OMA-WP-IMPS_V1_3_IMPL-20080630-D
Page 3 (52)

	[image: image6.emf][8] LoginResponse = 200 Successful

Client Server

[1] LoginRequest (no User ID provided)

[2] LoginResponse = 921 registration confirmation

System message text for selecting a User ID.

Please select a user ID

[] jane@mmobile.com

[] janedoe@mobile.com

[] Select my own User ID

[4] SystemMessageUser = Option ID of user’s choice

[3] The client displays the system message

and wait for the user’s response (the user

selects the last choice).

[5] SystemMessageRequest with Intext

Enter your UserID:

[6] The client displays the system message

and wait for the user to type his UserID

[7] SystemMessageUser with Verification key

contains the User ID

	

	IMPS 1.3 Implementation Guidelines

	Draft Version – 30 June 2008

	Open Mobile Alliance

	OMA-WP-IMPS_V1_3_IMPL-20080630-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
3.
Terminology and Conventions
9
3.1
Conventions
9
3.2
Definitions
9
3.3
Abbreviations
9
4.
Introduction
10
5.
Auto registration
11
5.1
Rationale
11
5.2
Use cases and examples
11
5.2.1
Server assigns User-ID and password
11
5.2.2
User selects own User-ID
12
5.3
Recommendation
13
6.
Terms of use
14
6.1
Rationale
14
6.2
Recommendation
14
7.
Internationalization Support before Client Capability Negotiation
16
7.1
Rationale
16
7.2
Recommendation
16
8.
Server verifies MSISDN of client
17
8.1
Rationale
17
8.2
Recommendation
17
9.
Credential retrieval
18
9.1
Rationale
18
9.2
Use cases and examples
18
9.2.1
User attempts to launch the service knowing his User-ID but not his password
18
9.2.1.1
Examples
19
9.2.1.2
Password retrieval through CSP 1.3
20
9.3
Recommendation
20
10.
Multi-sessions
21
10.1
Rationale
21
10.2
Presence attributes synchronization
21
10.2.1
Use cases and examples
21
10.2.1.1
End user updates presence attributes on one of his active clients and the change is reflected in other active clients
21
10.2.2
Recommendation
21
10.3
User account list synchronization
22
10.3.1
Use cases and examples
22
10.3.1.1
End user adds a contact to one of his active clients and the change is reflected in other active clients
22
10.3.2
Recommendation
22
11.
Client-ID
23
11.1
Rationale
23
11.2
Recommendation
23
12.
Contact lists usage
24
12.1
Rationale
24
12.2
Use cases and examples
24
12.2.1
User logs on with client manufactured by A and then with client manufactured by B
24
12.3
Recommendation
24
12.3.1
Contact list names
24
12.3.2
Subscription
25
12.3.3
Authorization
25
13.
File sharing
26
13.1
Rationale
26
13.2
Recommendation and description
26
14.
Presence attribute interpretation
29
14.1
Rationale
29
14.2
Background
29
14.3
Recommendation
29
14.4
Idle state
30
14.5
Examples
31
15.
End to end messaging
32
15.1
Rationale
32
15.2
Use cases and examples
32
15.2.1
Client A supports pictures, text and file transfers and chats with client B supporting text only
32
15.2.2
Client A supports pictures, text and file transfers and chats with Bob who is logged on with 2 clients having different capabilities
32
15.3
Recommendations
33
16.
Rich content IM
34
16.1
Rationale
34
16.2
Rich Formatting of Plain Text Messages
34
16.2.1
Rich Text Formatting Example
34
16.3
Typing alerts
35
16.3.1
Typing Alert Example
35
16.4
Nudges
36
17.
Groups
37
17.1
Rationale
37
17.2
Use cases and examples
37
17.2.1
Alice creates a group
37
17.2.2
Alice invites Bob to a group
37
17.2.3
Alice changes a group attribute
38
17.2.4
Alice wants to have an extended conversation with Bob and Clare
38
17.3
Recommendation
38
18.
SMS only users
39
18.1
Rationale
39
18.2
Recommendation
39
19.
Customized support
40
19.1
Rationale
40
19.2
Recommendation
40
20.
Service provider community indication
42
20.1
Rationale
42
20.2
Recommendation
42
21.
Optimized network usage
43
21.1
Rationale
43
21.2
Recommendation
43
22.
Optimized CIR usage
44
22.1
Rationale
44
22.2
Recommendation
44
23.
Standalone SMS CIR compatibility
45
23.1
Rationale
45
23.2
Recommendation
45
23.3
Examples
45
24.
Advice of charge
47
24.1
Rationale
47
24.2
Use cases and examples
47
24.3
End user is advised of the cost of the action
47
24.3.1.1
User accepts cost example
47
24.3.1.2
User rejects the cost example
48
25.
Account Inquiry
49
25.1
Rationale
49
25.2
Recommendation
49
26.
Large Contact Lists
51
26.1
Rationale
51
26.2
Recommendation
51
26.3
Example
51

Figures
13 Figure 1: Auto-registration - User selects own User-ID

15Figure 2: Terms of use message flows

28Figure 3: File sharing example message flows

29Figure 4: File sharing message flow with wait to download signal and preview

50Figure 5: Account inquiry

Tables

11Table 1: Auto-registration - Server assigns User-ID and password

13Table 2: Auto-registration - User selects own User-ID

15Table 3: Terms-of-use - main success use case description

15Table 4: Terms-of-use - exception use case description

18Table 5: Credential Retrieval

21Table 6: Presence attribute synchronization

22Table 7: Contact list synchronization

23Table 8: Client-ID components

23Table 9: Client-ID example

24Table 10: Contact list usage

26Table 11: File sharing components

29Table 12: Presence attribute interpretation

30Table 13: IdleState information element

30Table 14: IdleSince information element

32Table 15: End-to-end messaging (text-only)

32Table 16: End-to-end messaging (multimedia)

36Table 17: OMA-IMPS nudge types

37Table 18: Group creation

37Table 19: Group invitation

38Table 20: Change of group attributes

38Table 21: Extended conversation

45Table 22: SMSPort information element

47Table 23: Advice of charge

50Table 24: Account inquiry success flow description

1. Scope

The objective of this white paper is to ensure homogeneous user experience across different IMPS applications based on the CSP 1.3 protocol. It will provide informative best practice recommendations for the CSP 1.3 protocol, ensuring consistent and compatible end-user experience for an IM user while communicating on a device from one manufacturer with end-users on devices from other manufacturers, or when an end-user uses multiple clients from various manufacturers.

The Implementation Guidelines are mainly written with a focus on applications written on top of CSP 1.3. They are aligned with GSMA IM Phase 1/2 Service Definition documents. Considerations for end-user experience when upgrading from older 1.1/1.2.1 clients to 1.3 clients(s) are also discussed. Considerations for SSP 1.3 are out of scope for this document.

2. References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[CSP]

	“Client-Server Protocol Session and Transactions Version 1.3”, OMA-TS-IMPS-CSP-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP DataType]
	 “Client-Server Protocol Data Types Version 1.3”, OMA-TS-IMPS-CSP_Data_Types-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP Trans]
	 “Client-Server Protocol Transport Bindings Version 1.3”, OMA-TS-IMPS-CSP_Transport-

V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP PTS]
	 “Client-Server Protocol Plain Text Syntax Version 1.3”, OMA-TS-IMPS-CSP_PTS-V1_3.

Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP XMLS]
	 “Client-Server Protocol XML Syntax Version 1.3”, OMA-TS-IMPS-CSP-XMLS-V1_3. Open

Mobile Alliance™. URL: http://www.openmobilealliance.org

	[CSP WBXML]
	 “Client-Server Protocol Binary XML Definition and Examples Version 1.3”, OMA-TS-IMPSCSP_

WBXML-V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[PA]
	 “Presence Attributes Version 1.3”, OMA-TS-IMPS-PA-V1_3. Open Mobile Alliance™. URL:

http://www.openmobilealliance.org

	PA XMLS]
	“Presence Attributes XML Syntax Version 1.3”, OMA-TS-IMPS-PA_XMLS-V1_3. Open

Mobile Alliance™. URL:http://www.openmobilealliance.org

	[AppChar]
	 “Application Characteristic for IMPS”, OMA-TS-wA-Application-Characteristic-for-IMPSV1_0. Open Mobile Alliance™. URL:http://www.openmobilealliance.org

	[MO]
	 “OMA IMPS Management Object Version 1.0”, OMA-TS-IMPS-MO-V1_0. Open Mobile

Alliance™. URL: http://www.openmobilealliance.org

	[SSP]
	 “Server-Server Protocol Semantics Document Version 1.3”, OMA-TS-IMPS-SSP-V1_3. Open

Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP XMLS]
	 “Server-Server Protocol XML Syntax Document Version 1.3”, OMA-TS-IMPS-SSP_XMLSV1_

3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[SSP Trans]
	 “Server-Server Protocol Transport Binding Version 1.3”, OMA-TS-IMPS-SSP_Transport-

V1_3. Open Mobile Alliance™. URL: http://www.openmobilealliance.org

	[RFC2119]
	"Key words for use in RFCs to Indicate Requirement Levels", http://www.ietf.org/rfc/rfc2119.txt

	[GSMAPH2]
	IM Phase 2 Service Definition, GSM Association Official Document SE.44, http://www.gsmworld.com/

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to Recommendations.

The key words "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3.2 Definitions

No new definitions.

3.3 Abbreviations

No new abbreviations.
4. Introduction

The goal of this white paper is to ensure homogeneous user experience across different IMPS Applications.

Although the current IMPS 1.3 enabler package provides a complete architecture, reference points and interfaces, and protocol specifications, there have been some interoperability issues at an application level as two or more applications that implement similar services using the same IMPS 1.3 technology do not behave in the same manner in the same situations. However, a lot of the options appear without clear guidelines about what would happen when two or more transactions and options are combined and used in a certain situation. This document is intended to be such guideline by describing:

· Rationale – in general this is described as a use case that is perceived by the end user

· Problem Statement describing what an issue(s) or a requirement(s) is when implementing the use case

· Recommendation that will fulfill the use case and the requirement when using IMPS 1.3

Note that this document is not supposed to change or bend the existing IMPS 1.3 standard. The goal of this document is to support the use cases that are found as urgent in the market without breaking a compatibility with the implementations that do not necessarily follow this guideline but still use the IMPS 1.3 as base technology.

Also note this document is solely informative and thus there is NO conformance requirement or interoperability test consideration against this document.

Each section of this document is organized into a main chapter, whose name is intended to describe the issue, a sub-section entitled "Rationale" justifying the inclusion of the topic in this document, a second optional sub-section with use cases describing the intended end user experience relevant to the section including examples of requests and responses (only transaction content will be shown in examples) and a third sub-section entitled "Recommendation" which describes the recommendations in terms of implementations for client or server vendors.

5. Auto registration

5.1 Rationale

“Alice wants to auto-register to the service the first time she opens the client.”
The auto-registration feature enables a server to provision a client's User-ID and password from the client. This is a new feature in the IMPS 1.3 specifications. The feature is intended to increase user take-up by facilitating first-time usage and registration of the service.

5.2 Use cases and examples

5.2.1 Server assigns User-ID and password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is provisioned in the IM system

	Preconditions:
	Client, Server

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user launches IM client for the first time

2. Client sends a login request to the Server with an empty User-ID field

3. Server provisions the user choosing a User-ID and returns a login response indicating success with a Session-ID, User-ID and an auto-generated password

	Extension Scenarios:
	Server assigns User-ID based on MSISDN of the client

3b. Server discovers the MSISDN of the client, auto-provisions the user and returns a login response indicating success with a Session-ID, User-ID based on MSISDN and an auto-generated password

	Variations:
	

	Design Notes:
	

Table 1: Auto-registration - Server assigns User-ID and password

1. Client sends a login request to the Server with an empty User-ID field

 <Login-Request>
 <User-ID/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>
2. Server provisions the user choosing a User-ID and returns a login response indicating success with a Session-ID, User-ID and an auto-generated password

 <Login-Response>
 <User-ID>wv:newuser@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>
5.2.2 User selects own User-ID
[image: image1.jpg]«“+OMa

Open Mobile Alliance

 Figure 1: Auto-registration - User selects own User-ID
	Actors
	End user, Client, Server

	Success Guarantees
	End user is provisioned in the IM system

	Preconditions
	The user has not registered before and does not have a User ID.

	Trigger
	The user launches his IMPS client to access the service.

	Main success scenario Steps
	Description

	1
	The client sends a Login request primitive without a user ID or a password

	2
	The server authenticates the user with network authentication information and returns a Login response primitive with the result code 921 “registration confirmation” and a system message with the following:

Information about user ID selection

The RequiresResponse = TRUE

The various options available to the user.

	3
	The client displays the system and waits for the user’s selection. The user selects the last option; he wants to choose his User ID.

	4
	The client returns the user’s selection ChosenOptionID in a SystemMessageUser,

	5
	The server sends a SystemMessageRequest with the Intext field asking the user to enter a User ID.

	6
	The client displays the system and waits for the user to enter a User ID.

	7
	The client sends the User ID in the VerificationKey element of the SystemMessageUser.

	8
	Server verifies that the chosen User-ID is valid and not currently taken
The server returns a Login response with the User ID selected by the user and the result code 200 “Successful”.

Note: Future Authentications will be done according to network authentication procedures.

	8a
	Alternate step:
The server verifies that the chosen User-ID is valid and not currently taken
The server returns a Login response with the User ID selected by the user, a password selected by the server and the result code 200 “Successful”.

Note: Future authentication will be done according to either CSP User ID and password authentication or network authentication procedures.

Table 2: Auto-registration - User selects own User-ID
5.3 Recommendation

The client and server SHOULD support the use cases and specific use of system messages as described in this section.

It is RECOMMENDED that the client stores the password and username it gets from the server for future use.

6. Terms of use

6.1 Rationale

"Alice's operator wants to inform her of the terms of using the service."
Before using the IM service, operators or legislation often requires that the user agrees with the “terms of use” of the service.

6.2 Recommendation

The scenario provided in this section provides a recommendation on how to use CSP capabilities to make available the terms of use to the user and get his response.

[image: image4.emf]Client IM Gateway

[1] LoginRequest

[2] LoginResponse = 436 with system message

Text for Terms of use or an informative text with a

URL pointing to the terms of use.

[] Accept

[] Reject

[4] SystemMessageUser = Option ID of Accept

[5] Status = 200 Successful

[3] The client displays the system message

and wait for the user’s response

Figure 2: Terms of use message flows
	Actors
	End user, Client, Server

	Success Guarantees
	The user accepted the terms of use and is allowed to use the service

	Preconditions
	The user has not agreed previously with the terms of use

	Trigger
	The user launches his IMPS client to access the service

	Main success scenario Steps
	Description

	1
	The client sends a Login request primitive

	2
	The server responds with a Login response primitive with the result code 921 “registration confirmation” and a system message containing the terms of use text or an informative text with a URL pointing to the terms of use if the text is too long, the RequiresResponse = TRUE and the options available to the user.

	3
	The client displays the system and waits for the user’s selection. The user selects the last option; he wants to choose his User ID.

	4
	The client returns the user’s selection ChosenOptionID in a SystemMessageUser,

	5
	The server returns a Login response with the result code 200 “Successful”.

Table 3: Terms-of-use - main success use case description
Exception flow:

	Step
	Description

	1 to 3
	Same as for the Successful flow.

	4
	The client returns the user’s selection: The “reject” choice.

	5
	The server returns a Login response with the status code 903 “Operation requires a higher class of service” and a system message with a text indicating that the user has to agree to the terms of use in order to use the IM service. The RequiresResponse = FALSE.

The server ends the session.

	6
	The client displays the system message to the user and provides the user with the option to re-initiate another Login request.

Table 4: Terms-of-use - exception use case description
7. Internationalization Support before Client Capability Negotiation

7.1 Rationale
“Alice wants to view terms and conditions during login in a language of her own preference.”

In IMPS a client can negotiate preferred language for internationalizable text by setting the DefaultLanguage on the ClientCapability-Request. Unfortunately this only applies to messages received from the server after client capability negotiation.

On auto registration, terms and conditions and the alike, a user will be presented with text messages (e.g., “Choose your own UserID”, “By using this service…”).

7.2 Recommendation

To allow for a client to indicate to the server which language the user prefers, it is RECOMMENDED for clients to add the Accept-Language HTTP header tag on all requests until client capabilities has been negotiated.

The Accept-Language HTTP tags format is defined in [RFC2616] (and RFC[1766]) and is different from the format defined on the DefaultLanguage element (three letter language code as specified in [ISO639-2]).

Example of a HTTP header Accept-Language tag:

da, en-gb;q=0.8, en;q=0.7

which means: “I prefer Danish, but will accept British English and other types of English”.

Clients are RECOMMENDED to only use the Accept-Language tag until client capabilities has been negotiated to save bandwidth usage.

Servers are RECOMMENDED to ignore the Accept-Language HTTP header tag once client capabilities have been negotiated.

8. Server verifies MSISDN of client

8.1 Rationale

"Alice wants to receive an IM after a period of inactivity, retrieve her password or log on with another mobile".

There are several use cases where the server requires the MSISDN of the client to be registered in the user's private profile, including if the user has several mobiles with different MSISDNs, if the server needs to send an WAP Push CIR message to the client, to verify the authenticity of a user or to retrieve the credentials of a user.

8.2 Recommendation

It is RECOMMENDED clients negotiate the use of SSMS CIR during client capabilities negotiation. It is further RECOMMENED that the server consequently uses the "HELO" SMS-MO it receives from the client in order to find and update the MSISDN of the client.
9. Credential retrieval

9.1 Rationale

"Alice wants to retrieve her password when she logs on from another device."

Credential retrieval enables the user to log onto the service without having to type in his password. This is considered crucial for end-user take up as end users increasingly do not want to relate to having another set of passwords and usernames and to remember these as he moves from one client to another or changes terminal.

9.2 Use cases and examples

9.2.1 User attempts to launch the service knowing his User-ID but not his password

	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is logged onto the service

	Preconditions:
	Client, Server, end user's account provisioned in the server. Network authentication is not used in this use case, so the password on the network cannot be empty for a normal login flow to work. If the server stores the password encrypted, then this use case will not work.

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user launches IM client

2. Client does a login request to the Server with an empty password

3. Server returns a system message, asking the client where he wants his password to be sent, including a list of known MSISDN, e-mail addresses and other online IM clients of that user.

4. Client chooses to get password on MSISDN number or email address

5. Server sends out password on the desired channel

6. Client manually makes another login request with password retrieved from the channel

	Extension Scenarios:
	Password retrieval through CSP 1.3

4b Client chooses to retrieve password through another online IM session

5b Server sends a system message to the other client asking him to verify that another client is trying to log onto the service, with answer options "allow" and "deny"

5b. End user presses "allow"

6b. The server allows the user to log in by returning login response with the password of the user for storage in the client

Continuation of the "b" use case:

5c End user presses "deny"

6c The server disallows the user to log in

	Variations:
	

	Design Notes:
	Note that this implies that the server cannot accept empty passwords for users.

Table 5: Credential Retrieval

9.2.1.1 Examples

1 client sends login request with an empty password

 <Login-Request>
 <User-ID>user_id<User-ID/>
 <Password/>
 <ClientID>client_id</ClientID>
 <SessionCookie>session_cookie</SessionCookie>
 </Login-Request>

2 Server returns a system message, asking the client where he wants his password to be sent, including a list of known MSISDN, e-mail addresses and other online IM clients of that user

 <Login-Response>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>436</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText Where would you like to send your password?</SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Telephone number 90000000</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>2</AnswerOptionID>
 <AnswerOptionText>Telephone number 90909090</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>3</AnswerOptionID>
 <AnswerOptionText>Email address me@mail.com</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>4</AnswerOptionID>
 <AnswerOptionText> Email address minime@mail.com</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>5</AnswerOptionID>
 <AnswerOptionText>Send it to all my online clients</AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 </SystemMessage>
 </SystemMessageList>
 </Result>
 </Login-Response>

3 Client chooses to get password on MSISDN number or email address

 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <ChosenOptionID >2</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>

4 Server sends out password on the desired channel

5 Client manually makes another normal login request with password retrieved from the channel

9.2.1.2 Password retrieval through CSP 1.3

3. Client chooses to retrieve password through another online IM session

 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <ChosenOptionID>5</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>
4. Server sends a system message to the other client asking him to verify that another client is trying to log onto the service, with answer options "allow" and "deny"

 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>id#0</SystemMessageID>
 <RequiresResponse>T</RequiresResponse>
 <SystemMessageText>
 Another client is trying to log onto the service with your username.
 Allow the client to log on?
 </SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Allow</AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>2</AnswerOptionID>
 <AnswerOptionText>Deny</AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 </SystemMessage>
 </SystemMessageList>

5. End user chooses to allow the log on

 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>id#0</SystemMessageID>
 <ChosenOptionID>1</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>

6. The client logs in with an empty password again, and succeeds this time The password will be returned on the Login-Response for safe storage in the client.

 <Login-Response>
 <User-ID>wv:newuser@imps.com</User-ID>
 <Password>password</Password>
 <ClientID>client_id</ClientID>
 <Result>
 <Code>200</Code>
 </Result>
 <SessionID>session_id</SessionID>
 <KeepAliveTime>3600</KeepAliveTime>
 <CapabilityRequest>T</CapabilityRequest>
 </Login-Response>

9.3 Recommendation

Clients and servers are RECCOMENDED to support the use cases and use of system messages as described in this section.

10. Multi-sessions

10.1 Rationale

"Alice wants to have her PC and mobile client running at the same time."

The multi-session support is a feature to enable the user to be logged on with several clients at one time. The end user can then be logged on at e.g. his home computer, work computer and mobile phone(s) seamlessly and at the same time. Also, this ensures that if a user updates presence on one client, then the presence attributes are updated on all attached clients.

Several lists and structures such as contact lists, authorization lists, block/grant list, groups and public profile are attached to the User-ID and no particular client. Since these lists and structures can be altered by any one of the currently logged on clients on a User-ID, the clients need to subscribe to changes for these structures.

10.2 Presence attributes synchronization
10.2.1 Use cases and examples
10.2.1.1 End user updates presence attributes on one of his active clients and the change is reflected in other active clients

	Actors:
	End user A, Client A1, Client A2, Server.

	Success Guarantees:
	End user presence update is reflected on all active clients

	Preconditions:
	End user A is logged onto the server with client A1 and A2.

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user changes presence attribute on client A1

2. Server receives presence updates and forwards to all active clients

3. Presence update is reflected on client A2

	Extension Scenarios:
	

	Variations:
	

Table 6: Presence attribute synchronization
10.2.2 Recommendation

Clients are RECOMMENDED to subscribe to the presence information of the own User ID. It is RECOMMENDED to subscribe to all user status presence attributes supported by the client.

10.3 User account list synchronization

Since presence authorization, block/grant lists, contact lists, groups and public profile can be altered by any one of the currently online clients of a particular User-ID, the clients need to subscribe for such change notifications. Upon receipt of a notification the client is RECOMMENDED to fetch the updated list/structure on the server.

10.3.1 Use cases and examples

10.3.1.1 End user adds a contact to one of his active clients and the change is reflected in other active clients

	Actors:
	End user A, Client A1, Client A2, Server.

	Success Guarantees:
	End user update is reflected on all active clients

	Preconditions:
	End user A is logged onto the server with client A1 and A2.

	Trigger:
	Step 1

	Main Success Scenario:
	1 End user adds a contact on client A1

2 Server receives updates and forwards to all active clients

3 Contact list update is reflected on client A2

	Extension Scenarios:
	

	Variations:
	

Table 7: Contact list synchronization
10.3.2 Recommendation

All clients SHOULD subscribe to any of the following General Notification types which match the service tree of the client:

1. Authorization-Changed,

2. Block-List-Changed,

3. Block-List-UsageChange,

4. Contact-List-Created,

5. Contact-List-Changed,

6. Contact-List-Deleted,

7. Grant-List-Changed,

8. Grant-List-UsageChange,

9. Group-Created,

10. Group-Deleted,

11. Invitation-Accepted,

12. Invitation-Cancelled,

13. Invitation-Rejected,

14. OnlineETEMHandling-Updated,

15. PublicProfile-Updated,

16. Session-Priority-Adjusted

11. Client-ID

11.1 Rationale

According to IMPS 1.3 CSP [CSP], the Client-ID is a unique identifier of the IMPS client within a particular user and it must be a URI as defined in RFC 2396. Having a consistent Client-ID simplifies the development of servers and clients. Client and server implementations should support the Client-ID structure defined in this section.

11.2 Recommendation

The following structure is proposed for IMPS Client-ID:

Client-ID = "wv:" + SWName + SWVersion + "$" + OperatorKey + "@" + PhoneVendor + "." + PhoneModel + “.” + UniqueID

Notes about the syntax:

· Characters between “ and “ are actual Client-ID components.

· Strings not between “ and “ are Client-ID component names. They have to be replaced with an actual component.

· The plus sign represents the concatenation of the different components of the Client-ID.

The meaning of each Client-ID component is described in the following table:

	Field
	Role
	Data type

	wv
	IMPS URI scheme
	Constant string

	SWName
	Short name of the client software
	Alphanumeric string

	SWVersion
	Client software base version
	Alphanumeric string

	OperatorKey
	Operator identifier
	Alphanumeric string

	PhoneVendor
	Phone vendor identifier
	Alphanumeric string

	PhoneModel
	Phone model identifier
	Alphanumeric string

	UniqueID
	An identifier to uniquely identify a particular client within a particular user
	Alphanumeric string

Table 8: Client-ID components
As an example, for the following Client-ID wv:ZOMI2.0.*$NoWire@FLY.X95.384759, the components are shown in the following Table:

	wv:
	SWName
	SWVersion
	$
	OperatorKey
	@
	PhoneVendor
	.
	PhoneModel
	.
	UniqueID

	wv:
	ZOMI
	2.0.*
	$
	NoWire
	@
	FLY
	.
	X95
	.
	384759

Table 9: Client-ID example
The generated Client-ID for a particular client within a particular user SHOULD be stored safely on the client device so that it can be re-used across sessions on the user.

12. Contact lists usage

12.1 Rationale

"Alice wants to see the same contact list on different clients."

The standard has opened for clients specifying their own contact lists names, authorization lists and subscriptions. The challenge with this is that when an end user switches from one client to another, his contact list might not appear in the same way if at all on the new client. In addition, some client manufacturers use contact lists as place holders for blocked users, whereas others do not and can interpret the blocked list as a separate friends list to be represented in the client.

12.2 Use cases and examples

12.2.1 User logs on with client manufactured by A and then with client manufactured by B

	Actors:
	End user Alice, Client A, Client B, Server.

	Success Guarantees:
	End user sees no difference between the two clients

	Preconditions:
	

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice logs on to her brand new "A" terminal and retrieves her contact list

2 Alice loves new phones, buys terminal "B" and logs onto the service again, retrieving her contact list

	Extension Scenarios:
	2b. Alice logs on to terminal A and B at the same time, seeing the same contact lists.

	Variations:
	

Table 10: Contact list usage
12.3 Recommendation

Clients SHOULD use a contact list named wv:userid/oma_allcontacts@domain to store all non-blocked friends. Friends blocked for presence SHOULD be stored in a contact list named wv:userid/oma_blockedcontacts@domain.

Both presence authorization and presence subscription will be done on the oma_allcontacts contact list. Presence blocking will be done by moving the friend from the oma_allcontacts contact list to the oma_blockedcontacts and by assigning the empty authorization on the blocked friend.

12.3.1 Contact list names

All clients must keep all non-blocked friends in a list named wv:userid/oma_allcontacts@domain. It is up to the client if this list should be visible in the user interface or not. If the client supports multiple contact lists (e.g., friends, co-workers) then upon adding a friend to any other list must also result in adding the friend to the oma_allcontacts contact list. Blocking a friend for presence will result in moving the friend from the oma_allcontacts contact list to the blocked list. Servers can provision the contact lists upon provisioning of the user. Clients who choose to display the list in the user interface must choose a human readable name for the contact list. The contact lists DisplayName property is not to be used.

Presence blocked users must be kept in a list named wv:userid/oma_blockedcontacts@domain. Blocking a friend for presence will result in moving the friend from the oma_allcontacts contact list to the oma_blockedcontacts, and by assigning the empty user authorization to the friend. Unblocking a friend from presence blocking will result in removing the empty user authorization on the friend and by moving the contact from the oma_blockedcontacts to the oma_allcontacts contact list.

12.3.2 Subscription

Presence subscription will be done on the oma_allcontacts contact list. Clients SHOULD subscribe to at least the following set of presence attributes:

1. UserAvailability

2. StatusText

3. CommCap

4. OnlineStatus

5. ClientType

6. ClientInfo

Clients SHOULD not subscribe for presence on other contact lists or on users directly.

12.3.3 Authorization

Clients SHOULD authorize for presence on the oma_allcontacts contact list. Blocked contacts will be moved from the oma_allcontacts contact list to the oma_blockedcontacts and clients SHOULD assign the empty presence authorization on users in the oma_blockedcontacts. Since presence authorizations are shared among clients on the same user, clients SHOULD fetch the current authorization on the oma_allcontacts contact list and only increase the authorization set if to include the required attributes by the client if needed. Clients SHOULD authorize at least the following the of presence attributes:

1. UserAvailability

2. StatusText

3. CommCap

4. OnlineStatus

5. ClientInfo

It is RECOMMENDED for clients to have the possibility to authorize for presence on other lists that the oma_allcontacts lists.

13. File sharing

13.1 Rationale

"Alice wants to share a file with Bob."

The file sharing function allows for file transfer between clients. The receiving end can accept or deny the file transfer to take place. Also, the content of the file transferred will not be subjected to any content transcoding as IM content may be.

13.2 Recommendation and description

In order to support file transfer a new content type is introduced:

application/vnd.oma.imps.filetransfer

Any client supporting the file transfer mechanism will have to negotiate support for the OMA IMPS file transfer specific content-type during client capability negotiation.

Note that content length and parser size negotiated during client capability negotiation is not applicable to file sharing. The receiver end can choose to download the file based upon the file size as presented from the sender end.
The standard IMPS invitation mechanism is used to provide for invitation to file transfer. The inviting client send an invitation to the receiving client with invite type SC, content type application/vnd.oma.imps.filetransfer and meta-data about the file to transfer. The URLList of the Invite-Request will be ignored by the server.

Meta-data about the file to transfer will be carried in the InviteNote on the Invite-Request. The format of the meta-data is a series of parameters

	Parameter
	Description
	Data type
	Mandatory

	FILENAME
	File name
	String
	YES

	FILESIZE
	Size of the file in bytes
	String
	YES

	FILETYPE
	MIME content type of the file
	String
	YES

	WAIT_TO_DOWNLOAD
	Indicates that the client must wait for a new InviteUser-Request before downloading the file. Value can be true or false.
	Boolean (true or false)
	NO

	PREVIEWABLE
	Indicates that the content is available in a server generated preview (e.g. a thumbnail for images)
	Boolean (true or false)
	NO

Table 11: File sharing components

Example 1:

 FILENAME=document.doc;FILESIZE=2000;FILETYPE;application/msword

Example 2:

 FILENAME=image.jpg;FILESIZE=10000;FILETYPE=image/jpeg;WAIT_TO_DOWNLOAD=true;PREVIEWABLE=true

The WAIT_TO_DOWNLOAD flag is used as an indicator to the receiving client that it must wait to start downloading the file until a new InviteUser-Request is received from the server. This mechanism is used in deployment cases where the entire file must be transferred to the server before download can start (e.g., MSN gateways).

The PREVIEWABLE flag is an indicator to the receiving client that the server can provide a thumbnail for the content. The thumbnail will be suitable for displaying in e.g. a chat dialog window.

Message flow during invitation and file transfer where the file download can be started immediately after accepting the file to be transferred:

[image: image2.png]Sender

Invite-Request

Server

Receiver

ContentType: application/ynd.oma.imps fletransfer

IniteType: SC

URLList: Empty - ignored
InviteNote: FILENAME=document doc; FILE!

SIZE:20000;FILETYPE:application/msword

Status

Invite-Response

InviteUser-Request

URLList: http://sever/content/528958920

InviteNote: FILENAME=document.doc; FILESIZE:20000; FILETYPE: application/msword

Status

InviteUser-Response

Acceptane

Status

Acceptance: T

RespanseNote: http://server/content/528958920

Status

GET hitp://server/content/528958920

POST hitp://server/content/528958320

(upload complted)

Sender

(download complted)

Server

Receiver

Figure 3: File sharing example message flows
The invitation sent to the receiving client will in addition to the above mentioned information also have a server generated URL on which the file can be downloaded from. A server is RECOMMENDED to protect the inviting and invited users privacy and not allow any other user to download content from the referred URL.

If the invited user accepts the file transfer invitation and the WAIT_TO_DOWNLOAD flags is false, then the invited client can start downloading the file from the referred location immediately. Servers are RECOMMENDED to allow for download to start even before upload has started from the inviting clients end.

The Invite-Response sent to the inviting user will in case of invitation acceptance carry the upload URL in the ResponseNote field. The inviting client can start to upload the file immediately after receiving a positive acceptance response.

Servers which implement full upload before download do not need to allow for content download more than one time (i.e, the content can be deleted once it has been completely downloaded).

[image: image3.png]Sender

Invite-Request

Server

ContentType: application/ynd.oma.imps fletransfer
IniteType: SC
URLList: Empty - ignored

IniteNote: FILENAME=image png;FILESIZE:5000; FILETYPE image/png

Status

Invite-Response

Receiver

InviteUser-Request

il
URLList: http://sever/content/528958920

InviteNote: FILENAME=image. png; FILESIZE:5000;FILETYPE:image/png;
WAIT_TO_DOWNLOAD=true; PREVIEWABLE=true

Status

InviteUser-Response

Acceptane

Status

Acceptance: T

RespanseNote: hitp://server/content/528958920

Status

POST hitp://senver/content/528958920

InviteUser-Request

il
URLList: http://sever/content/528958920
InviteNote: FILENAME=image. png; FILESIZE:5000;FILETYPE:image/png;
false; PREVIEWABLE=true

[opt J

Tclient downloads thumbnail]

GET hitp://server/content/5289589207preview=true

(upload complted)

GET hitp://server/content/528958920

Sender

(download complted)

Server

Receiver

Figure 4: File sharing message flow with wait to download signal and preview
The inviting client must use the HTTP POST method to the server provided URL to upload the file, and the invited client must use the HTTP GET method to download the file.

If the server finds it possible to provide a preview of the file content, then it must make the previewable version of the content available on the same URL as where the content can be downloaded – differing only in the URL parameter preview=true.

14. Presence attribute interpretation

14.1 Rationale

"Alice wants to log on as invisible to everyone else"

Having concise and consistent presence attributes ensures end users the possibility to portray their willingness to communicate to friends on his contact list. Slightly different presence attributes have been used by client manufacturers to signify an available IM client, and few manufacturers have defined an invisible attribute.

14.2 Background

From the Presence Enhanced Phone book Application Profile [PEP] and the Instant Message Application Profile [IM] the following are defined:

· AVAILABLE: Publisher is available with the means available in his/her device.

· DISCREET: Publisher has selective availability to communication means or to contacting parties. By setting this value, the publisher is asking for consideration before a communication is initiated to him/her or when he/she doesn’t respond to communication. The exact nature of the users communication status can be clarified using the status message. Some example use cases are:

· The publisher prefers to receive text messages rather than voice call because he’s in a meeting.

· The publisher is busy and wishes to receive only urgent communication.

· The publisher is selective about the communication parties to whose communication he responds.

· NOT_AVAILABLE: Publisher is not immediately available with the communication means in his/her device. The contacting party should not expect an immediate response/reaction by the publisher.

· UNKOWN: This value shows the publisher might not be logged onto the presence service and thus PEP is not able to provide any presence information about the publisher. When publisher does not have an active OMA Imps session the UserAvailability is replaced with this “UNKOWN” indicator.

In addition, being connected to the IM server as invisible implies that the user appears as off-line everyone's contact list, but that the user himself receives presence updates and can send and receive IMs normally.

14.3 Recommendation

Clients wishing to signalize their user availability SHOULD set the following presence attributes:

	Availability Status
	OnlineStatus
	CommCap/IM
	UserAvailability

	
	Value
	Qualifier
	Value
	Qualifier
	Value
	Qualifier

	NOT_AVAILABLE
	T
	T
	OPEN
	T
	NOT_AVAILABLE
	T

	DISCREET
	T
	T
	OPEN
	T
	DISCREET
	T

	AVAILABLE
	T
	T
	OPEN
	T
	AVAILABLE
	T

	INVISIBLE
	N/A
	F
	CLOSED
	T
	N/A
	N/A

Table 12: Presence attribute interpretation
Note that all other combination of the OnlineStatus, CommCap/IM and UserAvailability attributes SHOULD be interpreted as offline.

Clients who want to appear as invisible are RECOMMENDED to set Qualifier of OnlineStatus to “F”. To support legacy devices adhering to older recommendations, the server is RECOMMENDED to interpret a client setting CommCap/IM to “CLOSED” as also setting the Qualifier of OnlineStatus to “F”.

In order to support invisibility directly when logging in, the server is RECOMMENDED to set the value of the Qualifier of OnlineStatus as “F” when a client logs in, and only change it to “T” once the client sends the first presence publishing primitive.

It is RECOMMENDED that a server does not send presence notifications to watchers of a user that is currently set to invisible.

14.4 Idle state

If a client wants to indicate whether the user is idle, ie have not used the computer or device for a certain amount of time, it is RECOMMENDED to use an extension to the PresenceSubList using the namespace http://www.openmobilealliance.org/DTD/IMPS-IG1.3. The DTD for this namespace is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT IdleState (Qualifier?, PresenceValue?, ClientID?)>
<!ELEMENT IdleSince (Qualifier?, PresenceValue?, ClientID?)>

Defined information elements are:

	Information element
	IdleState

	Data type
	Boolean

	Format
	Following values:

T – The user of the client is idle.

F – The user of the client is not idle.

	Description
	The idle state of the user of the client

	Range
	

Table 13: IdleState information element
	Information element
	IdleSince

	Data type
	String

	Format
	ISO 8601 date and time string

	Description
	The date and time from when the client went idle

	Range
	

Table 14: IdleSince information element
A client is RECOMMENDED to publish the IdleState presence value. The actual idle time from that the user is idle to when the IdleState is set to “T” is implementation specific. The client MAY also publish the IdleSince element, indicating with a time when the user went idle.

Clients that want to retrieve the idle state of other users are RECOMMENDED to subsribe to the IdleState presence value.

The value of IdleSince SHALL be considered invalid when IdleState is set to “F”.
14.5 Examples

The client publishes the idle state of the user:

 <PresenceSubList
 xmlns="http://www.openmobilealliance.org/DTD/IMPS-PA1.3"
 xmlns:ig="http://www.openmobilealliance.org/DTD/IMPS-IG1.3">
 <UserAvailability>
 <Qualifier>T</Qualifier>
 <PresenceValue>AVAILABLE</PresenceValue>
 </UserAvailability>
 <ig:IdleState>
 <Qualifier>T</Qualifier>
 <PresenceValue>T</PresenceValue>
 </ig:IdleState>
 <ig:IdleSince>
 <Qualifier>T</Qualifier>
 <PresenceValue>2008-05-13T14:45:03Z</PresenceValue>
 </ig:IdleSince>
 </PresenceSubList>

15. End to end messaging

15.1 Rationale

"Alice wants to know whether Bob can receive the picture she wants to send him."

End to end messaging enriches the messaging experience as it enables a client to be aware of the capabilities of the recipient client. Typically, if Alice is chatting with Bob, the clients would signalize the capabilities of the other client to the end user via icons, for instance greying out the "send picture" icon to indicate that the other client does not support pictures.

15.2 Use cases and examples

15.2.1 Client A supports pictures, text and file transfers and chats with client B supporting text only

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Alice easily sees what capabilities Bob's client has

	Preconditions:
	Alice and Bob are logged on to the service with client A and B respectively

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice starts a chat dialogue with Bob

2 Alice sees in her client that Bob can not receive other content than text

	Extension Scenarios:
	

	Variations:
	

Table 15: End-to-end messaging (text-only)
15.2.2 Client A supports pictures, text and file transfers and chats with Bob who is logged on with 2 clients having different capabilities

	Actors:
	End user Alice, end user Bob, client A, client B1, client B2, Server.

	Success Guarantees:
	Alice easily sees what capabilities Bob's clients have

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with clients B1and B2 respectively

Client A supports text, pictures and nudges

Client B1 supports text

Client B2 supports text and pictures

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice starts a chat dialogue with Bob

2 Alice sees in her client that Bob can receive text and pictures

	Extension Scenarios:
	3 Alice sends a picture to Bob – go to multi-session use case

	Variations:
	

Table 16: End-to-end messaging (multimedia)
15.3 Recommendations

Servers SHOULD publish clients supported capabilities (including content types) in the ClientInfo->ClientContentLimit- presence attribute field.

Clients are RECOMMENDED to enable and disable functions (e.g., send picture) in the user interface according to what communication parties support.

16. Rich content IM

16.1 Rationale

"Alice wants to nudge Bob."

A complete messaging experience enables the use of rich content from client to client. This implies being able to send typing alerts and formatted text from client to client, and independent of the manufacturer.

Nudges are “intrusions” on a conversation party's instant message user interface (message dialogue). Examples of nudges are shake, bump, moo, fart and honk.

16.2 Rich Formatting of Plain Text Messages

To allow for in-text formatting of plain text instant messages as bold, italic and underline, it is RECOMMENDED that the client adheres to the following set of rendering rules for visual formatting of instant messages,

· Formatting rules only applies to instant messages sent as plain text (i.e., the MIME type text/plain),

· Text surrounded by the asterix character (*) SHOULD be displayed as bold,

· Text surrounded by the fore slash character (/) SHOULD be displayed as italic,

· Text surrounded by the underscore character (_) SHOULD be displayed as underlined,

· Text surrounded by any combination of the formatting characters should be displayed with the combined formatting (e.g., ‘*/bold-italic/*’ would be rendered as ‘bold-italic’)

· Any character except white space and line break can be placed within the formatting characters,

· Formatting characters SHOULD not be visible in the user interface on clients supporting formatting

16.2.1 Rich Text Formatting Example

The following message will appear as “Do you really want to come tonight?” in Bobs client.

<SendMessage-Request>
 <DeliveryReport>F</DeliveryReport>
 <MessageInfo>
 <ContentType>text/plain</ContentType>
 <ContentSize>37</ContentSize>
 <Recipient>
 <User>
 <UserID>wv:bob@imps.com</UserID>
 </User>
 </Recipient>
 <Sender>
 <User>
 <UserID>alice@imps.com</UserID>
 </User>
 </Sender>
 </MessageInfo>
 <ContentData>Do you *really* want to come tonight?</ContentData>
</SendMessage-Request>

16.3 Typing alerts

Typing alerts are informational instant messages sent between clients involved in a conversation to indicate to the recipient party about if the sending party is typing or not. Especially in a mobile context typing alerts are valuable to the recipient user since it can be expected that typing a message will take somewhat loner time than if done on a computer.

Typing alert messages are transported in CSP as instant messages with a content type of application/vnd.oma.imps.typing-alert and a content of either T or F. T indicates that the user is typing (or continuing to type) on an instant message and F indicates that the sending user will send content that has already been typed.

A recipient client SHOULD indicate that a sender is typing upon receiving a typing alert with content T. If now new instant message of any content type is received from the sending client within 20 seconds, the recipient client is RECOMMENDED to change the typing indication to indicate that the sending party has typed (or started to type) a message. Furthermore, if now new instant message (of any content) has been received after 60 seconds from when the last message was received, then the client is RECOMMENDED to remove the typing indication.

Upon receipt of an instant message (of any content) from the sending client, the recipient client is RECOMMENDED to remove the typing alert (regardless of state), if any such indication exists.

The sending client must send a typing alert whenever the end user starts to compose a new instant message to a recipient. If the user is still typing after 10 seconds, the sending client is RECOMMENDED to send a new typing alert to the recipient party. Furthermore, if the end user chooses to erase all of the written content or close the composer window, then the sending client is RECOMMENDED to send a negative typing alert with content of F to erase the typing indication in the recipient client. The recipient client is RECOMMENDED to erase the typing (or has typed) indicator in receipt of a negative typing alert message.

Clients receiving the very first typing alert from a sender (i.e., there exist no indication in the UI that the sender and the recipient has an ongoing dialog) is RECOMMENED to ignore the typing alert.

Typing alerts SHOULD only be sent to clients who indicate support for the typing alert content type.

16.3.1 Typing Alert Example

Bob starts typing a message in his message composer, and a typing alert is sent to the recipient Alice:

<SendMessage-Request>
 <DeliveryReport>F</DeliveryReport>
 <MessageInfo>
 <ContentType>application/vnd.oma.imps.typing-alert</ContentType>
 <ContentSize>2</ContentSize>
 <Recipient>
 <User>
 <UserID>alice@imps.com</UserID>
 </User>
 </Recipient>
 <Sender>
 <User>
 <UserID>bob@imps.com</UserID>
 </User>
 </Sender>
 </MessageInfo>
 <ContentData>T</ContentData>
</SendMessage-Request>

The terminal that Alice uses indicates that Bob is typing a message to Alice. Bob stops to type immediately after the first couple of words. This makes Alice’s terminal show the “has typed text” indicator. Bob continues to type on his message to Alice and chooses to send the IM to Alice. This will upon receipt in Alice’s terminal erase the typing indicator on Bob.

16.4 Nudges

Nudging allows a user to get the attention of another user with whom s/he is having a conversation. A nudge is an IMPS instant message with a specific MIME type. A nudge can be a vibration, a sound, an animation, visual modifications of the UI or any combination of these. To get the attention of a contact, the client sending the nudge specifies the nudge MIME type with an optional contents body. The content body contains an optional nudge ID identifying a particular sound or action. When an IMPS client receives a nudge, it causes the client to do an action according to the nudge identifier.

The client sending a nudge SHOULD limit the number of nudges it sends per period of time to avoid annoying the recipient. The nudging frequency is an implementation choice. A client SHOULD allow a user to turn-off the nudging facility to avoid receiving nudges. When nudging is turned off, any instant message carrying a nudge SHOULD be ignored.

A client SHOULD send a nudge in a SendMessageRequest primitive; the content type SHOULD be “application/vnd.oma.imps.nudge; vendor=oma-imps”. The vendor=oma-imps defines 8 well defined nudges. The content of the nudge is defined by the number 1 through 8 as defined in the table below:

	Message Content
	Nudge type
	Suggested sound
	Suggested image/animation or visual modifications

	1
	Vibrate
	Device vibrates or emits a vibrating sound
	Chat window vibrates

	2
	Bark
	Resembling the sound made by a dog

	Picture/animation of a dog barking

	3
	Boom
	Sound of an explosion
	Picture or animation of a bomb going off or chat window exploding

	4
	Moo
	Noise as uttered by a cow
	Picture/animation of a cow mooing, or possibly walking across the chat window

	5
	Moan
	A low, sustained, mournful cry of pleasure
	Picture/animation of something pleasurely.

	6
	Vroom
	Similar sound to that of a racing car passing by
	Picture or animation of a racing car

	7
	Buzz
	Low, continuous, humming or sibilant sound, like that made by bees with their wings (as in a annoying fashion)
	Picture/animation of a bee flying in

	8
	Fart
	Device emits a crackling or trumpeting sound (sound like the auditory pitch of a flatulence outburst)
	Picture/animation of an embarrassed chatter

Table 17: OMA-IMPS nudge types
The default nudge is the “application/vnd.oma.imps.nudge; vendor=oma-imps” with message content = 1.

Different values for the vendor CAN be supported. For instance the MIME type "application/vnd.oma.imps.nudge; vendor=operator-a” defines the set of nudges that are defined by the operator a.

Clients indicate what types of nudges they support during the content negotiations at login. If the recipient client does not support a certain type of nudges, then the server is RECOMMENDED to emit the default nudge if the client supports this. For instance, for a client made by vendor Rec, the following nudges supported could be negotiated at login: “application/vnd.oma.imps.nudge; vendor=oma-imps, application/vnd.oma.imps.nudge; vendor=rec". This indicates the client supports both the OMA standard defined nudges as defined in this document, and the nudges that vendor Rec has defined.

If the nudge mime type is specified without any vendor parameter it is to be considered as with the vendor parameter oma-imps.

17. Groups

17.1 Rationale

"Alice wants to create chat rooms in the same manner Bob does."

"Alice wants to chat with Bob and Clare at the same time."

Previous client implementations of groups have been varied, with the result that groups do not always work when chatting with users having clients from different manufacturers.

In addition, ad-hoc groups have not been implemented by all client manufacturers.

17.2 Use cases and examples

17.2.1 Alice creates a group

	Actors:
	End user Alice, client A, Server.

	Success Guarantees:
	Alice has successfully created a group

	Preconditions:
	Alice is logged on to the service with client A.

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice creates a group from her client

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

Table 18: Group creation
17.2.2 Alice invites Bob to a group

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Bob becomes a member of the group "chatty"

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with client B

Alice is member of group "chatty" and wants to invite Bob to this group

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice sends Bob a group invite

2 Bob accepts the invitation and becomes a member of the "chatty" group

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

Table 19: Group invitation
17.2.3 Alice changes a group attribute

	Actors:
	End user Alice, end user Bob, client A, client B, Server.

	Success Guarantees:
	Alice has successfully changed a group attribute, and all group members have received group change notifications

	Preconditions:
	Alice is logged on to the service with client A.

Bob is logged on to the service with client B

Alice and Bob are members of the "chatty" group

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice changes the group from being open to restricted

2 Bob can see that the group has changed from open to restricted

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

Table 20: Change of group attributes
17.2.4 Alice wants to have an extended conversation with Bob and Clare

	Actors:
	End user Alice, end user Bob, end user Clare, client A, client B, client C, Server.

	Success Guarantees:
	Alice has successfully created an ad-hoc group with Bob and Clare as members

	Preconditions:
	Alice is logged on to the service with client A

Bob is logged on to the service with client B

Clare is logged on to the service with client C

	Trigger:
	Step 1

	Main Success Scenario:
	1 Alice opens one chat dialogue with Bob and Clare as members

	Extension Scenarios:
	

	Variations:
	

	Design Notes:
	

Table 21: Extended conversation
17.3 Recommendation

By default, new groups created by clients, SHOULD be private, open and searchable, with private messaging set to true.

The clients SHOULD support whisper, the server SHOULD support whispers.

Clients SHOULD support invitations to groups.

Client SHOULD support group change notifications.

18. SMS only users

18.1 Rationale

SMS only users are subscribers who have not (yet) registered with the IM service. They can only receive and send/reply messages on SMS.

IM users can view SMS only users as any other IM service registered users. They can add SMS only users to contact lists, initiate IM dialogs with SMS only users, see SMS only users presence and block/unblock SMS only users.

Messages sent from an IM user to an SMS only user will be forwarded to the SMS only user on SMS. Replies from the SMS only user sent on SMS will be delivered as instant messages to the IM user.The SMSes are processed and received by the IM users as SMSes and IMs can be sent back to SMS only users that receive them as SMSes.

It is widely acknowledged that the recommendation of SMS only users increases the usage of IM services, allowing for a seamless usage of the messaging experience.

18.2 Recommendation

Servers are RECOMMENDED to provide presence state of SMS only users in accordance with GSMA Phase 2 Service definition [GSMAPH2], also, since the ClientID element is required for client presence attributes in OMA IMPS 1.3, it is RECOMMENDED that all client presence attributes on SMS only users must use a ClientID containing the MSISDN (international format) of the SMS only users.

· OnlineStatus: Qualifier=T, PresenceValue=T, ClientID=MSISDN,

· ClientInfo: Qualifier=T, ClientType=CLI, ClientID=MSISDN,

· UserAvailability: Qualifier=T, PresenceValue=AVAILABLE,

· StatusText: Qualifier=T, PresenceValue=SMS-only:

Clients are RECOMMENDED to visually display SMS only users with an indication that they are on SMS.

19. Customized support

19.1 Rationale

"An Operator wants the end user to be able to perform self administration from the IMPS client."

In several operators' network operators wish to link the use of the service with service provider specific services. This could be for instance self-administration of the end user's subscription, or self-administration of the users’ private profile containing more data about the user than what is contained in the IM client.

19.2 Recommendation

IM clients are RECOMMENDED to negotiate support for the OMA IMPS extended service content type. The content type to be negotiated is

application/vnd.oma.imps.extendedservice
Servers who understand this content type and who has enabled extended services are RECOMMENDED to as soon as possible send an IM to the client with the extended service content. Clients who receive such content SHOULD be prepared to handle the IM differently than any other IM destined for the user.

The IM sent to the client containing the extended service must be addressed to the particular user, the content type SHOULD be application/vnd.oma.imps.extendedservice, and the content SHOULD be enlisted as follows

MENUITEM:<menu text>:<URL|SYSMSG>:<A URL or a SystemMessageID>
<menu text> SHOULD be replaced with the actual text to display on the client UI and if URL is selected then it must be followed by a link to a WAP page where the user can perform the extended service. If SYSMSG is selected the it must be followed by an identifier of a SystemMessageID which the client can use to initiate a system message dialog for self administration. (same procedure as in chapter 24). Servers are RECCOMENDED to use the system message identifier MPS13_IG_AI002 for this purpose.
Clients are RECOMMENDED to present the extended service IM as a menu item. The menu item should be rendered with the server proposed menu text. For cases where the menu item contains a URL, the client is RECOMMENDED to open the WAP browser with the menu items URL when the user selects the menu item.

Example of a customized URL IM:

<NewMessage>

 <MessageInfo>

 <MessageID>0x0000f132</MessageID>

 <ContentType>application/vnd.oma.imps.extendedservice</ContentType>

 <ContentEncoding>None</ContentEncoding>

 <ContentSize>41</ContentSize>

 <Recipient>

 <User>

 <UserID>wv:someuser@domain</UserID>

 </User>

 </Recipient>

 <Sender>

 <User>

 <UserID>wv:system@domain</UserID>

 </User>

 </Sender>

 <DateTime>20010925T1340Z</DateTime>

 <Validity>600</Validity>

 </MessageInfo>

 <ContentData>
 MENUITEM:Manage My Subscriptions:URL:http://wap.someserver.com/subscription
 </ContentData>

</NewMessage>
Example of a customized SYSMSG IM:

<NewMessage>

 <MessageInfo>

 <MessageID>0x0000f132</MessageID>
 <ContentType>application/vnd.oma.imps.extendedservice</ContentType>

 <ContentEncoding>None</ContentEncoding>

 <ContentSize>41</ContentSize>

 <Recipient>

 <User>

 <UserID>wv:someuser@domain</UserID>

 </User>

 </Recipient>

 <Sender>

 <User>

 <UserID>wv:system@domain</UserID>

 </User>

 </Sender>

 <DateTime>20010925T1340Z</DateTime>

 <Validity>600</Validity>

 </MessageInfo>

 <ContentData>MENUITEM:Manage My Subscriptions:SYSMSG:MPS13_IG_AI002</ContentData>

</NewMessage>
A client is RECOMMENDED to store the menu item between sessions to avoid resending of the menu item upon each login. When a client receives a new menu item while already having one stored, then the previous menu item should be replaced by the newly received menu item.

20. Service provider community indication

20.1 Rationale

"Alice wants to know whether Bob is on her price plan or not."

Service providers increasingly have advantageous price plans for end users that all belong to the same service provider. In some cases, these involve free calls to all the people having this price plan. However, it is not easy for the end user to know who belongs to what price plan. This can be solved by using a separate presence field to indicate the service provider the user belongs to.

20.2 Recommendation

If the server makes use of the PLMN field, clients SHOULD use it to represent these contacts with a different icon than the others.

21. Optimized network usage

21.1 Rationale

"Alice wants to send a picture 33% faster than her old client does."

Most clients use BASE64 encoding for multi-media content on CSP requests. This leads to a 33% overhead on the network transmission of multi-media e.g. pictures, files and sound content. For plain XML there is no other way of transporting binary content, however, the WBXML specification allows for use of inline opaque data. This means that clients and servers can embed binary content “as is” without applying any transfer encoding.

The WBXML specification has no notion on required or optional features and the OMA IMPS specification does not mention this in particular. Also, existing clients on IMPS 1.1/1.2.1 have not used this feature. This implies that a server cannot use inline opaque data towards clients since a server cannot be sure that the client understands inline opaque data.

21.2 Recommendation

To indicate support for inline opaque data transfer clients and servers are RECOMMENDED to negotiate the IDENTITY transfer encoding during client capability negotiation.

22. Optimized CIR usage

22.1 Rationale

"Alice wants to use her phone for days and days without re-charging the battery."

The optimal usage of the CIR mechanisms leads to the ability of the client to be "always on" without consuming battery resources on the terminal when the client is not in active use.

22.2 Recommendation

The clients are RECOMMENDED to use at least one IP based CIR method for intensive periods of usage of the client. Clients are RECOMMENDED in addition to use at least one SMS based CIR method for periods between intensive periods of usage of the client. It is RECOMMENDED that clients actively takes down the IP based CIR mechanism when it deems that the client is not in intensive use, in which case the server reverts to a SMS based CIR mechanism.

Provided the client supports more than one CIR mechanism at a time, the clients are RECOMMENDED to prioritize between the different CIR mechanisms in the following order:

· STCP

· SUDP

· WAPUDP

· WAPSMS

· SSMS

· SHTTP

As given in the specification a server is to use CIR methods in the order and with availability as enlisted by the client.

23. Standalone SMS CIR compatibility

23.1 Rationale

"Alice wants to use a third-party IM application, which conflicts with the native IM application."

The registered port for the standalone SMS CIR channel is 3716. For a third party application it may be impossible to listen to incoming SMSs to this port, since a native application (or another third party application) is already using it. There is a need for specifying an alternative port to be used for standalone SMS CIR.

23.2 Recommendation

The client is RECOMENDED to try to use the reserved port (3716) for standalone SMS CIR. However, if it’s impossible to register to that port, the client is RECOMMENDED to negotiate another port using an extension block to the ClientCapability-Request.

The server is RECOMMENDED to respond with the same port number in an extension block to the ClientCapability-Response, and send any standalone SMS CIR messages to the indicated port.

If the server does not support these implementation guidelines, the extension block will be ignored and the server will respond without the SMS port in the response. The client is then RECOMMENDED to renegotiate other appropriate CIR methods.

The following is the DTD for the extension block:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT SMSPort (#PCDATA)>

Defined information elements are:
	Information element
	SMSPort

	Data type
	Integer

	Format
	An integer expressed in decimal format.

	Description
	The client may indicate that it supports other than

the default port for the standalone SMS CIR

method.

	Range
	16000-16999

Table 22: SMSPort information element

23.3 Examples

Client sends the ClientCapability-Request indicating that it will listen to SSMS messages on port 16123:

<Transaction>
 <TransactionDescriptor>
 ...
 </TransactionDescriptor>
 <TransactionContent>
 <ClientCapability-Request>
 <CapabilityList>
 ...
 <SupportedCIRMethod>STCP</SupportedCIRMethod>
 <SupportedCIRMethod>SSMS</SupportedCIRMethod>
 </CapabilityList>
 </ClientCapability-Request>
 </TransactionContent>
 <ExtBlock xmlns=”http://www.openmobilealliance.org/DTD/IMPS-IG1.3”>
 <SMSPort>16123</SMSPort>
 </ExtBlock>
</Transaction>
Server responds with the Client-Capability-Response:

<Transaction>
 <TransactionDescriptor>
 ...
 </TransactionDescriptor>
 <TransactionContent>
 <ClientCapability-Response>
 <AgreedCapabilityList>
 ...
 <SupportedCIRMethod>SSMS</SupportedCIRMethod>
 </AgreedCapabilityList>
 </ClientCapability-Response>
 </TransactionContent>
 <ExtBlock xmlns=”http://www.openmobilealliance.org/DTD/IMPS-IG1.3”>
 <SMSPort>16123</SMSPort>
 </ExtBlock>
</Transaction>
24. Advice of charge

24.1 Rationale

Alice wants to send a large file to Bob, which is more expensive than a text IM, and the operator notifies her of the cost.

System Messages can be displayed to the user at any time during the session. One of the usages could be to advice the user of the cost of a certain action. For example, the first time the user sends a file as an IM the operator could advice the user of the cost of this action.

This section intends to clarify how advice of charged can be used using System Messages.

24.2 Use cases and examples

24.3 End user is advised of the cost of the action
	Actors:
	End user, Client, Server

	Success Guarantees:
	End user is advised of the cost of the action

	Preconditions:
	Client, Server

	Trigger:
	Step 1

	Main Success Scenario:
	1. End user sends a file as an IM for the first time

2. Client sends a SendMessageRequest to the server

3. Server responds with a Status 100 and includes a System Message asking the user to accepted the cost of the message

4. User accepts the System Message and the client sends a SystemMessageUser to the server

5. Server responds with a SendMessageResponse indicating success

	Extension Scenarios:
	User rejects the cost

4b. User rejects the System Message and the client sends a SystemMessageUser to the server

5b. Server responds with a SendMessageResponse indicating failure

	Variations:
	

	Design Notes:
	

Table 23: Advice of charge

24.3.1.1 User accepts cost example

Client sends a SendMessageRequest to the server

<SendMessage-Request>
 <DeliveryReport>T</DeliveryReport>
 <MessageInfo>
 <ContentType>image/jpeg</ContentType>
 <ContentEncoding>BASE64</ContentEncoding>
 <ContentSize>1048576</ContentSize>
 <Recipient><User><UserID>wv:bob@imps.com</UserID></User></Recipient>
 <Sender><User><UserID>wv:alice@imps.com</UserID></User></Sender>
 <Validity>600</Validity>
 </MessageInfo>
 <ContentData>...</ContentData>
</SendMessage-Request>

Server responds with a Status 100 and includes a System Message asking the user to accepted the cost of the message

<Status>
 <Result>
 <Code>100</Code>
 <SystemMessageList>
 <SystemMessage>
 <SystemMessageID>0x1234</SystemMessageID>
 <SystemMessageText>Sending this message will cost you $1.</SystemMessageText>
 <AnswerOptions>
 <AnswerOption>
 <AnswerOptionID>0</AnswerOptionID>
 <AnswerOptionText>Accept<AnswerOptionText>
 </AnswerOption>
 <AnswerOption>
 <AnswerOptionID>1</AnswerOptionID>
 <AnswerOptionText>Decline<AnswerOptionText>
 </AnswerOption>
 </AnswerOptions>
 </SystemMessage>
 </SystemMessageList>
 </Result>
</Status>

4. User accepts the System Message and the client sends a SystemMessageUser to the server

<SystemMessage-User>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>0x1234</SystemMessageID>
 <ChosenOptionID>0</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>
</SystemMessage-User>

5. Server responds with a SendMessageResponse indicating success

<SendMessage-Response>
 <Result>
 <Code>200</Code>
 <Description>Successfully completed.</Description>
 </Result>
 <MessageID>0x0000f132</MessageID>
</SendMessage-Response>

24.3.1.2 User rejects the cost example
4b. User rejects the System Message and the client sends a SystemMessageUser to the server

<SystemMessage-User>
 <SystemMessageResponseList>
 <SystemMessageResponse>
 <SystemMessageID>0x1234</SystemMessageID>
 <ChosenOptionID>1</ChosenOptionID>
 </SystemMessageResponse>
 </SystemMessageResponseList>
</SystemMessage-User>

5b. Server responds with a SendMessageResponse indicating failure

<SendMessage-Response>
 <Result>
 <Code>540</Code>
 <Description>Cost not accepted</Description>
 </Result>
 <MessageID>0x0000f132</MessageID>
</SendMessage-Response>

25. Account Inquiry

25.1 Rationale
"Alice wants to see account information displayed in her client"

25.2 Recommendation

The client and the server are configured with a predefined “Account Inquiry” system message SystemMessageID. When the user needs information about his account, he makes the request to the client and the client sends a SystemMessageUser to the server. The account information is returned in a SystemMessageRequest to the client who will display it to the user.

Precondition:

· The user has an IM subscription and is logged in to the IM server.

· The client is configured with the “Account Inquiry” SystemMessageID: IMPS13_IG_AI001.

· The server is configured also with the “Account Inquiry” SystemMessageID IMPS13_IG_AI001 and has the logic to fetch the account information from the mobile operator accounting server.

Post condition:

The client received the information about his account.

[image: image5.emf]Client IM Server

[1] UI Menu

Selection:

Account inquiry

[2] SystemMessageUser (Account Inquiry

SystemMessageID = IMPS13_IG_AI001)

[3] Status = 200 Successful

User

[4] SystemMessageRequest (Account Inquiry

SystemMessageID, RequiresResponse = NO,

Account Inquiry SystemMessageText)

[5] Status = 200 Successful

[6] The client

displays the

account

information

Figure 5: Account inquiry
Successful flow description:

	Step
	Description

	1
	The user selects the account Inquiry option from the user interface

	2
	The client generates a SystemMessageUser and includes the configured Account Inquiry SystemMessageID (IMPS13_IG_AI001).

	4
	The IM server retrieves the account information from the operator accounting server and returns it in the SystemMessageText of a SystemMessageRequest.

	6
	 The client displays the account information to the user.

Table 24: Account inquiry success flow description
26. Large Contact Lists

26.1 Rationale

"Alice wants to see the same contacts on her phone as on her PC client."

Limited memory on mobile handsets can introduce a challenge in having long contact lists displayed in the client.
26.2 Recommendation

The client SHOULD inform the server of the maximum number of contacts it can handle. This SHOULD be done when the client does the ListManage request on the oma_allcontacts contact list. Each client SHOULD add the property "MaxContacts" to this ListManage request and indicate the maximum number of contacts the client supports.

The server SHOULD not store the the MaxContacts value between sessions. Also, the setting only applies to the client who set the value. The value must not be disclosed to any other client of the user.

If a client has more contacts than allowed in the client, the server SHOULD prioritize the contacts in an optimal manner, and only deliver up to the maximum number of contacts to the client on a contact list get request (ListMange-Request). When a server finds it necessary to update the the set of contact enlisted in the client, then the server SHOULD inform the client about changes in the contact list by issuing a ContactList-Changed general notification to the client.

The MaxContacts property is only needed on the oma_allcontacts contact list since it is the overall number of friends which is the limiting factor in a client and not the number of friends on a particular list.

Updating the contact list on older clients (1.1 and 1.2.1) can be done by contract of presence updates.

The rules for generating the selection of contact on the server side can be based on actions taken by the client and events happening on any of the friends in the contact list set. Events which may affect the selection of contacts to present to the client can be any one of:

· Addition, removal of friends,

· Blocking/unblocking of friends,

· IM received from or sent to friends,

· Presence updates on friends (e.g, online/offline status changes)

Server implementation of the selection algorithm is RECOMMENDED to use some kind of heuristic to choose the best selection of friends to present to the client (e.g, choose friends whom the user has often exchanged instant messages with).

26.3 Example

The user logs in with a client on that only support 3 contacts. The client hints the server about this limit by setting the MaxContacts property on the oma_allcontacts contact list upon list retrieval of the oma_allcontacts contact list.

<ListManage-Request>

 <ContactList>wv:user/oma_allcontacts@server.com</ContactList>

 <ContactListProperties>

 <Property>

 <Name>MaxContacts</Name>

 <Value>3</Value>

 </Property>

 </ContactListProperties>

 <ReceiveList>T</ReceiveList>

<ListManage-Response>
Appendix A. Change History
(Informative)

	Document Identifier
	Date
	Sections
	Description

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1
	23 Nov 2007
	All
	initial version of WP as permanent doc

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v2
	26 Nov
	10
	Blocklist name modified to OMA_blockedcontacts as per XDM implementation guidelines

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	01 Apr 2008
	All
	Incorporated Agreed CRs:

OMA-IM-2008-0009R01-CR_IMPS_IG_Rich_Plain_Text_and_Typing_Alerts

OMA-IM-2008-0010-CR_IG_Subscribing_to_own_presence

OMA-IM-2008-0011R01-CR_IG_Invisibility

OMA-IM-2008-0030-CR_IMPS_client_ID_structure

OMA-IM-2008-0038-CR_IMPS_IG_SMS_only_users

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	11 Apr 2008
	All
	Incorporated Agreed CRs:

OMA-IM-2008-0037R01-CR_IMPS_IG_Terms_of_Use

OMA-IM-2008-0040R02-CR_CR_IMPS_IG_Nudging

OMA-IM-2008-0041R01-CR_CR_Optimized_CIR_Usage

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	14 Apr 2008
	21
	Incorporated Agreed CRs:

OMA-IM-2008-0053-CR_IMPS_IG_Advice_of_charge

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	14 Apr 2008
	All
	Incorporated Agreed CRs:

OMA-IM-2008-0011R01-CR_IG_Invisibility

Removed comments from OMA London meeting in 5.2.2, 8.1. 18, 19, 20

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	16 May 2008
	All
	Incorporated Agreed CRs:

OMA-IM-2008-0060-CR_IMPS_IG_Long_Terms_of_Use

OMA-IM-2008-0061-CR_IMPS_IG_Account_Inquiry

OMA-IM-2008-0064-CR_Internationalization_before_client_capabilities_negotiation

OMA-IM-2008-0065R01-CR_IG_ClientID_uniqueness_requirement

OMA-IM-2008-0066-CR_IG_Terms_of_Use_Bug_Fix

OMA-IM-2008-0067R01-CR_IMPS_IG_Customized_support

OMA-IM-2008-0051R03-CR_IMPS_IG_File_sharing

OMA-IM-2008-0042R03-CR_CR_Large_Contact_Lists

OMA-IM-2008-0073R01-CR_IMPS_IG_Idle_State
OMA-IM-2008-0074-CR_OMA_IM_2008_074_IG_Groups

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	23 May 2008
	All
	Editorial and structural clean-up of the entire document

Incorporation of more Agreed CRs:

OMA-IM-2008-0035-CR_IMPS_IG_Auto_registration

Major changes to chapter 8: Server verifies MSISDN of client

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	30 May 2008
	All
	Editorial and structural clean-up of the entire document

Incorporated Agreed CRs:

OMA-IM-2008-0072R02-CR_IMPS_IG_SMS_Port

OMA-IM-2008-077-CR_IMPS_IG_Customized_Support

	OMA-WP-IMPS-1_3_Implementation_Guidelines-v1_0-D
	17 June 2008
	All
	Removed change bars

	OMA-WP-IMPS_V1_3_IMPL-20080630-D
	30 June 2008
	All
	Labelled the figures “Figure: …” instead of “Table …”

Created two numbering one for the figures and one for the tables

Created two lists one for the tables and one for the figures

Re-created the missing page header.

Added the new document ID on the cover page and the page headers

Added the correct date on the cover page

 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-WP- IMPS_1_3_IMPL-20080101-I]

 REF FootText1 \h

 REF FootText2 \h

