OMA-WP-IMPS_V1_3_IMPL-20080411-D
Page 27 V(51)

	[image: image2.emf]Client Server Client Server

[1] LoginRequest

[2] LoginResponse = 921 Registration confirmation

Text for Terms of use:

[] Accept

[] Cancel

[4] SystemMessageUser = Option ID of Accept

[5] LoginResponse = 200 Successful

[3] The client displays the system message

and wait for the user’s response

	

	IMPS 1.3 Implementation Guidelines

	Draft Version– 11 April 2008

	Open Mobile Alliance

	OMA-WP--IMPS_V1_3_IMPL--20080411-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

101.
Scope

2.
References
11
3.
Terminology and Conventions
13
3.1
Conventions
13
3.2
Definitions
13
3.3
Abbreviations
13
4.
Introduction
14
5.
Auto registration
15
5.1
Rationale
15
5.2
Use cases and examples
15
5.2.1
Server assigns User-ID and password
15
5.2.1.1
Examples
15
5.2.2
User selects User-ID and password
16
5.2.2.1
Examples
16
5.2.2.2
Examples: User selects its own User-ID to one that is already taken
17
5.2.3
Terms of use
19
5.3
Recommendation
20
5.4
Open issues
21
6.
Server verifies MSISDN of client
22
6.1
Rationale
22
6.2
Use cases and examples
22
6.2.1
Server needs to know MSISDN of client
22
6.2.1.1
Example
22
6.3
Recommendation
23
7.
Credential retrieval
24
7.1
Rationale
24
7.2
Use cases and examples
24
7.2.1
User attempts to launch the service knowing his User-ID but not his password
24
7.2.1.1
Examples
25
7.2.1.2
Password retrieval through CSP 1.3
26
7.3
Recommendation
27
8.
Multi-sessions
28
8.1
Rationale
28
8.2
Presence attributes synchronization
28
8.2.1
Use cases and examples
28
8.2.1.1
End user updates presence attributes on one of his active clients and the change is reflected in other active clients
28
8.2.2
Recommendation
29
8.3
User account list synchronization
29
8.3.1
Use cases and examples
29
8.3.1.1
End user adds a contact to one of his active clients and the change is reflected in other active clients
29
8.3.1.2
29
8.3.2
Recommendation
29
9.
Client-ID
31
9.1
Rationale
31
9.2
Recommendation
31
10.
Contact lists usage
33
10.1
Rationale
33
10.2
Use cases and examples
33
10.2.1
User logs on with client manufactured by A and then with client manufactured by B
33
10.2.1.1
Examples
33
10.3
Recommendation
33
10.3.1
Contact list names
34
10.3.2
Subscription
34
10.3.3
Authorization
34
11.
File sharing
36
11.1
Rationale
36
11.2
Use cases and examples
36
11.2.1
Examples
36
11.3
Recommendations
37
11.3.1
Protocol usage during invite phase
37
11.3.2
Protocol usage during transfer phase
37
12.
Presence attribute interpretation
38
12.1
Rationale
38
12.2
Background
38
12.3
Availability and invisibility
38
12.4
Recommendation
38
13.
End to end messaging
40
13.1
Rationale
40
13.2
Use cases and examples
40
13.2.1
Client A supports pictures, text and file transfers and chats with client B supporting text only
40
13.3.2
ent A supports pictures, text and file transfers and chats with Bob who is logged on with 2 clients having different capabilities
40
13.3
Recommendations
41
14.
Rich content IM
42
14.1
Rationale
42
14.2
Rich Formatting of Plain Text Messages
44
14.2.1
Rich Text Formatting Example
45
14.3
Typing alerts
45
14.3.1
Typing Alert Example
46
14.3.3 Nudges
46
15.
Groups
50
15.1
Rationale
50
15.2
Use cases and examples
50
15.2.1
Alice creates a group
50
15.2.1.1
Examples
50
15.2.2
Alice invites Bob to a group
50
15.2.2.1
Examples
51
15.2.3
Alice changes a group attribute
51
15.2.3.1
Examples
51
15.2.4
Alice wants to have an extended conversation with Bob and Clare
51
15.2.4.1
Examples
52
15.3
Recommendation
52
16.
SMS only users
53
16.1
Rationale
53
16.2
SMS only users presence state
53
17.
Customized support
55
17.1
Rationale
55
17.2
Use cases and examples
55
17.3
Recommendation
55
18.
Service provider community indication
56
18.1
Rationale
56
18.2
Use cases and examples
56
18.3
Recommendation
56
19.
Optimized network usage
57
19.1
Rationale
57
19.2
Recommendation
57
20. Optimized CIR usage
58
20.1 Rationale
58
20.2 Recommendation
58

Figures

Tables

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

The goal of this white paper is to ensure homogeneous user experience across different IMPS applications based on the CSP 1.3 protocol. It will provide informative best practice recommendations for the CSP 1.3 protocol, ensuring consistent and compatible end-user experience for an IM user while communicating on a device from one manufacturer with end-users on devices from other manufacturers, or when an end-user uses multiple clients from various manufacturers.

The Implementation Guidelines are mainly written with a focus on applications written on top of CSP 1.3. They are aligned with GSMA IM Phase 1/2 Service Definition documents. Considerations for end-user experience when upgrading from older 1.1/1.2.1 clients to 1.3 clients(s) are also discussed. Considerations for SSP 1.3 are out of scope for this document.

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”,{ Version x.y,} Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.

Check the version of the Dictionary you are using and update the reference below. Delete the [OMADICT] entry if the dictionary is not used. In general, use the latest available version unless seeking alignment with an existing set of specifications.

DELETE THIS COMMENT

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[CSP]

	“Client-Server Protocol Session and Transactions Version 1.3”, OMA-TS-IMPS-CSP-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP DataType]
	 “Client-Server Protocol Data Types Version 1.3”, OMA-TS-IMPS-CSP_Data_Types-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP Trans]
	 “Client-Server Protocol Transport Bindings Version 1.3”, OMA-TS-IMPS-CSP_Transport-

V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP PTS]
	 “Client-Server Protocol Plain Text Syntax Version 1.3”, OMA-TS-IMPS-CSP_PTS-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP XMLS]
	 “Client-Server Protocol XML Syntax Version 1.3”, OMA-TS-IMPS-CSP-XMLS-V1_3. Open

Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP WBXML]
	 “Client-Server Protocol Binary XML Definition and Examples Version 1.3”, OMA-TS-IMPSCSP_

WBXML-V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[PA]
	 “Presence Attributes Version 1.3”, OMA-TS-IMPS-PA-V1_3. Open Mobile Alliance™. URL:

http://www.openmobilealliance.org

	PA XMLS]
	“Presence Attributes XML Syntax Version 1.3”, OMA-TS-IMPS-PA_XMLS-V1_3. Open

Mobile Alliance™. URL:http://www.openmobilealliance.org

	[AppChar]
	 “Application Characteristic for IMPS”, OMA-TS-wA-Application-Characteristic-for-IMPSV1_0. Open Mobile Alliance™. URL:http://www.openmobilealliance.org

	[MO]
	 “OMA IMPS Management Object Version 1.0”, OMA-TS-IMPS-MO-V1_0. Open Mobile

Alliance™. URL: http://www.openmobilealliance.org

	[SSP]
	 “Server-Server Protocol Semantics Document Version 1.3”, OMA-TS-IMPS-SSP-V1_3. Open

Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP XMLS]
	 “Server-Server Protocol XML Syntax Document Version 1.3”, OMA-TS-IMPS-SSP_XMLSV1_

3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP Trans]
	 “Server-Server Protocol Transport Binding Version 1.3”, OMA-TS-IMPS-SSP_Transport-

V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[RFC2119]
	"Key words for use in RFCs to Indicate Requirement Levels", http://www.ietf.org/rfc/rfc2119.txt

	[GSMAPH2]
	IM Phase 2 Service Definition, GSM Association Official Document SE.44, http://www.gsmworld.com/

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to Recommendations.

The key words "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

<< If needed, describe or declare any additional conventions used. DELETE THIS COMMENT >>

3.2 Definitions

<< Add definitions in new rows of the following table as needed. The following examples show how dictionary references should be made as well as locally defined terms. This table should be maintained in sorted alphabetic order based on the labels of the terms.

Examples:

Entity
Use definition #1 from [OMADICT]

Interactive Service
Use definition from [OMADICT]

Local Term
The definition description would be presented directly

DELETE THIS COMMENT>>

	Client
	

	Server
	

	End user
	

	
	

3.3 Abbreviations

<< Add abbreviations as needed to the following table. No special notation should be made regarding terms copied from the Dictionary. This table should be maintained in alphabetic order.

DELETE THIS COMMENT >>

	CSP
	Client Server Protocol

	OMA
	Open Mobile Alliance

	SSP
	Server to Server Protocol

	
	

4. Introduction

<< Provide information to help readers understand why this document is being produced. For example, this section could be used to:

Provide some background to the issue being covered

Describe nature of the environment that requires a paper be presented

Justify why OMA has a role to present information on the issue

DELETE THIS COMMENT >>

The goal of this white paper is to ensure homogeneous user experience across different IMPS Applications.

Although the current IMPS 1.3 enabler package provides a complete architecture, reference points and interfaces, and protocol specifications, there have been some interoperability issues at an application level as two or more applications that implement similar services using the same IMPS 1.3 technology don’t behave in the same manner in the same situations. However, a lot of the options appear without clear guidelines about what would happen when two or more transactions and options are combined and used in a certain situation. This document is intended to be such guideline by describing:

· Use Case that are perceived by the end user mainly

· Problem Statement describing what an issue(s) or a requirement(s) is when implementing the use case

· Recommended work-around that may fulfill the use case and the requirement when using IMPS 1.3

Note that this document is not supposed to change or bend the existing IMPS 1.3 standard. The goal of this document is to support the use cases that are found as urgent in the market WITHOUT breaking a compatibility with the implementations that don’t necessarily follow this guideline but still use the IMPS 1.3 as base technology.

Also note this document is solely informative and thus there is NO conformance requirement or interoperability test consideration against this document.

Each section of this document is organized into a headline describing the issue, a sub-section called rationale justifying the inclusion of the topic in this document, a second optional sub-section with use cases describing the intended end user experience relevant to the section including examples of requests and responses (only transaction content will be shown in examples) and a third sub-section entitled "Recommendation" which describes the recommendations in terms of implementations for client or server vendors.

5. Auto registration

5.1 Rationale

Alice wants to auto-register to the service the first time she opens the client.

The auto-registration feature enables a server to provision a client's User-ID and password from dialogue within the client. This is a new feature in the IMPS 1.3 specifications. The feature is intended to increase user take-up by facilitating first-time usage and registration of the service.

This section intends to clarify the use cases, how to ensure language support during auto-registration and how the client can distinguish the option for choosing to enter a desired User-ID amongst a list of server generated User-IDs.

5.2 Use cases and examples

1. Server assigns User-ID and password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is provisioned in the IM system

	Preconditions:
	Client, Server

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user launches IM client for the first time

2. Client sends a login request to the Server with an empty User-ID field

3. Server provisions the user choosing a User-ID and returns a login response indicating success with a Session-ID, User-ID and an auto-generated password

	Extension Scenarios:
	Server assigns User-ID based on MSISDN of the client

3b. Server discovers the MSISDN of the client, auto-provisions the user and returns a login response indicating success with a Session-ID, User-ID based on MSISDN and an auto-generated password

	Variations:
	

	Design Notes:
	

1. Examples

1. client send login-request with an empty User-ID

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>

2. Server assigns User-ID and returns Session-ID, User-ID and password

 <Login-Response>
 <User-ID>wv:newuser@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>

1. User selects User-ID and password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is provisioned in the IM system

	Preconditions:
	Client, Server

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user launches IM client for the first time

2. Client sends a login request to the Server with an empty User-ID field

3. Server returns a login response with a system message indicating that the end user must choose its User-ID

4. The client send a new login request with a system message response with the chosen (entered) User-ID in the VerificationKey field

5. Server verifies that the chosen User-ID is valid and not currently taken

6. Server provisions the user and returns a login response indicating success with a Session-ID, the chosen User-ID and an auto-generated password

	Extension Scenarios:
	User-ID invalid or in use

5b. Server returns a a login response with a system message listing a set of alternative User-IDs resembling the chosen User-ID

6b. Client or end user chooses alternative User-ID

7b. Flow continues in 5.

	Variations:
	

	Design Notes:
	

Discussions from OMA London meeting:

Claude came with a proposal on auto-registration, use case 5.2.2, that it should include a default user id proposed from the server.

Ørjan proposes that this should be an optional response from the server in use case 5.2.2.

Camilla comments that there needs to be an explanation that the server is pre-configured with use case 5.2.1 or 5.2.2 from case by case.

1. Examples

1. client sends login request with an empty User-ID

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>

2. server prompts the user to enter its own User-ID in a system message

 <Login-Response>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>436</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>Choose your desired User-ID</SystemMessageText>
 <VerificationMechanism>
 <InText>Enter your desired User-ID</InText>
 </VerificationMechanism>
 </SystemMessage>
 </SystemMessageList>
 </Result>
 </Login-Response>

3. user selects its own User-ID and client sends it in a system message response

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <DigestSchema>MD5</DigestSchema>
 <SessionCookie>session_cookie</SessionCookie>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <VerificationKey>myuserid</VerificationKey>
 </SystemMessageResponse>
 </SystemMessageResponseList>
 </Login-Request>

4. server provisions the user and returns Session-ID, User-ID and password

 <Login-Response>
 <User-ID>wv:myuserid@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>

1. Examples: User selects its own User-ID to one that is already taken

1. client sends login request with an empty User-ID

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>

2. server prompts the user to enter its own User-ID in a system message

 <Login-Response>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>436</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>Choose your desired User-ID</SystemMessageText>
 <VerificationMechanism>
 <InText>Enter your desired User-ID</InText>
 </VerificationMechanism>
 </SystemMessage>
 </SystemMessageList>
 </Result>
 </Login-Response>

3. user selects its own User-ID and client sends it in a system message response

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <DigestSchema>MD5</DigestSchema>
 <SessionCookie>session_cookie</SessionCookie>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <VerificationKey>myuserid</VerificationKey>
 </SystemMessageResponse>
 </SystemMessageResponseList>
 </Login-Request>

4. server finds the User-ID to be taken and returns a new system message indicating alternative User-IDs and the option of choosing a new User-ID

 <Login-Response>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>436</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#1</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>User-ID myuserid was taken. Choose your desired User-ID</SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>myuserid73</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>2</AnswerOptionID>
 <AnswerOptionText>myuserid74</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>3</AnswerOptionID>
 <AnswerOptionText>myuserid75</AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 <VerificationMechanism>
 <InText>Enter your desired User-ID</InText>
 </VerificationMechanism>
 </SystemMessage>
 </SystemMessageList>
 </Result>
 </Login-Response>

5. user enters a new User-ID and client sends it in a system message response

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <DigestSchema>MD5</DigestSchema>
 <SessionCookie>session_cookie</SessionCookie>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#1</SystemMessageID>
 <VerificationKey>anotheruserid</VerificationKey>
 </SystemMessageResponse>
 </SystemMessageResponseList>
 </Login-Request>

6. server provisions the user and returns Session-ID, User-ID and password

 <Login-Response>
 <User-ID>wv:anotheruserid@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>

1. Terms of use

Before using the IM service, operators usually require that the user agrees with the “terms of use” of the service. The scenario provided in this section shows how to use CSP capabilities to make available the terms of use to the user and get his response.

[image: image1.jpg]
	Actors
	End user, Client, Server

	Success Guarantees
	The user accepted the terms of use and is allowed to use the service

	Preconditions
	The user has not agreed previously with the terms of use

	Trigger
	The user launches his IMPS client to access the service

	Main success scenario Steps
	Description

	1
	The client sends a Login request primitive

	2
	The server responds with a Login response primitive with the result code 921 “registration confirmation” and a system message containing the terms of use text, the RequiresResponse = TRUE and the options available to the user.

	3
	The client displays the system and waits for the user’s selection. The user selects the last option; he wants to choose his User ID.

	4
	The client returns the user’s selection ChosenOptionID in a SystemMessageUser,

	5
	The server returns a Login response with the result code 200 “Successful”.

Exception flow:
	Step
	Description

	1 to 3
	Same as for the Successful flow.

	4
	The client returns the user’s selection: The “cancel” choice.

	5
	The server returns a Login response with the status code 903 “Operation requires a higher class of service” and a system message with a text indicating that the user has to agree to the terms of use in order to use the IM service. The RequiresResponse = FALSE.

The server ends the session.

	6
	The client displays the system message to the user and provides the user with the option to re-initiate another Login request.

5.3 Recommendation

The client and server SHOULD support the use cases and specific use of system messages as described in this section.

It is RECOMMENDED the client stores the password and username it gets from the server for future use.

5.4 Open issues
This is a place holder chapter. How can we allow for internationalization support (language) in the texts provided on the system messages? Currently there are at least two alternatives:
There are four options for providing this:

1. Client capability request included in login request. Disadvantage is that at this stage, the server does not yet know the user id of the client. Some client vendors do not want to implemented this is login requests.

2. Accept language header in http header

3. Client id – this is used in many requests/responses, so will add overhead to add it here

4. Session cookie -

 Open question what is the best solution.

6. Server verifies MSISDN of client

6.1 Rationale

"Alice wants to retrieve her password, receive an IM after a period of inactivity or log on with another mobile".

There are several use cases where the server requires the MSISDN of the client to be registered in the user's private profile, including if the user has several mobiles with different MSISDNs, if the server needs to send an WAP Push CIR message to the client, to verify the authenticity of a user or to retrieve the credentials of a user.

6.2 Use cases and examples

1. Server needs to know MSISDN of client

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user has updated MSISDN in server

	Preconditions:
	Client, Server, end user's account provisioned in the server.

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user is logged on to the service

2. Server sends a challenge to the client in an extension request, also indicating reply path of SMS

3. Client sends SMS with challenge

4. Server receives the SMS and registers the MSISDN with the Client-ID on the user private profile

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

1. Example

Claude suggests that this should be done by sending an extension request instead of system message. This was supported by SE. Extended request can be used. Every one agreed to change this use case to using extended request.

Claude will provide an example of an extended request for MS ISDN verification.

2 Server sends challenge "orkan" to client indicating that the reply number of the server is "+1260150000000".
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#M</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>%%MSISDN:orkan</SystemMessageText>
 <VerificationMechanism>+1260150000000</VerificationMechanism> </SystemMessage>
 </SystemMessageList>

3 Client sends SMS containing challenge "orkan" to "+1260150000000"

4 Server updates client profile with correct MSISDN number

6.3 Recommendation

The client and server SHOULD support the use cases and use of extended requests as described in this section.

7. Credential retrieval

7.1 Rationale

"Alice wants to retrieve her password when she logs on from another device"

Credential retrieval enables the user to log onto the service without the user having to type in his password. This is considered crucial for end-user take up as end users increasingly do not want to relate to having another set of passwords and usernames and to remember these as he moves from one client to another or changes terminal. Mobile operator studies show that approximately half the MSN users do not remember their password the first time they log onto the service from a new device.

7.2 Use cases and examples

1. User attempts to launch the service knowing his User-ID but not his password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is logged onto the service

	Preconditions:
	Client, Server, end user's account provisioned in the server. Network authentication is not used in this use case, so the password on the network cannot be empty for a normal login flow to work. If the server stores the password encrypted, then this use case will not work.

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user launches IM client

2. Client does a login request to the Server with an empty password

3. Server returns a system message, asking the client where he wants his password to be sent, including a list of known MSISDN, e-mail addresses and other online IM clients of that user.

4. Client chooses to get password on MSISDN number or email address

5. Server sends out password on the desired channel

6. Client manually makes another login request with password retrieved from the channel

	Extension Scenarios:
	Password retrieval through CSP 1.3

4b Client chooses to retrieve password through another online IM session

5b Server sends a system message to the other client asking him to verify that another client is trying to log onto the service, with answer options "allow" and "deny"

5b. End user presses "allow"

6b. The server allows the user to log in by returning login response with the password of the user for storage in the client

Continuation of the "b" use case:

5c End user presses "deny"

6c The server disallows the user to log in

	Variations:
	

	Design Notes:
	Note that this implies that the server cannot accept empty passwords for users.

1. Examples

2 client sends login request with an empty password

 <Login-Request>
 <User-ID>user_id<User-ID/>
 <Password/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>

3 Server returns a system message, asking the client where he wants his password to be sent, including a list of known MSISDN, e-mail addresses and other online IM clients of that user

 <Login-Response>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>436</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText Where would you like to send your password? </SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Telephone number 90000000</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>2</AnswerOptionID>
 <AnswerOptionText>Telephone number 90909090</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>3</AnswerOptionID>
 <AnswerOptionText>Email address me@mail.com</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>4</AnswerOptionID>
 <AnswerOptionText> Email address minime@mail.com</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>5</AnswerOptionID>
 <AnswerOptionText>Send it to all my online clients</AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 <
 </SystemMessage>
 </SystemMessageList>
 </Result>
 </Login-Response>

4 Client chooses to get password on MSISDN number or email address

 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <ChosenOptionID >2</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>

5 Server sends out password on the desired channel

6 Client manually makes another normal login request with password retrieved from the channel

1. Password retrieval through CSP 1.3

4b Client chooses to retrieve password through another online IM session

 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
<ChosenOptionID>5</ChosenOptionID > </SystemMessageResponse>
 </SystemMessageResponseList>

5b Server sends a system message to the other client asking him to verify that another client is trying to log onto the service, with answer options "allow" and "deny"

 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>Another client is trying to log onto the service with your username. Allow the client to log on?</SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Allow</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>2</AnswerOptionID>
 <AnswerOptionText>dDny</AnswerOptionText>
 </AnswerOption>

 </AnswerOptions>
 </SystemMessage>
 </SystemMessageList>
 </Result>

5b. End userchooses to allow the log on
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <ChosenOptionID>1</ChosenOptionID>

</SystemMessageResponse>
 </SystemMessageResponseList>

6b. The client logs in with an empty password again, and succeeds this time The password will be returned on the Login-Response for safe storage in the client.
<Login-Response>
 <User-ID>wv:newuser@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>

7.3 Recommendation

The client and server SHOULD support the use cases and use of system messages as described in this section.

8. Multi-sessions

8.1 Rationale

"Alice wants to have her PC and mobile client running at the same time"

The multi-session support is a feature to enable the user to be logged on with several clients at one time. The end user can then be logged on at e.g. his home computer, work computer and mobile phone(s) seamlessly and at the same time. Also, this ensures that if a user updates presence on one client, then the presence attributes are updated on all attached clients.

Several lists and structures such as contact lists, authorization lists, block/grant list, groups and public profile are attached to the User-ID and no particular client. Since these lists and structures can be altered by any one of the currently logged on clients on a User-ID, the clients needs to subscribe for such change notifications.

More rationale should be added here.

8.2 Presence attributes synchronization

To allow for detection of user presence attribute changes between multiple clients on the same account, a client is RECCOMENDED to subscribe for presence on its own UserID.
1. Use cases and examples

1. End user updates presence attributes on one of his active clients and the change is reflected in other active clients

	Actors:
	End user A, Client A1, Client A2, Server.

	Success Guarantees:
	End user presence update is reflected on all active clients

	Preconditions:
	End user A is logged onto the server with client A1 and A2.

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user changes presence attribute on client A1

2. Server receives presence updates and forwards to all active clients

3. Presence update is reflected on client A2

	Extension Scenarios:
	

	Variations:
	

1. Recommendation

1. Clients are RECOMMENDED to subscribe to the presence information of the own User ID. It is RECOMMENDED to subscribe to all user status presence attributes supported by the client.
8.3 User account list synchronization

Since presence authorization, block/grant lists, contact lists, groups and public profile can be altered by any one of the currently logged on clients on a User-ID, the clients needs to subscribe for such change notifications. Upon receipt of a notification the client is RECCOMENDED to fetch the updated list/structure on the server.
1. Use cases and examples

1. End user adds a contact to one of his active clients and the change is reflected in other active clients

	Actors:
	End user A, Client A1, Client A2, Server.

	Success Guarantees:
	End user update is reflected on all active clients

	Preconditions:
	End user A is logged onto the server with client A1 and A2.

	Trigger:
	Step 1

	Main Success Scenario:
	1 End user adds a contact on client A1

2 Server receives updates and forwards to all active clients

3 Contact list update is reflected on client A2

	Extension Scenarios:
	

	Variations:
	

1. Recommendation

All clients MUST subscribe to any of the following General Notification types which match the service tree of the client:

1. Authorization-Changed,

2. Block-List-Changed,

3. Block-List-UsageChange,

4. Contact-List-Created,

5. Contact-List-Changed,

6. Contact-List-Deleted,

7. Grant-List-Changed,

8. Grant-List-UsageChange,

9. Group-Created,

10. Group-Deleted,

11. Invitation-Accepted,

12. Invitation-Cancelled,

13. Invitation-Rejected,

14. OnlineETEMHandling-Updated,

15. PublicProfile-Updated,

16. Session-Priority-Adjusted

9. Client-ID

9.1 Rationale

According to IMPS 1.3 CSP [CSP], The Client-ID is a unique identifier of the IMPS client within a particular user and it must be a URI as defined in RFC 2396. Having a consistent client-ID simplifies the development of servers and clients. Client and server implementations should support the client-ID structure defined in this section.

9.2 Recommendation

The following structure is proposed for IMPS client-ID:

ClientID = "wv:" + SWName + SWVersion + "$" + OperatorKey + "@" + PhoneVendor + "." + PhoneModel

 + “.” + MagicNumber

Notes about the syntax:

· Characters between “ and “ are actual client-ID components.

· Strings not between “ and “ are Client-ID component names. They have to be replaced with an actual component.

· The plus sign represents the concatenation of the different components of the client-ID.

The meaning of each Client-ID component is described in the following table:
	Field
	Role
	Data type

	wv
	IMPS URI scheme
	Constant string

	SWName
	Short name of the client software
	Alphanumeric string

	SWVersion
	Client software base version
	Alphanumeric string

	OperatorKey
	Operator identifier
	Alphanumeric string

	PhoneVendor
	Phone vendor identifier
	alphanumeric string

	PhoneModel
	Phone model identifier
	alphanumeric string

	MagicNumber
	An optional identifier to uniquely identify a particular client within a particular user
	Alphanumeric string

As an example, for the following client-ID wv:ZOMI2.0.*$NoWire@FLY.X95.384759, the components are shown in the following Table:

	wv:
	SWName
	SWVersion
	$
	OperatorKey
	@
	PhoneVendor
	.
	PhoneModel
	.
	MagicNumber

	wv:
	ZOMI
	2.0.*
	$
	NoWire
	@
	FLY
	.
	X95
	.
	384759

10. Contact lists usage

10.1 Rationale

"Alice wants to see the same contact list on different clients."

The standard has opened for clients specifying their own contact lists names, attributes and subscriptions. The challenge with this is that when an end user switches from one client to another, his friends might not appear in the same way if at all on the new client. In addition, some client manufacturers use contact lists as place holders for blocked users, whereas others do not and can interpret the blocked list as a separate friends list to be represented in the client.

10.2 Use cases and examples

1. User logs on with client manufactured by A and then with client manufactured by B

	Actors:
	End user Alice, Client A, Client B, Server.

	Success Guarantees:
	End user sees no difference between the two clients

	Preconditions:
	

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice logs on to her brand new "A" terminal and retrieves her contact list

2 Alice loves new phones, buys terminal "B" and logs onto the service again, retrieving her contact list

	Extension Scenarios:
	2b. Alice logs on to terminal A and B at the same time, seeing the same contact lists.

	Variations:
	

	Design Notes:
	

1. Examples

NA

10.3 Recommendation

Clients SHOULD use a contact list named wv:userid/oma_allcontacts@domain to store all non-blocked friends. Friends blocked for presence SHOULD be stored in a contact list named wv:userid/oma_blockedcontacts@domain.

Both presence authorization and presence subscription will be done on the oma_allcontacts contact list. Presence blocking will be done by moving the friend from the oma_allcontacts contact list to the oma_blockedcontacts and by assigning the empty authorization on the blocked friend.

1. Contact list names

All clients must keep all non-blocked friends in a list named wv:userid/oma_allcontacts@domain. It is up to the client if this list should be visible in the user interface or not. If the client supports multiple contact lists (e.g., friends, co-workers) then upon adding a friend to any other list must also result in adding the friend to the oma_allcontacts contact list. Blocking a friend for presence will result in moving the friend from the oma_allcontacts contact list to the blocked list. Servers can provision the contact lists upon provisioning of the user. Clients who choose to display the list in the user interface must choose a human readable name for the contact list. The contact lists DisplayName property is not to be used.

Presence blocked users must be kept in a list named wv:userid/oma_blockedcontacts@domain. Blocking a friend for presence will result in moving the friend from the oma_allcontacts contact list to the oma_blockedcontacts, and by assigning the empty user authorization to the friend. Unblocking a friend from presence blocking will result in removing the empty user authorization on the friend and by moving the contact from the oma_blockedcontacts to the oma_allcontacts contact list.

1. Subscription

Presence subscription will be done on the oma_allcontacts contact list. Clients SHOULD subscribe to at least the following set of presence attributes:

1. UserAvailability

2. StatusText

3. CommCap

4. OnlineStatus

5. ClientType

6. ClientInfo

Clients SHOULD not subscribe for presence on other contact lists or on users directly.

1. Authorization

Clients SHOULD authorize for presence on the oma_allcontacts contact list. Blocked contacts will be moved from the oma_allcontacts contact list to the oma_blockedcontacts and clients SHOULD assign the empty presence authorization on users in the oma_blockedcontacts. Since presence authorizations are shared among clients on the same user, clients SHOULD fetch the current authorization on the oma_allcontacts contact list and only increase the authorization set if to include the required attributes by the client if needed. Clients SHOULD authorize at least the following the of presence attributes:

1. UserAvailability

2. StatusText

3. CommCap

4. OnlineStatus

5. ClientInfo
It is RECOMMENDED for clients to have the possibility to authorize for presence on other lists that the oma_allcontacts lists.
11. File sharing

11.1 Rationale

"Alice wants to share a file with Bob."

"Alice wants to use her camera as a web cam and show Bob what she is looking at."

The file sharing function will allow for streamed file sharing between clients.

11.2 Use cases and examples

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Bob streams the file sent from Alice to his device

	Preconditions:
	

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice invites Bob to see a file

2 Bob accepts the file

3 Client A starts streaming the file

4 Bob's device receives and shows the content

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

1. Examples

1 Alice invites Bob to see a file

<XML needed!!>

2 Bob accepts the file

<XML needed!!>

3 Client A starts streaming the file

<XML needed!!>

4 Bob's device receives and shows the content

<XML needed!!>

11.3 Recommendations

It is RECOMMENDED the client indicates it supports file sharing capabilities during client capability negotiations, by adding an abstract MIME type called "application/oma_file_sharing".

1. Protocol usage during invite phase

The overall proposals for CSP protocol usage for the invite phase of File Transfer feature are:

12. CSP Invite-Request/-Response are used when a CSP client want to invite contacts to participate in a file transfer. Some of the request/response elements will be used in a solution specific way:

12.1 The InviteContent element of the Invite-Request will be empty (indicating no URI).

12.2 The InviteResponse element of the Invite-Response will contain the URI to which the client is supposed to upload the file

13. CSP InviteUser-Request/-Response are used when a CSP clients are receiving invitations for FileTransfer from contacts.

13.1 The InviteContent element of the InviteUser-Request will contain the download URI. The InviteReason element of the Invite-Request will contain metadata of the file. The metadata content will consist of file name, file size, file type, and a flag indicating that the client should wait for another InviteUser-Request before starting to download the file. TODO: specify format.

1. Protocol usage during transfer phase

14. If the file transfer format specified a WAIT signal, then when the a file is transferred from server and is ready to be downloaded by a CSP client, another CSP InviteUser-Request/-Response will be used towards the CSP client.

15. The content of the CSP InviteUser-Request will be the same as during the invite phase, with the difference that the flag will now be indicating that the client should start downloading the file.

The client can choose to download a thumbnail first, by including an extra parameter to the download URI. (‘&thumbnail=true’ added to the querystring).

16. The uploading client will upload content to the specified URI by use of the POST method, and the downloading client will download content by use of the GET method. Unless a WAIT was specified, then the downloading client can start to download content at any time after responding to the invitation.

12. Presence attribute interpretation

12.1 Rationale

"Alice wants to log on as invisible to everyone else"

Having concise and consistent presence attributes ensures end users the possibility to portray their willingness to communicate to friends on his contact list. Slightly different presence attributes have been used by client manufacturers to signify an available IM client, and few manufacturers have defined an invisible attribute.

16. Background

From the Presence Enhanced Phone book Application Profile [PEP] and the Instant Message Application Profile [IM] the following are defined:

· AVAILABLE: Publisher is available with the means available in his/her device.

· DISCREET: Publisher has selective availability to communication means or to contacting parties. By setting this value, the publisher is asking for consideration before a communication is initiated to him/her or when he/she doesn’t respond to communication. The exact nature of the users communication status can be clarified using the status message. Some example use cases are:

· The publisher prefers to receive text messages rather than voice call because he’s in a meeting.

· The publisher is busy and wishes to receive only urgent communication.

· The publisher is selective about the communication parties to whose communication he responds.

· NOT_AVAILABLE:Publisher is not immediately available with the communication means in his/her device. The contacting party should not expect an immediate response/reaction by the publisher.

· UNKOWN: This value shows the publisher might not be logged onto the presence service and thus PEP is not able to provide any presence information about the publisher. When publisher does not have an active OMA Imps session the UserAvailability is replaced with this “UNKOWN” indicator.

· IDLE??? How can we represent IDLE. The advantage of introducing this concept means server can do presence throttling. The client can decide to go idle e.g. when his display is in stand-by mode. TBD

In addition, being connected to the IM server as invisible implies that the user appears as off-line everyone's contact list, but that the user himself receives presence updates and can send and receive IMs normally.

16. Availability and invisibility

16. Recommendation

Clients wishing to signalize their user availability SHOULD set the following presence attributes:

	Availability Status
	OnlineStatus
	CommCap/IM
	UserAvailability

	
	Value
	Qualifier
	Value
	Qualifier
	Value
	Qualifier

	NOT_AVAILABLE
	T
	T
	OPEN
	T
	NOT_AVAILABLE
	T

	DISCREET
	T
	T
	OPEN
	T
	DISCREET
	T

	AVAILABLE
	T
	T
	OPEN
	T
	AVAILABLE
	T

	IDLE
	?
	?
	?
	?
	?
	?

Note that all other combination of the OnlineStatus, CommCap/IM and UserAvailability attributes SHOULD be interpreted as offline.

Clients who want to appear as invisible are RECOMMENDED to set Qualifier of OnlineStatus to “F”. To support legacy devices adhering to older recommendations, the server is RECOMMENDED to interpret a client setting CommCap/IM to “CLOSED” as also setting the Qualifier of OnlineStatus to “F”.
In order to support invisibility directly when logging in, the server is RECOMMENDED to set the value of the Qualifier of OnlineStatus as “F” when a client logs in, and only change it to “T” once the client sends the first presence publishing primitive.

It is RECOMMENDED that a server does not send presence notifications to watchers of a user that is currently set to invisible.

13. End to end messaging

13.1 Rationale

"Alice wants to know whether Bob can receive the picture she wants to send him."

End to end messaging enriches the messaging experience as it enables a client to be aware of the capabilities of the recipient client. Typically, if Alice is chatting with Bob, the clients would signalize the capabilities of the other client to the end user via icons, for instance greying out the "send picture" icon to indicate that the other client does not support pictures.

16. Use cases and examples

1. Client A supports pictures, text and file transfers and chats with client B supporting text only

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Alice easily sees what capabilities Bob's client has

	Preconditions:
	Alice and Bob are logged on to the service with client A and B respectively

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice starts a chat dialogue with Bob

	Extension Scenarios:
	

	Variations:
	

1. ent A supports pictures, text and file transfers and chats with Bob who is logged on with 2 clients having different capabilities

	Actors:
	End user Alice, end user Bob, client A, client B1, client B2, Server.

	Success Guarantees:
	Alice easily sees what capabilities Bob's clients have

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with clients B1and B2 respectively

Client A supports text, pictures and nudges

Client B1 supports text

Client B2 supports text and pictures

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice starts a chat dialogue with Bob

2 Alice sees in her client that Bob can receive text and pictures

	Extension Scenarios:
	3 Alice sends a picture to Bob – go to multi-session use case

	Variations:
	

16. Recommendations

Servers SHOULD publish clients supported capabilities (including content types) in the ClientInfo->ClientContentLimit- presence attribute field.

Clients are RECOMMENDED to enable and disable functions (e.g., send picture) in the user interface in according to what communication parties support.

14. Rich content IM

1. Rationale

"Alice wants to nudge Bob."

A complete messaging experience enables the use of rich content from client to client. This implies being able to send typing alerts and formatted text from client to client, and independent of the manufacturer.

Nudges are “intrusions” on a conversation party's instant message user interface (message dialogue). Examples of nudges are shake, bump, moo, fart and honk. This has proven to be a popular means of communication for IM dialogues.

1.2 Rich Formatting of Plain Text Messages
To allow for in-text formatting of plain text instant messages as bold, italic and underline, it is RECCOMENDED that the client adheres to the following set of rendering rules for visual formatting of instant messages,
· Formatting rules only applies to instant messages sent as plain text (i.e., the MIME type text/plain),
· Text surrounded by the asterix character (*) SHOULD be displayed as bold,
· Text surrounded by the fore slash character (/) SHOULD be displayed as italic,
· Text surrounded by the underscore character (_) SHOULD be displayed as underlined,
· Text surrounded by any combination of the formatting characters should be displayed with the combined formatting (e.g., ‘*/bold-italic/*’ would be rendered as ‘bold-italic’)
· Any character except white space and line break can be placed within the formatting characters,
· Formatting characters SHOULD not be visible in the user interface on clients supporting formatting
1. Rich Text Formatting Example

The following message will appear as “Do you really want to come tonight?” in Bobs client.
See http://www.w3.org/TR/xhtml1/ for specifications<SendMessage-Request>

 <DeliveryReport>F</DeliveryReport>

 <MessageInfo>

 <ContentType>text/plain</ContentType>

 <ContentSize>37</ContentSize>

 <Recipient>

 <User>

 <UserID>wv:bob@imps.com</UserID>

 </User>

 </Recipient>

 <Sender>

 <User>

 <UserID>alice@imps.com</UserID>

 </User>

 </Sender>

 </MessageInfo>

 <ContentData>Do you *really* want to come tonight?</ContentData>

</SendMessage-Request>

1. Typing alerts

Typing alerts are informational instant messages sent between clients involved in a conversation to indicate to the recipient party about if the sending party is typing or not. Especially in a mobile context typing alerts are valuable to the recipient user since it can be expected that typing a message will take somewhat loner time than if done on a computer.

Typing alert messages are transported in CSP as instant messages with a content type of application/vnd.oma.imps.typing-alert and a content of either T or F. T indicates that the user is typing (or continuing to type) on an instant message and F indicates that the sending user will send content that has already been typed.

A recipient client SHOULD indicate that a sender is typing upon receiving a typing alert with content T. If now new instant message of any content type is received from the sending client within 20 seconds, the recipient client is RECCOMENDED to change the typing indication to indicate that the sending party has typed (or started to type) a message. Furthermore, if now new instant message (of any content) has been received after 60 seconds from when the last message was received, then the client is RECCOMMENDED to remove the typing indication.

Upon receipt of an instant message (of any content) from the sending client, the recipient client is RECCOMENDED to remove the typing alert (regardless of state), if any such indication exists.

The sending client must send a typing alert whenever the end user starts to compose a new instant message to a recipient. If the user is still typing after 10 seconds, the sending client is RECCOMENDED to send a new typing alert to the recipient party. Furthermore, if the end user chooses to erase all of the written content or close the composer window, then the sending client is RECCOMENDED to send a negative typing alert with content of F to erase the typing indication in the recipient client. The recipient client is RECCOMENDED to erase the typing (or has typed) indicator in receipt of a negative typing alert message.

Clients receiving the very first typing alert from a sender (i.e., there exist no indication in the UI that the sender and the recipient has an ongoing dialog) is RECCOMENED to ignore the typing alert.

1. Typing Alert Example

Bob starts typing a message in his message composer, and a typing alert is sent to the recipient Alice:

.<SendMessage-Request>

 <DeliveryReport>F</DeliveryReport>

 <MessageInfo>

 <ContentType>application/vnd.oma.imps.typing-alert</ContentType>

 <ContentSize>2</ContentSize>

 <Recipient>

 <User>

 <UserID>alice@imps.com</UserID>

 </User>

 </Recipient>

 <Sender>

 <User>

 <UserID>bob@imps.com</UserID>

 </User>

 </Sender>

 </MessageInfo>

 <ContentData>T</ContentData>

</SendMessage-Request>
The terminal that Alice uses indicates that Bob is typing a message to Alice. Bob stops to type immediately after the first couple of words. This makes Alice’s terminal show the “has typed text” indicator. Bob continues to type on his message to Alice and chooses to send the IM to Alice. This will upon receipt in Alice’s terminal erase the typing indicator on Bob.

14.3.3 Nudges

Nudging allows a user to get the attention of another user with whom s/he is having a conversation. A nudge is an IMPS instant message with a specific MIME type. A nudge can be a vibration, a sound, an animation, visual modifications of the UI or any combination of these. To get the attention of a contact, the client sending the nudge specifies the nudge MIME type with an optional contents body. The content body contains an optional nudge ID identifying a particular sound or action. When an IMPS client receives a nudge, it causes the client to do an action according to the nudge identifier.

The client sending a nudge SHOULD limit the number of nudges it sends per period of time to avoid annoying the recipient. The nudging frequency is an implementation choice. A client SHOULD allow a user to turn-off the nudging facility to avoid receiving nudges. When nudging is turned off, any instant message carrying a nudge SHOULD be ignored.

A client SHOULD send a nudge in a SendMessageRequest primitive; the content type SHOULD be “application/vnd.oma.imps+nudge; vendor=oma-imps”. The vendor=oma-imps defines 8 well defined nudges. The content of the nudge is defined by the number 1 through 8 as defined in the table below:

	Message Content
	Nudge type
	Suggested sound
	Suggested image/animation or visual modifications

	1
	Vibrate
	Device vibrates or emits a vibrating sound
	Chat window vibrates

	2
	Bark
	Resembling the sound made by a dog

	Picture/animation of a dog barking

	3
	Boom
	Sound of an explosion
	Picture or animation of a bomb going off or chat window exploding

	4
	Moo
	Noise as uttered by a cow
	Picture/animation of a cow mooing, or possibly walking across the chat window

	5
	Moan
	A low, sustained, mournful cry of pleasure

	Picture/animation of something pleasurely.

	6
	Vroom
	Similar sound to that of a racing car passing by
	Picture or animation of a racing car

Low, continuous, humming or sibilant sound, like

	 that made by bees with their wings (as in a annoying fashion)
	Picture/animation of a bee flying in

	8
	Fart
	Device emits a crackling or trumpeting sound (sound like the auditory pitch of a flatulence outburst)
	Picture/animation of an embarrassed chatter

The default nudge is the “application/vnd.oma.imps+nudge; vendor=oma-imps” with message content = 1.

Different values for the vendor CAN be supported. For instance the MIME type "application/vnd.oma.imps+nudge; vendor=operator-a” defines the set of nudges that are defined by the operator a.

Clients indicate what types of nudges they support during the content negotiations at login. If the recipient client does not support a certain type of nudges, then the server is RECOMMENDED to emit the default nudge if the client supports this. For instance, for a client made by vendor Rec, the following nudges supported could be negotiated at login: “application/vnd.oma.imps+nudge; vendor=oma-imps, application/vnd.oma.imps+nudge; vendor=rec". This indicates the client supports both the OMA standard defined nudges as defined in this document, and the nudges that vendor Rec has defined.

If the nudge mime type is specified without any vendor parameter it is to be considered as with the vendor parameter oma-imps.

15. Groups

1.1 Rationale

"Alice wants to create chatrooms in the same manner Bob does."

"Alice wants to chat with Bob and Clare at the same time."

Previous client implementations of groups have been varied, with the result that groups do not always work when chatting with users having clients from different manufacturers.

In addition, ad-hoc groups have not been implemented by all client manufacturers.

15.2 Use cases and examples

15.2.1 Alice creates a group

	Actors:
	End user Alice, client A, Server.

	Success Guarantees:
	Alice has successfully created a group

	Preconditions:
	Alice is logged on to the service with client A.

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice creates a group from her client

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

15.2.1.1 Examples

14. Alice invites Bob to a group

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Bob becomes a member of the group "chatty"

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with client B

Alice is member of group "chatty" and wants to invite Bob to this group

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice sends Bob a group invite

2 Bob accepts the invitation and becomes a member of the "chatty" group

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

14. Examples

14. Alice changes a group attribute

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Alice has successfully changed a group attribute, and all group members have received group change notifications

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with client B

Alice and Bob are members of the "chatty" group

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice changes the group from being open to restricted

2 Bob can see that the group has changed from open to restricted

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

14. Examples

14. Alice wants to have an extended conversation with Bob and Clare

	Actors:
	End user Alice, end user Bob, end user Clare, client A, client B, client C, Server.

	Success Guarantees:
	Alice has successfully created an ad-hoc group with Bob and Clare as members

	Preconditions:
	Alice is logged on to the service with client A

Bob is logged on to the service with client B

Clare is logged on to the service with client C

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice opens one chat dialogue with Bob and Clare as members

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

14. Examples

14. Recommendation

Comments from London OMA meeting:

Karl says the default should be private, open and non-searchable, which is what SE are doing.

Ørjan says we should wait for more comments on this chapter.

Karl says that we should include something about the show id option of a group. Camilla says it should be included as more and more operators are interested in having moderators, but ørjan says moderators can reject users based on screen names. Karl says some operators require it.

The group agreed to add that all clients should support the use of show id in a group.

Karl says we should consider rich content. Ørjan says things such as typing alerts in groups and extended conversations.

By default, new groups created by clients, SHOULD be private, open and searchable, with private messaging set to true.

The clients SHOULD support whisper, the server SHOULD support whispers.

Clients SHOULD support invitations to groups.

 Client SHOULD support group change notifications.

16. SMS only users

1.1 Rationale

"

SMS only users are subscribers who have not (yet) registered with the IM service. They can only receive and send/reply messages on SMS.
IM users can view SMS only users as any other IM service registered users. They can add SMS only users to contact lists, initiate IM dialogs with SMS only users, see SMS only users presence and block/unblock SMS only users.

Messages sent from an IM user to an SMS only user will be forwarded to the SMS only user on SMS. Replies from the SMS only user sent on SMS will be delivered as instant messages to the IM user.The SMSes are processed and received by the IM users as SMSes and IMs can be sent back to SMS only users that receive them as SMSes.
It is widely acknowledged that the recommendation of SMS only users increases the usage of IM services, allowing for a seamless usage of the messaging experience.

14. SMS only users presence state
	
	

	
	

Servers are RECOMMENDED to provide presence state of SMS only users in accordance with GSMA Phase 2 Service definition [GSMAPH2], also, since the ClientID element is required for client presence attributes in OMA IMPS 1.3, it is RECOMMENDED that all client presence attributes on SMS only users must use a ClientID containing the MSISDN (international format) of the SMS only users.

· OnlineStatus: Qualifier=T, PresenceValue=T, ClientID=MSISDN,

· ClientInfo: Qualifier=T, ClientType=CLI, ClientID=MSISDN,

· UserAvailability: Qualifier=T, PresenceValue=AVAILABLE,

· StatusText: Qualifier=T, PresenceValue=SMS-only:
Clients are RECOMMENDED to visually display SMS only users with an indication that they are on SMS.

17. Customized support

17. Rationale

"Alice wants to update her private profile"

In several operators' network, operators wish to link the use of the service with \service provider specific services. This could be for instance self-administration of the end user's subscription, or self-administration of the users private profile containing more data about the user that what is contained in the IM client.

17. Use cases and examples

Use cases will depend on service provider's requirements.

17. Recommendation

Customized support:

The group agreed that this should not be done by use of system message.

Claude agreed to provide an example with extensions instead.

IM clients SHOULD have the possibility to enter a separate choice in the client that links to a service provider specific URI. The effect of clicking this choice for the end user, would be to open the terminal's browser and link to the URL, while the client runs in the background.

This can also be done via a system message, every time the client logs on, it gets the following system message for entering a new menu item:
<SystemMessage>

 <SystemMessageID>id#0</SystemMessageID>

 <RequiresResponse>F</RequiresResponse>

 <SystemMessageText>MENUITEM:Manage My Subscriptions:http://wap.someserver.com/subscription</SystemMessageText>

</SystemMessage>

18. Service provider community indication
18. Rationale

"Alice wants to know whether Bob is on her price plan or not"

Service providers increasingly have advantageous price plans for end users that all belong to the same service provider. In some cases, these involve free calls to all the people having this price plan. However, it is not easy for the end user to know who belongs to what price plan. This can be solved by using a separate presence field to indicate the service provider the user belongs to.

18. Use cases and examples

TBD

18. Recommendation

If the server makes use of the PLMN field, clients SHOULD use it to represent these contacts with a different icon than the others.

Discussions from London OMA meeting

The group agreed to change the name of the chapter to "Service provided community indication"

The PLMN field should be updated by the server.

Claude proposed that we use a URL in the status content field. The disadvantage of using this field is that the client cannot have a presence picture instead.

The group agreed on this chapter
19. Optimized network usage

19. Rationale

"Alice wants to send a picture 33% faster than her old client does"

Most clients use BASE64 encoding for multi-media content on CSP requests. This leads to a 33% overhead on the network transmission of multi-media e.g. pictures, files and sound content. For plain XML there is no other way of transporting binary content, however, the WBXML specification allows for use of inline opaque data. This means that clients and servers can embed binary content “as is” without applying any transfer encoding.

The WBXML specification has no notion on required or optional features and the OMA IMPS specification does not mention this in particular. Also, existing clients on IMPS 1.1/1.2.1 have not used this feature. This implies that a server cannot use inline opaque data towards clients since a server cannot be sure that the client understands inline opaque data.

19. Recommendation

To indicate support for inline opaque data transfer clients and servers are RECCOMENDED to negotiate the IDENTITY transfer encoding during client capability negotiation.

20. Optimized CIR usage

20.1 Rationale

"Alice wants to use her phone for days and days without re-charging the battery"

The optimal usage of the CIR mechanisms leads to the ability of the client to be "always on" without consuming battery resources on the terminal when the client is not in active use.

20.2 Recommendation

The Clients are RECOMENDED to use at least one IP based CIR method for intensive periods of usage of the client. Clients are RECOMENDED in addition to use at least one SMS based CIR method for periods between intensive periods of usage of the client. It is RECOMMENDED that clients actively takes down the IP based CIR mechanism when it deems that the client is not in intensive use, in which case the server reverts to a SMS based CIR mechanism.

Provided the client supports more than one CIR mechanism at a time, the clients are RECOMENDED to prioritize between the different CIR mechanisms in the following order:

· STCP

· SUDP

· WAPUDP

· WAPSMS

· SSMS

· SHTTP

As given in the specification a server is to use CIR methods in the order and with availability as enlisted by the client.
21. Advice of charge

21.1 Rationale

Alice wants to send a large file to Bob, which is more expensive than a text IM, and the operator notify her of the cost.

System Messages can be displayed to the user at any time during the session. One of the usages could be to advice the user of the cost of a certain action. For example, the first time the user sends a file as an IM the operator could advice the user of the cost of this action.

This section intends to clarify how advice of charged can be used using System Messages.

21.2 Use cases and examples
21.2.1 Server assigns User-ID and password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is advised of the cost of the action

	Preconditions:
	Client, Server

	Trigger:
	Step 1

	Main Success Scenario:
	4. End user sends a file as an IM for the first time
5. Client sends a SendMessageRequest to the server
6. Server responds with a Status 100 and includes a System Message asking the user to accepted the cost of the message
7. User accepts the System Message and the client sends a SystemMessageUser to the server

8. Server responds with a SendMessageResponse indicating success

	Extension Scenarios:
	User rejects the cost
4b. User rejects the System Message and the client sends a SystemMessageUser to the server

5b. Server responds with a SendMessageResponse indicating failure

	Variations:
	

	Design Notes:
	

21.2.1.1 Examples

2. Client sends a SendMessageRequest to the server

<SendMessage-Request>
 <DeliveryReport>T</DeliveryReport>
 <MessageInfo>
 <ContentType>image/jpeg</ContentType>
 <ContentEncoding>BASE64</ContentEncoding>
 <ContentSize>1048576</ContentSize>
 <Recipient>
 <User><UserID>wv:bob@imps.com</UserID></User>
 </Recipient>
 <Sender>
 <User><UserID>wv:alice@imps.com</UserID></User>
 </Sender>
 <Validity>600</Validity>
 </MessageInfo>
 <ContentData>...</ContentData>
</SendMessage-Request>
3. Server responds with a Status 100 and includes a System Message asking the user to accepted the cost of the message
<Status>
 <Result>
 <Code>100</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>0x1234</SystemMessageID>
 <SystemMessageText>Sending this message will cost you $1.</SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>0</AnswerOptionID>
 <AnswerOptionText>Accept<AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Decline<AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 </SystemMessage>
 </SystemMessageList>
 </Result>
</Status>

4. User accepts the System Message and the client sends a SystemMessageUser to the server

<SystemMessage-User>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>0x1234</SystemMessageID>
 <ChosenOptionID>0</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>
</SystemMessage-User>

5. Server responds with a SendMessageResponse indicating success

<SendMessage-Response>
 <Result>
 <Code>200</Code>
 <Description>Successfully completed.</Description>
 </Result>
 <MessageID>0x0000f132</MessageID>
</SendMessage-Response>

User rejects the cost
4b. User rejects the System Message and the client sends a SystemMessageUser to the server
<SystemMessage-User>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>0x1234</SystemMessageID>
 <ChosenOptionID>1</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>
</SystemMessage-User>

5b. Server responds with a SendMessageResponse indicating failure

<SendMessage-Response>
 <Result>
 <Code>540</Code>
 <Description>Cost not accepted</Description>
 </Result>
 <MessageID>0x0000f132</MessageID>
</SendMessage-Response>

Appendix A. Change History
(Informative)

	Document Identifier
	Date
	Sections
	Description

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1
	23 Nov 2007
	All
	initial version of WP as permanent doc

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v2
	26 Nov
	10
	Blocklist name modified to OMA_blockedcontacts as per XDM implementation guidelines

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	01 Apr 2008
	All
	Incorporated Agreed CRs:
OMA-IM-2008-0009R01-CR_IMPS_IG_Rich_Plain_Text_and_Typing_Alerts
OMA-IM-2008-0010-CR_IG_Subscribing_to_own_presence

OMA-IM-2008-0011R01-CR_IG_Invisibility

OMA-IM-2008-0030-CR_IMPS_client_ID_structure

OMA-IM-2008-0038-CR_IMPS_IG_SMS_only_users

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	11 Apr 2008
	All
	Incorporated Agreed CRs:

OMA-IM-2008-0037R01-CR_IMPS_IG_Terms_of_Use
OMA-IM-2008-0040R02-CR_CR_IMPS_IG_Nudging
OMA-IM-2008-0041R01-CR_CR_Optimized_CIR_Usage

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_1-D
	14 Apr 2008
	21
	Incorporated Agreed CRs:
OMA-IM-2008-0053-CR_IMPS_IG_Advice_of_charge

Appendix B. <Additional Information>

If needed, add annex to provide additional information to support the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

B.1 App Headers

<More text>

B.1.1 More Headers

<More text>

B.1.1.1 Even More Headers

<More text>

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-WP- IMPS_1_3_IMPL-20080101-I]

