Change Request

	Title:
	TND Standardized Object
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM WG

	Doc to Change:
	OMA-TS-DM_TND-V1_3-20120207-D

	Submission Date:
	14 February 2012

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Salvatore Scarpina, Telecom Italia S.p.A., salvatore.scarpina@telecomitalia.it
Bipin Patel, Interop Technologies, Bipin.Patel@interoptechnologies.com
Shingo Fujimoto, Fujitsu, shingo_fujimoto@jp.fujitsu.com
Svante Alnås, Sony Ericsson, Svante.Alnas@sonyericsson.com

	Replaces:
	OMA-DM-DM13-2012-0069-CR_TND_Standardized_Object_A027

1 Reason for Change

The present CR aims to provided editorial fixes and clarification to chapter Standardized Objects.
This CR closes Action Point DM-2012-A027.

Note for Editor: this CR has to be applied after OMA-DM-DM13-2012-0033R01-CR_DMTND_Move_DDFNotation.

2 Impact on Backward Compatibility

None
3 Impact on Other Specifications

None
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Recommend to agree the content of this CR.
6 Detailed Change Proposal

Change 1: text update
Standardized Objects

Management Objects

Management Objects are logical collections of related nodes that enable the targeting of management operations, using OMA DM Commands. Each node in a MO can be as small as an integer or large and complex like a background picture or screen saver. The OMA DM protocol is agnostic about the contents, or values, of the MO and treats the node values as opaque data.
DDF description and graphical representation of MO
OMA DM MOs are described using the OMA DM DDF Files. The use of this description framework produces detailed information about the device in question. The DDF File is a machine readable file describing a MO or how a DM Client has implemented the DM Tree.
In order to make it easier to quickly get an overview of how a MO is organized and its intended use, a simplified graphical notation in the shape of a block diagram is used in the technical specification documents. Even though the notation is graphical, it still uses some printable characters, e.g.., to denote the number of occurrences of a node. These are mainly borrowed from the syntax of DTDs for XML. The characters and their meaning are defined in the following table.

	Character
	Meaning

	+
	one or many occurrences

	*
	zero or more occurrences

	?
	zero or one occurrences

If none of these characters is used the default occurrence is exactly once.

Another feature of the DDF that needs to have a corresponding graphical notation is the un-named block. Un-named are nodes which act as placeholders in the description and are instantiated with information when the nodes are used at run-time. Un-named blocks in the description are represented by less than (“<”) and a greater than (“>”) character containing a lower case character, e.g. (“<x>”).

Each block in the graphical notation corresponds to a described node, and the text is the name of the node. If a block contains a <x>, it means that the name is not known in the description and that it will be assigned at run-time. The names of all ancestral nodes are used to construct the URI for each node in the MO. It is not possible to see the actual parameters, or data, stored in the nodes by looking at the graphical notation of a MO.
Some MOs specify explicit names of nodes but the name is still assigned at run-time. These nodes MAY not be described as <x> in the DDF File and it is possible to use the syntax [NodeName] where “NodeName” is a logical name for the node. In this case the graphical representation and the DDF File will contain the logical name of the node to improve the readability.

The nodes which the DM Client is required to support are drawn in the graphical notation with solid line, while nodes whose support is not mandatory for the DM Client are drawn with a dotted line.

Leaf nodes are drawn as rectangle while interior nodes are drawn as rectangle with rounded corners. The following is an example of what a MO can look like when it is expressed using the graphical notation:
 [image: image1.jpg]
Figure 1: Example of a MO pictured using the graphical notation

Naturally, this graphical overview does not show all details of the full description, but it provides a good map of the description so that it is easier to find the individual node. Although the figure only provides an overall view of the description, there are still some things worth noticing.
All blocks with names in place occur exactly once, except Leaf2, InteriorA/<x>, InteriorB/<x>, all Ext nodes and their children.
Leaf3, InteriorB, all Ext and their children nodes are optional to be supported by the DM Client.

All nodes whose name starts with “Leaf” and the node “[AAuthLevel]” are leaf nodes. They MAY contain data but cannot contain child nodes; all other nodes are interior nodes, they cannot contain data but can contain child nodes.

The un-named leaf nodes are marked with * or +. This means that although the description only contains one node description at this position in the tree, there can be any number of instantiated nodes at run-time, including none in the first case, at least one in the second. The only limit is that the node names MUST be unique and the DM Client MUST have sufficient memory to store the nodes.

The next figure shows an example of what the MO could look like at run-time.

 [image: image2.jpg]
Figure 2: Example of an instance of this MO
The difference between this figure and the previous one is that now the un-named blocks have been instantiated and some optional nodes are not shown.
Note that none of the stored data in the leaf nodes is shown in the figure: only the node names are visible.

DDF compliance

The MO descriptions are normative. However, they also contain a number of informative aspects that could be included to enhance readability or to serve as examples. Other informative aspects are, for instance, the ZeroOrMore and OneOrMore elements, where implementations MAY introduce restrictions. All these exceptions are listed here:

· All XML comments, e.g. “<!-- some text -->”, are informative.

· The descriptions do not contain an RTProperties element, or any of its child elements, but a description of an actual implementation of this object MAY include these.

· If a default value for a leaf node is specified in a description, by the DefaultValue element, an implementation MUST supply its own appropriate value for this element. If the DefaultValue element is present in the description of a node, it MUST be present in the implementation, but MAY have a different value.

· The value of all Man, Mod, Description and DFTitle elements are informative and included only as examples.

· Below the interior Ext node, an implementation MAY add further nodes at will.

· The contents of the AccessType element MAY be extended by an implementation.

· If any of the following AccessType values are specified, they MUST NOT be removed in an implementation: Copy, Delete, Exec, Get, and Replace.

· If the AccessType value of Add is specified, the node MAY be removed in an implementation if the implementation only supports a fixed number of child nodes.

· An implementation MAY replace the ZeroOrMore or OneOreMore elements with ZeroOrN or OneOrN respectively. An appropriate value for N MUST also be given with the …OrN elements.
· Path element is informative.

· All nodes are included but the specification MAY allow an implementation to not require that all nodes are to be supported.
Standardized DDF Files

Since the standardized DDF Files contain machine readable information, the DM Client vendor MAY use standardized DDF Files to verify the implementation compliance to the standard specifications. The standardized DDF File MAY contain additional information compared to what is valid according to the DTD of the DDF Files: for instance, a standardized DDF File contains both mandatory and optional nodes and nodes which occurrence can be ZeroOrMore, while an implementation DDF File reports strictly the node which are implemented.

The rules defined by the [DMDDFDTD] define how DDF MUST be handled by the DM Client and the DM Server; in addition to these rules, other information can be helpful for the DM Client vendors in order to create implementation DDF Files defining the DM Tree supported by a DM Client. These DDF Files MAY also be used as input for creating the diagram of the MO Tree structure. For this reason, the following information MAY be included in standardized DDF Files:

· The node status is defined by a XML Comment as next sibling to the node “NodeName”; if the value is “Required” then the DM Client MUST support the node (if the parent node is supported); if the value is “Optional”, then the node is not unconditional mandatory to support in the implementation.

The syntax for this is: “<!-- Status: Required -->” or “<!-- Status: Optional -->”.

If an interior node <x> is “Optional” and its child ChildA is “Required”, then DM Client MUST support ChildA only if <x> is supported.

If the support of a node depends from conditions external to the MO (for instance, if the device support a physical feature, then MO MUST include the specific node), then the node occurrence SHOULD be Optional.

· The Path Element is used to define the location of the MO in the DM Tree. If the standard specification does not define a fixed location into the DM Tree, then value of the Path Element is “…”; if the specifications defines an unconditional fixed location into the DM Tree, then the Path Element contains this exact location.

· In addition to specifying the minimum set of DM Commands which the node MUST support, standard specification can specify explicitly the DM Commands which are NOT allowed for that node. This is achieved by adding a XML Comment for each not unallowed DM Command as child of the “AccessType” Element.

The valid syntax is to use the word “No” plus the space character plus unallowed DM Command, for example “<!-- No Get -->”.

Change 2: Section 8.7.1.6 figure update

Consider the following Management Tree:

[image: image3]

Figure 4: Example Management Tree with ACLs

The following statements about this Management Tree are true:

/�Add=*&Get=*

NodeB�Get=ServerA&�Replace=ServerA

NodeC�Get=ServerA&�Replace=ServerA

NodeA�Get=ServerC&�Replace=ServerC

Node2�ACL=

Node4�ACL=

Node5�Get=ServerA&Replace=ServerA&Get=ServerB

Node3�Get=ServerB&Replace=ServerB&Delete=ServerB

Node1�Get=*

/�Add=*&Get=*

NodeB

Get=ServerA&�Replace=ServerA

NodeC�Get=ServerA&�Replace=ServerA

NodeA�Get=ServerC&�Replace=ServerC

Node2�ACL=

Node4�ACL=

Node5�Get=ServerA&Replace=ServerA&Get=ServerB

Node3�Get=ServerB&Replace=ServerB&Delete=ServerB

Node1�Get=*

