.8.2.2
Servers
167
B.8.3
Subscribe group change notification transaction requirements
167
B.8.3.1
Clients
167
B.8.3.2
Servers
167
B.8.4
Join group transaction requirements
167
B.8.4.1
Clients
167
B.8.4.2
Servers
167

Figures

29Figure 1. Polling request

29Figure 2. Version Discovery

31Figure 3. Logging in

34Figure 4. Logging Out

34Figure 5. Server Initiated Disconnection

35Figure 6. Keep alive transaction

37Figure 7. Get Service Provider Info transaction

38Figure 8. Service negotiation

43Figure 9. The service tree

44Figure 10. Client Capability Request

48Figure 11. Subscribe Notification transaction

48Figure 12. Unsubscribe Notification transaction

49Figure 13. Notification transaction

52Figure 14. Retrieve public profile transaction

53Figure 15. Clear/update public profile transaction

55Figure 16. General search transactions

57Figure 17. Stop search transaction

60Figure 18. Invite user(s)

61Figure 19. Invited users’ response

64Figure 20. Canceling invitation

66Figure 21. Get Map transaction

68Figure 22. Verify ID

70Figure 23. Get list of ContactList-IDs transaction

71Figure 24. Create contact list transaction

71Figure 25. Delete contact list transaction

72Figure 26. Manage contact list transaction

76Figure 27. Create attribute list transaction

76Figure 28. Delete attribute list transaction

77Figure 29. Get attribute list(s) transaction

79Figure 30. Subscribe presence transaction

80Figure 31. Unsubscribe presence transaction

81Figure 32. Presence notification

81Figure 33. Get watcher list transaction

84Figure 34. Get Presence transaction

86Figure 35. Reactive presence authorization request transaction

86Figure 36. Reactive presence authorization of user transaction

87Figure 37. Cancel presence authorization transaction

87Figure 38. Get reactive authorization status transaction

89Figure 39. Update presence transaction

91Figure 40. Send Message transaction

93Figure 41. Set Delivery Method transaction

95Figure 42. Get Message List transaction

97Figure 43. Reject Message transaction

98Figure 44. New Message transaction

100Figure 45. Message Notification transaction

101Figure 46. Get Message Transaction

103Figure 47. Delivery Status Report Transaction

104Figure 48. Forward message transaction

106Figure 49. ExtendConversation transactions

110Figure 50. Blocking decision-tree

110Figure 51. Get list of blocked entities transaction

111Figure 52. Block/unblock entities transactions

118Figure 53. Create group transaction

120Figure 54. Delete group transaction

121Figure 55. Joining decision-tree

122Figure 56. Join group transaction

124Figure 57. User initiated leave group transaction

124Figure 58. Server initiated leave group transaction

126Figure 59. Get group members transaction

126Figure 60. Get joined users transaction

127Figure 61. Add group members transaction

127Figure 62. Remove group members transaction

128Figure 63. Member access rights transaction

131Figure 64. Get group properties transaction

131Figure 65. Set group properties transaction

133Figure 66. Reject user(s) from group transaction

135Figure 67. Subscribe group change notification transaction

135Figure 68. Group change notification

Tables

29Table 1. Information elements in Status primitive

29Table 2. Information elements in PollingRequest primitive

30Table 3. Primitive directions for Version Discovery

30Table 4. Information elements in VersionDiscoveryRequest primitive

30Table 5. Information elements in VersionDiscoveryResponse primitive

33Table 6. Primitive directions for Logging in

33Table 7. Information elements in LoginRequest primitive

33Table 8. Information elements in LoginResponse primitive

35Table 9. Primitive directions for Logging Out

35Table 10. Information elements in LogoutRequest

35Table 11. Information elements in Disconnect primitive

36Table 12. Primitive directions for keep alive transaction

36Table 13. Information elements in KeepAliveRequest primitive

36Table 14. Information elements in KeepAliveResponse primitive

37Table 15. Primitive directions for Get Service Provider Info

37Table 16. Information elements in Get Service Provider Info Request primitive

38Table 17. Information elements in Get Service Provider Info Response primitive

46Table 18. Primitive directions for service request and capability request

46Table 19. Information elements in ServiceRequest primitive

46Table 20. Information elements in ServiceResponse primitive

46Table 21. Information elements in ClientCapabilityRequest primitive

47Table 22. Information elements in ClientCapabilityResponse primitive

49Table 23. General notification types

50Table 24. Primitive directions for General Notification transactions

50Table 25. Information elements in SubscribeNotificationRequest primitive

50Table 26. Information elements in UnsubscribeNotificationRequest primitive

50Table 27. Information elements in NotificationRequest primitive

52Table 28 Public Profile standard fields

54Table 29. Primitive directions for public profie management transactions

54Table 30. Information elements in GetPublicProfileRequest primitive

54Table 31. Information elements in GetPublicProfileResponse primitive

54Table 32. Information elements in UpdatePublicProfileRequest primitive

56Table 33. Search elements for public profile-based user search

56Table 34. Search elements for user search

57Table 35. Search elements for private profile-based group search

59Table 36. Primitive directions for searching

59Table 37. Information elements in SearchRequest primitive

60Table 38. Information elements in SearchResponse primitive

60Table 39. Information elements in StopSearchRequest primitive

62Table 40. Primitive directions in invitation transaction

63Table 41. Information elements in InviteRequest primitive

63Table 42. Information elements in InviteResponse primitive

64Table 43. Information elements in InviteUserRequest primitive

64Table 44. Information elements in InviteUserResponse primitive

65Table 45. Primitive directions in cancel invitation transaction

66Table 46. Information elements in CancelInviteRequest primitive

66Table 47. Information elements in CancelInviteUserRequest primitive

67Table 48. Primitive directions for Get Map transaction

67Table 49. Information elements in GetMapRequest primitive

68Table 50. Information elements in GetMapResponse primitive

69Table 51. Primitive direction for Verify WV ID

69Table 52. Information elements in VerifyIDRequest primitive

74Table 53. Primitive directions for contact list management

74Table 54. Information elements in GetListRequest primitive.

74Table 55. Information elements in GetListResponse primitive.

74Table 56. Information elements in CreateListRequest primitive

75Table 57. Information elements in DeleteListRequest primitive

75Table 58. Information elements in ListManageRequest primitive.

75Table 59. Information elements in ListManageResponse primitive.

78Table 60. Primitive directions for attribute list management

78Table 61. Information elements in CreateAttributeListRequest primitive

78Table 62. Information elements in DeleteAttributeListRequest primitive

79Table 63. Information elements in GetAttributeListRequest primitive.

79Table 64. Information elements in GetAttributeListResponse primitive.

82Table 65. Primitive directions

83Table 66. Information elements in SubscribePresenceRequest primitive

83Table 67. Information elements in UnsubscribePresenceRequest primitive

83Table 68. Information elements in PresenceNotificationRequest primitive

83Table 69. Information elements in GetWatcherListRequest primitive

84Table 70. Information elements in GetWatcherListResponse primitive

85Table 71. Primitive directions for getting presence

85Table 72. Information elements in GetPresenceRequest primitive

86Table 73. Information elements in GetPresenceResponse primitive

88Table 74. Primitive directions for reactive presence authorization

88Table 75. Information elements in PresenceAuthRequest primitive

88Table 76. Information elements in PresenceAuthUser primitive

89Table 77. Information elements in CancelAuthRequest primitive

89Table 78. Information elements in GetReactiveAuthStatusRequest primitive

89Table 79. Information elements in GetReactiveAuthStatusResponse primitive

90Table 80. Primitive directions for UpdatePresenceRequest

90Table 81. Information elements in UpdatePresenceRequest

93Table 82. Primitive directions for Send Message Transaction

93Table 83. Information elements in SendMessageRequest

93Table 84. Information elements in SendMessageResponse primitive

94Table 85. Primitive directions for Set Delivery Method Transaction

95Table 86. Information elements in SetDeliveryMethodRequest

96Table 87. Primitive directions for Get Message List transactions

96Table 88. Information elements in GetMessageListRequest

96Table 89. Information elements in GetMessageListResponse

97Table 90. Primitive directions for Reject Message transactions

97Table 91. Information elements in RejectMessageRequest

99Table 92. Primitive directions for Message Delivery Transactions

99Table 93. Information elements in NewMessage

99Table 94. Information elements in MessageDelivered

100Table 95. Primitive directions for Message Notification Transaction

101Table 96. Information elements in MessageNotification

102Table 97. Primitive directions for Get Message Transaction

102Table 98. Information elements in GetMessageRequest

103Table 99. Information elements in GetMessageResponse

104Table 100. Primitive directions for delivery status report transaction

104Table 101. Information elements in DeliveryReportRequest primitive

105Table 102. Primitive directions for forward message transaction

106Table 103. Information elements in ForwardMessageRequest

108Table 104. Primitive directions for extend conversation transaction

108Table 105. Information elements in ExtendConversationRequest

108Table 106. Information elements in ExtendConversationResponse

111Table 107. Primitive directions for block transactions

112Table 108. Information elements in GetBlockedListRequest primitive

112Table 109. Information elements in GetBlockedListResponse primitive

112Table 110. Information elements in BlockEntityRequest primitive

115Table 111. Availability of transactions for privilege levels

119Table 112. Primitive directions in create group transaction

120Table 113. Information elements in CreateGroupRequest primitive

120Table 114. Primitive directions in delete group transaction

121Table 115. Information elements in DeleteGroupRequest primitive

123Table 116. Primitive directions in join group transaction

123Table 117. Information elements in JoinGroupRequest primitive

124Table 118. Information elements in JoinGroupResponse primitive

125Table 119. Primitive directions in leave group transaction

125Table 120. Information elements in LeaveGroupRequest primitive

125Table 121. Information elements in LeaveGroupResponse primitive

129Table 122. Primitive directions in add/remove user(s) to/from group transaction

129Table 123. Information elements in GetGroupMembersRequest primitive

129Table 124. Information elements in GetGroupMembersResponse primitive

130Table 125. Information elements in GetJoinedUsersRequest primitive

130Table 126. Information elements in GetJoinedUsersResponse primitive

130Table 127. Information elements in AddGroupMembersRequest primitive

130Table 128. Information elements in RemoveGroupMembersRequest primitive

131Table 129. Information elements in MemberAccessRequest primitive

132Table 130. Primitive directions in modify group properties transaction

132Table 131. Information elements in GetGroupPropsRequest primitive

133Table 132. Information elements in GetGroupPropsResponse primitive

133Table 133. Information elements in SetGroupPropsRequest primitive

134Table 134. Primitive directions in reject user(s) from group transaction

134Table 135. Information elements in RejectListRequest primitive

135Table 136. Information elements in RejectListResponse primitive

136Table 137. Primitive directions in subscribe group change notification transaction

137Table 138. Information elements in SubscribeGroupNoticeRequest primitive

137Table 139. Information elements in SubscribeGroupNoticeResponse primitive

137Table 140. Information elements in GroupChangeNotice primitive

1. Scope

The Instant Messaging and Presence Service (IMPS) includes four primary features:

· Presence

· Instant Messaging

· Groups

· Shared Content

Presence is the key enabling technology for IMPS. It includes client device availability (my phone is on/off, in a call), user status (available, unavailable, in a meeting), location, client device capabilities (voice, text, GPRS, multimedia) and searchable personal statuses such as mood (happy, angry) and hobbies (football, fishing, computing, dancing). Since presence information is personal, it is only made available according to the user's wishes - access control features put the control of the user presence information in the users' hands.

Instant Messaging (IM) is a familiar concept in both the mobile and desktop worlds. Desktop IM clients, two-way SMS and two-way paging are all forms of Instant Messaging. IMPS will enable interoperable mobile IM in concert with other innovative features to provide an enhanced user experience.

Groups or chat are a fun and familiar concept on the Internet. Both operators and end-users are able to create and manage groups. Users can invite their friends and family to chat in group discussions. Operators can build common interest groups where end-users can meet each other online.

Shared Content allows users and operators to setup their own storage area where they can post pictures, music and other multimedia content while enabling the sharing with other individuals and groups in an IM or chat session.

These features, taken in part or as a whole, provide the basis for innovative new services that build upon a common interoperable framework.

2. References

2.1 Normative References

	[CSP Trans]
	"Client-Server Protocol Transport Bindings Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP DataType]
	"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[E.164]
	ITU-T Recommendation E.164 (05/97) The international public telecommunication numbering plan URL: http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-E.164-199705-I

	[IANA]
	Character sets registered at IANA (MIBenum assignments) URL: http://www.iana.org/assignments/character-sets

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL: http://www.openmobilealliance.org

	[ISO3166-1]
	ISO 3166-1: Codes for the Representation of Names of Countries and their Subdivisions – Part 1: Country Codes, 1997. URL: http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=24591

	[PA]
	"Presence Attributes Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[PRIVACY]
	“Privacy requirements for mobile services Version 1.0”, Open Mobile Alliance, URL: http://www.openmobilealliance.org

	[RFC1321]
	“The MD5 Message-Digest Algorithm”, April 1992. URL: http://www.ietf.org/rfc/rfc1321.txt?number=1321

	[RFC2045]
	“Multipurpose Internet Mail Extensions (MIME) Part one: Format of Internet Message Bodies”. Section 6.8 “Base64 Content-Transfer-Encoding”. URL: http://www.ietf.org/rfc/rfc2045.txt?number=2045

	[RFC2046]
	Borenstein N., and N. Freed, "MIME (Multipurpose Internet Mail Extensions) Part Two: Media Types", November 1996. URL: http://www.ietf.org/rfc/rfc2046.txt?number=2046

	[RFC2119]
	“Keywords for using RFCs to Indicate Requirements levels”, Bradner, S. URL: http://www.ietf.org/rfc/rfc2119.txt?number=2119

	[RFC2234]
	Augmented BNF for Syntax Specifications: ABNF URL: http://www.ietf.org/rfc/rfc2234.txt?number=2234

	[RFC2396]
	Uniform Resource Identifiers (URI): Generic Syntax URL: http://www.ietf.org/rfc/rfc2396.txt?number=2396

	[RFC822]
	“Standard for the Format of ARPA Internet Text Messages”, August 1982. URL: http://www.ietf.org/rfc/rfc0822.txt?number=822

	[TS23040]
	3rd Generation Partnership Project; Technical Specification Group Terminals; Technical Realization of the Short Message Service (SMS) (Release 5), 3GPP TS 23.040 v5.4.0", June 2002 URL: ftp://ftp.3gpp.org/Specs/archive/23_series/23.040/23040-540.zip

	[TS23140]
	3rd Generation Partnership Project; Technical Specification Group Terminals; Multimedia Messaging Service (MMS); Functional Description; Stage 2 (Release 5), 3GPP TS 23.140 v5.4.0", September 2002 URL: ftp://ftp.3gpp.org/specs/archive/23_series/23.140/23140-540.zip

	[VCAL10]
	“vCalendar - The Electronic Calendaring and Scheduling Format", version 1.0, The Internet Mail Consortium (IMC), September 18, 1996, URL: http://www.imc.org/pdi/vcal-10.doc

	[VCARD21]
	“vCard - The Electronic Business Card”, version 2.1,The Internet Mail Consortium (IMC), September 18, 1996, URL: http://www.imc.org/pdi/vcard-21.doc

	[WAPMMS]
	“Wireless Application Protocol - MMS Encapsulation Protocol, Version 01-June-2001”, URL: http://www.openmobilealliance.org

2.2 Informative References

	[Arch]
	"System Architecture Model Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP]
	"Client-Server Protocol Session and Transactions Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP XMLS]
	"Client-Server Protocol XML Syntax Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP Trans]
	"Client-Server Protocol Transport Bindings Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP DataType]
	"Client-Server Protocol Data Types Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP PTS]
	"Client-Server Protocol Plain Text Syntax Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP WBXML]
	"Client-Server Protocol Binary Definition and Examples Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[PA]
	"Presence Attributes Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[PA XMLS]
	"Presence Attribute XML Syntax Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CLP]
	"Command Line Protocol Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP]
	"SSP - Server-Server Protocol Semantics Document Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP Syntax]
	"Server-Server Protocol XML Syntax Document Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP Trans]
	"SSP - Transport Binding Version 1.3". Open Mobile Alliance™. URL: http://www.openmobilealliance.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Alias
	The name a user suggests others to use as NickName. Part of the User Presence – available only those who are authorized to retrieve it.

	Auto login
	A user setting within the device that allows the IMPS client to log into the IMPS service automatically without user action (e.g. selecting a "login" function or starting an application). The login sequence may be triggered at the client's discretion in a variety of ways (e.g. at power-on, when the service becomes available after an outage due to coverage, phone calls, use of other services etc.)

	Contact
	The representation of a single user in the IMPS technology – consist of a User-ID and an optional NickName.

	ContactList
	A collection of Contacts that resides on the server, and essential part of presence authoring functions. It is possible to address IMs using the ContactListID as well.

	Contact Details
	A collection of information, which is available for the service provider only, and there is no way to retrieve it by any other user. The information is typically collected when the user buys his/her IMPS subscription.

	Friendly Name
	A name that the user suggests for the general public to use as a nickname and is available to all users at all times.

	Inbox
	A local repository on the client device where the incoming messages are stored.

	MDN
	A Mobile Directory Number (MDN) is used in 3GPP2. An MDN is a dial able number associated with the mobile station through a service subscription. A Mobile Directory Number is not necessarily the same as the mobile station identification on the air interface. An MDN consists of country code, national destination code, and subscriber number. An MDN consists up to 15 digits.

	NickName
	A name that is used internally in a client device to hide the User-ID of contacts from the end-user. It is not possible to address other users using the NickName.

	OnlineStatus
	A presence attribute that indicates whether the client application (and the user) is logged on to an IMPS server or not.

	Private Group Conversation
	A temporary chat group that is the result of extending a one-to-one messaging to many-to-many messaging.

	Phonebook
	A local database in the terminal containing phone numbers, names, etc.

	Private Profile
	A user’s profile information that is not available to anyone including the owner user himself/herself – it is maintained by the service provider and is searchable with some restrictions.

	Public Profile
	A user’s profile information that is available to the public – it is maintained by the owner user and is searchable with some restrictions.

	Publisher
	The user that owns the presence information.

	Registration
	The action or process by which an individual, who generally is a subscriber of the mobile network operator, becomes an active user of the IMPS.

	ScreenName
	A combination of a name a user chooses in a group session, and the Group-ID itself. The user MAY have different ScreenNames for different occasions as well as on different groups. The ScreenName is always connected to a group.

	System Message
	A special type of message sent by the IMPS system for different purposes (e.g. advice of charge, service notifications, advertisements, instructions, etc). System Messages MAY contain a list of possible options and require actions or response from the user.

	User-ID
	Identifier for a single user that is unique across all IMPS services.

3.3 Abbreviations

	ABNF
	Augmented BNF, see [RFC2234].

	CSP
	Client-Server Protocol

	GRSE
	Group Service Element

	IM
	Instant Message

	IMPS
	Instant Messaging and Presence Service

	IMSE
	Instant Messaging Service Element

	ISDN
	Integrated Service Digital Network

	MMS
	Multimedia Message Service

	MSISDN
	Mobile Station International ISDN Number. A Mobile Station International Integrated Services Digital Network Number (MSISDN) is used in 3GPP. An MSISDN is a dial-able number associated with the mobile station through a service subscription. An MSISDN consists of country code, national destination code and subscriber number. An MSISDN MAY be up to 15 digits.

	OMA
	Open Mobile Alliance

	PRSE
	Presence Service Element

	SAP
	Service Access Points

	SSP
	Server to Server Protocol

	WV
	Wireless Village

4. Introduction

This document describes the transactions and the information elements in transactions that are used to provide IMPS services and the interoperability of different implementations.

5. IMPS session

5.1 Session management

The Instant Messaging and Presence Service session is a framework in which the IMPS services are provided to the IMPS client. The IMPS session is transport-independent. If the transport connection is broken, the client can reconnect and continue the session. The client device MAY be even turned on and off and the session MAY still be continued.

In order to establish a session, the client MUST log into a SAP using a one of the available protocol versions, transport mechanisms [CSP Trans] and a syntax definition that is supported over the selected transport. The client and the server MUST maintain the initial protocol version, and syntax definition that was used during the login transaction throughout the whole session – until logout or disconnect. The server MAY deny access if the protocol version, the transport, or the syntax definition is not supported.

The IMPS session is established when the client logs in and terminated when either the client logs out or the SAP decides to disconnect the session. The session is identified by a Session-ID. In addition, the IMPS client MUST provide at login phase a client-unique session cookie for the session, which is used by the server to trigger communications in some cases.

The client and the server MUST use the same version of the IMPS protocol that was used in the login primitive in every transaction throughout the whole session. The versions supported on the server side MAY be retrieved any time – it is independent from IMPS sessions. Please refer to chapter 5.2 Version Management and 6.3 Version Discovery Transaction for further information of this mechanism.

If the server for some reason does not accept the IMPS version that the client used in LoginRequest, the client MAY initiate version discovery transaction to retrieve the list of supported versions from the server, and select an IMPS version (to be used in the login phase again) that is supported on both client and server side.

The authentication of the user is done at the login phase. The authentication is, in general, considered to be valid throughout the session. However, the server MAY, at any time disconnect the session and request the client to re-login. In this case, the client provides the old Session-ID. After valid authentication, the IMPS server MAY accept to re-establish the old session.

During the IMPS session, both the client and SAP MUST maintain session context. The session context contains dynamic information of the services the client is currently using. The IMPS specifications do not explicitly define what the actual state of services the session context contains, but it assumes that the negotiated services for the session are valid throughout the session.

The session context in the IMPS server and the IMPS client are tied together by the services the user is currently using (subscribed presence attributes, joined groups, authorized presence attributes, etc). The IMPS server and IMPS client MAY assume that the link between the contexts is valid throughout the IMPS session as well as reestablished session.

Associated with each session is an auto logout timer value. The client MAY request a particular value or request an infinite time-to-live time. The server can set any timer value and the client MUST obey that. Server implementers SHOULD NOT however select a lower time-to-live value then the one requested by the client.

When the session is terminated and a new session is established, the IMPS server MAY still maintain some services, such as subscribed presence attributes. This is an implementation issue in the IMPS server.

In order to provide minimum interoperability between clients and servers, both the client and the server MUST support the features required to establish, terminate, and maintain a session. These features are:

· 5.3 Addressing
· 6.1 Status Primitive
· 6.4 Logging in
· 6.5 Logging out and Disconnecting
· 6.6 Keep Alive
· 6.8 Service and Capability Negotiation
The server MAY provide support for Fundamental Features, Instant Messaging, Presence, Group and Content services, however at least one of these services MUST be negotiated. The features and the related transactions are negotiated between the client and the SAP after a successful login. See chapter 6.4 and 6.8.

Normally all transaction are performed within an established session. The ‘Type’ of all transactions that are sent within a session MUST be ‘Inband’. There might be special cases when a client desires to perform a transaction without having an established session. The ‘Type’ of all transactions that are sent outside of a session MUST be ‘Outband’. Inband transactions MUST include a Session-ID. Outband transactions MUST NOT include Session-ID. To all transaction requests that include Session-ID the response MUST include the identical Session-ID.

5.2 Version Management

Each set of the IMPS specifications defines a version of the IMPS Client-Server protocol. XML, and WBXML based bindings use specific namespaces to identify which version of the protocol is being used for each of the following specific purposes:

· 5.1 Session management;

· 5.4 Transaction management; and

· Presence Attributes as defined in [PA]

Sessions are established using matched sets of namespaces defined in a specific version of the IMPS specifications. When a backward compatible minor version of the protocol is defined, the specifications MAY indicate that the Transaction management and Presence Attributes namespaces defined in the minor version MAY be used in conjunction with the Session management namespace from the associated major version.

The Plain Text Syntax [CSP PTS] does not use namespaces to identify different versions of the IMPS specifications: it uses only two digits in the preamble. Thus the version discovery is very much simplified in Plain Text Syntax.

The client and the server MUST maintain the same IMPS version (and hence namespaces) that was used in the login transaction throughout the whole duration of the session.

The Version Discovery transaction provides a mechanism by which a client can discover the protocol versions implemented by a specific server. The mechanism is described in details in chapter 6.3 Version Discovery Transaction.

5.3 Addressing

5.3.1 Addressing introduction

The IMPS protocol uses addresses based on the URI format [RFC2396]. The addressable entities are:

· User

· Contact list

· User group (private and public)

· Content (private and public)

The addressing model introduces a unique IMPS address space, as defined in 5.3.2 Generic address format, which MUST be supported by the IMPS system. Use of other address spaces e.g. “sip:”, MAY be used to interoperate with other systems, but their use and definition is out of the scope of IMPS specifications.

In addition to the user, the IMPS client the user is using MAY be addressed as well. In this specification version, the client identification is defined but its exact semantics and use cases are left for next IMPS specification release.

The sending client MUST NOT provide a Friendly Name in any transaction with the User-ID.

Every time the server sends the User-ID in a transaction, it MUST include the Friendly Name with the User-ID. If the Friendly Name does not exist, the IMPS server MUST NOT include the Friendly Name.
5.3.2 Generic address format

The generic address syntax is based on URI [RFC2396]. The generic syntax for a WV-URI is defined using ABNF [RFC2234] as follows:

WV-URI = "wv:" (User-part / Resource-part) [Domain-part]

User-part = Mobile-Identity / Internet-Identity

Domain-part = "@" sub-domain *("." sub-domain)

Mobile-Identity = ["+"] 1*digit

Internet-Identity = alpha 1*extalpha

Resource-part = [User-part] "/" 1*extalpha

extalpha = alphanum / "!" / DQUOTE / "#" / "$" / "%" / "&" / "'" / "(" / ")" / "*" / "," / "-" / "." / ";" / "<" / "=" / ">" / "?" / "[" / "\" / "]" / "^" / "_" / "`" / "{" / "|" / "}" / "~"

alphanum = ALPHA / DIGIT

Where User-part refers to the identification of the IMPS user, Domain-part identifies the IMPS server domain, and Resource-part further identifies the referred public or private resource within the domain. The sub-domain is defined in [RFC822]. ALPHA, DIGIT, and DQUOTE are defined in [RFC2234].
A WV-URI specifies either a user or a resource. A resource address MUST have the Resource-part but a user address MUST NOT. A resource is either private or public and that is specified by the address. The Resource-part of a private resource address MUST contain the User-part but a public resource address MUST NOT.

The Domain part is OPTIONAL. When it is not present, the address refers implicitly to the home domain, which is the domain that the client specified at login. Both the client and the server MUST support local and external addressing. In order to improve interoperability, the server MUST maintain the same addressing format within the scope of a transaction: if client requested using local address, the server MUST reply using local address.

A WV-URI MUST include the schema “wv:”.

The lengths of the optional domain and schema parts MUST be included in the total address length. The total length MUST NOT exceed the maximum address length as specified in [CSP DataType].

The addresses are case insensitive.

5.3.3 Address encoding

As per URI [RFC2396], certain reserved characters MUST be escaped if they occur within the User-ID, Resource, or Domain portions of an IMPS address. This includes the characters “;”, “?”, “:”, “&”, “=”, “+”, “$” and “,”. For example, a valid IMPS address for the user “$mith” in the “server.com” domain is:

wv:%24mith@server.com

Certain characters are not allowed in the User-ID portion of IMPS addresses (see 4.2.4, below). This includes the characters “/”, “@”, “+”, “ “ and TAB. This restriction is independent of the encoding of a User-ID within an IMPS address. For example, this IMPS address is not permissible:

wv:john%40aol.com@server.com

This address is not permissible because after URI-decoding, the User-ID portion contains a forbidden character (“@”). If a server’s internal representation of a username permits the occurrence of forbidden characters, such characters MUST be double-escaped when they occur in a IMPS address, such that they do not occur un-escaped in the User-ID portion after URI-decoding, or they MUST be escaped via some other scheme that does not employ forbidden characters.

When calculating the length of an address, an escape sequence MUST be considered as the character represented.

5.3.4 User addressing

The IMPS protocol uses User-IDs to uniquely identify any IMPS User. The User-ID is syntactically equivalent to an e-mail address, and as such is subject to the same restrictions for character set, as described in “Standard for the Format of ARPA Internet Text Messages” [RFC822]. The User-ID is either a local User-ID which is the domain that the client is logged on (home-domain) or an external User-ID, which is on another domain.

The User-ID MUST either refer to an Internet-type address or to a mobile number of the user. If the User-ID refers to the mobile number of the user, the user name MUST always start either with a digit or with a '+' sign. A user name referring to an Internet-type address MUST NOT start with a '+' sign or digit.

The syntax of the User-ID is defined as follows:

User-ID = "wv:" User-part ["@" Domain-part]

When the User-ID refers to the mobile number address, the User-ID preceded with '+' sign MUST refer to the international numbering in The International Public Telecommunication Numbering Plan [E.164]. Without '+' sign, it MUST refer to the national numbering in the [E.164].

Examples:

Local-User-ID:
wv:yuriyt

wv:+1234567890

wv:4567890

External-User-ID:
wv:Jon.Smith@imps.com

wv:+1234567890@imps.com

wv:4567890@imps.com

The users MAY also be identified by screen names, nicknames and aliases. These identifiers explicitly and implicitly refer to the User-ID.

5.3.5 Contact List Addressing

The IMPS protocol uses ContactList-IDs to uniquely identify any contact list of any user. The ContactList-ID is based on the generic address syntax. The contact list MAY be a public contact list or a private contact list. The syntax is defined as follows:

ContactList-ID = "wv:" Resource-part ["@" Domain-part]

Examples for the ContactList-ContactList-IDs are:

wv:john/colleagues@imps.com

wv:/managers

wv:john/friends

wv:/managers@imps.com

Only the owner of a private contact list MAY access, use and manage the private contact list. When a server encounters a request that refers to a contact list address that is private and it does not belong to the requesting user, the server MUST reply with an error to the request.

5.3.6 User Group

The IMPS protocol uses a Group-ID to uniquely identify a group. The Group-ID is based on the generic address syntax. The user group MAY be public user group or private user group. The syntax of the Group-ID is defined as follows:

Group-ID = "wv:" Resource-part ["@" Domain-part]

Examples of the Group-IDs are:

wv:john/mygroup@imps.com

ww:john/mygroup

wv:/technicalforum

wv:/technical_forum@imps.com

5.3.7 Content Addressing

The IMPS protocol uses a Content ID to uniquely identify a content. The Content ID is based on the generic address syntax. The syntax of the Content ID is as follows:

Content-ID = "wv:" Resource-part ["@" Domain-part]

Examples of the Content IDs are:

wv:john/WV_presentation

wv:john/WV_presentation@imps.com

wv:/wvspec

wv:/wvspec@imps.com

5.3.8 Client Addressing

The Client-ID is a unique identifier of the IMPS client that the user is currently using. It identifies the IMPS client as an application and its location that accesses the IMPS services. The Client-ID is intended to allow:

· Multiple access from the same user

· Direct application-to-application communication.

The Client-ID consists of

· An OPTIONAL application identifier as a URL identifying the application and its location.

· An OPTIONAL mobile device identity (such as international mobile number defined in [E.164]).

The semantics and use cases for the Client-ID are left for future versions of IMPS specifications.

Both client and server MAY support client addressing.

5.4 Transaction management

An IMPS transaction is a basic communication mechanism between an IMPS client and an IMPS SAP. A transaction consists of a request and a response primitive usually. (Exceptions: disconnect, 4-way login.) The purpose of the transaction is to exchange data between the entities or request an operation: usually both within the same transaction. The transactions MAY originate from either IMPS client or IMPS SAP.

The transaction consists of request message and response message. Initiator of the transaction SHOULD always expect the Status primitive as the result of transaction even if it is not specified explicitly in the description of transaction. This behavior is used to notify the initiator about error caused by the request. The only exception is the Disconnect request from server. Some response primitives carry a Result element that allows error reporting within the normal response primitive.

When the Result element is not available within the response and an error occurs, the Status primitive containing the status result MUST be sent as the response. When the Result element is available within the response primitive, either the corresponding response primitive or a Status primitive MUST be returned. The typical use for the Result element in the response primitive is to indicate partial success. Please refer to 6.1 for more information. The Status primitive MAY replace the response only when an error has occurred.

The initiating entity, the IMPS client or the SAP, allocates a transaction identifier that the responding entity returns in the response message. This links together the requesting message and response message, thus the transaction identifier MUST be identical in the request and the response. The originator of the transaction MUST maintain the uniqueness of the transaction identifiers in a particular direction (C->S or S->C) within a session.

The response to a request message SHOULD be received within 20 seconds from the initiation of the transaction. During or after that period, the requesting entity MAY resend the request message using the same transaction identifier. The responding entity SHOULD guarantee that the requested operation or data is carried out only once, even if multiple request messages with the same transaction identifier are received.

The transactions MUST be sequential until the capability negotiation is completed. Sequential means that one transaction MUST be complete (closed) before a next one is started (open). A transaction is considered to be closed when a the final response primitive has been received, or a time-out waiting for a response primitive has occurred, or the underlying transport has been detected as “broken.” After completing the capability negotiation the client MAY overcome the limitation of having sequential transactions by negotiating multiple open transactions with the SAP. See ‘MultiTrans’ capability in client capability negotiation in 6.8. After a transaction has been closed, the transaction identifier MUST be invalidated on both the client and server side.

Multiple transactions mean that two or more transactions are open during the same time. The transactions can be done using the same transport connection or on separate transport connections.

All mandatory information elements MUST be present in the primitives. All conditional information elements MUST be either present or absent according to the relevant requirement.

6. Fundamental primitives and transactions

The fundamental primitives and transactions provide the basic functionalities that are not related to any particular service – instant messaging, presence or group chat.

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 6.1 Status Primitive
· 6.2 PollingRequest Primitive – except over SMS transport, see [CSP Trans].

· 6.4 Logging in
· 6.5 Logging out and Disconnecting
· 6.6 Keep Alive
· 6.8 Service and Capability Negotiation
The rest of the fundamental transactions are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

6.1 Status Primitive

If an error occurs in the processing party while processing a transaction, it MUST respond to the other party with a Status primitive instead of the expected response primitive. The Status primitive is also used as the expected response primitive in some successful transactions.

The Result structure MUST contain one of the status codes specified in this document. It MAY also contain a Description string and if necessary, a Detailed description explaining the error. The DetailedResult MAY be used with every error code but has its main use when the error concerns a specific Message-ID, User-ID, GroupID, ScreenName or Domain. An example is when sending a message to several recipients and one User-ID is invalid. The Result could then have status code 201 (Partially successful) and the DetailedResult naming the bad User-ID together with status code 531 (Unknown user).

The status code 201 (Partially successful) MUST be used when only part of the request was successfully processed. In this case the DetailedResult with all errors MUST be included but the result of successful parts of the transaction MAY be omitted. An example is the creation of a contact list with initial contacts. If the server creates the contact list, but fails to add one or more of the contacts, the 201 (Partially successful) with DetailedResult for the bad contacts SHOULD be returned. If the server cannot create the contact list at all there was no partial success and the Result code MAY be for example 701 (Contact list already exists).

When no part of the transaction was successfully processed but the error cannot be described by only one status code, the code 900 (Multiple errors) is used. In this case DetailedResult with all errors MUST be included. By definition there can be no successful parts and that is the difference from status code 201 (Partially successful).

If the request is malformed and cannot be processed, the error code 400 (Bad Request) is used. The client and the server MUST support the Status Primitive.

When the transaction is completely successful, the Result element MUST NOT include detailed results. Partially successful transaction responses MAY include the results of the successfully completed items, however the list of items that has failed MUST be included.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Status
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	O
	String
	Identifier for the session.

	Client-ID
	O
	Structure
	Identifies the requesting IM client. Unique (for this user) identifier.

	Result
	M
	Structure
	The result of the transaction.

Table 1. Information elements in Status primitive

6.2 PollingRequest Primitive

[image: image2.wmf]Client

Server

PollingRequest

Figure 1. Polling request

The polling request is used in the context of the server pushing data to the Client. When a client has received Communication Initiation Request (CIR) from the CIR channel, or the ‘Poll’ element in a response primitive from the server indicates ‘T’ (true), the client MUST send the PollingRequest to the server to enable the server to insert the server-initiated transaction in the reply. The exact cases for the use of poll messages are elaborated in [CSP Trans]

The client MUST NOT send PollingRequest primitive to the server without prior CIR from the server or if the ‘Poll’ element is indicating ‘F’ (false) in a response primitive from the server.

The client and the server MUST NOT support the PollingRequest over SMS transport, but both MUST support the PollingRequest over any other transport [CSP Trans].

The polling request follows the basic message structure, but it carries no transaction-ID. Thus, the Transaction-ID MUST be empty.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	PollingRequest
	Message identifier.

	Transaction-ID
	M
	String
	Empty content, since Transaction-ID is not carried.

	Session-ID
	M
	String
	Identifier for the session.

Table 2. Information elements in PollingRequest primitive

6.3 Version Discovery Transaction

6.3.1 Transactions

[image: image3.wmf]VersionDiscoveryRequest

Client

Server

VersionDiscoveryResponse

Figure 2. Version Discovery

From time to time, it MAY be necessary for a client to evaluate the best protocol version to use in sessions with a particular server. This is achieved using the Version Discovery transaction, which determines the protocol versions that are mutually acceptable to both the client and server. The IMPS client MAY and server MUST support the version discovery transaction, however its support is not negotiated, as this is an offline transaction.

The client initiates the Version Discovery transaction by sending a VersionDiscoveryRequest primitive to the intended server.

When the server receives the VersionDiscoveryRequest, it examines the client's proposed versions (if any).

· If the client proposes different versions, the server MUST select the version that it supports. It includes this version in the VersionDiscoveryResponse.

· If the server supports none of the namespaces that the client proposed in a particular set, then the server MUST return an empty result.

· If the client proposes no versions, then the server MUST include all of the supported versions in the response.

If the server knows of other servers that better support the namespaces proposed by the client, then the server MAY return the URLs (or MSISDNs/MDNs over SMS transport) of those servers to the client.

Servers that only implement version 1.1 of the IMPS specifications return an error indication when they received a VersionDiscoveryRequest. Clients that receive such an error response MAY choose to assume that the server only supports version 1.1 protocols.

The Version Discovery transaction does not follow the basic message structure; it is a dedicated transaction that is meant to be consistent with all future versions of the IMPS protocol. All servers MUST implement this transaction, while it is OPTIONAL for the clients.

6.3.2 Primitives and information elements

	Primitive
	Direction

	VersionDiscoveryRequest
	Client (Server

	VersionDiscoveryResponse
	Client (Server

Table 3. Primitive directions for Version Discovery

	Information Element
	Req
	Type
	Description

	Version-List
	O
	Structure
	List of versions supported by the client.

Table 4. Information elements in VersionDiscoveryRequest primitive

	Information Element
	Req
	Type
	Description

	Version-List
	C
	Structure
	List of versions implemented by the server. If the Version-List was present in the request, only those versions are included in this list that are also implemented by the server.

	Other-Servers
	O
	Structure
	List of access points of servers that better support the namespaces proposed by the client.

Table 5. Information elements in VersionDiscoveryResponse primitive

6.4 Logging in

6.4.1 Transactions

[image: image4.wmf]LoginRequest

Client

Server

LoginResponse

Figure 3. Logging in

In order to use the IM services the user MUST log in into a Service Access Point. This login MAY happen automatically, meaning that the IMPS client performs the required login actions, without any user interaction. This is called “Auto Login”. A user MUST be able to turn on/off “Auto Login” using a client setting.
After the server processed this request, it MUST send a LoginResponse primitive to the client; which will contain the details of the login operation. When the login operation into the Service Access Point is not successful, the Result element in the LoginResponse primitive MUST indicate the login failure. The login response sent by the server MAY also indicate that the client needs to perform client capability negotiation.

After a successful login a client capability negotiation MAY be, and a service negotiation MUST be performed. Note that the capability negotiation is OPTIONAL. If the server requested it – the ‘Client-Capability-Request’ element indicates ‘T’ (true) – then the client MUST perform it, otherwise the client MAY perform it. After the service negotiation the agreed services available to the user MAY be: Presence Service, IM Service, Group Service, Content Service. If the support for Group Service is agreed upon and the Auto-Join feature is enabled – for one group at least – then the Auto-Join feature MUST take place after the service negotiation. The Auto-Join feature MUST NOT take place if the server and the client do not agree to support Group Service. If any error occurs during auto-join (group is not available, group is closed, not a member, etc), the IMPS server MUST NOT join the client to the group and it MUST NOT send any error messages to the client.

The client MUST choose either a 2-way access control or a 4-way access control. If the client chooses the 2-way access control, the LoginRequest MUST contain the element “Password-String” with password in plain text. The IMPS server MUST authenticate the IMPS user either by verifying the UserID/password combination or it MUST authenticate the IMPS user based on MSISDN/MDN or other authentic network information. The IMPS server MUST respond with either success or failure or further authorization.

If the client chooses the 4-way access control, the LoginRequest MUST NOT contain neither element “Password-String” nor element “Digest-Bytes”. Instead, the LoginRequest MUST contain the element “Supported Digest Schema”. The server MUST either respond with the challenge “nonce” based on the “digest schema” or authenticate the IMPS user based on MSISDN/MDN or other authentic network information. The IMPS server MUST respond with either success or failure. If the IMPS server responded with the challenge “nonce”,

the client MUST send a LoginRequest with the element “Digest-Bytes” which is the BASE64-encoded result string based on the “schema” hash function on the concatenation of the challenge “nonce” and the password:

Digest-Bytes = hash_function(nonce + password)

The server MUST verify that the password is valid.

The server finally MUST respond with either “success” or “failure”.

Even if the client chooses the two-way access control, the server MAY send a response with error code 401. It means that the server requires further authorization of this request. In this case, the response message contains the available authorization scheme “digest schema” with the challenge “nonce” for the scheme.

In both 2-way and 4-way login modes, if Time-to-Live is omitted, it MUST be considered to be infinite.

In the 4-way authentication, the Transaction-ID for both sets of requests and responses MUST be the same.

Following schemes MAY used as “digest schema” to generate the challenge “nonce”:

The MD5 Scheme

The client MUST concatenate the challenge with the password, and ´MUST perform a MD5 hash on the resulting string. The client then SHOULD repeat a request with the resulting data as a string encoded by BASE64. See [RFC1321] on MD5 hashing algorithm.

The MD4 & MD6 Scheme

The same algorithm as for the MD5 Scheme except the hash algorithm MUST be replaced with MD4 or MD6.

The SHA Scheme

The client MUST concatenate the challenge with the password, and MUST perform a SHA hash on the resulting string. The client then SHOULD repeat a request with the resulting data as a string encoded by BASE64.

The client MUST support either 2-way login or 4-way login transaction and MAY support both.

The IMPS server MUST support the 2-way Login transaction and the 4-way Login transactions or support authentication in the mobile network.

When LoginResponse indicates successful login, the Session-ID MUST be present; when LoginResponse indicates failure in login, the Session-ID MUST NOT be present.

6.4.2 Error conditions

Generic error conditions:

· Service unavailable. (503)

· Version not supported. (505)

LoginRequest error conditions:

· Further authorization needed to use the server. (401)

· Invalid password. (409)

· The particular user is not allowed to use the server. (403)

· Unknown user. (531)

· Already logged in. (603)

· Session-ID, User-ID and Client-ID not matching. (422)

· No matching digest scheme supported (543)

· Some services are not available (606)

6.4.3 Primitives and information elements

	Primitive
	Direction

	LoginRequest
	Client (Server

	LoginResponse
	Client (Server

Table 6. Primitive directions for Logging in

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	LoginRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction, set by client.

	User-ID
	M
	String
	Identifies the requesting User.

	Client-ID
	M
	Structure
	Identifies the requesting WV client. Unique (for this user) identifier.

	Password-String
	C
	String
	The password digest corresponding to the User-ID

	Digest-Bytes
	C
	String
	The digest is BASE64 encoded.

	Supported-Digest-Schema
	C
	String
	A list of supported digest schema (PWD, SHA, MD4, MD5, MD6)

	Session-ID
	C
	String
	Identifier for the session when session reestablishment is requested.

	Time-To-Live
	O
	Integer
	Time requested between client to server messages before client is considered disconnect. If information element is not present client is requesting an infinite time-to-live time. Indicated in seconds.

	Session-Cookie
	M
	String
	The session cookie used by WV SAP to initiate communications within the session (max length 50)

Table 7. Information elements in LoginRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	LoginResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the request transaction.

	Client-ID
	M
	Structure
	Identifies the requesting WV client. Unique (for this user) identifier.

	Result
	M
	Structure
	Result of the login request.

	Nonce
	C
	String
	Random string generated by server for password digest. The string is not BASE64 encoded.

	Digest-Schema
	C
	String
	Type of digest schema to use.

	Session-ID
	C
	String
	Identifier for the session. String generated by the server to identify this session. Session-ID MUST be supplied with all following inband requests to the server. Present only if login was successful.

	Keep-Alive-Time
	C
	Integer
	Auto logout timer value in seconds. The server can set any timer value and the client MUST obey that. Each message transaction resets the Keep-Alive-Time timer. Present only if login was successful.

	Client-Capability-Request
	C
	Boolean
	Informs the Client that it needs to perform a Client Capability Request transaction. Present only if login was successful.

Table 8. Information elements in LoginResponse primitive

6.5 Logging out and Disconnecting

6.5.1 Transactions

[image: image5.wmf]LogoutRequest

Client

Server

Status

Figure 4. Logging Out

The user MAY log out from the IMPS by using the LogoutRequest message. The server MUST respond with a primitive.

If the user is an active member (e.g. joined) to one or more discussion groups when the logout request is issued, the server (the client if server-initiated disconnect) MUST automatically remove (leave group) the user from the discussion group.

The client and the server MUST support the Logout transaction.

[image: image6.wmf]Client

Server

Disconnect

Figure 5. Server Initiated Disconnection

Whenever the server disconnects a client, it MUST send a Disconnect primitive to the client. The client MUST NOT send any response to the Disconnect primitive. The server SHOULD disconnect a client if the session Time-To-Live timer has been exceeded. The server MAY also disconnect the client for some other reason. The server sends the Disconnect message to the client containing the Session-ID, and the Result containing code and descriptive text. The Transaction-ID MUST be present in the primitive for compatibility reason only (with other primitives) – the client MUST ignore its content.

The client and the server MUST support the server-initiated disconnection.

6.5.2 Error conditions

Generic error conditions:

· Service unavailable. (503)

· Not logged in. (604)

LogoutRequest error conditions:

· None except the generic error conditions.

Disconnect error conditions:

· Forced logout. (601)

· Session expired. (600)

6.5.3 Primitives and information elements

	Primitive
	Direction

	LogoutRequest
	Client (Server

	Status
	Client (Server

	Disconnect
	Client (Server

Table 9. Primitive directions for Logging Out

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	LogoutRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

Table 10. Information elements in LogoutRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Disconnect
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction. Present if client initiated request.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	Indicates the code and description why the disconnection happened.

Table 11. Information elements in Disconnect primitive

6.6 Keep Alive

6.6.1 Transactions

[image: image7.wmf]KeepAliveRequest

Client

Server

KeepAliveResponse

Figure 6. Keep alive transaction

The client MUST send KeepAliveRequest to reset the keep-alive timer if no other transaction has occurred during the KeepAliveTime interval. The server MUST reset the Keep-Alive timer not only when the client sends that KeepAliveRequest primitive, but also when any other transaction occurs over the data channel – the CIR channel activities are completely separate, and those MUST NOT reset the Keep-Alive timer. The client MAY apply for a new timeout value. The server responds with KeepAliveResponse message, which MAY contain a new timeout value if the timeout value requested by the client is not satisfactory.

The client and the server MUST support the Keep-Alive transaction.

The server MUST NOT disconnect a client before the keep-alive timer expires due to timer expiration – however the server MAY disconnect a client before timer expiration for some other reason.

If the client requested a new timeout value by including Time-To-Live in the request, the server MUST include the accepted Keep-Alive-Time in the response. The Keep-Alive-Time that the server accepts and sends back in the response MAY be different from the Time-To-Live value that the client requested. If the server does not accept the new timeout value requested by the client, the response MUST either include the new timeout value proposed by the server, or the status code indicating that the old value is in use. The client MUST obey the new Keep-Alive-Time value back by the server.

6.6.2 Error conditions

Generic error conditions:

· Service unavailable. (503)

· Not logged in. (604)

KeepAliveRequest error conditions:

· New timeout value not accepted – old value is in use. (605)

6.6.3 Primitives and information elements

	Primitive
	Direction

	KeepAliveRequest
	Client (Server

	KeepAliveResponse
	Client (Server

Table 12. Primitive directions for keep alive transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	KeepAliveRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Time-To-Live
	O
	Integer
	Indicates the new time-to-live of the session in seconds.

Table 13. Information elements in KeepAliveRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	KeepAliveResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	The result of the request.

	Keep-Alive-Time
	C
	Integer
	Indicates the new time-to-live of the session in seconds.

Table 14. Information elements in KeepAliveResponse primitive

6.7 Get Service Provider Info

6.7.1 Transactions

[image: image8.wmf]Client

Server

GetSPInfoRequest

GetSPInfoResponse

Figure 7. Get Service Provider Info transaction

The Get Service Provider information retrieves information about the Service Provider. The name of the provider as well as a multimedia message MAY be used as a splash screen or "about information", or link to a web/wap page that might contain more useful information. This transaction MAY be done without login in to the server.

The IMPS client and server MAY support for the Get Service Provider Info transaction. The service tree leaf that allows negotiation of this transaction is ‘GETSPI’. The transaction MAY be performed without having an established session – if the feature is not supported on the server as such, the server MUST respond with a Status primitive indicating this.

The Session-ID MUST be present in an ‘Inband’ request, and MUST NOT be present in an ‘Outband’ request. The server MUST respond to the request accordingly – ‘Inband’ response to and ‘Inband’ request, and ‘Outband’ response to an ‘Outband’ request.

6.7.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)

GetSPInfoRequest error conditions:

· Client-ID not matching this user. (422)

6.7.3 Primitives and information elements

	Primitive
	Direction

	GetSPInfoRequest
	Client (Server

	GetSPInfoResponse
	Client (Server

Table 15. Primitive directions for Get Service Provider Info

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetSPInfoRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	C
	String
	Identifier for the session.

	Client-ID
	C
	Structure
	Identifies the requesting client.

Table 16. Information elements in Get Service Provider Info Request primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetSPInfoResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	C
	String
	Identifier for the session.

	Client-ID
	C
	Structure
	Identifies the requesting client.

	Name
	M
	String
	Name of the service provider.

	Logo
	O
	MMS
	Service-provider specific image. (e.g., logo)

	Text
	O
	String
	Descriptive text.

	URL
	O
	String
	Link to a web page.

Table 17. Information elements in Get Service Provider Info Response primitive

6.8 Service and Capability Negotiation

6.8.1 Transactions

[image: image9.wmf]Client

Server

ServiceRequest

ServiceResponse

Figure 8. Service negotiation

After successful login the client and server MUST set up the context of the session. Service negotiation MUST be done after the successful login transaction, and MAY be repeated during the session at any time.

The response to the client MUST confirm what services the server supports and the client is allowed to use. The server MUST provide the agreed services. The server MUST NOT agree to provide services that are neither subscribed nor requested by the client.

The goals of the service negotiation are:

· To discover the available services.

In order to achieve this goal the client needs to know exactly which services are available on the server. If the client does not know which services are available on the server it MAY request it using the All-Function-Request information element ServiceRequest primitive. If All-Functions-Request element indicates ‘T’ in the ServiceRequest primitive, the server MUST send the list of all services that the server supports in the response. If All-Functions-Request element indicates ‘F’ in the ServiceRequest primitive, the Requested-Functions element MUST be present in the request. If requested, the ServiceResponse primitive will contain the service tree, which gives the information about the available services. Having the tree available the client can select which services it would like to use; it is ready to make an agreement.

· To agree what services will be used.

The client and the server MUST agree which features and functions will be used during the session. The client MUST send its service tree to the server in the Requested-Services element of the ServiceRequest primitive describing what kind of services it would like to use. The server MUST processe the tree, and MUST send back the ServiceResponse primitive containing the inverted tree (meaning that the tree MUST contain the features and functions the client has requested but not allowed to use). The client throughout the whole session MUST NOT use any of the features and functions that the server did not agree to provide: all non-negotiated features and functions MUST fail. Non-negotiated features and functions are the ones that were either not requested by the client, or not agreed by the server for some reason.

The service tree is a set of features and functions structured as a tree, WVCSPFeat being the root (which indicates all available features and functions). The tree MAY have multiple sub-trees (with multiple roots). There is no need to indicate the whole sub-tree when all features or functions are requested/denied under a specific sub-tree: only the sub-root element MUST be present in the tree. However, it is necessary to indicate the sub-tree when certain features (that are part of a sub-root element) are not requested.

When only the mandatory functions of a particular feature are requested, only the corresponding mandatory (MF, MP, MM, MG) element of the feature MUST be present in the service tree. If any other function is requested under a certain feature than the mandatory functions, the MF, MP, MM, MG element MUST NOT be indicated in the tree. When a sub-root element is requested without any elements under it, it means that all features and functions are requested under the particular sub-tree that are either MANDATORY or OPTIONAL.

The client and the server MUST support service negotiation transaction. The server MUST support repeating the service negotiation during the session at any time.

Note that the service tree in Plain Text Syntax [CSP PTS] is handled differently.

The abbreviated names of the service tree elements are described in the sections related to the transactions.

[image: image13.wmf]WV-CSP

Features

Presence-

Features

IM-Features

Group-

Features

Fundamental-

Features

GLBLU

BLENT

GCLI

CCLI

DCLI

MCLS

GETPR

UPDPR

GETWL

REACT

GETAUT

REJCM

NOTIF

FWMSG

CREAG

DELGR

GETGP

SETGP

GETGM

ADDGM

RMVGM

MBRAC

SUBGCN

GRCHN

REJEC

ContactList-

Functions

PresenceAuth-

Functions

Presence-

Delivery-

Functions

IM-Sending-

Functions

SETD

IM-Auth-

Functions

Group-Mgmt-

Functions

Group-Auth-

Functions

INVIT

CAINV

Service-

Functions

Search-

Functions

Invite-

Functions

GETMAP

GETLM

GETM

MDELIV

SRCH

STSRC

IM-Receiving-

Functions

NEWM

Group-Use-

Functions

MF (Mandatory

fundamental

functions)

MP (Mandatory

presence

functions)

MM (Mandatory

Messaging

functions)

MG (Mandatory

group

functions)

VRID

VerifyID

CAAUT

GETJU

GETSPI

EXCON

Figure 9. The service tree

[image: image14.wmf]Client

Server

ClientCapabilityRequest

ClientCapabilityResponse

Figure 10. Client Capability Request

Client capability negotiation MAY be performed after the successful Login transaction – before the Service Negotiation. The server MUST maintain the client capability information during the session, and it MAY cache these capabilities between sessions. If the client capability negotiation is needed after login, the server MUST indicate it in the login response. The client capability negotiation MAY also be repeated any time during a session.

The client capability request sets up the communication preferences for the session, for example the initial IM delivery method.

The ClientCapabilityRequest primitive contains an element “Requested Capabilities” that conveys the client capability information to the server. The client capability information includes:

· ClientType – the type of the client. See Table 7 in [PA].

· InitialDeliveryMethod – the initial IM delivery method that the recipient client prefers in the set of “PUSH” and “Notify/Get”.

· AnyContent – A Boolean value indicating that the client accepts any content types.

· AcceptedContentType – the list of supported content types in the client device, such as “text/plain; charset=us-ascii”. Applicable only when Any-Content is “No” or missing. The server MUST NOT send any instant messages or presence information containing a content type, which is not in this list. The server MUST send however notification about such instant messages providing that the notification transaction was agreed upon during service negotiation.

· AcceptedCharset – the list of supported character sets for plain text documents in the client device. Integer number assigned by IANA (see MIBenum numbers in [IANA]). Applicable only when Any-Content is “Yes”.

· AcceptedTransferEncoding – the supported transfer encoding methods in the client device, such as “base64”.

· AcceptedContentLength – the maximum content size when using “PUSH”. Indicates the character (byte) count of the message content.

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS)

· MultiTrans – Integer value indicating the maximum number of primitives that the client can handle within the same transport message, as well as the maximum number of open transactions from both client and server side at any given time. The value MUST be greater than 0.

· ParserSize – the maximum character (byte) count of XML (WBXML, SMS - depending on the actual encoding) message size that the parser can handle. Multiple transactions in the same message and presence updates (many user in the same message) might generate large XML documents.

· SupportedCIRMethod – the list of supported CIR methods that are supported by the client.

· UDPPort – the client MAY indicate that it requests other than the default port for the standalone UDP/IP CIR method. If the client indicates in the request that SUDP is supported, it MUST provide this value in the request as well. It is a decimal integer number. If the client indicates a value of 0 (zero), the server should deduce the IP address and the port number from the HELO message on the UDP/IP CIR channel. See [CSP Trans] for details.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· DefaultLanguage – The current language setting in the client. The language code is specifying that the client prefers to receive text information in the indicated language from the server. The information is OPTIONAL – it is used to override the user profile/presence info language preference.

For the details of the “PUSH” and other message-related information, please refer to section 9 Instant Messaging Feature.

The Client Capability Response contains an element “Agreed Capabilities” that conveys the agreed capability information back to the client. The agreed capability information includes the following derived elements:

· SupportedBearer – the list of supported bearers (HTTP(S), WSP, SMS) that both the client and server support.

· SupportedCIRMethod – the list of CIR methods that both the client and server support.

· TCPAddress – If the client indicates that it supports STCP in the request, the server MUST provide an IP address for standalone TCP/IP CIR method. It is an IP address.

· TCPPort – If the client indicated that it supports STCP in the request the server MUST provide a port number if it is different from the default port for the standalone TCP/IP CIR method. Decimal integer number.

· ServerPollMin – integer value indicating the minimum time interval (in seconds) that MUST pass before two subsequent PollingRequest transactions.

· CIRHTTPAddress – A URL used for HTTP binding of CIR channel. See [CSP Trans] for description on how to use this binding.

· UDPAddress – if the client indicates that it supports SUDP in the request, the server MUST provide an IP address for standalone UDP/IP CIR method. It is an IP address.

· UDPPort – If the client indicated that it supports SUDP in the request the server provides a port number if it is different from the default port for the standalone UDP/IP CIR method. It is a decimal integer number.

The client MAY and the server MUST support client capability negotiation over SMS transport, however the only negotiated capabilities are ‘ClientType’, ‘DefaultLanguage’, ‘MultiTrans’ – which if used by the client MUST result in an empty response: the response from the server MUST NOT contain the ‘Agreed-Capabilities’ element.

The client and server MUST support client capability negotiation over any other transports than SMS.

The client MAY and the server MUST support repeating the client capability negotiation during the session at any time.

The server MUST NOT provide capabilities that were not requested by the client. The server MUST NOT assume and use capabilities that are not supported by the client.

The ClientCapabilityResponse primitive MUST contain the list of capabilities that the server agrees to provide.

If the client indicates the use of WAP SMS or WAP UDP binding for CIR, the server MUST NOT provide the IP-address or TCP port in the response.

The server MUST use the agreed addresses and port numbers for CIR channel.

6.8.2 Error conditions

Generic error conditions:

· Service unavailable. (503)

· Not logged in. (604)

ServiceRequest error conditions:

· Client-ID not matching this user. (422)

ClientCapabilityRequest error conditions:

· Client-ID not matching this user. (422)

6.8.3 Primitives and information elements

	Primitive
	Direction

	ServiceRequest
	Client (Server

	ServiceResponse
	Client (Server

	ClientCapabilityRequest
	Client (Server

	ClientCapabilityResponse
	Client (Server

Table 18. Primitive directions for service request and capability request

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ServiceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Transaction identifier.

	Session-ID
	M
	String
	Identifier for the session.

	Requested-Functions
	C
	Structure
	Identifies the service elements and functions the client requests.

	All-Functions-Request
	M
	Boolean
	Request the server to send all services that it supports in the reply.

Table 19. Information elements in ServiceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ServiceResponse
	Message identifier.

	Transaction-ID
	M
	String
	Transaction identifier.

	Session-ID
	M
	String
	Identifier for the session.

	Not-Available-Functions
	C
	Structure
	Identifies the delta of the client requested and what is available for that user.

	All-Functions
	C
	Structure
	Identifies all of the functions that the server supports.

Table 20. Information elements in ServiceResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ClientCapabilityRequest
	Message identifier.

	Transaction-ID
	M
	String
	Transaction identifier.

	Session-ID
	M
	String
	Identifier for the session.

	Requested-Capabilities
	M
	Structure
	Identifies the capabilities requested by the client.

Table 21. Information elements in ClientCapabilityRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ClientCapabilityResponse
	Message identifier.

	Transaction-ID
	M
	String
	Transaction identifier.

	Session-ID
	M
	String
	Identifier for the session.

	Agreed-Capabilities
	M
	Structure
	Identifies the capabilities agreed by the server.

Table 22. Information elements in ClientCapabilityResponse primitive

7. Common features

The common features provide additional functionalities that are not closely related to any particular service – fundamental features, instant messaging, presence and group chat – but somewhat related to all of these.

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 7.1 General notification transactions
· 7.2 Public Profile
 The rest of the common features are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

7.1 General notification transactions
7.1.1 Transactions

[image: image15.wmf]S

u

b

s

c

r

i

b

e

N

o

t

i

f

i

c

a

t

i

o

n

R

e

q

u

e

s

t

Client

Server

S

t

a

t

u

s

Figure 11. Subscribe Notification transaction

The client MAY be interested in receiving notifications about specific events on the server. To receive these notifications, the client MUST send a SubscribeNotificationRequest primitive to the server including the list of notification types that it would like to receive. If the list of types is not present, then all types are requested. The server MUST respond with a Status primitive.

After successful subscription, the server MUST send the requested notifications.
The subscription MUST NOT be persistent through different sessions.

The server MUST differentiate notification subscription per client. The server MUST send exactly those notification types that the individual clients have subscribed to.

[image: image16.wmf]Client

Server

S

t

a

t

u

s

U

n

s

u

b

s

c

r

i

b

e

N

o

t

i

f

i

c

a

t

i

o

n

R

e

q

u

e

s

t

Figure 12. Unsubscribe Notification transaction

When the requesting client does not want to receive any more notifications, it MAY unsubscribe the notification by sending an UnsubscribeNotificationRequest primitive. Upon reception of such request the server MUST stop delivering notification for the notification types defined in the request. If no list of types is present, then all the types MUST be un-subscribed. The server MUST respond with a Status primitive and stop sending notifications.

[image: image17.wmf]S

t

a

t

u

s

N

o

t

i

f

i

c

a

t

i

o

n

R

e

q

u

e

s

t

Server

Client

Figure 13. Notification transaction

If the client has subscribed to receiving notifications from the server, the server MUST send NotificationRequest primitive to the client as soon as events matching the notification types occur. The server MUST only send out notifications of the types specified by the client in the SubscribeNotificationRequest. The Client MUST respond with a Status primitive.

The different notification types are described in the table below:

	Notification-Type
	Requested elements
	Description

	Added-To-Contact-List
	User-ID-List
	Server MUST send notification whenever the user has been added to another users contact list.

	Group-Removed
	Group-ID
	Server MUST send notification whenever a group of which the user is either a member of or joined to, have been deleted by the server.

	Contact-List-Changed
	ContactList-ID
	Server MUST send notification whenever changes are made to the user’s contact list.

Table 23. General notification types
The client and the server MUST support all transactions related to the general notification, therefore the support for these transactions is not negotiated.
7.1.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribeNotificationRequest error conditions:

· Invalid notification type (433)

NotificationRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

7.1.3 Primitives and information elements

	Primitive
	Direction

	SubscribeNotificationRequest
	Client (Server

	Status
	Client (Server

	UnsubscribeNotificationRequest
	Client (Server

	Status
	Client (Server

	NotificationRequest
	Client (Server

	Status
	Client (Server

Table 24. Primitive directions for General Notification transactions
	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Subscribe
NotificationRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Notification-Type-List
	O
	Structure
	A list of notification types. An empty or missing list indicates all available types are desired.

Table 25. Information elements in SubscribeNotificationRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Unsubscribe
NotificationRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Notification-Type-List
	O
	Structure
	A list of notification types. An empty or missing list indicates all available types are desired.

Table 26. Information elements in UnsubscribeNotificationRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	NotificationRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifies the session

	User-ID-List
	C
	Structure
	List of User-IDs or screen names.

	Group-ID
	C
	String
	Identifies the group which has been removed.

	ContactList-ID
	C
	String
	Identifies the list which has been changed.

	Notification-Type
	M
	Enumerated string
	Identifies the type of notification.

Table 27. Information elements in NotificationRequest primitive

7.2 Public Profile
The public profile – shortly – is a user’s profile information that MUST be available to the public – it MUST be maintained by the owner user and MUST be searchable with some restrictions.

In order to achieve minimum level of interoperability both the client and server MUST support the following functionalities:

· Retrieve public profile – see the transaction later on in this chapter.

· Clear and Update public profile – see the transaction later on in this chapter.

· Delivery of Friendly Name with UserIDs – see 5.3.1 Addressing introduction.
Additionally to the above, the client and the server MAY support the following functionalities:

· Search based on public profile – see the 7.3 General search transactions
There is a prerequisite for using the public profile-related features – except the search based on public profile: the user MUST have the mandatory fields of his/her own public profile (see Table 28) filled. If the mandatory fields are empty, attempting to use any of the related features – except search based on public profile – will result in failure – the server MUST verify that the requesting user filled out all of the mandatory fields of his/her public profile, and reply with an error if that is not the case. Similarly, a user MUST NOT access another user’s public profile when the mandatory elements are missing from the other user’s public profile. The server MUST NOT return those public profiles belonging to those requested users whose public profiles are missing any of the mandatory elements. This however MUST NOT restrict the requesting user from using the public profile-related features with other users.

The XML Syntax DTD - see [CSP XMLS] - has been defined in a manner that allows custom public profile fields. The client and the server MAY support these custom fields, but MUST ignore (without generating an error) the properties that they are not able to process. For extending the public profile with custom fields, see [editor to insert reference here]. The IMPS protocol defines the following fields:

The client and the server MUST support all of the predefined fields. The ‘Req’ column in the following table describes whether the specific field is REQUIRED (‘M’) or OPTIONAL (‘O’) for using the public profile.

	Field
	Req
	Searchable
	Comment

	Age
	M
	Y
	The year and month of birth.

Format: YYYYMM,
where

YYYY – decimal number indicating the year.

MM – decimal number indicating the month.

Default value: N/A – it MUST be specified by the user.

	Country
	M
	Y
	The country of residency. While filling in the public profile, the client MAY offer this to the user based on the MSISDN.

Format: Country code as defined in [ISO3166-1].

Default value: N/A– it MUST be specified by the user.

	Friendly Name
	M
	Y
	A name that the user suggests for the general public to use as a nickname and is available to all users at all times.

Format: Free text up to 50 characters.

Default value: N/A– it MUST be specified by the user.

	City
	O
	Y
	The city of residency.

Format: Free text up to 50 characters.

Default value: Empty value.

	Free text
	O
	N
	Any kind of information that the user wishes to disclose to the public about himself/herself.

Format: Free text up to 200 characters.

Default value: Empty value.

	Gender
	O
	Y
	The gender of the user.

Format: either one of the following enumerated values:

F – Female

M – Male

U – Unspecified (the user did not disclose it)

Default value: U

	Intention
	O
	Y
	The intention of the user.

Format: Free text up to 100 characters.

Default value: Empty value.

	Interests/hobbies
	O
	Y
	Interests/hobbies of the user.

Format: Free text up to 100 characters.

Default value: Empty value.

	Marital status
	O
	Y
	The marital status of the user.

Format: either one of the following enumerated values:

C – Cohabitant

D – Divorced

E – Engaged

M – Married

S – Single

U – Unspecified (the user did not disclose it)

W – Widowed

Default value: U

Table 28 Public Profile standard fields

7.2.1 Extending the Public profile
The extension creator MUST:

· Consider if the extension belongs to the public profile. There are several issues to consider, however it is RECOMMENDED to evaluate the followings:

· Dynamics. The public profile is not updated to the clients automatically, thus it SHOULD include only fields that are more or less static. For frequently updated information the inventor MUST use presence extension mechanism instead. See [PA] for more information for extending presence attributes.

· Privacy. The information included in the public profile is available to every IMPS client, thus the inventor MUST evaluate the sensitivity of the disclosed information. The created public profile field must conform to [PRIVACY].

· Contents. The public profile fields allow only plain text format. The value in a single public profile field MUST NOT exceed 200 characters – the server MUST cut the excess part out and include only the first 200 characters in the public profile field. The information MAY be non-localized.

· Support. All of the custom fields are OPTIONAL. Note that it is possible that an IMPS client or server implementation might not support the public profile field, and MAY ignore it – thus the field SHOULD NOT include information that MUST reach the end-user.

· Define a unique identifier. To guarantee uniqueness, the inventor MUST add a short prefix to the name of the field that reflects the inventor’s credentials. The prefix MUST be terminated with a hash mark (‘#’) character. The client MUST NOT render the text before the first hash mark (‘#’) character on the display – nor the hash mark itself. The rest of the string MUST be rendered on the display – however it MAY be un-localized. For example, a company named ‘Foo Industries’ would like to create an extension that includes the user’s education level: the field name could be:’FOOI#Education level’ –and the receiving client will render it as ‘Education level’.

7.2.2 Transactions

[image: image18.wmf]GetPublicProfileRequest

Client

Server

GetPublicProfileResponse

Figure 14. Retrieve public profile transaction

A user MAY retrieve the public profile of any user. To retrieve public profile(s) of user(s), the client MUST send the GetPublicProfileRequest primitive to the server containing the UserIDs of those users whose public profile is desired. The server MUST reply with a GetPublicProfileResponse primitive that contains the public profiles of the requested users.

The transaction MUST fail – and the server MUST respond with a Status primitive – when the requesting user did not fill the mandatory fields of his/her own public profile – even if the user is requesting his/her own profile. After the Status primitive the server MAY also send a [editor to insert reference to future system message primitive here] that describes to the user that he/she SHOULD fill in the public profile as well as explaining the privacy issues related to filling in the Public Profile.

The server SHOULD include the requested public profiles of those users that have filled out the mandatory fields in their public profile. The server MUST NOT include the public profile of those users who did not fill in the mandatory fields of their public profile – but it MUST indicate these users with an error code in the Result element.

[image: image19.wmf]UpdatePublicProfileRequest

Client

Server

Status

Figure 15. Clear/update public profile transaction

A user MAY clear and update his/her own public profile. To clear the public profile, the Clear-Public-Profile element can be utilized. To update the public profile, the fields that need update MUST be included in the Public-Profile element. The client MUST sent the UpdatePublicProfileRequest primitive to the server, and the server MUST reply with a Status primitive.

The transaction MUST fail when the requesting user does not have the mandatory fields of his/her own public profile filled and the mandatory fields are not included in the request primitive. After the Status primitive the server MAY also send a [editor to insert reference to future system message primitive here] that describes to the user that he/she SHOULD fill in the public profile as well as explaining the privacy issues related to filling in the Public Profile.

The client MUST NOT send a request that includes Clear-Public-Profile element with ‘F’ (false) value and the whole Public-Profile element is missing.
If the Clear-Public-Profile element indicates ‘T’ (true) the server MUST – with the exception of the Friendly Name field – clear the entire public profile. The default values are to be restored. If the Clear-Public-Profile element indicates ‘F’ (false), clear operation was not requested, thus the server MUST NOT clear the profile.
If both clearing and update operations have been requested, the server MUST perform the clear operation first – before the update. The server MUST update those public profile fields that are included in the Public-Profile element. If the whole Public-Profile element is missing, update operation was not requested, thus the server MUST NOT update any of the public profile fields.
7.2.3 Error conditions

Generic error conditions:

· Service unavailable. (503)

· Not logged in. (604)

GetPublicProfileRequest error conditions:

· Unknown user ID. (531)

· Missing mandatory profile field(s) of requesting user (904)

· Missing mandatory profile field(s)of requested user (905)

· Too many public profiles requested (201/906)

UpdatePublicProfileRequest error conditions:

· Missing mandatory field(s)of requesting user (904)

7.2.4 Primitives and information elements
	Primitive
	Direction

	GetPublicProfileRequest
	Client (Server

	GetPublicProfileResponse
	Client (Server

	UpdatePublicProfileRequest
	Client (Server

	Status
	Client (Server

Table 29. Primitive directions for public profie management transactions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPublicProfileRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	User-ID-List
	M
	Structure
	Identifies the user(s) whose public profile is requested.

Table 30. Information elements in GetPublicProfileRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPublicProfileResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	Result
	M
	Structure
	The result of the request.

	Public-Profile-List
	M
	Structure
	The list of Public profiles per UserID.

Table 31. Information elements in GetPublicProfileResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UpdatePublicProfileRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Session ID for session.

	Clear-Public-Profile
	M
	Boolean
	Indicates whether the public profile is cleared or not.

	Public-Profile
	O
	Structure
	The public profile fields to be updated for the requesting user.

Table 32. Information elements in UpdatePublicProfileRequest primitive

7.3 General search transactions
7.3.1 Transactions

[image: image20.wmf]SearchRequest (1

st

)

Client

Server

SearchResponse

SearchRequest (continued)

SearchResponse

Figure 16. General search transactions

A user MAY search for users/groups based on various user/group properties. On protocol level there is no difference between searching for users/groups based on various user/group properties – the separation is solely logical based on the search criteria: if the requested search criteria cannot be processed, the server will simply deny the request. The user MAY limit the number of results to be retrieved at a time, and MAY continue the search and go through all the results.

The search is performed using a list of one or more Search-Pairs. The Search-Pair list MUST be included in the first request only, it MUST NOT be included in the subsequent requests.

A Search-Pair consists of a Search-Element and a Search-String. The Search-Element indicates which property of the user/group SHALL be searched for the Search-String. When more than one search pairs are specified in the primitive without using advanced search, logical AND operation MUST be employed between the different pairs. The advanced search feature allows defining a more flexible search criteria. The advanced search is described in details in 7.3.2 Advanced search mechanism.
 Every Search-Element MUST NOT present more than once within the same search request.

A server implementation SHOULD NOT allow searching based on Public Profile if the requesting user has not filled out the mandatory fields of his/her public profile. If the server does not allow it, the transaction MUST fail – in this case the server MUST respond with a Status primitive – when any Search-Element refers to a public profile field, and the requesting user did not fill out the mandatory fields of his/her own public profile. After the Status primitive the server MAY also send a [editor to insert reference to future system message primitive here] that describes to the user that he/she SHOULD fill out the public profile as well as explaining the privacy issues related to filling in the Public Profile.

The result of a user search MUST always be User-ID and Friendly Name. If the Friendly Name exists in the public profile of the user then IMPS server MUST include the Friendly Name from the public profile, otherwise the UserID MUST be included in the Friendly Name field instead. Similarly, the result of a group search MUST always be GGroup-ID. The server MUST guarantee that the search results are matching the search criteria.

When searching for users based on public profile fields, the server:

· MUST NOT include those users in the results who have not filled out the mandatory fields in their public profile.

· MUST verify the age field in the public profile of the users that have been found matching according the Search-Pair-List element, and:

· if there is a local age limitation policy – to provide child protection – on the server, it MUST exclude those users from the search results who are under the age limitation according to their public profile.

· if there is no local age limitation policy on the server, it MUST include all users in the search results.

When searching for groups, the server MUST compare the age from the public profile of the requesting user versus the age limitation of the groups that have been found matching according the Search-Pair-List element, and:

· if the age is missing from the public profile, return all groups in the search results.

· if the age field is present in the public profile, return only those groups that do not have age limitation, or the age limitation is smaller than the requested user’s age.

When searching for groups and a restricted group is found, the server MUST check that the searching user is a group member (user, moderator or administrator of the group) before this search result is regarded as valid and the Group-ID is delivered to the searching user.

	Search-Element
	Search-String

	USER_AGE
	The Search-String is a decimal integer.

	USER_COUNTRY
	The Search-String is a Country code as defined in [ISO3166-1].

	USER_FRIENDLY_NAME
	The Search-String is a user’s Friendly Name – free text.

	USER_CITY
	The Search-String is a city name – free text.

	USER_GENDER
	The Search-String is an enumerated value as ‘Gender’ described in Table 28. Using the ‘U’ (Unspecified) value is NOT RECOMMENDED – clients SHOULD exlcude the criteria instead.

	USER_INTENTION
	The Search-String is a substring of a user’s intention.

	USER_INTERESTS_HOBBIES
	The Search-String is a substring of a user’s interests or hobbies.

	USER_MARITAL_STATUS
	The Search-String is an enumerated value as ‘Marital status’ described in Table 28. Using the ‘U’ (Unspecified) value is NOT RECOMMENDED – clients SHOULD exlcude the criteria instead.

Table 33. Search elements for public profile-based user search

	Search-Element
	Search-String

	USER_ALIAS
	The Search-String is a substring of a user’s alias.

	USER_ONLINE_STATUS
	The Search-String is the online status value.

	USER_EMAIL_ADDRESS
	The Search-String is a substring of a user’s e-mail address.

	USER_FIRST_NAME
	The Search-String is a substring of a user’s firstname.

	USER_ID
	The Search-String is a substring of a User-ID.

	USER_LAST_NAME
	The Search-String is a substring of a user’s lastname.

	USER_MOBILE_NUMBER
	The Search-String is a mobile number. [E.164]

Table 34. Search elements for user search

	Search-Element
	Search-String

	GROUP_ID
	The Search-String is a substring of a GGroup-ID. When the searching user owns the matching group, the group property Searchable MUST be ignored and all groups MUST be treated as searchable.

	GROUP_NAME
	The Search-String is a substring of a group’s name (part of group properties).

	GROUP_TOPIC
	The Search-String is a substring of a group’s topic (part of group properties).

	GROUP_USER_ID_JOINED
	The Search-String is a User-ID. When it contains the searching user's own User-ID, the group property Searchable MUST be ignored and all groups MUST be treated as searchable.

	GROUP_USER_ID_OWNER
	The Search-String is a User-ID. Search result contains the list of groups owned by the specified user.

	GROUP_USER_ID_AUTOJOIN
	The Search-String is a User-ID. Search result contains the list of groups that have AutoJoin property set to “T” for the specified user. The searching user's own User-ID MUST be used. The group property Searchable MUST be ignored and all groups MUST be treated as searchable.

Table 35. Search elements for private profile-based group search

The first SearchRequest message that the client sends to the server:

· MUST contain Search-Pair-List and the Search-Limit (maximum number of results at a time).

· if it contains more than one Search-Pair-List, the Search-Element MUST be different in each Search-Pair-List, however, all of the Search-Elements MUST be the of the same type i.e. for user or group.

· MUST NOT contain Search-ID and Search-Index.

The first SearchResponse that the server sends to the client MUST contain the Result of the search. If the search was successful, the SearchResponse message MUST also contain the Search-ID, the Search-Index (a continuation index to indicate where the search SHOULD be continued), the Search-Findings (the number of items found that match the criteria so far), and the Search-Results (the actual data).

The search result is restricted in the same way as presence information is when requested. If the searching user is not proactively authorized to see certain presence values for a user included in the search result, those presence values MUST NOT be included. If the unauthorized presence attribute is part of the search criteria, that user MUST NOT be included in the search results. This allows users who want to have certain presence attributes searchable to expose them through their default attribute list.

The server MUST provide means to continue a successful search, so that the user MAY continue the search. In this case the SearchRequest message MUST include the Search-ID and the Search-Index – which were assigned by the server in the first SearchResponse –, and MUST NOT include Search-Pair-List or Search-Limit. The client MAY modify the Search-Index value, so that the search MAY be continued at a different place – this allows browsing through the results forth and back. The Search-Index is valid until a new search is performed or the session ends (a previous search MUST be invalidated when a new search is started) or the search has been stopped using the StopSearch transaction. The server MUST then respond with the SearchResponse similar to the one responded to the first SearchRequest but the subsequent SearchResponses MUST NOT contain Search-ID. Since the server MAY find more and more results while the client is retrieving different parts of the results, and the value of the Search-Findings MAY be increasing - however it MUST NOT be decreasing.

The client SHOULD send StopSearchRequest to the server when the search is not needed anymore.

If a search is not successful, the Search-Results element of the SearchResponse primitive MUST indicate failed search, and the primitive MUST NOT contain any of the conditional information elements.

The client and the server MAY support searching based on various user and group properties. The service tree leaf that allows negotiation of this transaction is ‘SRCH’.

[image: image21.wmf]StopSearchRequest

Client

Server

Status

Figure 17. Stop search transaction

In order to indicate to the server that results are no further REQUIRED from a previously issued search request, the client MAY send StopSearchRequest primitive to the server containing the Search-ID. The server MUST invalidate the indicated search, and reply with a Status primitive. The invalidated Search-ID cannot be used after invalidation.

The client and the server MAY support stop search transaction, and it SHOULD be supported if the general search transaction is supported. The service tree leaf that allows negotiation of this transaction is ‘STSRC’.

7.3.2 Advanced search mechanism
The advanced search mechanism allows a user to compose a free-form search criteria where not only logical AND, but also logical NOT and OR operations as well as nesting is allowed. The advanced search mechanism uses exactly the same transactions as the general search transaction, thus it inherits the same requirements – these requirements are not described here, please refer to [editor to insert proper references to chapter 7.1.1]. The only difference between the advanced search and the general search mechanism is that when advanced search is performed, the 1st SearchRequest primitive MUST include additional information – the rest of the search mechanism is identical, including the StopSearch transaction.

In order to perform an advanced search, the 1st SearchRequest primitive MUST include:

· at least two search pairs in the Search-Pair-List information element, and each search pair in the Search-Pair-List MUST have a unique identifier in the scope of a single SearchRequest primitive. The unique identifier MUST be an integer number.

· the Advanced-Criteria information element.

The Advanced-Criteria information element MUST describe the logical relationship of the search pairs according to its syntax defined in [CSP DataType]. The 1st SearchRequest primitive MUST NOT include search pairs that are not used in the Advanced-Criteria.

An example

User wants to find his friend whose last name he knows, however he is not sure about how he registered his first name. The search elements will be:
USER_LAST_NAME = “Smith” with ID assigned to 0.
USER_FIRST_NAME = “John” with ID assigned to 1.
USER_FIRST_NAME = “Johnny” with ID assigned to 2.

The logical expression will be:
0+[1|2]

The server – upon receiving this request – will return all User-IDs and Friendly-Names that have “Smith” as their last name, and either “John” or “Johnny” as their first name.

7.3.3 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)
SearchRequest error conditions:

· Unable to parse criteria (Invalid Search-Element). (402)

· Initial search request was not sent (Invalid Search-ID). (424)

· Invalid Search-Index (out of range). (425)

· Search timeout (in case of continued search the subsequent request primitive is late). (535)

· Too many hits (536)

· Too broad search criteria (537)

· Too many elements in advanced criteria (544)

· Too many levels of nesting in advanced criteria (545)

· Missing mandatory elements of requesting user (904)

· Missing mandatory elements of requested user (905)

StopSearchRequest error conditions:

· Initial search request was not sent (Invalid Search-ID). (424)

7.3.4 Primitives and information elements

	Primitive
	Direction

	SearchRequest
	Client (Server

	SearchResponse
	Client (Server

	StopSearchRequest
	Client (Server

	Status
	Client (Server

Table 36. Primitive directions for searching

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SearchRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Search-Pair-List
	C
	Structure
	Searching criteria in terms of user or group properties. For advanced searches, each search pair MUST have its own unique identifier included. Present only in the 1st search request.

	Advanced-Criteria
	C
	String
	The advanced search criteria in form of a logical expression.

	Search-Limit
	C
	Integer
	Indicates the number of maximum search results can be received at a time. Present only in the 1st search request.

	Search-ID
	C
	String
	Uniquely identifies a search transaction. The server assigns this ID when the first search is performed, thus not present in the 1st search request.

	Search-Index
	C
	Integer
	Indicates that the results SHALL be sent starting from this particular index. Present only when the search is continued.

Table 37. Information elements in SearchRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SearchResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Search-ID
	C
	String
	Uniquely identifies a search transaction. The server assigns this ID when the 1st search is performed successfully.

	Search-Findings
	M
	Integer
	Indicates the number of the current findings.

	Completion-Flag
	M
	Boolean
	Indicates whether the client can expect new results. ‘F’ if server MAY provide new results (still searching), ‘T’ if new results will not be provided.

	Search-Index
	M
	Integer
	Indicates the particular index from which the next search can start. This provides the information to the user where to continue the search.

	Search-Results
	C
	Structure
	Search results.

Table 38. Information elements in SearchResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	StopSearchRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Search-ID
	M
	String
	Identifies the search to be invalidated.

Table 39. Information elements in StopSearchRequest primitive

7.4 Invitations

7.4.1 Transactions

[image: image22.wmf]Client 1

Server

InviteRequest

Status

Client 2

InviteUserRequest

Status

Figure 18. Invite user(s)

A user MAY invite other user(s) to join a group, to exchange messages, to share presence values list, and to share content and to request to be added to a group’s member list. The client MUST send the InviteRequest primitive to the server containing the ID of the invitation, the ‘Type’ of the invitation, the ID of the subject, the list of user(s) to be invited specified by User-IDs or screen-names, and MAY include the reason for the invitation (a short text) and his/her own screen-name. When the client is requesting group membership, the Recipients element MUST identify the Group-ID. The ID of invitation (Invite-ID) MUST be assigned by the inviting client and MUST be unique during a session.

If the Invite-Type is ‘GR’ (group), Invite-Group element MUST be present in the primitive.

If the Invite-Type is ‘GM’ (group membership), the Sender element in the InviteResponse primitive MUST identify the group ID.

The Recipient user(s) MUST be identified with User-IDs, Screen-names and ContactList-IDs, or any combination of those.

If Own-Screen-Name is present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain Screen-Name instead of User-ID (of the requesting user). If Own-Screen-Name is not present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain the User-ID of the requesting user. The server MUST validate the User-ID before the InviteUserRequest is sent.

If Invite-Group, Invite-Presence, Invite-Content or Invite-Reason is present in the InviteRequest primitive, the InviteUserRequest primitive MUST contain those as well.

The server MUST respond to InviteRequest primitive with a Status primitive. The server MUST also send InviteUserRequest message to every user who has been invited by the inviting client. The InviteUserRequest primitive contains the ID of the invitation, the ID or the screen-name (if it exists in the request) of the inviter, the subject and the reason for the invitation (if it is requested). Each invited client MUST reply with a Status primitive.

In case of group membership invitations, the server MUST send the InviteUserRequest to the administrators and moderators of the group.

[image: image23.wmf]InviteUserResponse

InviteResponse

Status

Status

Client 1

Server

Client 2

Figure 19. Invited users’ response

The invitee MAY accept, reject or ignore the invitation. To accept or reject the invitation, the client MUST send an InviteUserResponse primitive to the server containing the Sender element from the corresponding InviteUserRequest primitive without changes, the ID of the invitation, the acceptance indicator, the ID of the subject, and MAY also include a short response text and the responding user’s screen-name. When replying to a membership invitation, only the Group-ID is used to identify the sender. The server MUST respond with a Status primitive. The server MUST also send InviteResponse to the inviting client.

The server MUST send the InviteResponse primitive to the inviter containing the ID of the invitation, the ID of the invitee (User-ID or screen-name), the acceptance indicator, the ID of the subject and (if the invitee specified it) the short response text. The inviter’s client MUST respond with a Status primitive.

If Invite-Response is present in the InviteUserResponse primitive, the InviteResponse primitive MUST contain it as well.

While it is OPTIONAL for an invited user to act according to the acceptance indicator of his/her response in the scope of this function, the invited user SHOULD act according to the response of the invited user.

The subject of the invitation MAY be a group, messaging, a shared content, presence or group membership. In case of presence the user MAY include a list of presence attributes that he/she is willing to share with the other party. Note that actual presence attribute sharing is not done; the transaction is only informational. Similarly, in case of group, messaging, or shared content invitations the actual action is not taken, the user MAY do it manually (the invitation is only informational).

The client and the server MAY support the invitation transactions, however when this feature is supported, all of the related transactions MUST be supported – meaning that creation, reception and response of invitations are all supported. The negotiated related services MUST be regarded: a client MUST NOT receive invitation to a group when group feature was not negotiated, and the server MUST NOT allow to send such invitation either. If the invited client does not support the requested feature by the inviting client, the server MUST generate appropriate Invite-Response indicating the lack of support to the inviting client. The Invitation ID (Invite-ID) MUST be the same InviteRequest, InviteUserRequest, InviteUserResponse, and InviteResponse primitives. The service tree leaf that allows negotiation of this transaction is ‘INVIT’.

7.4.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)

InviteRequest error conditions:

· Invalid invitation type. (402)

· Invalid invite-ID. (423)

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (User-ID or screen-name). (531)

· Recipient unknown (Contact list). (700)

· Invalid or unsupported presence value. (751)

· Group does not exist. (800)

InviteResponse error conditions:

· Client MAY ignore any error and respond with Successful. (200)

InviteUserRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

InviteUserResponse error conditions:

· Invalid acceptance type. (402)

· Invalid invite-ID. (423)

7.4.3 Primitives and information elements

	Primitive
	Direction

	InviteRequest
	Client 1 (Server

	Status
	Client 1 (Server

	InviteResponse
	Client 1 (Server

	Status
	Client 1 (Server

	InviteUserRequest
	Client 2 (Server

	Status
	Client 2 (Server

	InviteUserResponse
	Client 2 (Server

	Status
	Client 2 (Server

Table 40. Primitive directions in invitation transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	InviteRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Invite-Type
	M
	Enumerated string
	Indicates the type of the invitation. (Group (GR), Messaging (IM), Presence (PR), ShareContent (SC), Group Membership (GM), ExtendConversation (EC))

	Recipients
	M
	Structure
	Identifies the user(s) to be invited. (User-ID, ContactList-ID, screen name). If Invite-Type is GM, identifies the group ID.

	Invite-Group
	C
	String
	Identifies the related group. (Mandatory if InviteGroup or Group Membership, otherwise not present.)

	Invite-Presence
	C
	Structure
	Identifies the related presence attributes. (OPTIONAL if InvitePresence, otherwise not present.)

	Invite-Content
	C
	Structure
	Identifies the related shared content as a list of URLs. (OPTIONAL if InviteContent, otherwise not present.)

	Invite-Reason
	O
	String
	Textual description of the invitation.

	Own-Screen-Name
	O
	Structure
	Identifies the requesting user

	Validity
	O
	Integer
	Indicates the time interval in which the invitation is valid. Indicated in seconds.

Table 41. Information elements in InviteRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	InviteResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the requesting user’s session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Invite-Acceptance
	M
	Boolean
	Indicates the user’s choice.

	Sender
	M
	Structure
	Identifies the responding user. (User-ID, screen name). If InviteType was GM, it identifies the group.

	Invite-Response
	O
	String
	Textual description of the response. Present if it was present in InviteUserResponse.

Table 42. Information elements in InviteResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	InviteUserRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the requested user’s session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Invite-Type
	M
	Enumerated string
	Indicates the type of the invitation. (Group (GR), Messaging (IM), Presence (PR), ShareContent (SC), Group Membership (GM) , ExtendConversation (EC))

	Sender
	M
	Structure
	Identifies the requesting user. (User-ID, screen name)

	Invite-Group
	C
	String
	Identifies the related group. (Mandatory if InviteGroup, Group Membership or ExtendConversation.)

	Invite-Presence
	C
	Structure
	Identifies the related presence attributes.

	Invite-Content
	C
	Structure
	Identifies the related shared content as a list of URLs.

	Invite-Reason
	O
	String
	Textual description of the invitation.

	Validity
	O
	Integer
	Indicates the time interval in which the invitation is valid. Indicated in seconds.

Table 43. Information elements in InviteUserRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	InviteUserResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Invite-Acceptance
	M
	Boolean
	Indicates the user’s choice.

	Sender
	M
	Structure
	Identifies the requesting user. (User-ID, screen name). This value SHOULD be the same as received in the Sender field of InviteUserRequest

	Invite-Response
	O
	String
	Textual description of the response.

	Own-Screen-Name
	O
	Structure
	Identifies the responding user.

Table 44. Information elements in InviteUserResponse primitive

7.5 Canceling invitations

7.5.1 Transactions

[image: image24.wmf]Client 1

Server

CancelInviteRequest

Status

Client 2

CancelInviteUserRequest

Status

Figure 20. Canceling invitation

A user MAY cancel any previously requested invitation(s). The client MUST send the CancelInviteRequest primitive to the server containing a valid Invite-ID, the list of users (User-ID or screen-name) to be notified, and MAY include a screen-name and/or a short textual description why the cancellation should take place. The Invite-ID MUST refer to a previously sent invitation. The server MUST respond with a Status primitive to the client, and MUST also send out CancelInviteUserRequest primitives to all requested users. The Invite-ID in the both CancelInviteRequest and CancelInviteUserRequest primitives MUST be the same.

If the CancelInviteRequest primitive contains Own-Screen-Name, the server MUST make sure that the Sender element in CancelInviteUserRequest primitive contains the specified Screen-Name instead of User-ID (of the requesting user).

All clients MUST respond to the server with a Status primitive. If the invitation was to a group membership, the Recipients element MUST NOT be present. Note that the cancellation request makes sense only in the scope of contact list invitations, group membership invitations and presence information sharing invitations.

If a client receives a CancelInviteUserRequest primitive with unknown Invite-ID, the client MUST reply with a successful Status primitive and MUST also ignore the request.

The client and the server MAY support cancel invitation transactions, however when this feature is supported, all of the related transactions and information elements MUST be supported – meaning that creation, reception and response of invitations are all supported and the negotiated related services are disregarded: a client MAY receive canceling invitation to a group even though group feature was not negotiated. The service tree leaf that allows negotiation of this transaction is ‘CAINV’.

7.5.2 Error conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)

CancelInviteRequest error conditions:

· Invalid invite-ID. (423)

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (User-ID or screen-name). (531)

· Recipient unknown (Contact list). (700)

CancelInviteUserRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

7.5.3 Primitives and information elements

	Primitive
	Direction

	CancelInviteRequest
	Client 1 (Server

	Status
	Client 1 (Server

	CancelInviteUserRequest
	Client 2 (Server

	Status
	Client 2 (Server

Table 45. Primitive directions in cancel invitation transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CancelInviteRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Recipients
	C
	Structure
	Identifies the user(s) to be cancelled. (User-ID, ContactList-ID, screen name). Not present if Invite-Type was GM

	Cancel-Reason
	O
	String
	Textual description of the cancellation.

	Cancelled-Content
	C
	String
	Identifies content to be cancelled as a list of URLs.

	Own-Screen-Name
	O
	Structure
	Identifies the requesting user.

Table 46. Information elements in CancelInviteRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CancelInvite
UserRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Invite-ID
	M
	String
	Identifies the invitation.

	Sender
	M
	Structure
	Identifies the requesting user. (User-ID, screen name.)

	Cancel-Reason
	O
	String
	Textual description of the cancellation.

	Cancelled-Content
	C
	String
	Identifies content to be cancelled as a list of URLs.

Table 47. Information elements in CancelInviteUserRequest primitive

7.6 Get Map

7.6.1 Transactions

[image: image25.wmf]GetMapRequest

Client

Server

GetMapResponse

Figure 21. Get Map transaction

A user MAY request map information based on location information or User-ID..

The IMPS client and server MAY support the Get Map transaction. The service tree leaf that allows negotiation of this transaction is ‘GETMAP’.

When the client requests map information based on location information, the GetMapRequest primitive MUST include the GeoLocation element. The GeoLocation is identical to the GeoLocation presence attribute and its semantics; see GeoLocation in [PA]. The GeoLocation MAY refer to any location.

When the client requests map information based on User-ID, the GetMapRequest primitive MUST include the User-ID.

The client MUST NOT include both GeoLocation and User-ID elements in the request.

When the request contains User-ID, the server MUST verify that the requested user has authorized the requesting user for the GeoLocation presence attribute, and the transaction MUST fail if the requesting user is not authorized – the server MUST NOT reveal the fact that the requested user did not authorize the requesting user the GeoLocation attribute, thus the server MUST reply with error code 517 in this case.

If the server is unable to generate a map for the requested location, it MUST reply with error code 517.

The server MUST select a content type and size – based on the content type and size limitations that have been agreed during client capability negotiation – that the client is able to handle. If the server is not able to deliver such content, it MUST respond with error 411.

In order to allow location-aware devices to rotate the image, the image containing the map information SHOULD:

· Contain the requested location in the center of the map.

· Be oriented in a way that an arrow pointing from the geometric center of the map towards the center of the upper edge of the map is the ‘North’ direction.
7.6.2 Error Conditions

Generic error conditions:

· Service not supported. (405)

· Service unavailable. (503)

· Service not agreed. (506)

· Not logged in. (604)

GetMapRequest error conditions:

· Unable to find suitable content type (411)

· Response too large (432)

· Location Not Supported (517)
7.6.3 Primitives and information elements

	Primitive
	Direction

	GetMapRequest
	Client (Server

	GetMapResponse
	Client (Server

Table 48. Primitive directions for Get Map transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMapRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	GeoLocation
	C
	Structure
	Contains a GeoLocation presence attribute. It is present only when User-ID is not present.

	User-ID
	C
	String
	Identifies the user whose map information is requested. It is present only when GeoLocation is not present.

Table 49. Information elements in GetMapRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMapResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	C
	String
	Identifier for the session.

	Map
	M
	Structure
	An image that contains the map of the requested location or user.

Table 50. Information elements in GetMapResponse primitive

7.7 Verify ID

7.7.1 Transactions

[image: image26.wmf]VerifyIDRequest

Client

Server

Status

Figure 22. Verify ID
A client MAY send a list of IDs to the server to be verified for their validity; the server MUST respond with a Status primitive. The ID-List is a structure containing a combination of user name (UID), resource (CLID or GID) and domain name (Domain).

The VerifyIDRequest MUST support local and external addressing. If the local addressing is employed in VerifyIDRequest primitive, the Status primitive contains fully qualified User-ID, ContactList-ID, or Group-ID.

The client and the server MAY support the Verify ID transaction. The service tree leaf that allows negotiation of this transaction is ‘VRID’.

7.7.2 Error Conditions

· General address error (901)

· Unknown user (531).

· Contact list does not exist (700).

· Group does not exist (800).

· Domain not found (404).

· Service Not Supported (405)

7.7.3 Primitives and information elements

	Primitive
	Direction

	VerifyIDRequest
	Client (Server

	Status
	Client (Server

Table 51. Primitive direction for Verify WV ID
	Information Element
	Req
	Type
	Description

	Message-Type
	M
	VerifyIDRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	ID-List
	M
	Structure
	Includes a list of ID structures to be verified.

Table 52. Information elements in VerifyIDRequest primitive
8. Presence Feature

The relation of contact list and attribute list is described in Appendix A of [Arch].

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.2 Attribute list and the related transactions.

· 8.3.1 Subscribed Presence Transactions
Additionally to the above, the server MUST support the following functionalities:

· 8.3.3 Reactive presence authorization and the related transactions.
The rest of the presence-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

8.1 Contact List

8.1.1 Contact List Properties

There are two properties for Contact List:

· DisplayName: a free text string given by user that can be presented in the user interface of the client.

· Default: a string set by user, ‘T’ (true) indicates that the particular contact list is the default contact list and ‘F’ (false) indicates that the list is not the default contact list.

When the user creates his/her first contact list, the server MUST automatically set that contact list as the default (even if the user specifies that the ‘Default’ property SHOULD be set to ‘F’). The server MAY also create the first list automatically.

When the user has more than one contact list in the system, the user MAY set any of his/her contact lists as the default contact list (see ListManageRequest primitive). When the user sets ‘Default’ property of a contact list to ‘T’, the ‘Default’ property of the previously default contact list MUST be set to ‘F’ automatically by the server.

If the user tries to set the ‘Default’ property of the default contact list to ‘F’, the server MUST silently ignore this. If the user deletes the default contact list, the server MUST select another contact list as default.It is a server preference how the new default contact list is selected.

8.1.2 Transactions

[image: image27.wmf]Client

Server

GetListRequest

GetListResponse

Figure 23. Get list of ContactList-IDs transaction

The user MAY retrieve the list of all his/her own ContactList-IDs at once. The default ContactList-ID MUST be indicated in a separate information element. The client MUST send the GetListRequest primitive to the server. The server MUST reply with a GetListResponse primitive, which MUST contain the list of all ContactList-IDs owned by the user, as well as the default ContactList-ID. In case there is some error, the server MUST respond with a Status primitive instead of the expected GetListResponse primitive.

The client and the server MAY support the get list of ContactList-IDs transaction. The service tree leaf that allows negotiation of this transaction is ‘GCLI’.

[image: image28.wmf]Client

Server

CreateListRequest

Status

Figure 24. Create contact list transaction

A user MAY create more than one contact list, but there MAY be implementation-specific limitations for the maximum number of lists per user.

The client MUST send the CreateListRequest primitive to the server including the ID of the contact list, and MAY include the initial contact list properties and a list of initial users that SHOULD be added to the list. The server MUST create the contact list, and respond with a Status primitive.

The create contact list transaction MAY be supported by the client and the server. The service tree leaf that allows negotiation of this transaction is ‘CCLI’.

In order to save extra transactions:

· the client MAY request a list of users to be added to the contact list initially by specifying those users in the User-Nick-List element of the request. For more information about adding users to the contact list please refer to ‘Manage contact list transaction’ in 8.1.2. If a list of initial users is supplied in the request, the server MUST add all of those users to the contact list. If the server is not able to add all users to the contact list due to some error, the server MUST reply with a ‘201’ (partially successful) result code in the Status primitive.

· the client MAY request initial properties to be applied to a contact list by specifying those properties in the Contact-List-Props element of the request. For more information about applying properties to the contact list please refer to ‘Manage contact list transaction’ in 8.1.2. If any contact list properties are supplied in the request, the server MUST apply these to the list with one exception: If the list created is the first contact list of the user, the server MUST set the ‘Default’ contact list property to ‘T’ regardless of what the client requests. If the properties cannot be applied to the list due to some error, the server MUST reply with a ‘201’ (partially successful) result code in the Status primitive.

If the contact list already exists on the server, the server MUST indicate the error in the Status primitive.

If the contact list does not exist on the server yet, the server MUST create it disregarding success or failure that originates from adding users and applying properties to the contact list.

[image: image29.wmf]Client

Server

DeleteListRequest

Status

Figure 25. Delete contact list transaction

A user MAY delete a contact list at any time.

The client and the server MAY support the delete contact list transaction. The service tree leaf that allows negotiation of this transaction is ‘DCLI’.

The client sends the DeleteListRequest primitive to the server containing the ID of the contact list to be deleted. The server MUST remove the indicated contact list and respond with a Status primitive. If the contact list does not exist, the server MUST respond with a status code of 700.

If the server does not support the automatic presence subscription/un-subscription feature, the server SHOULD NOT implicitly remove presence subscription to those users that are on a contact list when the contact list is deleted.

If the server supports the feature of automatic presence subscription / un-subscription and ‘AutoSubscribe’ is ‘T’ for the contact list being deleted, the server MUST unsubscribe the presence attributes associated with the contact list to each user in this contact list. However the server MUST NOT unsubscribe presence attributes that are otherwise subscribed to via other contact list subscriptions. If the “AutoSubscribe” is ‘F’ the subscription of users contained in the deleted contact list MUST NOT be altered.

[image: image30.wmf]Client

Server

ListManageRequest

ListManageResponse

Figure 26. Manage contact list transaction

The user MAY retrieve one contact list at a time; add or remove members; change the name of a contact list and set the contact list as the default contact list. The client MUST send the ListManageRequest primitive to the server. The server MUST perform the requested operations, and then reply with a ListManageResponse primitive. If there is an error, the server MUST respond with a Status primitive instead of the expected ListManageResponse primitive.

The manage contact list transaction MAY be supported by the client and the server. The service leaf that allows negotiation of this transaction is ‘MCLI’.

The user MAY manage only his/her own contact list(s). The User-IDs MUST be used to manage the users on the contact list – the NickName part is OPTIONAL and informational.

The request primitive MUST either contain:

· ContactList-ID and Receive-List (to retrieve the contact list) – Receive-List MUST be ‘T’ in this case, or

· ContactList-ID and Receive-List and Contact-List-Props (to update the properties), or

· ContactList-ID and Receive-List and Add-Nick-List (to add users), or

· ContactList-ID and Receive-List and Remove-Nick-List (to remove users).

If the Receive-List is ‘T’, the server MUST include the Nick-List containing the actual content of the contact list in the response. The Nick-List MUST reflect the contact list state after any other operations in the List-Manage operation has been carried out.

If the Receive-List is ‘F’, the server MUST NOT include the Nick-List in the response.

If the request contains:

· ContactList-ID and Receive-List (client requests retrieval of the contact list), the server MUST return the properties and the User-Nick-List of the requested contact list.

· ContactList-ID and Receive-List and Contact-List-Props (client requests updating some properties of the contact list), the server MUST apply the new properties to the requested contact list and the response MUST contain the new properties. If a contact list’s ‘Default’ property has been changed from ‘F’ to ‘T’, the previous default contact list’s ‘Default’ property MUST be changed from ‘T’ to ‘F’. The server MUST ignore requests from the client that attempts to set the ‘Default’ property of a contact list from ‘T’ to ‘F’.

· ContactList-ID and Receive-List and Add-Nick-List (client requests adding users to the contact list), and

· a requested User-ID does not exist in the contact list, the server MUST add the specified User-IDs and nicknames to the contact list.

· a requested User-ID already exists in the contact list, the server MUST replace the NickName for those User-IDs that already exist in the contact list.

· ContactList-ID and Receive-List and Remove-Nick-List (client requests removing users from the contact list), the server MUST remove the specified User-IDs and their corresponding nicknames from the contact list. If there are User-IDs in the Remove-Nick-List that do not exist in the contact list, the transaction MUST NOT fail.

Whenever a new User-ID is added to the contact list and the server supports the feature of automatic subscription / un-subscription and “AutoSubscribe” has been requested ‘T’, the server MUST subscribe to the presence attributes (specified in the original subscription request for the contact list – see 8.3.1 Subscribed Presence Transactions) of this user.

Whenever a User-ID is removed from one of the contact list, and the server supports the feature of automatic subscription / un-subscription, and more than one contact list that “AutoSubscribe” has been requested ‘T’ contains the same User-ID, the server MUST unsubscribe all of those presence attributes of the user that do not apply to the user's other subscriptions but only apply to this contact list from which the user is removed.

If the server does not support the “AutoSubscribe” feature, the server MUST NOT alter any presence subscriptions when users are added or removed.
8.1.3 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetListRequest error conditions:

· None except the generic error conditions.

CreateListRequest error conditions:

· Contact list already exists. (701)

· Invalid or unsupported contact list property. (752)

· Unknown User-ID. (531)

· The maximum number of contact lists has been reached for the user (753)

DeleteListRequest error conditions:

· Contact list does not exist. (700)

ListManageRequest error conditions:

· Contact list does not exist. (700)

· Invalid or unsupported contact list property. (752)

· Unknown User-ID. (531)

· The maximum number of contacts has been reached for the user (754)

8.1.4 Primitives and information elements

	Primitive
	Direction

	GetListRequest
	Client (Server

	GetListResponse
	Client (Server

	CreateListRequest
	Client (Server

	Status
	Client (Server

	DeleteListRequest
	Client (Server

	Status
	Client (Server

	ListManageRequest
	Client (Server

	ListManageResponse
	Client (Server

Table 53. Primitive directions for contact list management

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

Table 54. Information elements in GetListRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Contact-List-ID-List
	C
	Structure
	The list of all ContactList-IDs except the default contact list. If empty or omitted, no contact lists exist.

	Default-CList-ID
	C
	String
	Identifies the default contact list. If omitted, no default contact list exists.

Table 55. Information elements in GetListResponse primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Contact-List-ID
	M
	String
	Identifies the contact list to be created.

	Contact-List-Props
	O
	Structure
	The initial properties of the contact list.

	User-Nick-List
	O
	Structure
	Identifies the initial users to be added to the contact list (User-ID, Nickname).

Table 56. Information elements in CreateListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Contact-List-ID
	M
	String
	Identifies the contact list to be deleted.

Table 57. Information elements in DeleteListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ListManageRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Contact-List-ID
	M
	String
	Identifies the contact list.

	Add-Nick-List
	C
	Structure
	Identifies the users to be added to the contact list. (User-ID, Nickname)

	Remove-Nick-List
	C
	Structure
	Identifies the users to be removed from the contact list (User-ID).

	Contact-List-Props
	C
	Structure
	The properties of the contact list to be set.

	Receive-List
	M
	Boolean
	Indicates if the client wants to receive the User-Nick-List in the ListManageResponse.

Table 58. Information elements in ListManageRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ListManage
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	The result of the request.

	Contact-List-Props
	C
	Structure
	The properties of the contact list.

	User-Nick-List
	C
	Structure
	Contains the list of users on the contact list. (User-ID, Nickname)

Table 59. Information elements in ListManageResponse primitive.

8.2 Attribute list

The publisher MAY specify a list of presence attributes to be associated with a contact list – there MAY be only one presence association list per contact list. The list of presence attributes that is associated with the contact list MUST be accessible by all users in that contact list. When a user is in multiple contact lists that have separate attribute lists attached, the combination of the attributes in all attribute lists MUST be authorized to this user.

The publisher MAY specify a list of the presence attributes to be associated also with users, even if the contact list has its own attribute list – there MAY be only one presence association list per user. Users that have such list assigned MAY access only the presence attributes on this association list as the attribute lists have the highest priority when a user requesting presence has a specific list of attributes assigned, the individual authorization(s) always have priority over contact list’s authorization, i.e. the individual’s attributes override the attributes of the contact list.

The publisher MAY specify a list of default presence attributes. These presence attributes are available for all users except those that have a specific list of presence attributes assigned.

8.2.1 Transactions

[image: image31.wmf]Client

Server

CreateAttributeListRequest

Status

Figure 27. Create attribute list transaction

The user MAY create user or contact-list specific attribute list(s), but only one attribute lists per user or per contact list.

Changing an authorization MUST NOT cancel already active subscriptions. The subscriber MUST NOT receive notifications of attributes that are unauthorized, but if the attributes are reauthorized the subscriber MUST receive notifications without the need for re-subscription.

The create attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.
If the requested attribute list does not exist on the server, the server MUST create it. In order to modify (update) an attribute list it MUST be overwritten by creating another attribute list for the same User-ID or ContactList-ID (e.g. there is no need to delete first) – if the attribute list exists on the server, the server MUST overwrite it without indicating error.

If the ‘Default-List’ element is ‘T’, the server MUST associate the supplied attribute list with the default attribute list.

If the attribute list is empty (i.e.: it does not contain any presence attributes), the server MUST regard this as a valid – but empty – attribute list to be associated with the indicated user(s), contact list(s) and/or default list.

[image: image32.wmf]Client

Server

DeleteAttributeListRequest

Status

Figure 28. Delete attribute list transaction

A user MAY delete the default attribute list and /or the attribute list from a set of users and/or contact lists.

The delete attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.
The server MUST delete the attribute list from every user specified in the User-ID-List element and every user contact list specified in the Contact-List-ID-List element.

If the specified attribute list(s) does not exist on the server, it MUST be silently ignored without generating an error.

If the Default-List element indicates ‘T’, the server MUST clear the default attribute list.

[image: image33.wmf]Client

Server

GetAttributeListRequest

GetAttributeListResponse

Figure 29. Get attribute list(s) transaction

The publisher MAY retrieve the attributes he/she associates with a specific contact list(s) or user(s), or the default attribute list.

The get attribute list transaction MUST be supported by the client and the server, therefore its support is not negotiated.
If the Default-List element indicates ‘T’ the server MUST include the default attribute list in the response even if it is empty – which ultimately means clearing the default attribute list.

If the request contains:

· Contact-List-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular contact list(s).

· User-ID-List, the server MUST send only those attribute list(s) in the response that are associated with the particular user(s).

If the request does not contain the Contact-List-ID-List element or the User-ID-List element, then the server MUST deliver all contact list and User-ID associations in the response.

8.2.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

CreateAttributeListRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· The maximum number of attribute lists has been reached for the user (755)

DeleteAttributeListRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

GetAttributeListRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

8.2.3 Primitives and information elements

	Primitive
	Direction

	CreateAttributeListRequest
	Client (Server

	Status
	Client (Server

	DeleteAttributeListRequest
	Client (Server

	Status
	Client (Server

	GetAttributeListRequest
	Client (Server

	GetAttributeListResponse
	Client (Server

Table 60. Primitive directions for attribute list management

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateAttribute
ListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Presence-Attribute-List
	M
	Structure
	A list of presence attributes. These will be authorized to the user.

	User-ID-List
	O
	Structure
	Identifies the user(s) to assign the attribute list association.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to assign the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the attributes are targeted to the default attribute list in addition to the lists specified by the fields User-ID-List and Contact-List-ID-List above.

Table 61. Information elements in CreateAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to remove the attribute list association

	User-ID-List
	O
	Structure
	Identifies the user(s) to remove the attribute list association.

	Default-List
	M
	Boolean
	Indicates if the default attribute list SHOULD be cleared.

Table 62. Information elements in DeleteAttributeListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Default-List
	M
	Boolean
	Indicates if the default attribute list is requested.

	Contact-List-ID-List
	O
	Structure
	Identifies the contact list(s) to retrieve the associated attribute lists for.

	User-ID-List
	O
	Structure
	Identifies the user(s) to retrieve the associated attribute lists for.

Table 63. Information elements in GetAttributeListRequest primitive.

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetAttributeListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	Result of the request.

	Attribute-Association-List
	O
	Structure
	The list of user, and contact-list presence attribute associations.

	Default-Association-List
	O
	Structure
	The list of presence attributes associated with the default list.

Table 64. Information elements in GetAttributeListResponse primitive.

8.3 Presence Information delivery

8.3.1 Subscribed Presence Transactions

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 8.3.1.1 Subscribe Presence transaction

· 8.3.1.1 Unsubscribe Presence transaction

· 8.3.1.1 Presence Notification transaction

The rest of the presence information delivery-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

8.3.1.1 Transactions

[image: image34.wmf]SubscribePresenceRequest

Client

Server

Status

Figure 30. Subscribe presence transaction

The requesting client MAY send a SubscribePresenceRequest primitive to the server. The server MUST respond with a Status primitive. After a successful ‘subscribe presence transaction’ the server MUST deliver the initial set of presence attributes in a ‘presence notification transaction’. Later on the server MAY deliver only those presence attributes in the ‘presence notification transaction’ that have been updated or newly authorized.

The subscription MUST NOT be persistent through different sessions.

The subscribe presence transaction MUST be supported by the client and the server, thus its support is not negotiated Even though the “AutoSubscribe” is often referred to as a feature, it is merely a characteristic of the subscription / un-subscription itself – servers and client implementations MAY decide whether it can be used or not, and it is not negotiated.

The scope of the subscription MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or ContactList-IDs, but it MUST NOT refer to screen name(s). If the request refers to ContactList-ID(s), the server MUST subscribe each individual users separately that are currently in the contact list(s).
The requesting user MAY subscribe also only a part of the presence information by including the Presence-Attribute-List element containing the desired attributes. Absence of the Presence-Attribute-List in the request indicates to the server that all available presence information is requested. The server MUST subscribe the user(s) to the set of presence attributes supplied in the request or, if the Presence-Attribute-List is absent from the request the server MUST subscribe all of the presence attributes.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

When the requesting client subscribes to contact list(s), the requesting client MAY also request the server to enable the ‘AutoSubscribe’ feature for the contact list(s). The ‘AutoSubscribe’ means automatic subscription of presence attributes when a new user is added to this contact list, and automatic un-subscription of presence attributes when the contact list is deleted or when a user is removed from the contact list – these actions are described in 8.1.2. When a user is added to the contact list, the server MUST subscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on. When a user is removed from the contact list or the contact list is removed, the server MUST unsubscribe those presence attributes that have been subscribed when the ‘AutoSubscribe’ feature was turned on and do not conflict with ‘AutoSubscribed’ presence attributes on other contact lists. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list succeeds, the server MUST return a partial success response (201), which includes the detailed error code 760 “AutoSubscribe not supported”. If ‘AutoSubscribe’ is set ‘T’, but the server does not support the “AutoSubscribe” feature and the normal subscription to the contact list fails, the server MUST return a multiple error response (900), which MUST include the detailed error code 760 “AutoSubscribe not supported”. If the "AutoSubscribe" is ‘F’, the server MUST perform the normal subscription behavior to the contact list(s) and – if the server supports the ‘AutoSubscribe’ feature –, the feature MUST be disabled for the contact list(s).

If there are any presence attributes in the request that are already subscribed, the server MUST ignore those silently without generating an error.

After a successful subscription the server MUST initially send all available and authorized attributes to the requesting client using the ‘presence notification transaction’. While there are active subscriptions the server MUST send subsequent presence notifications when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. In order to save bandwidth, the server MAY choose not to send the initial presence notification when – and only when – all presence attributes in the request are already subscribed.

[image: image35.wmf]UnsubscribePresenceRequest

Client

Server

Status

Figure 31. Unsubscribe presence transaction

When the requesting user does not want to receive presence notifications anymore, he/she MAY unsubscribe the presence information. Upon reception of such request the server MUST stop delivering all presence information for the un-subscribed user, even if the user is included in a contact list that has the ‘AutoSubscribe’ feature turned on. The server MUST respond to an UnsubscribePresenceRequest primitive with a Status primitive.

The scope of the unsubscribe presence transaction MUST be either a set of users and/or a set of contact lists referring to multiple users, thus the request MUST refer to User-ID(s) and/or ContactList-IDs, but it MUST NOT refer to screen name(s). If the request refers to ContactList-ID(s), the server MUST unsubscribe each individual users separately that are currently in the contact list(s).
The unsubscribe presence transaction MUST be supported by the client and the server.

The server MUST stop delivering presence notifications of the un-subscribed users.

[image: image36.wmf]Status

PresenceNotificationRequest

Server

Client

Figure 32. Presence notification

As long as an authorization and subscription is valid, the requesting user MUST receive new presence information when the publisher’s presence information is updated or when the publisher has newly authorized a presence attribute that was already subscribed earlier. The server sends PresenceNotificationRequest primitive to the client containing the updated presence information. The client MUST respond with a Status primitive. The server MUST identify the users with User-IDs – ContactList-IDs, and screen name(s) MUST NOT be used. The server MUST NOT include users in the presence notification that have not been subscribed.

The client and the server MUST support the presence notification transaction, thus its support is not negotiated.

The server MAY deliver some presence attributes with empty value – note that however the Qualifier of the presence attribute MUST be ‘F’ in this case, see Qualifier in [PA]. The empty values are typically used when the publisher did not give an initial value for the particular presence attribute, or the publisher did not authorize the subscriber and it does not wish to reveal the fact that there is no authorization.

If the subscription did not contain the Presence-Attribute-List element, the PresenceNotificationRequest MUST contain all available and authorized presence attributes. If the subscription did contain the Presence-Attribute-List element, the server MUST deliver only the authorized subset of the requested attributes. See the ‘subscribe presence transaction’ for more information.

[image: image37.wmf]GetWatcherListRequest

Client

Server

GetWatcherListResponse

Figure 33. Get watcher list transaction

The user MAY get the list of users that subscribe to his/her presence attributes. The requesting client MUST send a GetWatcherListRequest primitive to the server. If no error occurs, the server MUST respond with a GetWatcherListResponse primitive including the list of the subscribing users, otherwise the server MUST respond with a Status primitive.

The client and the server MAY support the get watcher list transaction. The service leaf that allows negotiation of this transaction is ‘GETWL.

The server MUST include the User-ID and Watcher-Status of all subscribers; the server MAY also include the History-Period in the response.

Note: There are no ways of retrieving exactly what attributes every user subscribes to, but the GetAttributeList transaction can tell what attributes the users are authorized to see.

8.3.1.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribePresenceRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

· Automatic subscription / un-subscription is not supported (760)

UnSubscribePresenceRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

PresenceNotificationRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

GetWatcherListRequest error conditions:

· None except the generic error conditions.

8.3.1.3 Primitives and information elements

	Primitive
	Direction

	SubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	UnSubscribePresenceRequest
	Client (Server

	Status
	Client (Server

	PresenceNotificationRequest
	Client (Server

	Status
	Client (Server

	GetWatcherListRequest
	Client (Server

	GetWatcherListResponse
	Client (Server

Table 65. Primitive directions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribePresence
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	C
	Structure
	Identifies the IM user(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set(s) of users for subscription.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

	Auto-Subscribe
	M
	Boolean
	‘T’ means that the automatic subscription to the presence attributes is enabled when a new user is added to the contact list, and the automatic un-subscription to the presence attributes is also enabled when the contact list is deleted or when a user is removed from the contact list. ‘F’ means that the automatic subscription / un-subscription is disabled.

Table 66. Information elements in SubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UnSubscribe
PresenceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	C
	Structure
	Identifies the IM users(s).

	Contact-List-ID-List
	C
	Structure
	Identifies the set of users to be un-subscribed.

Table 67. Information elements in UnsubscribePresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Presence
NotificationRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Presence-Value-List
	M
	Structure
	List of User-IDs and its corresponding presence values.

Table 68. Information elements in PresenceNotificationRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	History Period
	O
	Integer
	Indicates the time period in seconds on the longest possible history of the watcher (from the time of request) that SHOULD be returned. In case of absence, it indicates the user request the watcher list at the time of the request only. The value 0 MUST NOT be used.

	MaxWatcherList
	O
	Integer
	Indicates the maximum number of Watcher elements in GetWatcherListResponse.

Table 69. Information elements in GetWatcherListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetWatcherList
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the subscription request transaction.

	Session-ID
	M
	String
	Identifier for the session.

	History-Period
	O
	Integer
	Indicates the time period in seconds in which the watcher history has been accumulated. This value MUST NOT be larger than the requested period. Absence indicates that the Watcher information element (see below) returns only the current subscribers at the time of the request even if the history log is requested. The value 0 MUST NOT be used.

	Watcher
	O
	Structure
	Identifies the watchers and their status from the history period.
If this element is not present at all within the response, it indicates that the server does not give any watcher information at this time. The number of this element in GetWatcherListResponse MUST NOT be larger than Max Watcher List value in the corresponding GetWatcherListRequest.

Table 70. Information elements in GetWatcherListResponse primitive

8.3.2 Get Presence Transactions

8.3.2.1 Transactions

[image: image38.wmf]GetPresenceRequest

Client

Server

GetPresenceResponse

Figure 34. Get Presence transaction

A user MAY, if authorized, get another user’s presence information at any time. The client MUST send a GetPresenceRequest primitive to the server containing a set of User-IDs and/or a set of ContactList-IDs, and MAY include the list of requested presence attributes. The request MAY refer to User-ID(s) and ContactList-IDs, but it MUST NOT refer to screen name(s).

The client and the server MAY support the get presence transaction. The service leaf that allows negotiation of this transaction is ‘GETPR’.

The requesting user MAY retrieve only part of the presence information and, correspondingly, the user whose presence information is retrieved MAY allow only part of the presence information to be delivered. Absence of the Presence-Attribute-List element in the request indicates to the server that all available presence information is requested. If no information is available about a particular presence attribute, the corresponding presence attribute MUST NOT be returned in the GetPresenceResponse message. The server MUST distribute only those attributes that are pro- or reactively authorized for the requesting user. If the request does not contain the Presence-Attribute-List element, the server MUST deliver all available and authorized presence attributes. If the request contains the Presence-Attribute-List element, the server MUST deliver only the available and authorized subset of the requested attributes.

In case of success, the server MUST respond with a GetPresenceResponse primitive containing the result of the request and the presence attributes for every requested User-ID(s). The server MUST resolve the requested ContactList-ID(s) into separate User-IDs that are used to identify the presence state.

If the Result element indicates unsuccessful transaction, the Presence-Value-List element MUST NOT be present in the response primitive.

8.3.2.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetPresenceRequest error conditions:

· Unknown User-ID. (531)

· Contact list does not exist. (700)

· Unknown presence attribute (not defined in [PA]). (750)

8.3.2.3 Primitives and information elements

	Primitive
	Direction

	GetPresenceRequest
	Client (Server

	GetPresenceResponse
	Client (Server

Table 71. Primitive directions for getting presence

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPresenceRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	C
	Structure
	List of identifications of the requested IM users.

	Contact-List-ID-List
	C
	Structure
	Identifies the set of User-IDs.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

Table 72. Information elements in GetPresenceRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetPresenceResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	O
	String
	Identifier for the session.

	Result
	M
	Structure
	Result of the request.

	Presence-Value-List
	O
	Structure
	List of User-IDs and its corresponding presence values.

Table 73. Information elements in GetPresenceResponse primitive

8.3.3 Reactive presence authorization

8.3.3.1 Transactions

[image: image39.wmf]Status

PresenceAuthRequest

Server

Client

Figure 35. Reactive presence authorization request transaction

If the publisher has not proactively authorized some of the presence information that a subscriber requests (either get or subscribe) and the publisher is online and has negotiated reactive presence authorization support, the server MUST request reactive presence authorization from the publisher by sending a PresenceAuthRequest primitive to the publisher client containing the User-ID of the requesting user (which later on identifies the authorization request also) and the list of requested presence attributes (not present if all of them are requested). The client MUST respond with a Status primitive. Authorization MUST NOT take place upon response to this primitive – this transaction is a notification only. Authorization MAY take place when the client explicitly sends PresenceAuthUser primitive to the server.

The client SHOULD and the server MUST support the reactive presence transactions. The service leaf that allows negotiation of these transactions is ‘REACT’. Note that this feature includes two transactions: “Reactive presence authorization request transaction” and “Reactive presence authorization of user transaction” which are negotiated using the same service tree leaf.

The Presence-Attribute-List element MAY be empty or missing – indicating that all presence attributes are requested.

[image: image40.wmf]PresenceAuthUser

Status

Server

Client

Figure 36. Reactive presence authorization of user transaction

The client MAY respond to a reactive authorization request from the server in a separate transaction with a PresenceAuthUser primitive that MUST contain the User-ID of the requesting user, and MAY include the list of attributes to add to the list of granted or denied presence attributes. The server MUST reply with a Status primitive.

From this authorization status the requesting user MAY access the authorized presence information.

The User-ID in the PresenceAuthUser primitive MUST identify the same user that the server requested using the PresenceAuthRequest primitive.

If the Acceptance element indicates ‘T’, the server MUST allow the specific user to access the presence attributes specified in the Presence-Attribute-List element. If the Acceptance element indicates ‘F’, the server MUST NOT allow the specific user to access the presence attributes specified in the Presence-Attribute-List element.

The Presence-Attribute-List element MAY be empty or missing. When the Presence-Attribute-List element is missing, it is indicating that all available presence attributes are requested.

A new authorization MUST overwrite the existing one. Any attribute previously granted or denied that is not specified in the new authorization MUST NOT be changed – those attributes that have been requested but not specified in the response Presence-Attribute-List element MUST remain in their original state. An exception is the empty – but not missing – Presence-Attribute-List element, which MUST overwrite any authorizations: when the Presence-Attribute-List element is empty, the server MUST ignore the Acceptance element and it MUST NOT grant any presence information to the specified user.

[image: image41.wmf]CancelAuthRequest

Status

Server

Client

Figure 37. Cancel presence authorization transaction

A user MAY cancel a previous reactive presence authorization. The client MUST send CancelAuthRequest primitive to the server containing the User-ID. The server MUST respond with a Status primitive.

The client SHOULD and the server MUST support the cancel authorization transaction. The service leaf that allows negotiation of this transaction is ‘CAAUT’.

When the transaction has been successfully completed, the server MUST remove the previous reactive presence authorization. After canceling the reactive presence authorization the server MUST send new reactive authorization request if the specified user attempts to request the publisher’s unauthorized presence attributes.

[image: image42.wmf]GetReactiveAuthStatusRequest

Client

Server

GetReactiveAuthStatusResponse

Figure 38. Get reactive authorization status transaction

A client MAY retrieve a list of users that he has granted or denied authorization to along with a list of pending reactive authorization requests. The client MUST send a GetReactiveAuthStatusRequest primitive to the server. The server MUST return the current reactive authorization status.

The client SHOULD and the server MUST support the ‘get reactive authorization status’ transaction. The service leaf that allows negotiation of this transaction is ‘GETAUT’.

If the request includes the User-ID-List element, the server MUST include the reactive authorization status for each requested User-ID. If the request does not include User-ID-List element, the server MUST provide the status for all reactively authorized users. If a reactive authorization applies to all available presence attributes, the server MUST omit the PresenceSubList element.

8.3.3.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

PresenceAuthRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

PresenceAuthUser error conditions:

· Unknown authorization request or User-ID. (531)

CancelAuthRequest error conditions:

· Unknown authorization request or User-ID. (531)

8.3.3.3 Primitives and information elements

	Primitive
	Direction

	PresenceAuthRequest
	Client (Server

	Status
	Client (Server

	PresenceAuthUser
	Client (Server

	Status
	Client (Server

	CancelAuthRequest
	Client (Server

	Status
	Client (Server

	GetReactiveAuthStatusRequest
	Client (Server

	GetReactiveAuthStatusResponse
	Client (Server

Table 74. Primitive directions for reactive presence authorization

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	PresenceAuthRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID
	M
	String
	Identification of the requesting IM user (and the authorization request).

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes. An empty or missing list indicates all available presence attributes are desired.

Table 75. Information elements in PresenceAuthRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	PresenceAuthUser
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID
	M
	String
	Identifies the authorization request (and the user).

	Acceptance
	M
	Boolean
	Indicates whether the user accepts (authorize) or declines (not authorize) the request.

	Presence-Attribute-List
	O
	Structure
	A list of presence attributes that is to be added to the granted list or denied list.

Table 76. Information elements in PresenceAuthUser primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CancelAuthRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID
	M
	String
	Identifies the authorization request (and the user).

Table 77. Information elements in CancelAuthRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetReactiveAuth
StatusRequest
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	O
	String
	Identifies the user(s) to retrieve the reactive authorization status for.

Table 78. Information elements in GetReactiveAuthStatusRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetReactiveAuth
StatusResponse
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	ReactiveAuthStatus-List
	M
	Structure
	Reactive authorization status list.

Table 79. Information elements in GetReactiveAuthStatusResponse primitive

8.3.4 Update Presence Transactions

8.3.4.1 Transactions

[image: image43.wmf]UpdatePresenceRequest

Client

Server

Status

Figure 39. Update presence transaction

A publisher MAY update any of his/her own presence attributes and their values by sending an UpdatePresenceRequest primitive to the server. The server MUST respond with a Status primitive. Only the updated attributes and their values MUST be carried in this primitive, the omitted attributes MUST NOT bemodified. The server MUST update the provided values into the PRSE.

The client and the server MAY support the update presence transaction. The service leaf that allows negotiation of this transaction is ‘UPDPR’.

8.3.4.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

UpdatePresenceRequest error conditions:

· Unknown presence attribute (not defined in [PA]). (750)

· Unknown presence value (not defined in [PA]). (751)

8.3.4.3 Primitives and information elements

	Primitive
	Direction

	UpdatePresenceRequest
	Client (Server

	Status
	Client (Server

Table 80. Primitive directions for UpdatePresenceRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	UpdatePresence
Request
	Message identifier

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Update-Value-List
	M
	Structure
	A list of presence values to update.

Table 81. Information elements in UpdatePresenceRequest

9. Instant Messaging Feature

In order to achieve minimum level of interoperability both the client and the server MUST support the following functionalities:

· 9.1.1 Send Message Transaction.

· Either 9.1.5 New Message Transactions or 9.1.7 Get Message Transactions.

· 9.2 Message-Info Structure.

· Support plain text as described in 9.4 Message Content Format.

Additionally to the above, the server MUST support the following functionalities:

· 9.1.2 Set Delivery Method transaction.

· Both 9.1.5 New Message Transactions and 9.1.7 Get Message Transactions - SMS transport is an exception.

· 9.1.6 Message Notification Transactions.

The rest of the instant messaging-related functionalities are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

9.1 Delivery Transactions

9.1.1 Send Message Transaction

9.1.1.1 Transactions

[image: image44.wmf]SendMessageRequest

Client

Server

SendMessageResponse

Figure 40. Send Message transaction

The user MAY send IM to other user(s), to a group or to another user in a group. The client MUST send the SendMessageRequest primitive to the server. The primitive MUST contain the recipient(s), the message content, and MAY include delivery report request and validity.

One of the elements in the SendMessageRequest primitive is the Message-Info structure, which includes Content-type, Transfer-encoding, Content-length, Sender, Date, Time, Font and other useful information. The Message-Info structure MUST identify at least one recipient. The recipient(s) MUST be a (list of) user(s) specified with User-ID(s), ContactList-ID(s), screen name(s), or group(s) specified by Group-ID(s). The Message-Info structure MUST identify the sender – a single user – with User-ID or screen name. The sending client MAY be identified in the Message-Info structure with Client-ID.

If the Content-type is not present in the Message-Info element, the content MUST be handled assuming “text/plain” Content-type and if the transfer encoding is not present, the content MUST be handled assuming that it is not transfer-encoded. If the content is transfer-encoded then the content size element MUST indicate the exact size in characters after the encoding took place.

When the content type of the instant message is "text/plain", the client MAY include font-formatting information using the Font element in the Message-Info structure.

The client MUST NOT include the DateTime element or the Message-ID element in the Message-Info structure of the request. The server MUST add the DateTime element to the Message-Info structure when the request is received.

See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.

If the server accepts the message for delivery, it MUST respond with the SendMessageResponse message, which MUST contain the Message-ID in order to identify the message later. If the server rejects the message delivery, the SendMessageResponse MUST NOT contain the Message-ID. The server MUST reject the request if any of the following cases occur:

· If the recipient has been specified by screen name(s), and the recipient user has not been joined to the group when the message delivery is imminent.

· If the message is targeted to a group and the sender has not joined to the group.

The server MUST deliver the instant message exactly to the recipient(s), which have been accepted for delivery.

If the validity period is present in the Message-Info structure of the request and the validity has expired, the message delivery is NOT REQUIRED, and the message MUST be dropped without notice.

The sender MAY request a delivery report, however the client MUST NOT request it if the functionality was not agreed during service negotiation. If the Delivery-Report-Request element in the request indicates ‘T’ (true), the server MUST send DeliveryReportRequest (see chapter 9.1.8) primitive containing the assigned Message-ID to the originator when the message is delivered or retrieved.

The Send Message transaction is mandatory for both client and the server, thus its support is not negotiated.

9.1.1.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SendMessageRequest error conditions:

· Unsupported content-type. (415)

· Domain not supported. (516)

· Contact list does not exist. (700)

· Recipient user does not exist. (531)

· Recipient user blocked the sender. (532)

· Recipient user is not logged in. (533)

· Message queue full. (507)

· Recipient group does not exist. (800)

· Sender has not joined the group (or kicked). (808)

· Private messaging is disabled in the group. (812)

· Private messaging is disabled for the recipient. (813)

9.1.1.3 Primitives and information elements

	Primitive
	Direction

	SendMessageRequest
	Client (Server

	SendMessageResponse
	Client (Server

Table 82. Primitive directions for Send Message Transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SendMessageRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Delivery-Report-Request
	M
	Boolean
	Indicates if the user wants delivery report.

	Message-Info
	M
	Structure
	Message information data. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

	Content
	C
	String | Binary data
	The content of the instant message.

Table 83. Information elements in SendMessageRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SendMessageResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	Result of the SendMessageRequest

	Message-ID
	C
	String
	Server-generated Message-ID for this message.

Table 84. Information elements in SendMessageResponse primitive

9.1.2 Set Delivery Method transaction

9.1.2.1 Transactions

[image: image45.wmf]SetDeliveryMethodRequest

Client

Server

Status

Figure 41. Set Delivery Method transaction

The recipient client MUST indicate the preferred initial IM delivery method in the Requested-Capabilities element during client capability negotiation. The client MAY change the message delivery method during the session by using the SetDeliveryMethodRequest primitive.

One important element in the SetDeliveryMethodRequest primitive is the Accepted-Content-Length element, which indicates the maximum message size that MAY be pushed to the client when using “Push”. If the message size is larger than the “AcceptedContentLength”, or the content type is application/vnd.wap.mms-message, the server MUST use “Notify/Get” instead of “Push”.

When the server delivers a message to the client, if the message body itself is stored in the server and the server is expected to deliver it directly, the server SHOULD choose either “Push” or “Notify/Get” depending on the negotiated delivery transactions, message size and the default delivery method of the recipient. If the delivery method is “Notify/Get”, only notifications MUST be sent to the client, the actual messages MUST be pulled from the server using the GetMessageRequest primitive. If the delivery method is “Push”, notifications MUST NOT be sent to the client, but the actual messages MUST be pushed without request.

The Accepted-Content-Length MUST be present in the request primitive only when the Delivery-Method element indicates “Push”.

The message MAY also be retrievable from some other server, possibly a 3rd party content server. In this case, the server MUST use "Notify/Get" method disregarding the delivery method or size.

The ‘Set Delivery Method transaction’ MUST be supported by the server. The client MAY support the ‘Set Delivery Method transaction’. The service tree leaf that allows negotiation of this transaction is ‘SETD’.

When SetDeliveryMethodRequest is sent to the server, the server MUST respond with a Status primitive.

If the Group-ID is present in the request, the delivery method SHOULD be applied to that specific group only.

9.1.2.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SetDeliveryMethodRequest error conditions:

· Group does not exist. (800)

9.1.2.3 Primitives and information elements

	Primitive
	Direction

	SetDeliveryMethodRequest
	Client (Server

	Status
	Client (Server

Table 85. Primitive directions for Set Delivery Method Transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SetDeliveryMethod
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Delivery-Method
	M
	Enumerated character
	Determines the type of message delivery. Push means that the complete message is transferred in the notification. Notify/Get means that only the Message-ID is transferred in the notification; the message is then retrieved using a get.

	Accepted-Content-Length
	O
	Integer
	Maximum size of message that can be pushed when using PUSH.

	Group-ID
	O
	String
	Group-ID if delivery method refers to a group.

Table 86. Information elements in SetDeliveryMethodRequest

9.1.3 Get List Of Messages Transactions

9.1.3.1 Transactions

[image: image46.wmf]GetMessageListRequest

Client

Server

GetMessageListResponse

Figure 42. Get Message List transaction

The server MAY offer space where undelivered messages or group history can be stored. The server and the client MAY support the Get Message List transaction. The service tree leaf that allows negotiation of this transaction is ‘GETLM’.

The Get Message List transaction is used to retrieve the Message-IDs of the undelivered messages to be used in a GetMessageRequest or RejectMessageRequest. Notified messages that the client did not fetch MAY also be manually retrieved.

If the Group-ID element is present in the GetMessageRequest, it MUST indicate a single Group-ID only. In this case the server sends back the Message-Info structures of those messages that has been sent to the specified group, however the server MUST reject the request if the user has not joined the requested group. If the Group-ID element is not present, the server MUST send the Message-Info structures of non-delivered instant messages from all users and groups.

If the client specifies the Message-Count element in the GetMessageRequest, the server MUST NOT send more Message-Info structures than the value specified in Message-Count. The value of Message-Count MUST NOT be zero.

When GetMessageListRequest primitive is sent from the client to the server and no error occurs, the server MUST respond with a GetMessageListResponse primitive. This response MUST contain the requested Message-Info structure(s).

When the content type of the instant message is "text/plain", the instant message MAY include font-formatting information using the Font element in the Message-Info structure. If the client does not support font formatting, it MUST ignore the Font element in the Message-Info structure without errors.
See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.

9.1.3.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetMessageListRequest error conditions:

· Group does not exist. (800)

· Group is not joined (or kicked). (808)

· History is not supported. (821)

9.1.3.3 Primitives and information elements

	Primitive
	Direction

	GetMessageListRequest
	Client (Server

	GetMessageListResponse
	Client (Server

Table 87. Primitive directions for Get Message List transactions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMessageListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	C
	String
	Identifies the group to retrieve history.

	Message-Count
	O
	Integer
	The maximal number of message-info structures to be returned.

Table 88. Information elements in GetMessageListRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMessageList
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Message-Info-List
	M
	Structure
	Message information data for each message. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

Table 89. Information elements in GetMessageListResponse

9.1.4 Reject Message Transactions

9.1.4.1 Transactions

[image: image47.wmf]RejectMessageRequest

Client

Server

Status

Figure 43. Reject Message transaction

If the server offers space where undelivered messages are stored, the user MAY accumulate a number of unwanted messages. The user MAY request rejecting the accumulated messages.

The client and the server MAY support the Reject Message transaction. The service tree leaf that allows negotiation of this transaction is ‘REJCM’.

To reject the accumulated messages the client MUST send the RejectMessageRequest primitive containing the ID(s) of the instant message(s) to the server. The server MUST respond with a Status primitive indicating the outcome and remove the requested messages from the server.

If the originating user requested delivery report, the server MUST be indicate for him/her that the message has been rejected.

9.1.4.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

RejectMessageRequest error conditions:

· Invalid Message-ID. (426)

9.1.4.3 Primitives and information elements

	Primitive
	Direction

	RejectMessageRequest
	Client (Server

	Status
	Client (Server

Table 90. Primitive directions for Reject Message transactions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	RejectMessageRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	Integer
	Identifier for the session.

	Message-ID-List
	M
	Structure
	Identifies the messages to be removed.

Table 91. Information elements in RejectMessageRequest

9.1.5 New Message Transactions

9.1.5.1 Transactions

[image: image48.wmf]Client

Server

NewMessage

MessageDelivered

Figure 44. New Message transaction

The NewMessage primitive delivers new messages to the client. The NewMessage primitive is used only when the selected delivery method is “Push”, and the length of the content is equal or smaller than the Accepted-Content-Length. The client MUST respond to the NewMessage primitive with a MessageDelivered primitive and return the identical Transaction-ID and Message-ID from the NewMessage primitive.

The server MUST support the NewMessage transaction. The client MAY support this transaction, however if it is not supported, the client MUST support 9.1.7 Get Message Transactions. The service tree leaf that allows negotiation of this transaction is ‘NEWM’.

If the content of the message body contains some reference URIs to the content of a 3rd party content server, the client SHOULD retrieve the actual content from that 3rd party content server.

This transaction requires fulfilling the content-related requirements in 9.1.1 Send Message Transaction. These requirements are not repeated here; please refer to the Send Message requirements.

One of the elements in the NewMessage primitive is the Message-Info structure, which includes Content-type, Transfer-encoding, Content-length, Sender, Date, Time, Font and other useful information.

The sender MUST be identified in the Message-Info structure by either User-ID (or Screen-Name) and the sending client MAY be identified by Client-ID based on the original Message-Info structure when the IM was sent.

The Message-Info structure MAY refer to an IM using either Message-ID or Message-URI but MUST NOT use both. The Message-ID MUST refer to an IM that is obtainable from IMSE via the SAP. If Message-URI is present in the Message-Info structure in the NewMessage primitive, the Message-URI MUST refer to an IM that is not obtainable from IMSE via the SAP and the NewMessage primitive MUST NOT contain the Content element.

When the content type of the instant message is "text/plain", the instant message MAY include font-formatting information using the Font element in the Message-Info structure. If the client does not support font formatting, it MUST ignore the Font element in the Message-Info structure without errors.
The Message-Info structure MUST contain the DateTime element.

See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.

9.1.5.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

NewMessage error conditions:

· Client will not accept the message delivery. (410)

· Client does not support the content type. (415)

MessageDelivered error conditions:

· Invalid Message-ID. (426)

9.1.5.3 Primitives and information elements

	Primitive
	Direction

	NewMessage
	Client (Server

	MessageDelivered
	Client (Server

Table 92. Primitive directions for Message Delivery Transactions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	NewMessage
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction. Either generated by server (PUSH) or by client when doing a GetMessageRequest.

	Session-ID
	M
	String
	Identifier for the session.

	Message-Info
	M
	Structure
	Message information data. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

	Content
	C
	String | Binary data
	Message data. Not present if Message-Info contains a Message-URI.

Table 93. Information elements in NewMessage

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	MessageDelivered
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction. Either generated by client (after a GetMessageRequest) or by server when client is responding to a NewMessage.

	Session-ID
	M
	String
	Identifier for the session.

	Message-ID
	M
	String
	ID of message that has been delivered

Table 94. Information elements in MessageDelivered

9.1.6 Message Notification Transactions

9.1.6.1 Transactions

[image: image49.wmf]Client

Server

MessageNotification

Status

Figure 45. Message Notification transaction

The user MAY receive MessageNotification(s) from the server when the delivery method is “Notify/Get”. The server sends the MessageNotification primitive to the client containing the Message-Info structure whenever a new IM arrives. The client MUST respond with a Status primitive.

The Message-Info structure MUST include information about the IM. The information that carried MUST be: the MIME-type, the encoding, the size, the sender, the date and time, and the validity of the message. When the content type of the instant message is "text/plain", the instant message MAY include font-formatting information using the Font element in the Message-Info structure. If the client does not support font formatting, it MUST ignore the Font element in the Message-Info structure without errors. See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.
When the client receives a message notification that refers to an IM using Message-ID, the IM MUST be retrievable from the IMSE via the SAP.

The IM MAY also be retrievable from some other server instead of an IMSE, possibly a 3rd party content server. In this case, the message notification MUST refer to the IM using Message-URI instead of Message-ID.

When the client receives a message notification that refers an IM using Message-URI, the URI MUST indicate the location of the IM as well as the protocol that MUST be used to retrieve the message. The client SHOULD provide a mechanism to retrieve the IM whenever feasible, but it is up to the client implementation to support protocol and retrieval mechanisms not defined in the IMPS specifications.

When the IM is referred to with Message-URI, the IM cannot be rejected.

The server MUST support the Message Notification transaction. The client MAY support the Message Notification transaction. The service tree leaf that allows negotiation of this transaction is ‘NOTIF’.

9.1.6.2 Error Conditions

MessageNotification error conditions:

· The client MAY ignore any error and respond with Successful. (200)

9.1.6.3 Primitives and information elements

	Primitive
	Direction

	MessageNotification
	Client (Server

	Status
	Client (Server

Table 95. Primitive directions for Message Notification Transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	Message
Notification
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Message-Info
	M
	Structure
	Message information data. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

Table 96. Information elements in MessageNotification

9.1.7 Get Message Transactions

9.1.7.1 Transactions

[image: image50.wmf]GetMessageRequest

Client

Server

GetMessageResponse

MessageDelivered

Status

Figure 46. Get Message Transaction

The client MUST use the GetMessageRequest primitive to retrieve IMs using a Message-ID. The server MUST respond to the GetMessageRequest primitive with a GetMessageResponse primitive containing the requested IM. When the client receives the GetMessageResponse primitive and no error occurs, the client MUST send MessageDelivered primitive to the server containing the Message-ID to indicate that the IM has been successfully delivered. The server MUST remove the delivered message from the IMSE and respond with a Status primitive to the client. If delivery report was requested, the server MUST also send out the delivery report to the originator of the IM.

The Message-Info structure in the GetMessageResponse primitive MUST refer to an IM using either Message-ID or Message-URI but MUST NOT use both of them. The Message-ID MUST refer to an IM that is obtainable from IMSE via the SAP. If Message-URI is present in the Message-Info structure in GetMessageResponse, the Message-URI MUST refer to an IM that is not obtainable from IMSE via the SAP and the GetMessageResponse primitive SHOULD NOT contain the Content element.

The Message-IDs in the GetMessageRequest, GetMessageResponse, and MessageDelivered primitives MUST be equal.

The Message-Info structure MUST contain the DateTime element. When the content type of the instant message is "text/plain", the instant message MAY include font-formatting information using the Font element in the Message-Info structure. If the client does not support font formatting, it MUST ignore the Font element in the Message-Info structure without errors.
See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.

If the content of the message body contains some reference URIs to the content of the 3rd party content server, the client SHOULD be prepared to take further steps to retrieve the actual content from the 3rd party content server.

The server MUST support the Get Message transaction. The client MAY support this transaction, however if it is not supported, the client MUST support 9.1.5 New Message Transactions. The service tree leaf that allows negotiation of this transaction is ‘GETM’.

9.1.7.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetMessageRequest error conditions:

· Invalid Message-ID. (426)

9.1.7.3 Primitives and information elements

	Primitive
	Direction

	GetMessageRequest
	Client (Server

	GetMessageResponse
	Client (Server

	MessageDelivered
	Client (Server

	Status
	Client (Server

Table 97. Primitive directions for Get Message Transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMessageRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Message-ID
	M
	String
	ID of the message to retrieve.

Table 98. Information elements in GetMessageRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetMessage
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction. Either generated by server (PUSH) or by client when doing a GetMessageRequest.

	Session-ID
	M
	String
	Identifier for the session.

	Message-Info
	M
	Structure
	Message information data. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

	Content
	C
	String | Binary data
	Message data. Not present if Message-Info contains a Message-URI.

Table 99. Information elements in GetMessageResponse

9.1.8 Delivery Status Report Transaction

9.1.8.1 Transactions

[image: image51.wmf]Status

Client

Server

DeliveryReportRequest

Figure 47. Delivery Status Report Transaction

A user who sends an IM MAY request a delivery report; see 9.1.1 Send Message Transaction. If the sender did request a delivery report, the server MUST send DeliveryReportRequest primitive to the originating user when it delivered the IM to each recipient client. The client MUST respond with a Status primitive.

The server MUST create the delivery report indicating successful delivery when MessageDelivered primitive is received from client in case of point-to-point instant messaging or when the GRSE has accepted the message for delivery in case of group messaging.

The delivery report MAY also inform the client about a delivery attempt that was unsuccessful due to detected error conditions on the receiving side. The server MUST create the delivery report indicating unsuccessful delivery in case of unsuccessful NewMessage or MessageNotification transactions or when the message validity is expired in the server in case of point-to-point messaging.

The server MUST support the Delivery Status Report transaction. The client MAY support the Delivery Status Report transaction. The service tree leaf that allows negotiation of this transaction is ‘MDELIV’.

When the content type of the instant message is "text/plain", the instant message MAY include font-formatting information using the Font element in the Message-Info structure. If the client does not support font formatting, it MUST ignore the Font element in the Message-Info structure without errors. See the additional requirements about the Message-Info Structure in chapter 9.2 on page 109.

9.1.8.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

DeliveryReportRequest error conditions:

· Client MAY ignore any error and respond with Successful. (200)

DeliveryReportRequest error indications:

· Unsupported content-type. (415)

· Domain not supported. (516)

· Contact list does not exist. (700)

· Recipient user does not exist. (531)

· Recipient user blocked the sender. (532)

· Recipient user is not logged in. (533)

· Message queue full. (507)

· Recipient group does not exist. (800)

· Sender has not joined the group (or kicked). (808)

· Private messaging is disabled in the group. (812)

· Private messaging is disabled for the recipient. (813)

· Message has been rejected (538)

· Message has been forwarded (541)
· Message has expired (not delivered) (542)
9.1.8.3 Primitives and information elements

	Primitive
	Direction

	DeliveryReportRequest
	Client (Server

	Status
	Client (Server

Table 100. Primitive directions for delivery status report transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeliveryReport
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifies the session.

	Result
	M
	Structure
	Result of the delivery.

	Delivery-Time
	O
	DateTime
	Date and time of delivery.

	Message-Info
	M
	Structure
	Message information data. (Message-ID or Message-URI, MIME-type, encoding, size, sender and recipient(s) (User-ID, Client-ID, screen name, group, contact-list), date and time, font, validity, original name of multimedia content).

Table 101. Information elements in DeliveryReportRequest primitive

9.1.9 Forward message transaction

9.1.9.1 Transactions

[image: image52.wmf]ForwardMessageRequest

Client

Server

Status

Figure 48. Forward message transaction

A user MAY forward a non-retrieved IM. The client MUST send ForwardMessageRequest primitive to the server containing the ID of the IM to be forwarded. The server MUST forward the message to the requested recipient(s) and it MUST be removed from the user’s IM storage. The server MUST respond with a Status primitive.

The server MUST support the Forward Message transaction. The client MAY support the Forward Message transaction. The service tree leaf that allows negotiation of this transaction is ‘FWMSG’.

This transaction requires fulfilling the requirements in 9.1.1 Send Message Transaction except those related to message content, as the actual content is not transferred in the Forward Message transaction. These requirements are not repeated here; please refer to the Send Message requirements.

9.1.9.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

DeliveryReportRequest error conditions:

· Invalid Message-ID. (426)

· Unsupported content-type. (415)

· Domain not supported. (516)

· Contact list does not exist. (700)

· Recipient user does not exist. (531)

· Recipient user blocked the sender. (532)

· Recipient user is not logged in. (533)

· Message queue full. (507)

· Recipient group does not exist. (800)

· Sender has not joined the group (or kicked). (808)

· Private messaging is disabled in the group. (812)

· Private messaging is disabled for the recipient. (813)

9.1.9.3 Primitives and information elements

	Primitive
	Direction

	ForwardMessageRequest
	Client (Server

	Status
	Client (Server

Table 102. Primitive directions for forward message transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ForwardMessage
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Message-ID
	M
	String
	Identifies the message to forward.

	Recipients
	M
	Structure
	Identifies the user(s) to whom the instant message SHOULD be forwarded. (User-ID, ContactList-ID, Group-ID, screen name).

Table 103. Information elements in ForwardMessageRequest
9.1.10 Extend one-to-one IM conversation transactions
9.1.10.1 Transactions

[image: image53.emf]Client 1

Server Client 2

Client 3

E

xte

nd

C

on

ve

rsa

tio

n

Re

qu

es

t

CreateGroup

I

nv

ite

U

ser

Re

qu

es

t

JoinGroupResponse

InviteUserRequest

S

t

a

t

u

s

E

xt

en

dC

o

nv

ers

at

ion

R

esp

o

nse

J

o

i

n

G

r

o

u

p

R

e

q

u

e

s

t

S

t

a

tu

s

Sta

tu

s

S

t

a

t

u

s

J

oinG

roupR

eque

st

Jo

inG

r

ou

pR

es

po

ns

e

G

ro

up

Ch

an

g

eN

ot

ice

Figure 49. ExtendConversation transactions

A user can, while having an IM conversation with another user, decide to invite other user to the conversation. The initiating client, in above diagram Client2, sends an ExtendConversationRequest. The ExtendConversationRequest MUST contain a list of User IDs of the contacts that he/she wants to invite to the ongoing conversation. The ExtendConversationRequest also includes the ExtendConversation-User-ID, which identifies the user, that Client2 is already having a conversation with, i.e. Client1.

The client MAY request subscribing to group change notifications. If the Subscribe-Notif element is ‘T’ (true) in the request and the group change notification transaction was agreed during service negotiation, the server MUST subscribe the user to group change notification.

The client MAY define a welcome note in the ExtendConversationRequest. If no welcome note is defined, the server MAY set one.

When the server receives ExtendConversationRequest it MUST create a group with all the following properties defined:

· Type: Public. The server owns the group. I.e. no users are allowed to delete the group or update the group properties.

· Accesstype: Open. All participants MUST be allowed to invite other users to join the Private Group Conversation.

· RequireInvitation: ‘T’. The server MUST only allow users who have explicitly been invited to the conversation to join the Private Group Conversation.

· AutoDelete: ‘T’. The server MUST delete the group as soon as the last participant leaves the Private Group Conversation.

· PrivateMessaging: ‘F’. Whispering MUST NOT be allowed within the Private Group Conversation.

· Searchable: ‘F’. The server MUST NOT include Private Group Conversations in search results.

When the group has successfully been created the server MUST respond to Client 2 with Status primitive. If the server fails to create the group of any reasons (e.g. maximum number of groups reached) it MUST respond with a Status primitive including the proper error code.

When the server receives ExtendConversationRequest primitive and no error occurs, it MUST send InviteUserRequest to the user specified in the ExtendConversation-User-ID element, i.e. Client1. The server MUST set the Invite-Type in the InviteUserRequest to ExtendConversation (EC) in order to indicate to the receiving client to handle this invitation seamlessly in the scope of an active IM conversation. If Client1 receives the request and no errors occur, Client1 MUST respond with a Status primitive. The server MUST ignore InviteUserResponse sent from Client 1, if the Invite-ID refers to invitation with Invite-Type set to ‘EC’ (ExtendConversation).
If User1 accepts the invitation, then Client1 MUST sends a JoinGroupRequest to the server. When the server receives JoinGroupRequest it MUST respond to Client1 with JoinGroupResponse and MUST also send a ExtendConversationResponse to Client2. The ExtendConversationResponse MUST include the Group ID of the created group. At this point both Client2 and the server MUST assume the initiating user to be joined in the group and hence all the messages sent between the two clients MUST be addressed to the Group ID.

When the server sends InviteUserRequest to Client1, it MUST set a timer supervising the response from Client1. The value of the timer is a server implementation issue and MAY differ.

If Client1 does not send a JoinGroupRequest to the server before the timer times out, then the IM conversation will not be extended to a Private Group Conversation. In this case the server MUST send ExtendConversationResponse to Client2 and declare the failure in the Result element. If this happens then the sever MUST NOT send an InviteUserRequest to Client3.

Once the two initial users have joined the group, the server MUST send a InviteUserRequest with Invite-Type defined as ExtendConversation(EC), to all User IDs in the User-ID-List element, e.g. Client3. The server MUST NOT reveal any message history prior to Client 3 participation in the conversation,

The server MUST ignore InviteUserResponse primitives where the Invite-ID refers to invitations with Invite-Type set to ‘EC’ (ExtendConversation).

The server MUST support the ExtendConversation transactions. The client MAY support the ExtendConversation transactions. The service tree leaf that allows negotiation of this transaction is ‘EXCON’.

9.1.10.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service unavailable. (503)

· Service not agreed. (506)

· Service not supported. (405)

ExtendConversationRequest error conditions:

· The maximum number of groups has been reached (server-limit). (815)

· Delivery to recipient not available. (410)

· Delivery to recipient domain not available. (516)

· Recipient unknown (UserID or screen-name). (531)

9.1.10.3 Primitives and information elements

	Primitive
	Direction

	ExtendConversationRequest
	Client (Server

	Status
	Client (Server

	ExtendConversationResponse
	Client (Server

	Status
	Client (Server

Table 104. Primitive directions for extend conversation transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ExtendConversation
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	User-ID-List
	M
	Structure
	A list of User-Ids, which identifies the new users who are to be invited to the existing conversation

	ExtendConversation-User-ID
	M
	Structure
	Identifies the user who is already in the conversation.

	Subscribe-Notif
	M
	Boolean
	A flag indicating that the client wants to activate the group change notifications while joining the group.

	WelcomeNote
	O
	String
	A welcome message for the group.

Table 105. Information elements in ExtendConversationRequest

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	ExtendConversation
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group that has been created.

	Result
	M
	Structure
	Result of the request.

Table 106. Information elements in ExtendConversationResponse
9.2 Message-Info Structure

When an IM MUST be delivered to a user from another user, the Sender element MUST contain the User-ID of the sender and the Recipient element MUST contain the User-ID of the recipient(s).

When a message MUST be delivered to a user from a group, the Sender element MUST contain the Screen-Name of the sender in that group and the Recipient element MUST contain the Group-ID of the group.

When a private message MUST be delivered to a user from another user in a group, the Sender element MUST contain the Screen-Name of the sender in that group and the Recipient element MUST contain the Screen-Name used by the recipient in that group.

For privacy reasons when an instant message is sent to multiple recipients, the server MUST deliver the instant messages to every recipient without delivering the actual list of recipients. E.g. the recipients MUST NOT be revealed to each other.)

When the content type of the instant message is "text/plain", the client MAY include font-formatting information using the Font element in the Message-Info structure. The Font element MAY include the size, the colour and various style elements, and it MUST apply to entire content of the plain text message. When the originating client includes formatting information, the server MUST deliver it to the recipient client(s) without changes. The recipient client(s) MAY ignore the formatting information. In order to avoid rendering unreadable text, it is RECOMMENDED that the recipient client verifies the specified text colour versus the background colour, and adjusts the text colour when necessary.

If there is an original name associated with the multimedia content that will be sent in an IM, the client MAY include the original name of the multimedia content in the Message-Info structure of the SendMessageRequest primitive. When the server receives a SendMessageRequest primitive that includes the original name in the Message-Info structure, the server MUST include the original name of the multimedia content in the Message-Info structure of the generated instant message(s) as well. When the client receives an IM, it MAY take use of the original name of the multimedia content in the Message-Info structure.

Both the client and the server MUST support the Message-Info element requirements. These are mandatory requirements and thus not negotiated.

9.3 Access Control Transactions

9.3.1 Blocking Incoming Messages and Invitations Transaction

The concept of blocking means restricting message or invitation delivery from certain entities. These entities MAY be:

· user(s) specified by User-ID(s) or Screen-Name(s), and

· group(s) specified by Group-ID(s).

· Contact Lists: Specified by ContactList-ID(s): Including/removing a contact list in/from the grant or block list affects all the users of the contact list(s) in the grant or block list. The server MUST use up-to-date contents of the contact list(s) included in the grant or block list when it executes the grant/block decision procedure (cf. Figure 50. Blocking decision-tree).
If Blocked-Entity-List is in use, the server MUST remove all messages and invitations coming from user(s) on the Blocked-Entity-List (not to deliver).

If Granted-Entity-List is in use, the server MUST allow only those messages and invitations that are coming from user(s) on the Granted-Entity-List, The server MUST remove all other messages and invitations (not to deliver).

Blocking is active for the blocked entities(s) until the user decides to turn off the use of the Blocked-Entity-List or to unblock (remove from the list) the particular entity.

Granting is active for the granted entities(s) until the user decides to turn off the use of the Granted-Entity-List or to un-grant (remove from the list) the particular entity.

If both Blocked-Entity-List and Granted-Entity-List are in use at the same time, the Blocked-Entity-List list MUST have higher priority over the Granted-Entity-List; see the decision tree below:

[image: image54.wmf]Start

BlockList in use?

End

User blocked?

GrantList in use?

User granted?

No

Yes

Yes

No

No

Allow message

or invitation

Block message

or invitation

Yes

Yes

No

Figure 50. Blocking decision-tree
Application of the blocking decision tree to a contact list: If a contact list is included in the block or grant list, the tests “User blocked” and “User granted” (cf. Figure 50. Blocking decision-tree), MUST check whether the User-ID is included in the block or grant list or in a contact list that is included in the block or grant list.

9.3.1.1 Transactions

[image: image55.wmf]GetBlockedListRequest

Client

Server

GetBlockedListResponse

Figure 51. Get list of blocked entities transaction

A user MAY get his/her own list of blocked entities at any time. The client MUST send the GetBlockedListRequest primitive to the server. The server MUST respond with the GetBlockedListResponse primitive. If the user has block-list on the server, the response MUST contain Blocked-Entity-List, otherwise the response MUST NOT contain the list. If the user has grant-list on the server, the response from the server MUST contain Granted-Entity-List, otherwise the response MUST NOT contain the list.

The client and the server MAY support the ‘get list of blocked entities’ transaction. The service tree leaf that allows negotiation of this transaction is ‘GLBLU’.

[image: image56.wmf]Client

Server

BlockEntityRequest

Status

Figure 52. Block/unblock entities transactions

A user MAY block/un-block any other entity at any time. The client MUST send the BlockEntityRequest primitive to the server containing the list of entities to be blocked/unblocked and/or to be granted/un-granted. The server MUST respond with a Status primitive to the client.

The client and the server MAY support the ‘block/unblick entities’ transaction. The service tree leaf that allows negotiation of this transaction is ‘BLENT’.

The server MUST add those entities to the block-list that are specified in the Block-Entity-List element. The server MUST remove those entities from the block-list that are specified in the Unblock-Entity-List element.

The server MUST add those entities to the grant-list that are specified in the Grant-Entity-List element. The server MUST remove those entities from the grant-list that are specified in the Ungrant-Entity-List element.

The server MUST support turning on and off the use of Block-Entity-List and Grant-Entity-List.

9.3.1.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetBlockedListRequest error conditions:

· None except the generic error conditions.

BlockEntityRequest error conditions:

· Unknown User-ID or ScreenName. (531)

· Unknown Group-ID. (800)

9.3.1.3 Primitives and information elements

	Primitive
	Direction

	GetBlockedListRequest
	Client (Server

	GetBlockedListResponse
	Client (Server

	BlockEntityRequest
	Client (Server

	Status
	Client (Server

Table 107. Primitive directions for block transactions

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetBlockedList
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

Table 108. Information elements in GetBlockedListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetBlockedList
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Blocked-Entity-List
	C
	Structure
	The list of currently blocked entities.

	Blocked-List-Inuse
	O
	Boolean
	Indicates if the list of blocked entities is currently in use (active).

	Granted-Entity-List
	C
	Structure
	The list of currently granted entities.

	Granted-List-Inuse
	O
	Boolean
	Indicates if the list of granted entities is currently in use (active)

Table 109. Information elements in GetBlockedListResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	BlockEntity
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Block-Entity-List
	O
	Structure
	A list of entities to be added to the Blocked-Entity list.

	Unblock-Entity-List
	O
	Structure
	A list of entities to be removed from the Blocked-Entity list.

	Blocked-List-Inuse
	O
	Boolean
	Indicates if the list of blocked entities is currently in use (active).

	Grant-Entity-List
	O
	Structure
	A list of entities to be added to the Granted-Entity list.

	Ungrant-Entity-List
	O
	Structure
	A list of entities to be removed from the Granted-Entity list.

	Granted-List-Inuse
	O
	Boolean
	Indicates if the list of granted entities is currently in use (active)

Table 110. Information elements in BlockEntityRequest primitive

9.4 Message Content Format

“Text/plain; charset=UTF-8” is mandatory and default content type.

The suggested content types are:

vCard 2.1 as defined in [VCARD21],

vCalendar 1.0 as defined in [VCAL10],

application/vnd.wap.mms-message as defined in [WAPMMS].

EMS application/vnd.3gpp.sms as defined in [TS23040] and application/x-sms as defined in [TS23140]

The suggested content types, while not mandatory, are content types that are highly RECOMMENDED to further maximize the interoperability of the clients.

Note that the MMS standardization is an ongoing effort in 3GPP and OMA forums. The RECOMMENDED MMS content-type “application/vnd.wap.mms-message” MUST be consistent with the standardization effort, and support the standard.

The message MAY carry other types of content. In this case, the “Content-type” MUST be consistent with the MIME types that are standardized in IETF [RFC2045], [RFC2046] or WAP Forum.

While some content types are RECOMMENDED to facilitate interoperability, the server MUST recognize the capabilities of clients through the client capability negotiation to ensure the interoperability of different types of content between clients.

10. Group Feature

10.1 Group models

The concept of user group means a discussion forum formed by two or more individuals (users) to exchange information, opinions, comments, thoughts about a particular issue, which is the topic of the particular group.

These user groups MAY be categorized by:

Ownership:

· Public (created and maintained by service provider),

· Private (created and maintained by a subscriber),

Membership:

· Open (any users MAY join the group),

· Restricted (only particular users MAY join the group).

The management of public groups is not in the scope of IMPS specifications.

In order to achieve minimum level of interoperability both the client and the server MUST support the following transactions:

· 10.4 Join group feature
· 10.5 Leave group feature
The rest of the group-related transactions are all OPTIONAL. The individual client or server implementations MAY decide whether support for a particular transaction is implemented or not.

The User group transactions are divided to two categories:

· more or less Static user group transactions,

· and Dynamic user group transactions:

10.1.1.1 Static user group transactions

These transactions include user group management, and other transactions that are not used frequently:

· Creation, modification, and deletion of groups,

· Adding, removing group members,

· Setting access rights,

· Getting information about a group,

· Subscription to group change notification.

10.1.1.2 Dynamic user group transactions

These transactions include frequently used transactions:

· Joining, leaving a group,

· Inviting other users to a group,

· Rejecting users,

· Notification about group changes.

10.1.2 Private group model

A group MUST be considered as private, if an ordinary IM user has created it, and that user maintains it.

10.1.3 Public group model

A group MUST be considered as public, if the service provider has created it, and the service provider maintains it.

10.1.4 Access privileges

There are three levels of access privileges to the restricted groups:

· Administrator,

· Moderator,

· User.

Administrators MAY do anything in a group without restrictions.

The creator of the particular group MUST always have administrator privileges (administrator privileges MUST NOT be removed from the creator) as long as the group exists. A user MUST NOT be rejected in a group that belongs to him/her.

Moderators MAY add/remove/reject members who are ordinary users but MUST NOT add/remove/reject members who are moderators or administrators.

Users MUST NOT have any privileges other than to join/leave to/from the group, and to send/receive messages.

The following table describes the availability of transactions for each privilege level.

Y=available, N=not available, N/A=not applicable.

	Name
	Administrators
	Moderators
	Users

	Send/receive messages
	Y
	Y
	Y

	Send/receive private messages
	Y
	Y
	Y

	Create group
	N/A
	N/A
	N/A

	Delete group
	Y
	N
	N

	Join/leave group
	Y
	Y
	Y

	Get/add/remove group members
	Y
	Y
	N

	Get group properties
	Y
	Y
	Y

	Set group properties
	Y
	N
	N

	Get/set own properties
	Y
	Y
	Y

	Get/modify reject list
	Y
	Y
	N

	Subscribe group change
	Y
	Y
	Y

	Group change notification
	Y
	Y
	Y

	Modify member access rights
	Y
	N
	N

	Get list of joined users
	Y
	Y
	Y

Table 111. Availability of transactions for privilege levels

10.1.5 Group properties

The values of the group properties MAY be defined by the owner, or by group member(s) with sufficient access rights. Only Administrators MAY modify these group property values. Each group MAY have the following properties:

· Name: a string that MAY be presented to the user as the name of the group (not necessarily same as Group-ID!).

Default value MUST be an empty string. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Accesstype:

· Open (for everyone) or

· Restricted (members only).

Default value MUST be ‘open’. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Type
:

· Public (maintained by service provider) or

· Private (maintained by individual user(s)).

For all user-created groups the server MUST set this property to ‘private’.

· PrivateMessaging:

· T (sending private messages is enabled) or

· F (sending private messages is disabled).

Default value MUST be “F”. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Searchable:

· T (the group MUST be subject to search) or

· F (the group MUST NOT be included in searching).

Default value MUST be “F”. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Topic: a string that describes the subject of discussion in the group. The topic is subject to searching if allowed.

Default value MUST be an empty string. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· ActiveUsers
: an integer number that indicates the number of currently joined users.

· MaxActiveUsers: an integer number that indicates the maximum number of joined users at any given time.

The Default value MUST be set by the GRSE. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· WelcomeNote: a string that is presented as text to the user when he/she joins the group.

Default value MUST be an empty structure. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· History:

· T (message history is supported)

· F (message history is not supported)

If server supports the message history functionality, user/client MAY request it for a new or existing group.

· AutoDelete:

· T (the group will be automatically deleted) - the server MUST verify the ‘Validity’ property. If the ‘Validity’ property was zero (e.g. the validity has expired), the server MUST automatically delete the group when all joined users have left. If the ‘Validity’ property was non-zero (e.g. the group is valid) the server MUST NOT delete the group.

· F (group will not be automatically deleted) – the server MUST ignore the ‘Validity’ property. In this case, the group is considered permanent. The “permanency” of a group is subject to the local policy of maximum lifetime defined by server vendor or operator.

Default value MUST be ‘F’. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· Validity: a non-negative integer number that indicates the time period (in minutes) for which the group is valid. When the value is zero the group MUST NOT be valid if and only if all joined user have left the group. The server MUST keep the value up-to-date and the value MUST reflect the remaining time period for which the group is valid. The ‘Validity’ MUST be ignored if ‘AutoDelete’ is ‘F’. Note that the generic XML element of the value of the group property is defined as a String. For this particular ‘Validity’ property, the String MUST be the decimal representation of the non-negative integer number.

Default value MUST be zero. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· MinimumAge: an integer number that indicates the minimum age for joining/searching the group. The value of zero indicates that any user MAY join the group. A value that is higher than zero indicates that the group is restricted by age. If the group is restricted by age, special handling applies when the user is searching for the group, or attempts to join the group. These restrictions are described in 7.3 General search transactions and 10.4 Join group feature.
Default value MUST be “0”. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· RequireInvitation
:
· ·T Participants MUST be invited in order to be able to join the group. The server MUST allow users that unintentionally left the Private Group Conversation to rejoin it for a limited timeout period. After the expiration of the timeout period the server MUST NOT allow the non-intentionally (i.e. without sending a LeaveGroupRequest primitive to the server) dropped-out user to rejoin the on-going Private Group Conversation unless he/she is re-invited by one of the participants. The timeout period is a server-specific value. Server MUST NOT allow the users who have intentionally left the Group Conversation to re-join unless they are invited again by one of the participants.

· ·F Participants MAY join the group without explicitly being invited.
Each user MAY have his/her own properties for each group individually. These properties are:

· PrivateMessaging:

· T (sending private messages is enabled) or

· F (sending private messages is disabled).

Default value MUST be “F”. This is an OPTIONAL property (the client does not have to specify it in the CreateGroupRequest primitive).

· IsMember
:

· T (the user is a member of the group) or

· F (the user is not member of the group).

· PrivilegeLevel
:

· User (general user),

· Mod (moderator),

· Admin (administrator).

· AutoJoin

· T (server joins the client automatically to the particular group)

· F (server does not join client automatically to the particular group)

Default value is “F” for every user in every group. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

· ShowID

· T (server MAY disclosed the User-ID to other users joined to this group)

· F (server MUST NOT disclose the User-ID to other users joined to this group)

Default value is “F” for every user in every group. This is an OPTIONAL property (the client is NOT REQUIRED to specify it in the CreateGroupRequest primitive).

Note that moderators and administrators MAY retrieve the User-IDs disregarding this setting. See ‘Get Joined Users’ transaction in chapter 10.6.

The XML Syntax DTD - see [CSP XMLS] - has been defined in a manner that allows custom group/own properties. The client and the server SHOULD ignore (without generating an error) the properties they are not able to process (not understood).

Both group members and joined users MAY have own group properties. Properties of non-members MAY be discarded after the user leaves the group whereas members’ properties MUST be kept on the server between separate group sessions.

10.2 Create group feature

10.2.1 Transactions

[image: image57.wmf]CreateGroupRequest

Client

Server

Status

Figure 53. Create group transaction

A user MAY create a private user group at any time. The client MUST send the CreateGroupRequest primitive, which MUST contain the name (ID), the initial properties of the group, a Boolean flag indicating whether the joining the group is requested a Boolean flag indicating whether subscribing to group change notification for the group is requested. The request MAY also contain the screen name. The server MUST create the group with the specified properties, and respond with a Status primitive.

The create group transaction MAY be supported by the client and the server. The service tree leaf that allows negotiation of this transaction is ‘CREAG’.

The server MUST grant the requesting user (owner) Administrator privileges for the newly created group.

If the client requested to join the group after creation – the value of the Join-Group flag is ‘T’ (true) – the server MUST join the user to the newly created group. If the flag indicates ‘F’ (false), the server MUST NOT join the user to the group.

If the client requested subscribing to group change notification – the value of the Subscribe-Notif flag is ‘T’ (true) – the server MUST subscribe the user to receive group change notifications from the newly created group. If the flag indicates ‘F’ (false), the server MUST NOT subscribe the user to receive group change notifications. The group change notifications MUST NOT be sent before the user has joined the group.

10.2.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

CreateGroupRequest error conditions:

· Group already exists. (801)

· Invalid group attribute(s). (806)

· The maximum number of groups has been reached (user-limit). (814)

· The maximum number of groups has been reached (server-limit). (815)

· Cannot have searchable group without name or topic. (822)

10.2.3 Primitives and information elements

	Primitive
	Direction

	CreateGroupRequest
	Client (Server

	Status
	Client (Server

Table 112. Primitive directions in create group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	CreateGroup
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group to be created.

	Group-Props
	M
	Structure
	The properties of the group.

	Join-Group
	M
	Boolean
	A flag indicating that the user creating the group joins the group at the same time.

	Screen-Name
	O
	Structure
	Screen name of the user in the group.

	Subscribe-Notif
	M
	Boolean
	A flag indicating that the user wants to activate the group change notifications while joining the group.

Table 113. Information elements in CreateGroupRequest primitive

10.3 Delete group feature

10.3.1 Transactions

[image: image58.wmf]DeleteGroupRequest

Client

Server

Status

Figure 54. Delete group transaction

A user with sufficient access rights MAY delete a private user group at any time. The client MUST send the DeleteGroupRequest primitive, which MUST contain the name (ID) of the group. The server SHOULD remove all currently joined users from the group (LeaveGroupResponse message), delete the specified group, and respond with a Status primitive.

The client and the server MAY support the delete group transaction. The service tree leaf that allows negotiation of this transaction is ‘DELGR’.

The client MUST refer to a private Group-ID in the request. The server MUST reject deletion requests that refer to public groups, or if the requesting user does not have Administrator privileges in the group.

Upon success the server MUST delete the requested group.

10.3.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

DeleteGroupRequest error conditions:

· Group does not exist. (800)

· Group is public. (804)

· Insufficient user rights. (816)

10.3.3 Primitives and information elements

	Primitive
	Direction

	DeleteGroupRequest
	Client (Server

	Status
	Client (Server

Table 114. Primitive directions in delete group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	DeleteGroup
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group.

Table 115. Information elements in DeleteGroupRequest primitive

10.4 Join group feature

Since some users MAY be rejected and some groups MAY be restricted; a decision tree is provided to describe the behavior:

[image: image59.png]Start

User rejected?

No

Yes
4
Tsusera “Yes
mermber?
NG
v v
L Rejected Accepted

Figure 55. Joining decision-tree

10.4.1 Transactions

[image: image60.wmf]JoinGroupRequest

Client

Server

JoinGroupResponse

Figure 56. Join group transaction

A user MAY join a discussion group at any time. The client MUST send the JoinGroupRequest primitive to the server containing the ID of the group, his/her screen name shown during the discussion, the joined users’ list request and the subscribe to group change notification request. The server MUST respond with the JoinGroupResponse primitive that MUST contain the list of joined users identified by screen names and User-IDs if requested, and MAY contain the Welcome–Note element. If there is an error, the server MUST respond with a Status primitive instead of the expected JoinGroupResponse primitive. Those User-IDs MUST be present only which users have set their ShowID own property to true.

If the Screen Name defined in the JoinGroupRequest is not unique, the server MUST create a unique Screen Name and inform the user about the changed Screen Name by including it in the JoinGroupResponse.

After the user successfully joins the group, the user MAY receive and send messages from/to the particular group.

To retrieve previous messages (history) from the group, the get message list transaction MAY be utilized.

The client and the server MUST support the join group transaction, thus its support is not negotiated.

In order to save extra transactions:

· the client MAY request the joined users’ list to be returned in the response. If the Joined-Request element is ‘T’ (true) in the request, the server MUST include the joined users’ list in the response. For more information about the joined users’ list see the particulars of the ‘Get joined users transaction’ in 10.6.1 Transactions.

· the client MAY request subscribing to group change notifications. If the Subscribe-Notif element is ‘T’ (true) in the request and the group change notification transaction was agreed during service negotiation, the server MUST subscribe the user to group change notification.

· the client MAY include own group properties for the user in the request. If the own group properties are included in the request, the server MUST apply those properties.

If the group’s MinimumAge property is higher than zero, the server MUST verify this value versus the joining user’s age in his/her public profile, and:

· when the age field is missing from the public profile, the server MUST allow the user to join – providing that the rest of the conditions are met.

· when the age field is present in the public profile, and:

· this age is smaller than the MinimumAge value, the server MUST NOT allow the user to join the group.

· this age is equal or higher than the MinimumAge value, the server MUST allow the user to join the group– providing that the rest of the conditions are met.

The server MUST NOT allow rejected users to join the group from which they are expelled.

The server MUST allow any user – except the rejected users – to join an ‘Open’ group.

The server MUST allow only members to join a ‘Closed’ group.

If the JoinGroupRequest primitive contains the screen name for the user, the server MAY apply the requested screen name, or generate a new screen name. If the screen name was missing from the request, the server MAY generate a new screen name.

If a ‘Welcome Note’ was specified for the group, the server SHOULD include it in the response.

After the user has successfully joined the group, the server MUST start sending all messages that are sent to the group to the newly joined user.

10.4.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

· Invalid/unsupported group properties (806)

JoinGroupRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· User already joined. (807)

· User has been rejected. (809)

· Cannot join with the specified screen name; it is already in use. (811)

· The maximum number of allowed users has been reached. (817)

· Minimum age requirement not fulfilled. (818)

10.4.3 Primitives and information elements

	Primitive
	Direction

	JoinGroupRequest
	Client (Server

	JoinGroupResponse
	Client (Server

Table 116. Primitive directions in join group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	JoinGroupRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group in the transaction.

	Screen-Name
	O
	Structure
	Screen name of the user in the group.

	Joined-Request
	M
	Boolean
	Indicates if the user wants the list of currently joined users.

	Subscribe-Notif
	M
	Boolean
	A flag indicating that the user wants to activate the group change notifications while joining the group.

	Own-Props
	O
	Structure
	The list of the users’ own group properties with the corresponding values.

Table 117. Information elements in JoinGroupRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	JoinGroupResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Joined-Users-List
	C
	Structure
	The list of the currently joined users (screen name, User-ID). Present if it was requested.

	Screen-Name
	C
	String
	A unique screen name created by the server. Present if the Screen Name sent in the JoinGroupRequest was not unique.

	Welcome-Text
	O
	Structure
	A short text to be shown to the user when he/she has joined the group. The structure of the Welcome-Text includes {Content-type, OPTIONAL Content-encoding, and Content-Data}.

Table 118. Information elements in JoinGroupResponse primitive

10.5 Leave group feature

10.5.1 Transactions

[image: image61.wmf]LeaveGroupRequest

Client

Server

LeaveGroupResponse

Figure 57. User initiated leave group transaction

A user MAY leave the joined discussion group at any time. The client MUST send the LeaveGroupRequest primitive to the server containing the ID of the group. The server MUST respond with a LeaveGroupResponse primitive containing the reason code, which is own request is this case. If there is an error, the server MUST respond with a Status primitive instead of the expected LeaveGroupResponse message.

The server MUST NOT include Group-ID in the response.

[image: image62.wmf]Client

Server

LeaveGroupResponse

Status

Figure 58. Server initiated leave group transaction

The server MAY initiate the group leaving also (user kicked out of the group, group deleted, etc.). In this case the server MUST send the LeaveGroupResponse primitive to the client containing the Group-ID and reason code.

After the user has left the group, the user MUST NOT receive/send messages from/to the particular group.

There is no difference between user and server-initiated leave group transactions from support point of view. The client and the server MUST support the leave group transaction, thus its support is not negotiated.

The client MAY receive LeaveGroupResponse primitive without prior request. The server MUST include the Group-ID and reason code in such primitives. The client MUST remove the user from the group – within the device – and reply with a Status primitive.

10.5.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

LeaveGroupRequest error conditions:

· Group was not joined before transaction. (808)

LeaveGroupResponse error conditions:

· Client MAY ignore any error and respond with Successful. (200)

· Group does not exist. (800)

· Own request (824)

10.5.3 Primitives and information elements

	Primitive
	Direction

	LeaveGroupRequest
	Client (Server

	LeaveGroupResponse
	Client (Server

Table 119. Primitive directions in leave group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	LeaveGroup
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the requested content.

Table 120. Information elements in LeaveGroupRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	LeaveGroup
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Result
	M
	Structure
	Result that indicates why did the user leave the group. (Own request, rejected, etc.)

	Group-ID
	C
	String
	Identification of the- group that has been left. Not present if the client initiated the transaction.

Table 121. Information elements in LeaveGroupResponse primitive

10.6 Members’ list management

10.6.1 Transactions

[image: image63.wmf]GetGroupMembersRequest

Client

Server

GetGroupMembersResponse

Figure 59. Get group members transaction

A user with sufficient access rights MAY retrieve the member list of a group. The client MUST send the GetGroupMembersRequest primitive to the server containing the ID of the group. The server MUST responds with the GetGroupMembersResponse primitive containing the list of all group members. If there is an error, the server MUST respond with a Status primitive instead of the expected GetGroupMembersResponse primitive.

The client and the server MAY support the ‘get group members’ transaction. The service tree leaf that allows negotiation of this transaction is ‘GETGM’.

The server MUST allow retrieval of the members’ list only to those users who have Moderator or Administrator privileges in the particular group. If this is the case, the response MUST contain the members’ list.

If the group is ‘Closed’ and the requesting user is not in the members' list, the server MUST reject the transaction.

[image: image64.wmf]G

e

t

J

o

i

n

e

d

U

s

e

r

s

R

e

q

u

e

s

t

Client

Server

G

e

t

J

o

i

n

e

d

U

s

e

r

s

R

e

s

p

o

n

s

e

Figure 60. Get joined users transaction

A user MAY retrieve the list of users that are currently joined to the group. The client MUST send the GetJoinedUsersRequest primitive to the server containing the ID of the group. The server MUST respond with the GetJoinedUsersResponse primitive. If there is some error, the server MUST respond with a Status primitive instead of the expected GetJoinedUsersResponse primitive.

The client and the server MAY support the ‘get joined users transaction’. The service tree leaf that allows negotiation of this transaction is ‘GETJU’.

The server MUST reject the request if the requesting user is not joined to the group.

For those users who have recently joined the group and have their ShowID property set to ‘T’, the server MUST deliver their User-ID and screen name in the Joined-User-List element.

For those users who have recently joined the group and have their ShowID property set to ‘F’ the server MUST deliver their screen names and MUST NOT deliver the User-IDs in the Joined-User-List element.

If the requesting user has Administrator or Moderator privileges:

· The server MUST include the Admin-Map-List element in the response.

· The server MUST disregard the ShowID own group property of the users and send the User-IDs.

If the requesting user does not have Administrator or Moderator privileges:

· The server MUST include User-Map-List element in the response.

· The server MUST obey the ShowID own group property setting and include those User-IDs only that have the ShowID own group property turned on (True=’T’).

[image: image65.wmf]AddGroupMembersRequest

Client

Server

Status

Figure 61. Add group members transaction

A user with sufficient access rights MAY add user(s) to the member list of a group. The client MUST send the AddGroupMembersRequest primitive to the server containing the ID of the group, and the list(s) of users to be added. The server MUST respond with the Status primitive.

All of the newly added users MUST have the lowest privilege level: User.

The client and the server MAY support the ‘add group members transaction’. The service tree leaf that allows negotiation of this transaction is ‘ADDGM’.

The server MUST allow adding users to the members’ list only to those users who have Moderator or Administrator privileges in the particular group. If this is the case, the specified users MUST be added to the members’ list.

The server MUST ignore those users that are in the members’ list already without generating an error.

If the group is ‘Closed’ and the requesting user is not in the members' list, the server MUST reject the transaction.

[image: image66.wmf]RemoveGroupMembersRequest

Client

Server

Status

Figure 62. Remove group members transaction

A user with sufficient access rights MAY remove user(s) from the member list of a group. The client MUST send the RemoveGroupMembersRequest primitive to the server containing the ID of the group, and the list of users to be removed. The server MUST respond with the Status primitive.

The client and the server MAY support the ‘remove group members transaction’. The service tree leaf that allows negotiation of this transaction is ‘RVMGM’.

The server MUST allow removing users from the members’ list only to those users who have Moderator or Administrator privileges in the particular group. If this is the case, the specified users MUST be removed from the members’ list.

The server MUST ignore the removal of those users that are not in the members’ list without generating an error.

If the group is ‘Closed’ and the requesting user is not in the members' list, the server MUST reject the transaction.

[image: image67.wmf]MemberAccessRequest

Client

Server

Status

Figure 63. Member access rights transaction

A user with sufficient access rights MAY change the access privileges of user(s). The client MUST send the MemberAccessRequest primitive to the server containing the ID of the group, and MAY contain the list of users to be set as administrator, moderator or ordinary user. The server MUST respond with a Status primitive.

Note for clarification: Being a group member does not have anything to do with being joined. Only members MUST be allowed to join a restricted group.

The client and the server MAY support the ‘member access rights transaction’. The service tree leaf that allows negotiation of this transaction is ‘MBRAC’.

The client and the server MUST identify the users using User-IDs.

The server MUST allow changing privileges only to those users who have Administrator privileges in the particular group. If this is the case, the access rights for the specified users MUST be updated exactly as requested.

The creator (owner) of the group MUST always have Administrator access rights to the group, therefore the server MUST NOT modify his/her access right.

10.6.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetGroupMembersRequest error conditions:

· Group does not exist. (800)

· Group was not joined before transaction. (808)

· Insufficient user rights. (816)

GetJoinedUsersRequest error conditions:

· Group does not exist. (800)

· Group was not joined before transaction. (808)

AddGroupMembersRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· Unknown user. (531)

· The maximum number of group members has been reached (823)

RemoveGroupMembersRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· Unknown user. (531)

MemberAccessRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· Unknown user. (531)

· Not a group member (810)

10.6.3 Primitives and information elements

	Primitive
	Direction

	GetGroupMembersRequest
	Client (Server

	GetGroupMembersResponse
	Client (Server

	GetJoinedUsersRequest
	Client (Server

	GetJoinedUsersResponse
	Client (Server

	AddGroupMembersRequest
	Client (Server

	Status
	Client (Server

	RemoveGroupMembersRequest
	Client (Server

	Status
	Client (Server

	MemberAccessRequest
	Client (Server

	Status
	Client (Server

Table 122. Primitive directions in add/remove user(s) to/from group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetGroupMembers
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group.

Table 123. Information elements in GetGroupMembersRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetGroupMembers
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	User-List-Adm
	O
	Structure
	The list of users that are Administrators.

	User-List-Mod
	O
	Structure
	The list of users that are Moderators.

	User-List
	O
	Structure
	The list of users that are ordinary Users.

Table 124. Information elements in GetGroupMembersResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetJoinedUsers
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identifies the group.

Table 125. Information elements in GetJoinedUsersRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetJoinedUsers
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Admin-Map-List
	C
	Structure
	Administrators and moderators receive this list.

	User-Map-List
	C
	Structure
	Ordinary users receive this list.

Table 126. Information elements in GetJoinedUsersResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	AddGroupMembers
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	User-List
	M
	Structure
	The list of users to be added to the members’ list.

Table 127. Information elements in AddGroupMembersRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	RemoveGroup
MembersRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	User-List
	M
	Structure
	The list of members to be removed from the group specified by User-ID.

Table 128. Information elements in RemoveGroupMembersRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	MemberAccess
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	Group-ID
	Identifies the group.

	User-List-Admin
	O
	Structure
	The list of users that are requested to be set as administrators.

	User-List-Mod
	O
	Structure
	The list of users that are requested to be set as moderators.

	User-List
	O
	Structure
	The list of users that are requested to be set as users.

Table 129. Information elements in MemberAccessRequest primitive

10.7 Modify group properties

10.7.1 Transactions

[image: image68.wmf]GetGroupPropsRequest

Client

Server

GetGroupPropsResponse

Figure 64. Get group properties transaction

A user with sufficient access rights MAY retrieve the properties of a group, and his/her own properties for that particular group. The client MUST send the GetGroupPropsRequest primitive to the server containing the ID of the group. The server MUST respond with the GetGroupPropsResponse primitive, which MUST contain the properties of the specified group and MAY contain own properties of the user for the specified group. If there is an error, the server MUST responds with a Status primitive instead of the expected GetGroupPropsResponse primitive.

The client and the server MAY support the ‘get group properties transaction’. The service tree leaf that allows negotiation of this transaction is ‘GETGP’.

It is possible to extend the group properties with custom properties, however if the client or the server receives a group property that is not supported, it MUST ignore the particular group property without generating an error.

Upon success the server MUST send back the properties of the requested group to the client. If the user has own properties for the requested group, the server MUST include the own properties in the response.

The server MUST reject the transaction when the requested group is ‘Closed’ and the requesting user is not in the members’ list.

If the ‘AutoDelete’ property of the requested is ‘T’ (true), the server MUST re-calculate the ‘Validity’ property so that it contains the remaining time for which the group is valid.

[image: image69.wmf]Client

Server

SetGroupPropsRequest

Status

Figure 65. Set group properties transaction

A user with sufficient access rights MAY update the properties of a group, or his/her own properties for that particular group. The client MUST sends the SetGroupPropsRequest primitive to the server containing the ID and the new properties of the group and/or the new user properties. The server MUST respond with a Status primitive.

The client and the server MAY support the ‘set group properties transaction’. The service tree leaf that allows negotiation of this transaction is ‘SETGP’.

If the group is ‘Closed’ and the requesting user is not in the members’ list, the server MUST reject the transaction.

Before updating the group properties the server MUST verify that the requesting user has Administrator privileges, and it MUST reject the request when the user does not have Administrator privileges. If the requesting user has Administrator privileges, the server MUST update the group properties.

The server MUST always update the own properties of the user on the server – except when the requesting user is not member f the ‘Closed’ group.

The server MUST NOT update the read-only properties.

The server MUST maintain the own group properties for members of an open or closed group between group chat sessions – e.g. in an open or closed group the own group properties of members MUST be persistent. The server MAY also maintain the own group properties of the users for open groups – e.g. the own group properties of a user in an open group MAY be persistent.

10.7.2 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

GetGroupPropsRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

SetGroupPropsRequest error conditions:

· Group does not exist. (800)

· Insufficient user rights. (816)

· Invalid group attribute(s). (806)

· Cannot have searchable group without name or topic. (822)

10.7.3 Primitives and information elements

	Primitive
	Direction

	GetGroupPropsRequest
	Client (Server

	GetGroupPropsResponse
	Client (Server

	SetGroupPropsRequest
	Client (Server

	Status
	Client (Server

Table 130. Primitive directions in modify group properties transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetGroupProps
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

Table 131. Information elements in GetGroupPropsRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GetGroupProps
Response
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-Props
	M
	Structure
	The list of group properties with the corresponding values.

	Own-Props
	M
	Structure
	The list of the users’ own group properties with the corresponding values.

Table 132. Information elements in GetGroupPropsResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SetGroupProps
Request
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	Group-Props
	O
	Structure
	The new list of group properties with the corresponding values.

	Own-Props
	O
	Structure
	The list of the users’ own group properties with the corresponding values.

Table 133. Information elements in SetGroupPropsRequest primitive

10.8 Rejecting user(s) from group feature

The concept of rejecting means kicking the user out of the group (if joined) and disabling certain features in the group.

Rejecting is active for the rejected user(s) until another user with sufficient privileges removes him/her from the rejected users’ list.

10.8.1 Transactions

[image: image70.wmf]RejectListRequest

Client

Server

RejectListResponse

Figure 66. Reject user(s) from group transaction

A user with sufficient access rights MAY retrieve/update the reject list of a group. The client MUST send the RejectListRequest primitive to the server, which MUST contain the ID of the group, and MAY contain the users to be added/removed to/from the reject list. The server MUST respond with the RejectListResponse primitive, which MUST contain the list of users that are rejected. If there is an error, the server MUST respond with a Status primitive instead of the expected RejectListResponse primitive.

Users on the reject list MUST NOT join the group.

Users in the reject list MUST be specified by their User-IDs.

The client and the server MAY support the ‘reject user(s) from group transaction’. The service tree leaf that allows negotiation of this transaction is ‘REJEC’.

The server MUST allow rejecting user(s) only to those users who have Moderator or Administrator privileges in the particular group. If this is the case, the server MUST add the users in the Add-User-List element to the reject list of the particular group and remove the users in the Remove-User-List element from the reject list of the particular group.

The server MUST ignore adding a user who is already in the list and removing a user who is not in the list without generating an error.

If there are any users joined to the group that are added to the reject list, the server MUST remove (kick) those users from the group.

10.8.2 Error conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

RejectListRequest error conditions:

· User unknown. (531)

· Group does not exist. (800)

· Insufficient user rights. (816)

10.8.3 Primitives and information elements

	Primitive
	Direction

	RejectListRequest
	Client (Server

	RejectListResponse
	Client (Server

Table 134. Primitive directions in reject user(s) from group transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	RejectListRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	Add-Users-List
	O
	Structure
	The list of users that SHOULD be added to the reject list.

	Remove-Users-List
	O
	Structure
	The list of users that SHOULD be removed from the reject list.

Table 135. Information elements in RejectListRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	RejectListResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	User-List
	M
	Structure
	The list of users that are in the reject list.

Table 136. Information elements in RejectListResponse primitive

10.9 Subscribe to group change

[image: image71.wmf]SubscribeGroupNoticeRequest

Client

Server

SubscribeGroupNoticeResponse

Figure 67. Subscribe group change notification transaction

A user MAY get/set/unset group change subscription status. The client MUST send the SubscribeGroupNoticeRequest primitive to the server. The primitive MUST contain the ID of the group and the ‘Type’ of the requested operation. The answer from the server for the get operation MUST be the SubscribeGroupNoticeResponse primitive, or Status if an error occurs. The answer from the server for the set/unset operation MUST be a Status primitive. While the subscription is active, the user MUST receive GroupChangeNotice primitives.

The client and the server MAY support the ‘subscribe group change notification transaction’. The service tree leaf that allows negotiation of this transaction is ‘SUBGCN’.

If the SubscribeGroupNoticeRequest primitive requests ‘get’ operation, the server MUST NOT update the subscription state on the server, and the current status of the subscription for the requested group MUST be sent in the response.

If the SubscribeGroupNoticeRequest primitive requests ‘set’ operation, the server SHOULD turn on the subscription state for the particular group.

If the SubscribeGroupNoticeRequest primitive requests ‘unset’ operation, the server MUST turn off the subscription state for the particular group.

The server MUST automatically turn the subscription status off when the joined user/member to whom the subscription belongs leaves (or removed from) the particular group.

[image: image72.wmf]Status

Client

Server

GroupChangeNotice

Figure 68. Group change notification

The server MAY send group change notification(s) to the user whenever some other user leaves or joins the group, or the group properties or the user’s own properties have been changed. The server MUST send the GroupChangeNotice primitive to the users (whose group change subscription is active) containing a list of users, identified by their screen names and User-IDs of the recently joined or left users, or the new properties of the group. The server MAY also include a list of the users who have been blocked by the receiving user and who have recently joined or left the group. The server MUST include users in the Joined-Blocked-Users-List or Left-Blocked-Users-List also in the Joined-Users-List or Left-Users-List.

The User-ID MUST be present only if that user has set his ShowID own property to true.

The client and the server MAY support the ‘group change notification transaction’. The service tree leaf that allows negotiation of this transaction is ‘GRCHN’.

When the ‘Welcome Note’ property of the group has been changed, the server MUST NOT send group change notification.

The server MAY maintain an internal ‘Validity’ property of the groups. When this internal ‘Validity’ has been updated, the server MUST NOT send group change notification.

When an administrator/moderator updates the Validity of a group, the server MUST send group change notification to all members (with active subscription) and to all joined users (with active subscription).

When any other properties of a group than ‘Welcome Note’ and ‘Validity’ (server internal update) have been changed, the server MUST send group change notification to all group members (with active subscription) and to all joined users (with active subscription) containing the changed properties.

When a user’s own properties have been changed, the server MUST send group change notification only that particular user (if he/she has active group change subscription).

When some users have left or joined the group, the server MUST send group change notification to all joined users (with active subscription).

The group change notification MUST contain information about the changed properties and/or joined/left users – e.g. empty notifications MUST NOT occur.

10.9.1 Error Conditions

Generic error conditions:

· Not logged in. (604)

· Service not agreed. (506)

· Service not supported. (405)

SubscribeGroupNoticeRequest error conditions:

· Group does not exist. (800)

· Group was not joined before transaction. (808)

GroupChangeNotice error conditions:

· Client MAY ignore any error and respond with Successful. (200)

10.9.2 Primitives and information elements

	Primitive
	Direction

	SubscribeGroupNoticeRequest
	Client (Server

	SubscribeGroupNoticeResponse
	Client (Server

	GroupChangeNotice
	Client (Server

	Status
	Client (Server

Table 137. Primitive directions in subscribe group change notification transaction

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribeGroup
NoticeRequest
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	Subscribe-Type
	M
	Enumerated character
	Indicates the type of subscription request. (“G” for Get, “S” for Set, and “U” for Unset.)

Table 138. Information elements in SubscribeGroupNoticeRequest primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	SubscribeGroup
NoticeResponse
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Subscription-State
	M
	Boolean
	Indicates the status of subscription.

Table 139. Information elements in SubscribeGroupNoticeResponse primitive

	Information Element
	Req
	Type
	Description

	Message-Type
	M
	GroupChange
Notice
	Message identifier.

	Transaction-ID
	M
	String
	Identifies the transaction requested.

	Session-ID
	M
	String
	Identifier for the session.

	Group-ID
	M
	String
	Identification of the group.

	Joined-Users-List
	O
	Structure
	A list of the users that recently joined the group (screen name, User-ID).

	Left-Users-List
	O
	Structure
	A list of screen names of the users that recently left the group.

	Joined-Blocked-Users-List
	O
	Structure
	A list of the blocked users that recently joined the group (Screen Name, User-ID),

	Left-Blocked-Users-List
	O
	Structure
	A list of the blocked users that recently left the group (Screen Name, User-ID).

	Group-Props
	O
	Structure
	The new properties of the group.

	Own-Props
	O
	Structure
	The new properties of the user in the group.

Table 140. Information elements in GroupChangeNotice primitive

11. Status Codes and Descriptions

CSP uses the concept and paradigm of HTTP/1.1 response to define the status code. However, there is no logical or semantic relationship between the status codes in CSP and the status codes in HTTP.

The following sections define the general categories as well as each status code.

11.1 1xx – Informational

The client MUST be prepared to accept one or more 1xx status codes prior to a regular response even if the client does not expect a 100 “Continue” status code. A user agent SHALL ignore unexpected 1xx status code. This category of the status codes does not finish a transaction.

11.1.1 100 – Continue

The client SHOULD continue with its request. The server has accepted the request for processing, but the processing has not been completed. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request. The “100” response is used when time of completion will be too long, possibly causing the server and client connection to break.

11.1.2 101 – Queued

The client SHOULD continue with its request. The server has accepted the request, but does not have resources to start processing. The request might or might not eventually be successfully completed. The server MUST send a final response again upon completing the request.

11.1.3 102 – Started

The client SHOULD continue with its request. The server has accepted the request for processing. The “102” response is used when server needs to start additional transactions in order to process the request. The server MUST send a final response again upon completing the request.

11.2 2xx – Successful

The 2xx class of status codes indicates that the client’s request was successfully received, understood and accepted.

11.2.1 200 – Successful

This is used to indicate that the request succeeded.

11.2.2 201 – Partially successful

This is used to indicate that the request was successfully completed, but some parts were not completed due to certain errors. The details of the error case(s) are indicated in the response.

11.2.3 202 – Accepted

This is used to indicate that server accepted the request, but not able to receive acknowledgment about delivery to client device. The request might or might not eventually be acted upon. There is no facility for re-sending a status code from an asynchronous operation such as this.

11.2.4 203 – Extension block ignored

The client/server requested a transaction that carries an extension block however the extension block was ignored on the terminating end – in an otherwise successful transaction. The originator of the request MUST NOT perform the behavior described in the proprietary solution as the requested proprietary functionality was ignored on the terminating end.

11.3 3xx – Redirection

The 3xx class of status codes indicates that further action needs to be taken by the user agent in order to fulfill the request.

11.4 4xx – Client Error

The 4xx class of status codes is intended for cases in which the client seems to have erred. The server SHOULD include the explanation of the error situation including whether it is a temporary or permanent condition. The user agents SHOULD be able to display the error description to the user.

11.4.1 400 – Bad Request

The server could not understand the request due to the malformed syntax. The client MUST NOT repeat the request without modification.

11.4.2 401 – Unauthorized

When an authorization request is expected, the presence server will respond with this status code. Properties will contain details of available authorization schemes.

11.4.3 402 – Bad Parameter

The server cannot understand one of the parameters in the request. The client MUST NOT repeat the request without modification.

11.4.4 403 – Forbidden

The server understood the request, but the principal settings denied access to some of the presence, contact information or group. Authorization will not help and the request SHOULD NOT be repeated. This type of response can be returned if user not login in the network yet.

11.4.5 404 – Not Found

The server cannot find anything matching the request. No indication is given of whether the condition is temporary or permanent.

11.4.6 405 – Service Not Supported

The server does not support the service method in the request.

11.4.7 408 – Request Timeout

The client did not produce a request within the time the server was prepared to wait.

11.4.8 409 – Invalid password

The password provided by the client was incorrect; it does not match with the given User-ID. The client MUST NOT repeat the request without modification.

11.4.9 410 – Unable to Deliver

The server cannot deliver the request. The requested resource is no longer available at the server and no forwarding address is known.

11.4.10 411 – Unable to find suitable content type

The server cannot deliver the response because the client does not support any suitable content type. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on a suitable content type.

11.4.11 415 – Unsupported Media Type

The server cannot deliver the request because the client cannot support the format of the entity that it requested.

11.4.12 420 – Invalid Transaction-ID

The server encountered an invalid transaction ID.

11.4.13 422 – User-ID and Client-ID do not match

The User-ID and the Client-ID do not match in the request.

11.4.14 423 – Invalid Invitation-ID

The server encountered an invalid invitation-ID.

11.4.15 424 – Invalid Search-ID

The server encountered an invalid search-ID.

11.4.16 425 – Invalid Search-Index

The server encountered an invalid search index.

11.4.17 426 – Invalid Message-ID

The server encountered an invalid Message-ID.

11.4.18 431 – Unauthorized Group Membership

The user agent is not an authorized member of the group.

11.4.19 432 – Response too large

The response would be larger than the client is capable to handle according to the limitations agreed during client capability negotiation. The client MUST NOT repeat the request without performing client capability negotiation where it agrees on higher limitations.
11.4.20 433 – Invalid notification type

The server encountered an invalid notification type.

11.5 5xx – Server Error

The 5xx class of status codes is intended for cases in which the server is aware that it has erred or is incapable of performing the request.

11.5.1 500 – Internal server or network error

The server encountered an unexpected condition that prevented it from fulfilling the request.

11.5.2 501 – Not Implemented

The server does not support the functionality REQUIRED to fulfill the request. This is the appropriate response when the server does not recognize the request method, and it is not capable of supporting it for any resources.

11.5.3 503 – Service Unavailable

The server is currently unable to handle the request due to a temporary overloading or maintenance of the server.

11.5.4 504 – Timeout

The server could not produce a response within the time that it expected.

11.5.5 505 – Version Not Supported

The server does not support, or refuse to support, the request version that was used.

11.5.6 506 – Service not agreed

During service negotiation the server did not agree to provide the transaction that the client requests. The client MUST NOT repeat the request without a new service negotiation.

11.5.7 507 – Message queue is full

The server cannot fulfill the request, because its message queue is full. The client MAY repeat the request.

11.5.8 516 – Domain Not Supported

The server does not support forwarding to a different domain space.

11.5.9 517 – Location Not Supported

The server is unable to generate a map for the requested location for some reason. The client MUST NOT repeat the request without modification.

11.5.10 521 – Un-responded Presence Request

The presence information provider does not respond to the presence service specified in the request.

11.5.11 522 – Un-responded Group Request

The group service provider does not respond to the requested group transaction.

11.5.12 531 – Unknown user

The specified user is unknown/not valid User-ID was given.

11.5.13 532 – Recipient Blocked the Sender

The recipient of the message or invitation blocked the sender. Note that returning this error code reveals to the sender that the recipient has blocked it. It is up to the implementation and service provider to decide whether or not this error code SHOULD be returned. A WV server MAY instead report success, even though the message or invitation was discarded, to conceal this fact.

11.5.14 533 – Message Recipient Not Logged in

The recipient of the message is not logged in.

11.5.15 534 – Message Recipient Unauthorized

The recipient of the message is not authorized.

11.5.16 535 – Search timed out

The server has invalidated the requested search-request.

11.5.17 536 – Too many hits

The server performed the search successfully, but the server implementation limits the maximum number of hits – the server MAY discard the hits that are over its limits and the discard hits will not be available for the client.

11.5.18 537 – Too broad search criteria

The server did not perform the search – the server simply by analyzing the search criteria came to the conclusion that according to the requested criteria the search would give higher number of hits than the server is willing to handle. The client MAY repeat the request with narrowed search criteria.

11.5.19 538 – Message has been rejected

Recipient has rejected message. Note that returning this error code reveals to the sender that the recipient has rejected the message. It is up to the implementation and service provider to decide whether or not this error code SHOULD be returned. A WV server MAY instead report success, even though the message was discarded, to conceal this fact.

11.5.20 540 – Header encoding not supported

The requested SMS header encoding (UDH or textual) is not supported. The clients MUST NOT repeat the request without modification. The client MAY repeat the request with the opposite header encoding (UDH if it was textual, or vice versa).

11.5.21 541 – Message has been forwarded

Recipient has forwarded message without retrieving it first. Note that returning this error code reveals to the sender that the recipient has forwarded the message. It is up to the implementation and service provider to decide whether or not this error code SHOULD be returned. A WV server MAY instead report success, even though the message was forwarded, to conceal this fact.

11.5.22 542 – Message has expired

Message has not been retrieved by the recipient in the specified time period and has been deleted from the server.

11.5.23 543 – No matching digest scheme supported

The server does not support any of the digest schemas that the client has requested.

11.5.24 544 – Too many elements in advanced criteria
The server did not perform the search – it has received an advanced search request, which includes advanced criteria with too many elements. The client MUST NOT repeat the request without modification.

11.5.25 545 – Too many levels of nesting in advanced criteria
The server did not perform the search – it has received an advanced search request, which includes advanced criteria with too many levels of nesting. The client MUST NOT repeat the request without modification.

11.6 6xx – Session

The 6xx class status code indicates the session-related status.

11.6.1 600 – Session Expired

The client was disconnected because time-to-live parameter of user session has expired.

11.6.2 601 – Forced Logout

The server has disconnected the client.

11.6.3 603 – Already Logged in

The server will not accept new login request from the client, because the client already logged in. Such behavior of the server is not RECOMMENDED

11.6.4 604 – Invalid session (not logged in).

There is no such session. (Previously not logged in, disconnected, or logged out.)

11.6.5 605 – New value not accepted.

The server does not accept the new timeout value requested by the client, the old value MUST be used.

11.6.6 606 – Some services are not available

The server does not accept the session re-establishment request because some of the services that have been agreed during the terminated session are not available. The client MUST NOT repeat the re-establishment request without modification. The client MAY establish a new session.
11.7 7xx – Presence and contact list

The 7xx class indicates the presence and contact list related status codes.

11.7.1 700 – Contact list does not exist

The contact list specified in the request does not exist.

11.7.2 701 – Contact list already exists

The contact list specified in the request already exists.

11.7.3 702 – Invalid or unsupported user properties

The user properties specified in the request are invalid, or not supported.

11.7.4 750 – Invalid or unsupported presence attribute

The presence attribute(s) specified in the request are invalid, or not supported.

11.7.5 751 – Invalid or unsupported presence value

The presence value(s) specified in the request are invalid, or not supported. The client SHOULD NOT repeat the request without modification.

11.7.6 752 – Invalid or unsupported contact list property

One or more contact list properties specified in the request are invalid or not supported. The client SHOULD NOT repeat the request without modification.

11.7.7 753 – The maximum number of contact lists has been reached for the user

The server limits the maximum number of contact lists per user. The limit has been reached; so additional contact lists cannot be created. The client SHOULD NOT repeat the request until a contact list that belongs to the particular user has been deleted.

11.7.8 754 – The maximum number of contacts has been reached for the user

The server limits the maximum number of contacts per user. The limit has been reached; so additional contacts cannot be created. The client SHOULD NOT repeat the request until a contact that belongs to the particular user has been deleted.

11.7.9 755 – The maximum number of attribute lists has been reached for the user

The server limits the maximum number of attribute lists per user. The limit has been reached; so additional attribute lists cannot be created. The client SHOULD NOT repeat the request until an attribute list that belongs to the particular user has been deleted.

11.7.10 760 – Automatic Subscription / Un-subscription is not supported

The server does not support the automatic subscription when adding a user to the contact list, and does not support the automatic un-subscription when deleting the contact list or removing a user from the contact list.

11.8 8xx – Groups

The 8xx class indicates the group-related status codes.

11.8.1 800 – Group does not exist

The group specified in the request does not exist.

11.8.2 801 – Group already exists

The group specified in the request already exists.

11.8.3 802 – Group is open

The group specified in the request is an open group.

11.8.4 803 – Group is restricted

The group specified in the request is a closed group.

11.8.5 804 – Group is public

The group specified in the request is public.

11.8.6 805 – Group private

The group specified in the request is private.

11.8.7 806 – Invalid/unsupported group properties

The group properties specified in the request are invalid or not supported.

11.8.8 807 – Group is already joined

The group specified in the request is already joined. If the server does not allow the same user to join a group more than once then this error code is used to indicate that the user is already joined the particular group.

11.8.9 808 – Group is not joined

The request cannot be processed because it requires the user to be joined to the group.

11.8.10 809 – User has been rejected

The user has been rejected from the particular group. He/she is forced to leave the group and cannot join.

11.8.11 810 – Not a group member

The request cannot be processed because the user is not a member of the specified restricted group The client SHOULD NOT repeat the request until the user has been added to the group as a member.

11.8.12 811 – Screen name already in use

The screen name specified in the request is already in use. If the server does not allow the same screen name to be used in a group more than once then this error code is used to indicate that the screen name is already in use. The requesting user MAY try to change his/her screen name and repeat the transaction.

11.8.13 812 – Private messaging is disabled for group

The client requested private message delivery but the private messaging is disabled in the particular group.

11.8.14 813 – Private messaging is disabled for user

The client requested private message delivery but the private messaging is disabled for the particular user.

11.8.15 814 – The maximum number of groups has been reached for the user

The server limits the maximum number of groups per user. The limit has been reached; additional groups cannot be created. The client SHOULD NOT repeat the request until a group that belongs to the particular user has been deleted.

11.8.16 815 – The maximum number of groups has been reached for the server

The maximum number of groups is limited on the server. The server limit has been reached; additional groups cannot be created. The client MAY repeat the request.

11.8.17 816 – Insufficient group privileges

The user is a member in the particular group, but does not have sufficient privileges group to perform the requested operation. The client SHOULD NOT repeat the request until the user has been authorized properly.

11.8.18 817 – The maximum number of joined users has been reached

The maximum number of joined users has been reached in the requested group. The client MAY repeat the request.

11.8.19 818 – Minimum age requirement not fulfilled
The group has an active age restriction limitation, and the requesting user does not fulfill the requirements needed to perform this transaction. The client SHOULD NOT repeat the request within a reasonable time period.

11.8.20 821 – History is not supported.

The server does not support group history. The client MUST NOT repeat the request.

11.8.21 822 – Cannot have searchable group without name or topic

The server cannot perform group search without group name or group topic. Either group name or group topic or both MUST be non-empty to support group search.

11.8.22 823 – The maximum number of group members has been reached

The server limits the maximum number of group members per group. The limit has been reached; so additional group members cannot be added. The client SHOULD NOT repeat the request until a group member has been removed from the group.

11.8.23 824 – Own Request

The reason code for the LeaveGroupResponse. Server sends this error code in the LeaveGroupResponse as a response to the client initiated LeaveGroupRequest.

11.9 9xx General Errors

The 9xx class indicates status codes too general to fit into other classes.

11.9.1 900 Multiple Errors

No part of the transaction was successfully processed for several reasons and thus one other status code cannot indicate the errors. The details of the error cases are indicated in the response.

11.9.2 901 General Address Error

The general address is not supported. No specific error is given due to security or privacy reason.

11.9.3 902 – Not enough credit to complete requested operation

The server cannot perform the requested operation since the user has not enough credit.

11.9.4 903 – Operation requires a higher class of service

The server cannot perform the requested operation since it requires a higher class of service. A class of service is a designation assigned by the service provider to describe the service treatment and privileges given to a particular user (e.g., premium, gold).
11.9.5 904 – Missing mandatory field(s) of requesting user
The requesting user did not fill in the mandatory fields of his/her public profile. The client MUST NOT repeat the request, and MAY receive a system message – see system message in [editor to insert reference to future system message primitive here].

11.9.6 905 – Missing mandatory field(s) of requested user
The requested user did not fill in the mandatory fields of his/her public profile. The client SHOULD NOT repeat the request within a reasonable time period.

11.9.7 906 – Too many public profiles requested
The client requested too many public profiles in a request. The server has successfully delivered as much public profiles as its implementation allows within a single transaction, however some public profiles have not been delivered due the limitations on server side. The client MAY retrieve the rest of the profiles, however it MUST retrieve the excess of public profiles in a separate transaction.

12. Extension Framework

CSP defines a framework that can be used by different vendors to extend the standard Wireless-Village protocol. This framework includes support for 2 basic operations:

· Extending existing primitives

· Introducing new primitives

It is RECOMMENDED that applications use the version discovery transaction for detecting which extended capabilities the server supports and the service negotiation for negotiating these capabilities. The details of how to achieve these tasks are outside the scope of the Wireless-Village protocol.

Both clients and servers MUST ignore blocks with unrecognized namespaces.

12.1 Extending Existing Primitives

Extended blocks MAY be appended to existing primitives, designated with a namespace.

12.2 Introducing New Primitives

The extension framework defines general primitives that serve as an envelope for proprietary operations. These primitives obey all rules set for the normal primitives with 1 exception:

· The actual content of these primitives are not defined.

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-WV-CSP-V1_1-20021001-A
	01 Oct 2002
	Version 1.1

	OMA-IMPS-V1_2-20050125-A
	25 Jan 2005
	Version 1.2

A.2 Draft/Candidate Version History

	Document Identifier
	Date
	Sections
	Description

	Draft Version

OMA-IMPS-WV-CSP-V1_3-20041231-D
	31 Dec 2004
	All
	- Taken OMA-IMPS-Enabler-Package-V1_2-20041217-C package as baseline.

- Updated references to 1.3 specs - also removed SCR references as those documents are going to be discontinued. Move the CSP and CSP Transport references from informative to normative section.

- Removed WV tags from document IDs.

- Copied definitions from 1.3 Delta RD, and removed the old ones from the document body.

- Copied abbreviations from 1.3 Delta RD.

- Added CR OMA-IMPS-2003-0106-COMVERSE-NAT-UDP_CIR.

	Draft Version

OMA-IMPS-WV-CSP-V1_3-20050107-D
	7 Jan 2005
	All
	- Replaced some more references to “WV” to “IMPS”.

- Added SCR tables.

	Draft Version

OMA-IMPS-WV-CSP-V1_3-20050128-D
	28 Jan 2005
	All
	- Removed reference to Features and Functions document.

- SCR tables are updated and the missing text is written back to the specifications. See OMA-IM-2005-0024-Changing-Text-in-sec-13_5-OMA-IMPS-WV-CSP-V1_3-20050107-D, OMA-IM-2005-0025R01-Including-SCR-13_7-Into-OMA-IMPS-WV-CSP-V1_3-20050107-D, OMA-IM-2005-0029-CSPSCRRestuct, OMA-IM-2005-0052-SCR-table-incorporated-in-text and the comments that have been given by the participants of the OMA IMPS WG to these documents.

	Draft Version

OMA-IMPS-WV-CSP-V1_3-20050204-D
	4 Feb 2005
	All
	- Removed and updated SCR entries based of discussions with Hank Chavers, where he explicitly requested making very simple and un-detailed SCR tables as it is going to serve a different purpose in OMA specs than it did in WV legacy specs.

- Frankfurt online F2F meeting review; comments added; accepted as baseline.

	Draft Version

OMA-IMPS-CSP-V1_3-20050204-D
	4 Feb 2005
	All
	- Applied OMA 2005 template.

	Draft Version

OMA-IMPS-CSP-V1_3-20050324-D
	24 Mar 2005
	All
	Added approved change requests:

- OMA-IM-2005-0048R02-CSP-grant-block-lists

- OMA-IM-2005-0063R04-IMPS-1.3-CSP-Changes-for-Content-Font-Formatting

- OMA-IM-2005-0073-MMCName_CS (Editor did not add the obsolete SCR entries from the CR).

- OMA-IM-2005-0074R01-PrAuth_CS

- OMA-IM-2005-0083R01-IMPS13_ClrSsnReestablish-CSP
- OMA-IM-2005-0085R01-IMPS13_ShowMap-CSP

- OMA-IM-2005-0086R04-IMPS13-Add-Contact-By-User-ID

- OMA-IM-2005-0107-IMPS-1_3-invite_response_inconsistency
- OMA-IM-2005-0122-IMPS-1_3-ID_alignment (Editor corrected inconsistencies of Session-ID descriptions)

	Draft Version

OMA-IMPS-CSP-V1_3-20050404-D
	04 Apr 2005
	All
	Added approved change requests:

- OMA-IM-2005-0013R03-IMPS1_3-authentication

- OMA-IM-2005-0035R03-IMR-8-Friendly-Name

- OMA-IM-2005-0072R03-PProfile_CSP

- OMA-IM-2005-0129R01-IMPS13---Extend-IM-and-Private-Group-Conversation

- OMA-IM-2005-0139R01-Addressing-IMPS

- OMA-IM-2005-0148-IMPS13_IgnoreExtBlock_CSP
- OMA-IM-2005-0149-IMPS1.3-Addressing

- OMA-IM-2005-0150R01-IMPS13_AdvSrch_CSP

Accepted deletion of old TOCs to shorten the document.

Updated reference to the approved 1.2 enabler package.

Appendix B. Static Conformance Requirements
(Normative)
The notation used in this section is specified in [IOPPROC].

B.1 OMA IMPS Service requirements

B.1.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	SERV-C-1
	Support of Service Access Point functionality
	5.1
	M
	SERV-C-2 OR SERV-C-3 OR SERV-C-4 OR SERV-C-5 OR

	SERV-C-2
	Support of Instant Messaging Service Element functionality
	5.1
	O
	

	SERV-C-3
	Support of Presence Service Element functionality
	5.1
	O
	

	SERV-C-4
	Support of Group Service Element functionality
	5.1
	O
	

	SERV-C-5
	Support of Content Service Element functionality
	5.1
	O
	

B.1.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SERV-S-1
	Support of Service Access Point functionality
	5.1
	M
	SERV-S-2 OR SERV-S-3 OR SERV-S-4 OR SERV-S-5 OR

	SERV-S-2
	Support of Instant Messaging Service Element functionality
	5.1
	O
	

	SERV-S-3
	Support of Presence Service Element functionality
	5.1
	O
	

	SERV-S-4
	Support of Group Service Element functionality
	5.1
	O
	

	SERV-S-5
	Support of Content Service Element functionality
	5.1
	O
	

B.2 Addressing requirements

B.2.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	ADDR-C-1
	Support for local addressing.
	5.3.2
	M
	

	ADDR-C-2
	Support for external addressing.
	5.3.2
	M
	

	ADDR-C-3
	Support for client addressing.
	5.3.8
	O
	

	ADDR-C-4
	Users cannot refer to or access other users’ contact lists.
	5.3.5
	M
	

	ADDR-C-5
	If the scheme part of a WV address is missing the default schema of “wv:” is assumed.
	5.3.2
	M
	

	ADDR-C-6
	The IMPS client supports other scheme than “wv:”.
	5.3.2
	O
	

B.2.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	ADDR-S-1
	Support for local addressing.
	5.3.2
	M
	

	ADDR-S-2
	Support for external addressing.
	5.3.2
	M
	

	ADDR-S-3
	Server maintains the same addressing format within a transaction.
	5.3.1
	M
	

	ADDR-S-4
	Support for client addressing.
	5.3.8
	O
	

	ADDR-S-5
	Users cannot refer to or access other users’ contact lists.
	5.3.5
	M
	

	ADDR-S-6
	If the schema part of a WV address is missing the default scheme of “wv:” is assumed.
	5.3.2
	M
	

	ADDR-S-7
	The IMPS server supports other schemes than IMPS scheme
	5.3.2
	O
	

B.3 Session requirements

B.3.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	SESSION-C-1
	If the primitive is sent within a session, the Type of the session is 'Inband'.
	5.1
	M
	

	SESSION-C-2
	If the primitive is sent within a session, the ID element is present in the session identification element.
	5.1
	M
	

	SESSION-C-3
	If the primitive is sent without session, the Type of the session is 'Outband'
	5.1
	M
	

	SESSION-C-4
	If the primitive is sent without session, the ID element is not present in the session identification element.
	5.1
	M
	

	SESSION-C-5
	If the primitive is sent within the session, the Session-IDs of the originating message and the reply are equal.
	5.1
	M
	

	SESSION-C-6
	If the client logs in with binary message format, the client and server sends all primitives using binary message format throughout the session.
	5.1
	M
	

	SESSION-C-7
	The client uses only the protocol version accepted by the server in the login transaction throughout the whole session.
	5.1
	M
	

B.3.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SESSION-S-1
	If the primitive is sent within a session, the Type of the session is 'Inband'.
	5.1
	M
	

	SESSION-S-2
	If the primitive is sent within a session, the ID element is present in the session identification element.
	5.1
	M
	

	SESSION-S-3
	If the primitive is sent without session, the Type of the session is 'Outband'
	5.1
	M
	

	SESSION-S-4
	If the primitive is sent without session, the ID element is not present in the session identification element.
	5.1
	M
	

	SESSION-S-5
	If the primitive is sent within the session, the Session-IDs of the originating message and the reply are equal.
	5.1
	M
	

	SESSION-S-6
	The server does not disconnect session within the agreed KeepAliveTime.
	6.6
	M
	

	SESSION-S-7
	If TimeToLive is set in a client Request then server Response includes KeepAliveTime.
	6.6
	M
	

	SESSION-S-8
	The server can choose any timer value as KeepAliveTime The client MUST obey that. If the client has specified an infinite time to live in by not submitting the Time-to-Live element in LoginRequest the server can nevertheless specify a finite time using the KeepAliveTime element in LoginResponse.
	6.4.3
	M
	

	SESSION-S-9
	If the client logs in with binary message format, the client and server sends all primitives using binary message format throughout the session.
	5.1
	M
	

	SESSION-S-10
	The server accepts the protocol version used by the client in login transaction.
	5.1
	O
	

B.4 Transaction requirements

B.4.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	TRANS-C-1
	For each transaction pair the originating and resulting Transaction-IDs are equal.
	5.4
	M
	

	TRANS-C-2
	The same Transaction-ID is not used more than once in a session.
	5.4
	M
	

	TRANS-C-3
	When the corresponding response primitive does not contain a Result element, and an error occurs when processing the request, a Status primitive is returned instead of the corresponding response primitive.
	5.4
	M
	

	TRANS-C-4
	When the corresponding response primitive contains a Result element, and an error occurs when processing the request, either the corresponding response primitive or a Status primitive is returned. In either case, the response primitive indicates the error that occurred.
	5.4
	M
	

	TRANS-C-5
	When the response primitive to a transaction is replaced with Status primitive the response value indicates unsuccessful operation.
	5.4
	M
	

	TRANS-C-6
	All mandatory information elements are present in the primitives.
	5.4
	M
	

	TRANS-C-7
	All conditional information elements are present or absent according to the relevant SCR.
	5.4
	M
	

	TRANS-C-8
	If a transaction is completely successful, the Result element indicates successful completion, and detailed results are not included in the Result element.
	6.1
	M
	

	TRANS-C-9
	If a transaction is partially successful, the Result element does not indicate successful completion.
	6.1
	M
	TRANS-C-12

	TRANS-C-10
	If a transaction is partially successful, the details of the successfully completed transaction parts are included.
	6.1
	O
	

	TRANS-C-11
	If a transaction is partially successful, the details of the not completed transaction parts are included.
	6.1
	M
	

B.4.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	TRANS-S-1
	For each transaction pair the originating and resulting Transaction-IDs are equal.
	5.4
	M
	

	TRANS-S-2
	The same Transaction-ID is not used more than once in a session.
	5.4
	M
	

	TRANS-S-3
	When the corresponding response primitive does not contain a Result element, and an error occurs when processing the request, a Status primitive is returned instead of the corresponding response primitive.
	5.4
	M
	

	TRANS-S-4
	When the corresponding response primitive contains a Result element, and an error occurs when processing the request, either the corresponding response primitive or a Status primitive is returned. In either case, the response primitive indicates the error that occurred.
	5.4
	M
	

	TRANS-S-5
	When the response primitive to a transaction is replaced with Status primitive the response value indicates unsuccessful operation.
	5.4
	M
	

	TRANS-S-6
	All mandatory information elements are present in the primitives.
	5.4
	M
	

	TRANS-S-7
	All conditional information elements are present or absent according to the relevant SCR.
	5.4
	M
	

	TRANS-S-8
	If a transaction is completely successful, the Result element indicates successful completion, and detailed results are not included in the Result element.
	6.1
	M
	

	TRANS-S-9
	If a transaction is partially successful, the Result element does not indicate successful completion.
	6.1
	M
	

	TRANS-S-10
	If a transaction is partially successful, the details of the successfully completed transaction parts are included.
	6.1
	O
	

	TRANS-S-11
	If a transaction is partially successful, the details of the not completed transaction parts are included.
	6.1
	M
	

B.5 Service Access Point (SAP) requirements

B.5.1 Functional requirements

B.5.1.1 Clients

	Item
	Function
	Reference
	Status
	Conditional Requirement

	SAP-C-1
	Support for Status primitive
	6
	M
	

	SAP-C-2
	Support for Communication Initiation Request and PollingRequest primitives
	6
	O
	[CSP Trans] TRANSP-C-3 OR [CSP Trans] TRANSP-C-4 OR [CSP Trans] TRANSP-C-5 OR [CSP Trans] TRANSP-C-6

	SAP-C-3
	Support for version discovery transaction
	6
	O
	

	SAP-C-4
	Support for 2-way Login transaction
	6
	M
	

	SAP-C-5
	Support for 4-way Login transaction
	6
	O
	

	SAP-C-6
	Support for Logout transaction originating from client
	6
	M
	

	SAP-C-7
	Support for Server originated disconnect
	6
	M
	

	SAP-C-8
	Support for Keep-Alive transaction
	6
	M
	

	SAP-C-9
	Support for Get Service Provider Info transaction
	6
	O
	

	SAP-C-10
	Support for Service negotiation transaction
	6
	M
	

	SAP-C-11
	Support for Client Capability negotiation transaction over SMS transport
	6
	O
	

	SAP-C-12
	Support for Client Capability negotiation transaction if any other transport/syntax than Plain Text Syntax over SMS transport is used
	6
	M
	

	SAP-C-13
	Support for General Notification transactions
	7
	M
	

	SAP-C-14
	Support for retrieving public profile
	7
	M
	

	SAP-C-15
	Support for clearing/updating the public profile
	7
	M
	

	SAP-C-16
	Support for delivery of Friendly Name with UserIDs
	7
	M
	

	SAP-C-17
	Support for public profile extension fields
	7
	O
	

	SAP-C-18
	Support for searching based on various private profile properties
	7
	O
	

	SAP-C-19
	Support for searching based on various public profile properties
	7
	O
	

	SAP-C-20
	Support for searching based on various group properties
	7
	O
	

	SAP-C-21
	Support for stop search transaction
	7
	O
	SAP-C-18 OR SAP-C-19 OR SAP-C-20

	SAP-C-22
	Support for invitation transaction
	7
	O
	

	SAP-C-23
	Support for cancel invitation transaction
	7
	O
	

	SAP-C-24
	Support for Get Map transaction
	7
	O
	

	SAP-C-25
	Support for verify ID transaction
	7
	O
	

B.5.1.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SAP-S-1
	Support for Status primitive
	6
	M
	

	SAP-S-2
	Support for Communication Initiation Request and PollingRequest primitives
	6
	O
	[CSP Trans] TRANSP-S-3 OR [CSP Trans] TRANSP-S-4 OR [CSP Trans] TRANSP-S-5 OR [CSP Trans] TRANSP-S-6

	SAP-S-3
	Support for version discovery transaction
	6
	M
	

	SAP-S-4
	Support for 2-way Login transaction
	6
	M
	

	SAP-S-5
	Support for 4-way Login transaction
	6
	M
	

	SAP-S-6
	Support for Logout transaction originating from client
	6
	M
	

	SAP-S-7
	Support for Server originated disconnect
	6
	M
	

	SAP-S-8
	Support for Keep-Alive transaction
	6
	M
	

	SAP-S-9
	Support for Get Service Provider Info transaction
	6
	O
	

	SAP-S-10
	Support for Service negotiation transaction
	6
	M
	

	SAP-S-11
	Support for Client Capability negotiation transaction over SMS transport
	6
	M
	

	SAP-S-12
	Support for Client Capability negotiation transaction if any other transport/syntax than Plain Text Syntax over SMS transport is used
	6
	M
	

	SAP-S-13
	Support for General Notification transactions
	7
	M
	

	SAP-S-14
	Support for retrieving public profile
	7
	M
	

	SAP-S-15
	Support for clearing/updating the public profile
	7
	M
	

	SAP-S-16
	Support for delivery of Friendly Name with UserIDs
	7
	M
	

	SAP-S-17
	Support for public profile extension fields
	7
	O
	

	SAP-S-18
	Support for searching based on various private profile properties
	7
	O
	

	SAP-S-19
	Support for searching based on various public profile properties
	7
	O
	

	SAP-S-20
	Support for searching based on various group properties
	7
	O
	

	SAP-S-21
	Support for stop search transaction
	7
	O
	SAP-S-18 OR SAP-S-19 OR SAP-S-20

	SAP-S-22
	Support for invitation transaction
	7
	O
	

	SAP-S-23
	Support for cancel invitation transaction
	7
	O
	

	SAP-S-24
	Support for Get Map transaction
	7
	O
	

	SAP-S-25
	Support for verify ID transaction
	7
	O
	

B.5.2 Login transaction requirements

B.5.2.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	LOGIN-C-1
	If the Client-Capability-Request element in the LoginResponse primitive indicates ‘F’, the client initiates client capability negotiation after the successful login.
	6.4.1
	O
	

B.5.2.2 Servers

There are not requirements for the server.

B.5.3 Logout transaction requirements

B.5.3.1 Clients

There are no requirements for the client.

B.5.3.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	LOGOUT-S-1
	If the time-to-live timer of the session is exceeded the server disconnects the client by sending a Disconnect primitive to the client.
	6.5.1
	O
	

B.5.4 Keep-alive transaction requirements

B.5.4.1 Clients

There are not requirements for the client.

B.5.4.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	NOOP-S-1
	If the Time-To-Live element is present in the request primitive, the server changes the KeepAliveTime to the indicated value.
	6.6.1
	O
	

B.5.5 Get Service Provider Info transaction requirements

B.5.5.1 Clients

There are no requirements for the client.

B.5.5.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	GETSPI-S-1
	The SAP supports GetSPInfoRequest as outband request
	6.7.1
	O
	

B.5.6 Service negotiation transaction requirements

B.5.6.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	SCAPAB-C-1
	Support for repeating Service negotiation during a session.
	6.8.1
	O
	

B.5.6.2 Servers

There are no requirements for the server.

B.5.7 Client capability negotiation transaction requirements

B.5.7.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	CCAPAB-C-1
	Support for repeating Client capability negotiation during a session.
	6.8.1
	O
	

	CCAPAB-C-2
	If the client indicates the use of standalone UDP/IP binding for CIR, the client provides the UDP port in the request.
	6.8.1
	O
	

B.5.7.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	CCAPAB-S-1
	The server maintains the client capabilities between sessions.
	6.8.1
	O
	

B.5.8 General search transaction requirements

B.5.8.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	SRCH-C-1
	The client sends StopSearchRequest primitive to the server when the search is needed no more.
	7.3.1
	O
	

	SRCH-C-2
	The client supports including more than one Search-Pair-Lists in the 1st SearchRequest.
	7.3.1
	O
	

B.5.8.2 Servers

There are no requirements for the server.

B.5.9 Invitation transaction requirements

B.5.9.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	INVIT-C-1
	The client accepts or declines a received invitation.
	7.4.1
	O
	

B.5.9.2 Servers

There are no requirements for the server.

B.6 Presence Service Element (PRSE) requirements

B.6.1 Functional requirements

B.6.1.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	PRSE-C-1
	Support for get list of contact lists (IDs) transaction
	8
	O
	

	PRSE-C-2
	Support for create contact list transaction
	8
	O
	

	PRSE-C-3
	Support for delete contact list transaction
	8
	O
	

	PRSE-C-4
	Support for manage contact list transaction
	8
	O
	

	PRSE-C-5
	Support for create attribute list transaction
	8
	M
	

	PRSE-C-6
	Support for delete attribute list transaction
	8
	M
	

	PRSE-C-7
	Support for get attribute list transaction
	8
	M
	

	PRSE-C-8
	Support for subscribe presence transaction
	8
	M
	

	PRSE-C-9
	Support for automatic subscribe presence subscription
	8
	O
	

	PRSE-C-10
	Support for unsubscribe presence transaction
	8
	M
	

	PRSE-C-11
	Support for get watcher list transaction
	8
	O
	

	PRSE-C-12
	Support for presence notification transaction
	8
	M
	

	PRSE-C-13
	Support for get presence transaction
	8
	O
	

	PRSE-C-14
	Support for update presence transaction
	8
	O
	

	PRSE-C-15
	Support for reactive presence authorization request transaction
	8
	O
	PRSE-C-16

	PRSE-C-16
	Support for reactive presence authorization of user transaction
	8
	O
	PRSE-C-15

	PRSE-C-17
	Support for cancel presence authorization transaction
	8
	O
	

	PRSE-C-18
	Support for get reactive authorization status transaction
	8
	O
	

B.6.1.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	PRSE-S-1
	Support for get list of contact lists (IDs) transaction
	8
	O
	

	PRSE-S-2
	Support for create contact list transaction
	8
	O
	

	PRSE-S-3
	Support for delete contact list transaction
	8
	O
	

	PRSE-S-4
	Support for manage contact list transaction
	8
	O
	

	PRSE-S-5
	Support for create attribute list transaction
	8
	M
	

	PRSE-S-6
	Support for delete attribute list transaction
	8
	M
	

	PRSE-S-7
	Support for get attribute list transaction
	8
	M
	

	PRSE-S-8
	Support for subscribe presence transaction
	8
	M
	

	PRSE-S-9
	Support for automatic subscribe presence subscription
	8
	O
	

	PRSE-S-10
	Support for unsubscribe presence transaction
	8
	M
	

	PRSE-S-11
	Support for get watcher list transaction
	8
	O
	

	PRSE-S-12
	Support for presence notification transaction
	8
	M
	

	PRSE-S-13
	Support for get presence transaction
	8
	O
	

	PRSE-S-14
	Support for update presence transaction
	8
	O
	

	PRSE-S-15
	Support for reactive presence authorization request transaction
	8
	M
	

	PRSE-S-16
	Support for reactive presence authorization of user transaction
	8
	M
	

	PRSE-S-17
	Support for cancel presence authorization transaction
	8
	M
	

	PRSE-S-18
	Support for get reactive authorization status transaction
	8
	M
	

B.6.2 Create contact list transaction requirements

B.6.2.1 Clients

There are no requirements for the client.

12.2.1.1 Servers

	Item
	Function
	Reference
	Status
	Requirement

	CCLI-S-1
	Support for creating the contact list when the contact list does not exist on the server, and the server is unable to add all users in User-Nick-List or is unable to apply all property changes specified in Contact-List-Props.
	8.1.2
	O
	

B.6.3 Manage contact list transaction requirements

B.6.3.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	MCLS-C-1
	Support for providing Nickname with User-IDs.
	8.1.2
	O
	

B.6.3.2 Servers

There are no requirements for the server.

B.6.4 Get watcher list transaction requirements

B.6.4.1 Clients

There are no requirements for the client.

B.6.4.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	GETWL-S-1
	The server maintains the watcher history period and adds it in the GetWatcherListResponse.
	8.3.1
	O
	

B.7 Instant Messaging Service Element (IMSE) requirements

B.7.1 Functional requirements

B.7.1.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	IMSE-C-1
	Support for setting delivery method
	8
	O
	

	IMSE-C-2
	Support for send message transaction
	8
	M
	

	IMSE-C-3
	Support for get list of messages transaction
	8
	O
	

	IMSE-C-4
	Support for reject message transaction
	8
	O
	

	IMSE-C-5
	Message-Info element requirements
	8
	M
	

	IMSE-C-6
	Support for new message transaction
	8
	O
	

	IMSE-C-7
	Support for message notification transaction
	8
	O
	IMSE-C-8

	IMSE-C-8
	Support for get message transaction
	8
	O
	IMSE-C-7

	IMSE-C-9
	Support for get message or new message transaction
	8
	M
	IMSE-C-9 OR IMSE-C-11

	IMSE-C-10
	Support for delivery status report transaction
	8
	O
	

	IMSE-C-11
	Support for forward message transaction
	8
	O
	

	IMSE-C-12
	Support for get list of blocked entities transaction
	8
	O
	

	IMSE-C-13
	Support for block entity transaction
	8
	O
	

B.7.1.2 Servers

	Item
	Function
	Service Reference
	Status
	Requirement

	IMSE-S-1
	Support for setting delivery method
	8
	M
	

	IMSE-S-2
	Support for send message transaction
	8
	M
	

	IMSE-S-3
	Support for get list of messages transaction
	8
	O
	

	IMSE-S-4
	Support for reject message transaction
	8
	O
	

	IMSE-S-5
	Message-Info element requirements
	8
	M
	

	IMSE-S-6
	Support for new message transaction
	8
	M
	

	IMSE-S-7
	Support for message notification transaction
	8
	M
	

	IMSE-S-8
	Support for get message transaction
	8
	M
	

	IMSE-S-9
	Support for delivery status report transaction
	8
	M
	

	IMSE-S-10
	Support for forward message transaction
	8
	M
	

	IMSE-S-11
	Support for get list of blocked entities transaction
	8
	O
	

	IMSE-S-12
	Support for block entity transaction
	8
	O
	

B.7.2 Set delivery method transaction requirements

B.7.2.1 Clients

There are no requiremens for the client.

B.7.2.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SETD-S-1
	Support for applying the requested delivery method to the requested group only – when the Group-ID is present in the request.
	9.1.2
	O
	

B.7.3 Send message transaction requirements

B.7.3.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	SENDM-C-1
	Support for identifying the sender in the Message-Info structure.
	9.1.1
	O
	

	SENDM-C-2
	Support for identifying the sending client using the Client-ID.
	9.1.1
	O
	

B.7.3.2 Servers

There are no requirements for the server.

B.7.4 Get list of messages transaction requirements

B.7.4.1 Clients

There are no requirements for the client.

B.7.4.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	GETLM-S-1
	Support for sending the Message-Info of those instant messages that has been sent to the specified group - when the Group-ID element is present in the request.
	9.1.3
	O
	

	GETLM-S-2
	Support for sending the Message-Info of non-delivered instant messages that have been sent from any user or group - when the Group-ID element is not present in the request.
	9.1.3
	O
	

B.7.5 NewMessage primitive requirements

B.7.5.1 Clients

There are no requirements for the client.

B.7.5.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	NEWM-S-1
	Support for identifying the sending client using Client-ID.
	9.1.5
	O
	

	NEWM-S-2
	Support for identifying the instant messages in the Message-Info structure using Message-ID.
	9.1.5
	O
	

	NEWM-S-3
	Support for identifying the instant messages in the Message-Info structure using Message-URI.
	9.1.5
	O
	

B.7.6 Get message transaction requirements

B.7.6.1 Clients

There are no requirements for the client.

B.7.6.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	GETM-S-1
	Support for identifying the instant messages in the Message-Info structure using Message-ID.
	9.1.7
	O
	

	GETM-S-2
	Support for identifying the instant messages in the Message-Info structure using Message-URI.
	9.1.7
	O
	

B.7.7 Block entities transaction requirements

B.7.7.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	BLENT-C-1
	User-IDs, Screen-Names and Group-IDs are supported.
	9.3.1
	O
	

B.7.7.2 Servers

There are no requirements for the server.

B.8 Group Service Element (GRSE) requirements

B.8.1 Functional requirements

B.8.1.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	GRSE-C-1
	Support for group creation transaction
	10.1
	O
	

	GRSE-C-2
	Support for group deletion transaction
	10.1
	O
	

	GRSE-C-3
	Support for get group properties transaction
	10.1
	O
	

	GRSE-C-4
	Support for set group properties transaction
	10.1
	O
	

	GRSE-C-5
	Support for get group members transaction
	10.1
	O
	

	GRSE-C-6
	Support for add group members transaction
	10.1
	O
	

	GRSE-C-7
	Support for remove group members transaction
	10.1
	O
	

	GRSE-C-8
	Support for member access rights transaction
	10.1
	O
	

	GRSE-C-9
	Support for subscribe group notice transaction
	10.1
	O
	

	GRSE-C-10
	Support for group change notification transaction
	10.1
	O
	

	GRSE-C-11
	Support for join group transaction
	10.1
	M
	

	GRSE-C-12
	Support for leave group transaction
	10.1
	M
	

	GRSE-C-13
	Support for reject user(s) from group transaction
	10.1
	O
	

	GRSE-C-14
	Support for get joined users transaction
	10.1
	O
	

	GRSE- C-15
	Support for extended group properties.
	10.1.5
	O
	

B.8.1.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	GRSE-S-1
	Support for group creation transaction
	10.1
	O
	

	GRSE-S-2
	Support for group deletion transaction
	10.1
	O
	

	GRSE-S-3
	Support for get group properties transaction
	10.1
	O
	

	GRSE-S-4
	Support for set group properties transaction
	10.1
	O
	

	GRSE-S-5
	Support for get group members transaction
	10.1
	O
	

	GRSE-S-6
	Support for add group members transaction
	10.1
	O
	

	GRSE-S-7
	Support for remove group members transaction
	10.1
	O
	

	GRSE-S-8
	Support for member access rights transaction
	10.1
	O
	

	GRSE-S-9
	Support for subscribe group notice transaction
	10.1
	O
	

	GRSE-S-10
	Support for group change notification transaction
	10.1
	O
	

	GRSE-S-11
	Support for join group transaction
	10.1
	M
	

	GRSE-S-12
	Support for leave group transaction
	10.1
	M
	

	GRSE-S-13
	Support for reject user(s) from group transaction
	10.1
	O
	

	GRSE-S-14
	Support for get joined users transaction
	10.1
	O
	

	GRSE-S-15
	Support for extended group properties.
	10.1.5
	O
	

B.8.2 Set group properties transaction requirements

B.8.2.1 Clients

There are no requirements for the client.

B.8.2.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SETGP-S-1
	Support for maintaining the own properties of users that are not members of a group between group sessions.
	10.7
	O
	

B.8.3 Subscribe group change notification transaction requirements

B.8.3.1 Clients

There are no requirements for the client.

B.8.3.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	SUBGCN-S-1
	Support for turning on the subscription status for a particular group only when the SubscribeGroupNoticeRequest primitive requests set operation for a particular group.
	10.9
	O
	

B.8.4 Join group transaction requirements

B.8.4.1 Clients

	Item
	Function
	Reference
	Status
	Requirement

	JOING-C-1
	Support for requesting currently joined users’ list in the response.
	10.4
	O
	

B.8.4.2 Servers

	Item
	Function
	Reference
	Status
	Requirement

	JOING-S-1
	Support for using the screen name that the user requested.
	10.4
	O
	

	JOING-S-2
	Support for assigning a screen name for the user.
	10.4
	O
	

	JOING-S-3
	Support for delivering fhe Welcome-Note in the JoinGroupResponse primitive.
	10.4
	O
	

� This property is read-only (determined by the server) and it cannot be modified.

� This property is read-only (monitored by the server) and it cannot be modified.

� This property is read-only (determined by the server) and it cannot be modified.

� This property is read-only (determined by the server) and it cannot be modified.

� This property is read-only (determined by the server) and it cannot be modified.

(2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-SpecWV-20040205]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20050101-I]

_1068367830.vsd

_1069842898.vsd

_1145099470.vsd
WV-CSP Features�

Presence-Features�

IM-Features�

Group-Features�

Fundamental-Features�

GLBLU�

BLENT�

GCLI�

CCLI�

DCLI�

MCLS�

CALI�

DALI�

GALS�

GETPR�

UPDPR�

GETWL�

IM-Receiving-Functions�

REACT�

GETAUT�

REJCM�

NOTIF�

FWMSG�

CREAG�

DELGR�

GETGP�

SETGP�

GETGM�

ADDGM�

RMVGM�

MBRAC�

SUBGCN�

GRCHN�

REJEC�

ContactList-Functions�

PresenceAuth-Functions�

Presence-Delivery-Functions�

AttributeList-Functions�

IM-Sending-Functions�

SETD�

IM-Auth-Functions�

Group-Mgmt-Functions�

Group-Auth-Functions�

NEWM�

STSRC�

INVIT�

CAINV�

Service-Functions�

Search-Functions�

Invite-Functions�

Group-Use-Functions�

GETSPI�

GETLM�

GETM�

MDELIV�

SRCH�

MF (Mandatory fundamental
functions)�

MP (Mandatory presence
functions)�

MM (Mandatory Messaging
functions)�

MG (Mandatory group
functions)�

CAAUT�

VRID�

VerifyID�

GETJU�

_1168880148.vsd

_1169463189.vsd

_1174135709.vsd

_1172563017.vsd
�

Client 1�

Server�

Client 2�

Client 3�

�

ExtendConversationRequest�

InviteUserRequest�

CreateGroup�

ExtendConversationResponse�

�

�

JoinGroupRequest�

JoinGroupResponse�

JoinGroupRequest�

�

JoinGroupResponse�

�

InviteUserRequest�

�

Status�

�

�

Status�

�

Status�

Status�

GroupChangeNotice�

_1169462862.vsd

_1168880442.vsd

_1168252785.vsd
SubscribeNotificationRequest�

Client�

Server�

Status�

_1168336062.vsd
�

Client�

Server�

Status�

UnsubscribeNotificationRequest�

_1168248318.vsd
Status�

Server�

Client�

NotificationRequest�

_1094036557.vsd

_1098254487.vsd

_1099401409.vsd

_1099399670.vsd

_1097578334.vsd

_1074593561.vsd

_1093350956.vsd
GetJoinedUsersRequest�

Client�

Server�

GetJoinedUsersResponse�

_1068452207.vsd

_1068472518.vsd

_1068887787.vsd

_1068978170.vsd

_1068454080.vsd

_1068456608.vsd

_1068452607.vsd

_1068445253.vsd

_1068449672.vsd

_1068445227.vsd

_1064750288.vsd

_1067432631.vsd

_1068020210.vsd

_1068020244.vsd

_1067859426.vsd

_1064827107.vsd

_1067345393.vsd

_1067345477.vsd

_1067345786.vsd

_1067345430.vsd

_1064916641.vsd

_1067340584.vsd

_1064827105.vsd

_1064827106.vsd

_1064750970.vsd

_1060521740.vsd

_1061034516.vsd

_1061102510.vsd

_1063196311.vsd

_1064264167.vsd

_1061967613.vsd

_1061102509.vsd

_1060598905.vsd

_1060608106.vsd

_1060608207.vsd

_1060608081.vsd

_1060596853.vsd

_1058172127.vsd

_1058278541.vsd

_1060430573.vsd

_1060431187.vsd

_1058270011.vsd

_1058268915.vsd

_1058171954.vsd

_1058172035.vsd

_1058171787.vsd

_1058171880.vsd

_1058171765.vsd

_1058171777.vsd

_1058171751.vsd

