Doc# OMA-DM-DM13-2012-0030-CR_HMAC_SHA256_Auth.doc[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Change Request

Doc# OMA-DM-DM13-2012-0030-CR_HMAC_SHA256_Auth.doc
Change Request

Change Request

	Title:
	HMAC-SHA256 MAC algorithm
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM WG

	Doc to Change:
	OMA-TS-DM_Security-V1_3-20120112-D

	Submission Date:
	27 Jan 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Shingo Fujimoto,Fujitsu,shingo_fujimoto@jp.fujitsu.com

	Replaces:
	n/a

1 Reason for Change

Transport Neutral Integrity MUST be used if the transport is unable to provide authentication and integrity (see section 5.3)
If the transport is unable to provide authentication and integrity, transport neutral integrity MUST be used.
However, existing specification only allows to use “HMAC-MD5” which cannot meet the security requirement after year 2010 in most countries.

Another issue is that even the normative text said HMAC-MD5[RFC2104] is used, but existing specification was not compatible with typical HMAC implementations which is specified by RFC2104.

Integrity of OMA DM messages is achieved using a HMAC-MD5 [RFC2104].
RFC2104’s definition:

 ipad = the byte 0x36 repeated B times

 opad = the byte 0x5C repeated B times.

 To compute HMAC over the data `text' we perform

 H(K XOR opad, H(K XOR ipad, text))
syncml:auth-mac ’s definition:

The HMAC is computed as described below, and uses MD-5 as its hashing function. The HMAC relies upon the use of a shared secret (or key), which in this application is itself a hash (denoted below as H(username:password)).

The HMAC value MUST be computed by encoding in base64 the result of the digest algorithm applied as follows:

H(B64(H(username:password)):nonce:B64(H(message body)))

where H(X) is the result of the selected digest algorithm (MD-5) applied to octet stream X, and B64(Y) is the base64 encoding of the octet stream Y.

Now, we can omit the username parameter because we have dedicated AAuthLevel ‘MACCRED’ to identify the credential data.

My suggestion is that replacing syncml:auth-mac with new MAC algorithm “syncml:auth-hmac-sha256” with timestamp based challenge.

This CR proposed to introduced syncml:auth-hmac-sha256.
2 Impact on Backward Compatibility

Since HMAC-MD5 algorithm was optional feature and specified as ignorable before DM1.3, new algorithm name can avoid problem regarding new HMAC algorithm is used.

 SCR table for DM Client
	DM-SEC-C-010
	Integrity checking using HMAC-MD5
	Section 5.4
	O
	DM-SEC-C-011 AND DM-SEC-C-012

	DM-SEC-C-011
	Inserting HMAC in transport
	Section 5.4.3
	O
	

	DM-SEC-C-012
	Using HMAC for all subsequent messages
	Section 5.4.3
	O
	

SCR table for DM Server
	DM-SEC-S-011
	Integrity checking using HMAC-MD5
	Section 5.4
	O
	DM-SEC-S-012 AND DM-SEC-S-013

	DM-SEC-S-012
	Inserting HMAC in transport
	Section 5.4.3
	O
	

	DM-SEC-S-013
	Using HMAC for all subsequent messages
	Section 5.4.3
	O
	

3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

WG member should agree on this CR.
6 Detailed Change Proposal

Change 1: Adding HMAC-SHA256 for Transport Neutral Integrity
5.5 Transport Neutral Integrity

Transport neutral integrity of OMA DM messages is achieved using a HMAC [RFC2104] and its variant specified in this section.
The transport neutral integrity SHOULD be used when the transport is unable to provide neither authentication nor integrity. I
It is RECOMMENDED to apply the transport neutral integrity for Sessionless DM and Sessionless DM Reporting.
 In this section, HMAC-SHA256 MAC authentication and HMAC-MD5 integrity are defined.

However, HMAC-MD5 which is identified as ‘syncml:auth-MAC’ is not RECOMMENED to use, because that cannot achieve the strength in practical use.
5.5.1 HMAC-SHA256 MAC Authentication

The HMAC-SHA256 is the mechanism for message authentication using SHA-256 cryptographic hash function (see [RFC6234]).

The use of HMAC-SHA256 MAC authentication is identified as ‘syncml:auth-hmac-sha256’. The support of ‘syncml:auth-hmac-sha256’ is OPTIONAL.

5.5.1.1 How the authentication information is provided

The authentication information MUST be transported along with the original OMA DM message. This is achieved by inserting the HMAC into a transport header called x-syncml-hmac. This technique works identically on HTTP, WAP, and OBEX. The HMAC is calculated initially the sender using the entire message body, either in binary form (WBXML) or text form (XML). The receiver applies the same technique to verify the incoming message.

The header x-syncml-hmac contains multiple parameters, including the MAC data itself, the ‘Algorithm’ parameter, the ‘ServerId’ parameter and ‘Timestamp’ parameter.

The value of the x-syncml-hmac header is defined as a comma separated list of attribte-values pairs. The rule “#rule” and the terms “token” and “quoted-string” are used in accordance to their definition in the HTTP 1.1 specifications [RFC2616].

Here is the formal definition:

x-syncml-hmac = #syncml-hmac-param

syncml-hmac-param = (algorithm | serverid | timestamp | mac)

algorithm = ‘algorithm’ ‘=’ (‘HMAC-SHA256’ | token)

serverid = ‘ServerId’ ‘=’ quoted-string

timestamp = ‘Timestamp’ ‘=’ quoted-string

mac = ‘mac’ ‘=’ base64-string

Example:

x-syncml-hmac: algorithm=”HMAC-SHA256”; ServerId=”dm.foo.org”; Timestamp=”2012-01-01T13:04:20Z”; mac=” NTI2OTJhMDAwNjYxODkwYmQ3NWUxN2RhN2ZmYmJlMzkay2=”
5.5.1.2 How integrity is verified

Definition of HMAC-SHA256 function is found in [RFC6234].

MAC information for ‘syncml:auth-hmac-sha256’ is calculated using three parameters.

The authentication key(K): The binary data which is provided as AAuthSecret

The message (Msg): The message to authenticate

The timestamp (Timestamp): Current UTC time text string which is represented in format of ‘YYYY-MM-DDThh:mm:ssZ’ (See [ISO8601]). Note that the Timestamp parameter is provided as opaque parameter value.

MAC = HMAC(K, Timestamp:Msg)

Where HMAC(K, X) is the result of HMAC calculation with SHA-256 hash function.

The message receiver can verify the integrity of the incoming OMA DM message with checking whether the calculated mac value is matched with supplied mac value.

If HMAC-SHA256 is expected, but x-syncml-hmac is not provided by the sender, the message SHOULD be rejected to be processed.

If the receiver failed to verify the integrity on supplied x-syncml-hmac header, the message MUST be rejected to be processed.
5.5.2 HMAC-MD5 Integrity

This is a Hashed Message Authentication Code that MUST be used on every message transferred between the DM Client and the DM Server (if requested to do so by either entity). The use of integrity checking is OPTIONAL.

5.5.21 How integrity checking is requested

Integrity checking is requested in the same way and at the same time as authentication challenges in [DMPRO]. A challenge issued for syncml:auth-MAC will use the same Meta data for Type, Format, and NextNonce as syncml:auth-md5. A new authentication type, syncml:auth-MAC, MAY be requested by either the client or the Device Management Server (or simply supplied prior to a challenge ever being issued). When used, this authentication type MUST be specified in the transport header and MUST NOT be specified using the Cred element.

Note that the recipient of a challenge MUST respond with the requested authentication type, else the session MUST be terminated. For example, a challenge requesting the HMAC engenders a reply with valid Basic Authentication credentials, the session will be terminated despite the validity of the authentication credentials that were actually supplied.

5.5.2.2 How the HMAC is computed

The HMAC is computed as described below, and uses MD-5 as its hashing function. The HMAC relies upon the use of a shared secret (or key), which in this application is itself a hash (denoted below as H(username:password)).

The HMAC value MUST be computed by encoding in base64 the result of the digest algorithm applied as follows:

H(B64(H(username:password)):nonce:B64(H(message body)))

where H(X) is the result of the selected digest algorithm (MD-5) applied to octet stream X, and B64(Y) is the base64 encoding of the octet stream Y.

5.5.2.3 How the HMAC is specified in the OMA DM message

The HMAC itself MUST be transported along with the original OMA DM message. This is achieved by inserting the HMAC into a transport header called x-syncml-hmac. This technique works identically on HTTP, WAP, and OBEX. The HMAC is calculated initially by the sender using the entire message body, either in binary form (WBXML) or text form (XML). The receiver applies the same technique to the incoming message.

The header x-syncml-hmac contains multiple parameters, including the HMAC itself, the user or Server identifier, and an optional indication of which HMAC algorithm is in use (the only one currently defined is MD-5).

The value of the x-syncml-hmac header is defined as a comma separated list of attribute-values pairs. The rule "#rule" and the terms "token" and "quoted-string" are used in accordance to their definition in the HTTP 1.1 specifications [RFC2616].

Here is the formal definition:

x-syncml-hmac = #syncml-hmac-param

where:

syncml-hmac-param = (algorithm | username | mac)
The following parameters are defined:

algorithm = ‘algorithm’ ‘=’ (‘MD5’ | token)

username = ‘username’ ‘=’ username-value

mac = ’mac’ ‘=’ mac-value
where:

username-value = quoted-string

mac-value = base64-string
The parameter algorithm can be omitted, in that case MD5 is assumed. The parameter username MUST be specified. The parameter mac MUST be specified.

Note that a base64-string is any concatenation of the characters belonging to the base64 Alphabet, as defined in [RFC2045].
Example:

x-syncml-hmac: algorithm=MD5, username=’Robert Jordan’,

 mac=NTI2OTJhMDAwNjYxODkwYmQ3NWUxN2RhN2ZmYmJlMzk

The username-value is the identical string from the LocName of the Source element of the SyncHdr, and represents the identity of the sender of the message. The presence of the username in the message header allows the calculation and validation of the HMAC to be independent of the parsing of the message itself.

Upon receiving a message, the steps are:

1. Check for the HMAC in the message header; extract it and the username.

2. Using the username, look up the secret key from storage. This key is itself a hash, which incorporates the username and password, as described earlier.

3. Either parse the message;

4. Or, validate the digest.

In either sequence of steps, the digest is calculated based on the entire message body, which is either a binary xml document (WBXML) or a text xml document.

After the HMAC is computed by the receiver (if it was present), the supplied HMAC and the computed HMAC can be compared in order to establish the authenticity of the sender, and also the integrity of the message.

If the HMAC was expected (e.g. if a challenge for it had been issued) and either it or the userid are not supplied in the correct transport header, then an authentication failure results (as if they had been supplied, and were incorrect).

If the value of the username or secret is changed during a session (e.g. when the AAuthName or AAuthSecret element in [DMSTDOBJ] is replaced), the new value of secret will only be used for subsequent sessions.

Once the HMAC technique is used, it MUST be used for all subsequent messages until the end of the OMA DM session. The Status code sent back for the SyncHdr MUST be 200 to indicate authenticated for this message. In addition, the NextNonce element MUST be sent and used for the next HMAC credential check. Failure to meet these requirements MUST result in a termination of the session.

5.5.2.4 HMAC and nonce value

A new nonce MUST be used for every message. The new nonce will be obtained via the NextNonce value in the previous message. In addition, since HMAC credentials MUST be verified for each message, the SyncHdr status code for an authenticated message MUST be 200.

5.5.2.5 HMAC use with transport protocols providing authentication and integrity

 Neither DM Client nor DM Server needs to supply the HMAC, unless challenged for it. For example, if it is deemed that an already authenticated transport protocol connection has already been established, then the DM Client or the DM Server MAY choose not to authenticate. In this particular situation, neither DM Server nor DM Client is expected to issue a challenge for it. According to the general techniques specified in [DMPRO], a DM Client that supports mutual authentication at the transport layer MAY choose not to support OMA DM authentication mechanisms. In this particular case, the DM Server MAY still issue a HMAC challenge, but the session MUST end if the DM Client does not respond with the requested authentication type.
Change 2: Another change

<insert change info here>

Change 3: etc

<insert change info here>

� The independence established between the validation of the HMAC and the parsing of the message permits these operations to be performed in any order, or even in parallel. And, if in the future SyncML allows a simpler method of constructing a response indicating that authentication failed, it will be possible to issue this response without ever spending the time needed to parse the message itself.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 3 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20120101-I]

