OMA-TS-DM_Protocol-V2_0-20130605-D
Page 2 V(4)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	OMA Device Management Protocol

	Draft Version 2.0 – 5 Jun 2013

	Open Mobile Alliance

	OMA-TS-DM_Protocol-V2_0-20130605-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

61.
Scope

2.
References
7
2.1
Normative References
7
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction (Informative)
9
4.1
Version 1.2
9
4.2
Version 1.3
10
4.3
Version 2.0
10
5.
DM 2.0 Protocol
11
5.1
Protocol Overview
11
5.1.1
Transaction Model
11
5.1.2
Security Considerations
11
5.1.3
DM Protocol Interface
11
5.1.4
Management Data Delivery using HTTP
11
5.1.5
Web-based User Interaction
12
5.2
Package Flow
12
5.2.1
Package#0: DM Notification
13
5.2.2
Package#1: DM Session Initiation by DM Client
15
5.2.3
Package#2: DM Commands from DM Server to DM Client
15
5.2.4
Package#3: Response Package from DM Client to DM Server
16
5.3
DM Commands
16
5.3.1
HGET
16
5.3.2
HPUT
17
5.3.3
HPOST
18
5.3.4
DELETE
18
5.3.5
EXEC
18
5.3.6
GET
18
5.3.7
SHOW
19
5.3.8
CONT
20
5.3.9
END
20
5.3.10
DEFAULT
20
5.4
Generic Alert
20
5.4.1
Asynchronous Reporting for DM Commands
21
6.
Device Management Object
22
6.1
ClientURI Addressing Scheme
22
6.1.1
Syntax
22
6.1.2
Resolving ClientURI
23
6.1.3
Addressing Examples
24
6.2
ServerURI Addressing Scheme
25
6.3
Management Object Definition
25
6.3.1
Nodes
25
6.3.2
Graphical Representation of MO
27
7.
Object Serialization
29
7.1
Binary Format for Package#0
29
7.1.1
Package Header
29
7.1.2
Package Option
29
7.2
JSON Format for Package#1
30
7.3
JSON Format for Package#2
31
7.4
JSON Format for Package#3
32
7.5
Management Object Serialization
33
7.6
Generic Alert
34
8.
Bootstrap
36
8.1
SmartCard bootstrap
36
8.2
Factory bootstrap
37
8.3
Client initiated bootstrap
37
9.
Protocol Security
38
9.1
Security for DM Notification
38
9.2
Security for DM Session
38
9.3
Security for Bootstrap
38
10.
DM Client behavior
39
10.1
Just in Time Configuration
39
11.
DM 2.0 Standard Management Objects
40
11.1
DevInfo Management Object
40
11.2
DM Account Management Object
42
11.3
Delegation Access Control MO
45
11.3.1
Examples for this Management Object
48
11.4
Session Information Management Object
49
12.
Management Object Cache
51
12.1
Cache Validator
51
12.2
Request and Response with Cache
51
13.
The Management Object
52
13.1
Device Description Framework
52
13.1.1
Framework Properties of Node
52
13.1.2
Framework Elements
52
14.
DM 1.x Interworking Issues
53
14.1
DM 1.x Generic Alert Interworking
53
14.2
DM 1.x ACL Mechanism Interworking
55
14.3
DM 1.x DDF Interworking
55
Appendix A.
Change History (Informative)
56
A.1
Approved Version History
56
A.2
Draft/Candidate Version 2.0 History
56
Appendix B.
Static Conformance Requirements (Normative)
59
B.1
SCR for XYZ Client
59
B.2
SCR for XYZ Server
59
Appendix C.
Response Status Codes for DM Commands (Normative)
60
Appendix D.
DM Notification Delivery and Transport (Normative)
62
D.1
Connectionless WAP Push
62
D.1.1
Using non WAP Push capable devices
62
D.2
GCM (Google Cloud Messaging)
62
D.2.1
GCM Overview (Informative)
62
D.2.2
Message Flow
63
D.2.3
Bootstrap (Interface 1)
63
D.2.4
Registration and Unregistration (Interface 4)
64
D.2.5
Push Notification (Interface 8,10)
65
Appendix E.
Using Multipart Content-Type for Response (Normative)
66
Appendix F.
Protocol Examples (Informative)
68
F.1
Examples for Retrieving MO data
68
F.2
Examples for Modifying MO data
70

Figures

12Figure 1: DM Package Flow

17Figure 2: Example for the HGET command

18Figure 3: Example for the HPUT command

19Figure 4: Example for the SHOW command

24Figure 5: Addressing Scheme Examples; MO definition and two instances for it

28Figure 7: Example of an instance of this MO

29Figure 8: DM Notification package Format

29Figure 9: Message Option Format

37Figure 11: Client initiated bootstrap

40Figure 10: The DevInfo Management Object

42Figure 11: The DM Account Management Object

46Figure 12: Delegation Access Control MO

49Figure 13: Examples for Delegation Access Control MO

49Figure 14: Session Information Management Object

Tables

13Table 1: Standard Options

29Table 2: DM Notification Header Fields

52Table 3: Framework Properties

1. Scope

This protocol is called the OMA Device Management Protocol version 2.0, and it defines the protocol for various management procedures. The scope for this protocol is to define the interfaces that are used between the DM Server and the DM Client. Interfaces residing within the device or within the server are outside of the scope of this specification.

2. References

2.1 Normative References

	[HTTP]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R, Fielding, June 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford. July 2006,
http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[3GPP 23.003]
	"Numbering, addressing and identification", 3GPP,
URL: http://www.3gpp.org

	[3GPP 31.102]
	"Characteristics of the Universal Subscriber Identity Module (USIM) application", 3GPP,
URL: http://www.3gpp.org

	[RFC3629]
	"UTF-8, a transformation format of ISO 10646”, F. Yergeau, November 2003, URL:http://tools.ietf.org/html/rfc3629

	[RFC5198]
	"Unicode Format for Network Interchange", J. Klensin, M. Padlipsky, March 2003, URL:http://www.ietf.org/rfc/rfc5198

	[POSIX]
	ISO/IEC/IEEE 9945-2009 Information Technology — Portable Operating System Interface (POSIX®) Base Specifications, Issue 7.

	[RFC6234]
	"US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", D. Eastlake 3rd, etc. May 2011
URL:http://www.ietf.org/rfc/rfc6234.txt

	[RFC3986]
	"Uniform Resource Identifier (URI): Generic Syntax", Berners-Lee, et al. Jan 2005,
URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC4122]
	"A Universally Unique Identifier (UUID) URN Namespace", P. Leach, et al. July 2005, URL:http://www.ietf.org/rfc/rfc4122.txt

	[RFC1766]
	"Tags for the Identification of Languages". H. Alvestrand. March 1995. URL:http://www.ietf.org/rfc/rfc1766.txt

	[PushOTA]
	"Push Over The Air", Open Mobile Alliance(, OMA_TS-PushOTA-V2_3, URL:http://www.openmobilealliance.org

	[GCM]
	"Google Cloud Messaging for Android", Google,
URL: http://developer.android.com/google/gcm/index.html

	[RFC1521]
	"MIME (Multipurpose Internet Mail Extensions) Part One", Borenstein & Freed, Sep 1993
URL: http://www.ietf.org/rfc/rfc1521.txt

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	[ARCH_PRINC]
	"OMA Architecture Principle", Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[DM_1.3]
	"OMA Device Management Protocol", Version 1.3, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	JSON
	The JSON refers to the definition of [RFC4627].

	MO Instance
	Management Object Instance is an occurrence of a Management Object in the device. Instances of a Management Object share the same node definitions and behaviours, and can be represented as a set of related nodes in the device. Multiple Instances for one Management Object MAY exist in the device.

Kindly consult [OMADICT] REF DMDICT \h
 for more definitions used in this document.
3.3 Abbreviations
Kindly consult [OMADICT] for all definitions used in this document.
4. Introduction
(Informative)
Device Management refers to the management of device configuration and other managed objects of devices from the point of view of the Management Authorities. Device Management includes, but is not restricted to setting initial configuration information in devices, subsequent updates of persistent information in devices, retrieval of management information from devices, execute primitives on devices, and processing events and alarms generated by devices.

Device Management allows network operators, service providers or corporate information management departments to carry out the procedures of configuring devices on behalf of the end user (customer).
4.1 Version 1.2

Device management is the generic term used for technology that allows third parties to carry out the difficult procedures of configuring devices on behalf of the end user (customer). Third parties would typically be operators, service providers or corporate information management departments.

Through device management, an external party can remotely set parameters, conduct troubleshooting servicing of terminals, install or upgrade software. In broad terms, device management consists of three parts:

· Protocol and mechanism: The protocol used between a management server and a device

· Data model: The data made available for remote manipulation, for example browser and mail settings

· Policy: The policy decides who can manipulate a particular parameter, or update a particular object in the device

The specifications in the Device Management enabler Version 1.2 address the first part of device management above, the protocol and mechanism. More particularly, this enabler release addresses the management of devices by specifying a protocol and management mechanism that may be exposed by an OMA DM client and targeted by an OMA DM server.

The architecture of the Device Management enabler anticipates the needs of the market actors to differentiate their products through vendor-specific extensions while providing a core parameter set that can be relied upon in all terminals exposing this standardized interface.

The design of the architecture follows the OMA architecture principle [ARCH-PRINC] of Network Technology Independence by separating the bearer-neutral requirements from bearer-specific bindings. The described architecture also anticipates additional bearer and proxy types, as any are identified, without requiring a respecification of previously released documents. This preserves vendor and customer investment while supporting the scaling required by future innovations.

There are three parts to the object schema that provide break-points between more general and more specific parameters:

· A top level management object which is bearer-neutral;

· A set of bearer-specific parameters;

· Sub-tree(s) for exposing vendor-specific parameters.

By composing the management objects in this way, it becomes possible for a device management authority to:

· Target generic requirements that span all implementations;

· Focus on bearer-specific idiosyncrasies of a given networking environment;

· Activate terminal-specific behaviour by adjusting vendor-specific parameters.

In a wireless environment, the crucial element for device management protocol is the need to efficiently and effectively address the characteristics of devices including low bandwidth and high latency and to provide for support of these management operations remotely, over-the-air.
4.2 Version 1.3

OMA DM Version 1.3 [DM_1.3] reused the architecture from OMA DM Version 1.2. It does introduce new notification, transport protocols and a new DM Server to DM Server interface for delegation.
4.3 Version 2.0

OMA DM Version 2.0 reuses Management Objects which are designed for DM Version 1.3 or earlier DM Protocols. OMA DM Version 2.0 introduces new Client-Server DM Protocol, that is not backward compatible with any prior DM Protocol versions.

OMA DM Version 2.0 simplifies the transaction model of the DM command and package flows. OMA DM Version 2.0 also introduces web-based user ineraction using the SHOW command, and allows management data delivery using HTTP.
5. DM 2.0 Protocol
OMA DM 2.0 is the next generation of the OMA DM 1.x Protocol, and provides the interface between the DM Server and the DM Client to manage the device. OMA DM 2.0 leverages a RESTful architecture for the better scalability and management performance, and is also designed to work efficiently on less capable devices, compared with OMA DM 1.x. The following sub-sections present a high-level overview of the OMA DM 2.0 Protocol.
5.1 Protocol Overview
5.1.1 Transaction Model

OMA DM 2.0 protocol runs within the context of a DM session, using a request/response transaction model. DM sessions are always initiated by the DM Client. However, a DM Server can trigger the DM Client to initiate a DM session by sending the DM Notification to the DM Client. Once a DM session is established, the DM Server sends DM commands to the DM Client and receives responses from the DM Client. The DM Client also informs the DM Sever about events that have occurred on the device, via Generic Alerts. Only the DM Server sends DM commands to the DM Client, and the DM Client cannot send any DM commands. The DM Server terminates the DM session by sending the END command to the DM Client.
The OMA DM 2.0 supports the notion of packages. A DM package is the unit of message transferred between the DM Client and the DM Server. The originator of this DM package should wait for the response from the recipient before sending another DM package. Since processing of DM packages can consume unpredictable amount of time, the OMA DM Protocol does not specify any timeouts between DM packages.
The DM package is closely related to the HTTP message, and can only be transferred on top of the HTTP compatible protocols. In this way, OMA DM 2.0 provides more efficient mechanism for transferring the DM packages.
5.1.2 Security Considerations
With OMA DM, the device MUST be managed in a secure manner. The management operations between the DM Server and the DM Client take place only after authenticating the opponent as a trusted entity. OMA DM does not provide the full security features for the secure management operations; instead the corresponding underlying layer mechanisms MUST be used. More detailed specifications for the security issues can be found at the section 9.
5.1.3 DM Protocol Interface
OMA DM 2.0 includes or utilizes the following interfaces between the DM Client and the DM Server:
· Notification interface from the DM Server to the DM Client to initiate the DM session,
· Device management interface to send DM commands and to receive responses,
· HTTP interface between the DM Client and the Data Repository to deliver management data using normal HTTP session,
· User Interaction interface using Web Server Component and Web Browser Component,
· Bootstrap interface to retrieve and delivery bootstrap information.
Please refer to the OMA DM 2.0 AD specification for more details.
5.1.4 Management Data Delivery using HTTP
The DM Server can send DM commands to the DM Client for retrieving or sending management data from or to the Data Repository. The management data delivered between the DM Client and the Data Repository is carried over HTTP protocol. A set of DM commands (i.e., HGET, HPOST and HPUT) is defined in this specification, and the DM Client sends HTTP methods to the Data Repository according to the DM commands received from the DM Server.
In this specification, MIME types are defined for standard Management Object that can be used for indicate the type of the management data carried over HTTP protocol. But, other MIME types for the Management Object are not precluded. The protocol used here is HTTP/HTTPS without modifications or additions.

5.1.5 Web-based User Interaction

OMA DM 2.0 supports the web-based user interaction, which enables the DM Server to use the web pages to interact with the user. For this, the Web Browser Component and the Web Server Component are introduced, and a DM command SHOW is specified. The interface between the Web Browser Component and the Web Server Component is out-of-scope of this specification, and the UI session for performing the user interaction is separated from the DM session. The Web Browser Component can be integrated in the DM Client or can run as a standalone application. More details are specified in the section 5.3.7.
5.2 Package Flow

The package flow between the DM Server and the DM Client are shown below. The contents for each DM package are described in the section 8.

[image: image2.emf]If the DM session continues

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

3. Processing DM commands

(END cmd terminates

DM session)

DM Client DM Server

Figure 1: DM Package Flow
Step 0 (Package#0): The DM Server requests the DM session by sending the DM notification to the DM Client. This DM notification is conventionally called as the Package#0. This is an optional package flow since the DM notification is not needed in the client initiated case.

Step 1 (Package#1): The DM Client MAY initiate the DM session by sending the Package#1. The DM package that initiates the DM session is conventionally called as the Package#1. This Package#1 MAY contain the the information for the supported Management Object that can be used by the DM Server for management operations.
Step 2 (Package#2): After receiving the Package#1 or Package#3, the DM Server sends the Package#2 to the DM Client for the management commands. The DM package containing the DM command is conventionally called as the Package#2.

Step 3 (Command Processing): The DM Client processes the DM commands received in the Package#2, and the DM Client MUST sequentially process the DM command according to the order specified in the Package#2. To process the DM command, the DM Client MAY interact with external components other than the DM Server (e.g., the Web Browser Component in case of the SHOW command, the Data Repository in case of the HGET/HPOST/HPUT command).

Step 4 (Package#3): If the Package#2 does not include the END command, the DM session MUST continue and the DM Client MUST response to the DM Server by sending the Package#3. The DM package containing the results for the DM command is conventionally called as the Package#3. After the Package#3 is sent to the DM Server, the package flow goes back to the Step 2, and the DM Server MUST send the Package#2 again.
5.2.1 Package#0: DM Notification
Many devices cannot continuously listen for connections from a management server. Other devices simply do not wish to “open a port” (i.e. accept connections) for security reasons. However, most devices can receive unsolicited messages, sometimes called “notifications”. Some handsets, for example, can receive SMS messages. Other devices may have the ability to receive other, similar datagram messages. A DM Server can use this notification capability to cause the DM Client to initiate the DM session to the DM Server.

DM Notification package consists of a number of mandatory parameters, called Headers, and a number of optional parameters, called Options: the number of Options is determined by the Header. The format of this package is specified in the section 7.1.
5.2.1.1 Package Headers
All headers MUST be present in the DM Notification. The following headers are defined in this specification:

· Version (VER)
The VER field specifies the version of the DM Notification package sent by the DM Server. The value for this specification MUST be 0x02. Note that this is not the DM Protocol version, but the DM Notification package version.
· Options Count (OC)
The OC field specifies the number of Options in the DM Notification package.
5.2.1.2 Package Options
Each Option MUST be uniquely identified with an Option Number, and MAY be present in the DM Notification. The standard Options defined in this specification are as follows:
	Option No
	Name
	Value Format
	DM Client Support
	DM Server Support
	Occurrence

	1
	SERVER-ID
	String
	Mandatory
	Mandatory
	ZeroOrOne

	2
	PREFERRED-CON-TYPE
	Opaque
	Mandatory
	Mandatory
	ZeroOrOne

	3
	NOTIFICATION-ID
	Uint
	Optional
	Mandatory
	ZeroOrOne

	4
	SHA256-DIGEST
	Opaque
	Optional
	Mandatory
	ZeroOrOne

	5
	TIMESTAMP
	Opaque
	Optional
	Mandatory
	ZeroOrOne

	6
	REQ-MOS
	Null
	Mandatory
	Mandatory
	ZeroOrOne

Table 1: Standard Options
Option carries the value whose format MUST be one of the followings:

· Uint: A non-negative integer which is represented in network byte order using the bytes which Option Length decides. The Option Value range is calculated by 2 to the power of Option Length in bit. For example if the Option Length is 2, Option Value range is 0-65535 in decimal.

· String: A Unicode string which is encoded using UTF-8 [RFC3629] in Net-Unicode form [RFC5198]. Note that ASCII strings (that do not make use of special control characters) are always valid UTF-8 Net-Unicode strings.

· Opaque: An opaque sequence of bytes. This type could be used when the other types than Uint or String is required. How to handle this type depends on the Option using this type.
· Null: The Option carries no value.
The detailed explanations for each Options as follows:
· Server ID Option (SERVER-ID)
The SERVER-ID Option specifies the Server Identifier of the DM Server. This is the same identifier as in the DM Account Management Object. This Option MAY NOT be present if the DM Client is able to discover the Server Identifier of the DM Server that sent the DM Notification.
· Preferred Connection Type Option (PREFERRED-CON-TYPE)
The PREFERRED-CON-TYPE Option specifies the preferred connection that the DM Client is requested to use for connecting to the DM Server. If multiple preferred connections are specified, the connection which appears first is to have higher priority over the rest of available bearers. The DM Client SHOULD use the preferred connections with higher priority first if they are available. If none of indicated preferred connections is available, the DM Client SHOULD wait until one of them becomes available unless "ANY_AVAILABLE" is used. If "ANY_AVAILABLE" is used, it MUST be put at the end of the preferred connection, and the DM Client SHOULD select any connection type that is currently available if all higher prior connections are not currently available.
The values of this Option MUST be one of the following:
	Value
	Semantics
	Description

	0x00
	ANY_AVAILABLE
	Indicates the preferred connection is anything currently available

	0x01
	MOBILE
	Indicates the preferred connection is mobile

	0x02
	WIRELESS
	Indicates the preferred connection is wireless

	0x03
	WIRELINE
	Indicates the preferred connection is wireline

· Notification ID Option (NOTIFICATION-ID)
The NOTIFICATION-ID Option specifies 16-bit unsigned integer used for detecting the duplication of the DM Notification. This Option MAY NOT be presented if the underlying transport provides the functionality to discard the duplicated DM Notification. The length of this Option MUST be 2 bytes.

The DM Client might receive the same DM Notification multiple times, and the duplication can be detected by this Option and the Server Identifier of the DM Server that sends the DM Notification. The DM Client MUST drop the duplicated DM Notification.

The DM Server MUST properly set this Option for the DM Client to detect the duplication. For instance, the DM Server may sequentially increase this field for each separate DM Notification.
· SHA256 Digest Option (SHA256-DIGEST)
The SHA256-DIGEST Option specifies the digest for the DM Notification. The length of this Option MUST be 32 bytes. The DM Sever MUST set this Option as follows:

· Step1: The DM Server prepares the DM Notification with this Option. The value of this Option MUST be initially set to all zero (zero-digest), and all other Options MUST be properly set.

· Step2: The DM Server calculates the SHA256 digest according to [RFC6234]. The Input to the hash function MUST be the concatenation of the DM Server secret and the DM Notification (i.e., Digest=Hash(server-secret|notification-message|auth-data). Note that the DM Notification contains all zero for the digest (zero-digest) at this step.

· Step3: The DM Server replaces the zero-digest with the computed digest.

If the DM Account MO is used for providing the credentials for this Option, the server-secret MUST be provided at the <x>/Credentials/Noti/AuthSecret node in the DM Account MO, and the auth-data MUST be provided at the <x>/Credentials/Noti/AuthData node in the DM Account MO.

When receiving the DM Notification with this Option, the DM Client MUST ignore the DM Notification for below cases:

· The DM Server secret is not properly provided at the AuthNoti sub-tree in the DM Account MO, or
· The digest in the Option is incorrect.

· Timestamp Option (TIMESTAMP)
The TIMESTAMP Option specifies the time when the DM Server sends the DM Notification. This time information can be used to prevent the reply attacks. The value of this Option MUST be the time in POSIX format [POSIX].

When receiving the DM Notification with this Option, the DM Client MAY ignore the DM Notification if the time indicates in this Option is too old (implementation specific decision).

· Request MOS Option (REQ-MOS)

The REQ-MOS Option requests that the MOS (Management Object Supported) array MUST be sent in the Package #1 as specified in the section 5.2.2. This Option carries no value.
5.2.2 Package#1: DM Session Initiation by DM Client

DM session is only initiated by the DM Client, and the DM Client can send the Package#1 to initiate the DM session.
This package MUST be implemented as HTTP POST Request [HTTP], and the OMADM-DevID HTTP header MUST be presented to contain the value of the DevInfo/DevID node in the DevInfo Management Object.

The Package#1 is used by the DM Client:

· To send to the DM Server the list of supported MOs if the REQ-MOS Option is used in the Package#0: in this case one “MOS” (Management Objects Supported) array MUST be included in the Package#1. Each item of the array, representing a supported MO, MUST contain the following information:

· The link to the DDF file

· The MOID of the MO

· The array containing the list of the MIID of the MO instances for the MOID
The MOID MUST be provided to the DM Server only if the DM Server provisioned the MOID during the bootstrap. Once the MOID is provided to the DM Server, the MIID for the MOID MUST be provided to the DM Server if the DM Server has any permission for the MO instance.
· To inform the DM Server of any Client Initiated Alerts: in this case one “Alert” array MUST be included (see Chapter 1.1.
5.2.3 Package#2: DM Commands from DM Server to DM Client

The DM Server sends the Package#2 to the DM Client as a response to the Package#1 or the Package#3, in order to send the DM commands. Multiple DM command can be listed, and the DM commands MUST be ordered in a sequence since the DM Client MUST sequentially process the DM command according to this order. The same DM command can be listed multiple times also.

This package MUST be implemented as HTTP Response [HTTP] to HTTP Request that carries the Package#1.
The Package#2 is used by the DM Server to send to the DM Client the ordered list of DM Commands to be executed; each item of the list contains:

· The DM Command (see Chapter 5.3)
· The list of the parameters for the DM Command

5.2.4 Package#3: Response Package from DM Client to DM Server

The DM Client sends the Package#3 to the DM Server as a response to the Package#2. If the Package#2 includes the END command, this Package#3 MUST NOT be sent.
This package MUST be implemented as HTTP POST Request [HTTP], and the OMADM-DevID HTTP header MUST be presented to contain the value of the DevInfo/DevID node in the DevInfo Management Object.

The Package#3 is used by the DM Client:

· To send to the DM Server the list of status codes for the DM commands indicated in the Package#2; each item of the list MUST contain the status code. See Appendix C for the valid status codes. Additional information (e.g., the stored location of data for the HGET command) MAY be returned with the status code.
· To send to the DM Server new optional Client Initiated Alerts raised during the session: in this case one “Alert” array MUST be included (see Chapter 1.1).
5.3 DM Commands

This specification supports the following DM commands. The DM Server MUST support all DM commands, and for the DM Client refer to the table.
	Command
	Description
	DM Client support

	HGET
	The DM Server uses this command to requests the DM Client to retrieve data from the Data Repository using HTTP GET, and add or replace the received data into the device.
	MUST

	HPUT
	The DM Server uses this command to request the device to send data to the Data Repository using HTTP PUT.
	MUST

	HPOST
	The DM Server uses this command to request the device to send data to the Data Repository using HTTP POST.
	MUST

	DELETE
	The DM Server uses this command to delete data in the device.
	MUST

	EXEC
	The DM Server uses this command to execute an executable node in the device.
	MUST

	GET
	The DM Server uses this command to retrieve data from the device. The DM Client sends the data within the current DM session.
	SHOULD

	SHOW
	The DM Server uses this command to initiate a UI Session between the Web Browser Component and the Web Server Component.
	SHOULD

	CONT
	The DM Server uses this command for the DM Client to continue the DM session with the specified DM Server URI.
	MUST

	END
	This command is used by the DM Server to terminate the DM session.
	MUST

	DEFAULT
	Configure the DM Client to use a specific address to capture configuration if that is missing in the device for an specific MOID
	SHOULD

5.3.1 HGET
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	ClientURI
	ClientURI as specified in the section 6.1
	ZeroOrOne

The DM Client will send a request for the ServerURI using HTTP GET to retrieve MO data, and then will add or replace the received data into the device. The ServerURI refers to the data in the Data Repository. If the ClientURI is specified, then the DM Client will try to store the retrieved data at the ClientURI and replace all existing data if any.
If the ClientURI is not specified, then the DM Client can choose where to store the data and the location will be returned with the status codes. Multiple ClientURIs MUST be returned if retrieved data is stored at the multiple locations in the device.
The format of the retrieved MO data is indicated by the MIME media type as specified in the HTTP Content-Type header [HTTP].
This command can be used by the DM Server to create an MO instance in the device. When an MO instance is created, the MIID (MO Instance Identifier) MUST be assigned by the DM Client.
The message flows and the detailed explanations for this DM command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image3.emf]DM Client

Data

Repository

2. HTTP response containing MO data

1. HTTP GET to ServerURI

3. store the received MO data

Figure 2: Example for the HGET command
Before the Step 1, the DM Server sends HGET command to the DM Client using the Package#2. This HGET command can take parameters such as ServerURI or ClientURI.

Step 1: The DM Client sends the HTTP request (HTTP GET) to the ServerURI. In the HTTP request message, HTTP Accept header can indicate the MIME media types that the DM Client supports.

Step 2: The Data Repository returns the HTTP response containing the MO data requested. The Data Repository serves the DM Client with the proper MO data format based on the HTTP Accept header.

Step 3: The DM Client stores the received MO data at the ClientURI if the ClientURI is specified. If the ClientURI is not specified, the DM Client can choose where to store the MO data. If a new MO instance is created, the DM Client assigns the MIID to the MO instance.
5.3.2 HPUT
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	ClientURI
	ClientURI as specified in the section 6.1
	OneOrMore

The DM Client will send the data requested by all ClientURIs to the Data Repository. The data requested by all ClientURIs MAY be formatted according to the section 7, but other formats are not precluded. The DM Client sends the data to the ServerURI as HTTP PUT. The ServerURI refers to a location in the Data Repository.
The message flows and the detailed explanations for this DM command are shown below. Please note that below message flow is simplified not showing the interaction between the DM Client and the DM Server.

[image: image4.emf]DM Client

Data

Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

Figure 3: Example for the HPUT command
Before the Step 1, the DM Server sends the HPUT command to the DM Client using the Package#2. This HPUT command can take parameters such as ServerURI or ClientURI.

Step 1: The DM Client sends the HTTP request (HTTP PUT) to the ServerURI. This HTTP request contains the MO data requested by all ClientURIs in the HPUT command.

Step 2: The Data Repository returns the HTTP response.
5.3.3 HPOST
This command is exactly the same with HPUT except that the DM Client sends the data using HTTP POST.
5.3.4 DELETE
This command has below parameters:
	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Client will delete the node identified by the ClientURI in the device. All child nodes will be deleted as well if the node identified by the ClientURI is an interior node with child nodes.
5.3.5 EXEC
This command has below parameters:

	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

	ServerURI
	ServerURI as specified in the section 6.2
	ZeroOrOne

The DM Client will perform the EXEC operation on the node identified by the ClientURI. If the ServerURI is specified then the asynchronous reporting mechanism MUST be used and the Generic Alert MUST be sent to the ServerURI using the DM session (i.e., in the Package#1 or in the Package#3).
5.3.6 GET
This command has below parameters:

	Parameter
	Format
	Occurrence

	ClientURI
	ClientURI as specified in the section 6.1
	One

The DM Client returns the requested MO data identified by the ClientURI to the DM Server. How to return the requested MO data is specified in the Appendix E.
5.3.7 SHOW
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

SHOW command can be used for the DM Server to communicate with the user via the web-based user interaction. This user interaction is accomplished via a UI session between the Web Browser Component and the Web Server Component, which is separated from the DM session. The DM Server and the DM Client do not have knowledge about the context of the UI session, and the results of the UI session is transmitted using the internal interface between the Web Server Component and the DM Server. The DM Server can decide the next management operations according to the results of the user interaction. The internal interface between the Web Server Component and the DM Server is out of scope and left to implementations.
The ServerURI MAY contain the necessary information to identify each UI session, and this information can be used when the DM Server retrieves the results for the user interaction from the Web Server Component.
When receiving the SHOW command, the DM Client SHALL initiate the Web Browser Component to load the ServerURI and show the web pages to the user. After the Web Browser Component is successfully initiated, the DM Client MUST process the next DM command not waiting for the UI session finished. The DM Client cannot know when the UI session will be finished since the user interaction might consist of several web pages. Also, in case that the DM Client fails to initiate the Web Browser Component, the DM Client MUST process the next DM command.
The message flows for this DM command are shown below with detailed explanations.

[image: image5.emf]DM Client DM Server

Web Browser

Component

Web Server

Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the

user interaction

4. Transmit the results

for the user interaction

Figure 4: Example for the SHOW command
Before the Step 1, the DM Server sends the SHOW command to the DM Client using the Package#2. The SHOW command takes the ServerURI parameter.
Step 1: To process the SHOW command, the DM Client initiates the Web Browser Component to load the ServerURI and show the web pages to the user. The ServerURI might contain the information to identify this UI session. For example, the query component "?uiid=1234" (user interaction ID) can exist in the ServerURI. The DM Client continues to the next DM command after the Web Browser Component is initiated.

Step 2: The Web Browser Component sends the HTTP request to the ServerURI, and begins the user interaction that might consists of several web pages. This user interaction can takes time, or user might not respond.

Step 3: After the user interaction is finished, the Web Server Component stores the results for the user interaction. In case that the user interaction is failed, the error code can be also stored. For example, the Web Server Component can store the "uiid" as an identifier for the user interaction.

Step 4: The results for the user interaction are transmitted between the Web Server Component and the DM Server via an out-of-scope interface. For example, the DM Server might request the results for the "uiid=1234", or might be notified by the Web Server Component.
5.3.8 CONT
This command has below parameters:

	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

This command is used by the DM Server to make the DM Client continue the DM session with the specified DM Server URI. After receiving the CONT command, the DM Client MUST send any response packages (i.e., the Package#3) to the specified ServerURI, and MUST keep using the ServerURI for all further response packages in the same DM session until the CONT command changes the response address again.
5.3.9 END
This command has no parameters.
The DM Server MUST send this command to terminate the current DM session. On receiving this command, the DM Client MUST process all commands included in the DM package, but MUST NOT return any status and results back to the DM Server.

5.3.10 DEFAULT
	Parameter
	Format
	Occurrence

	ServerURI
	ServerURI as specified in the section 6.2
	One

	MOID
	MOID
	One

The DM Client SHOULD store the ServerURI and MAY use it when the DM Client itself needs configuration for a specific MOID. On receiving another DEFAULT command for the same MOID, the old ServerURI MUST be replaced with the new ServerURI. That means that the DM Client needs to be able to store just one ServerURI per each supported MOID.
Refer to the section 10.1 for how to use this DEFAULT command.
5.4 Generic Alert
The protocol defines a Generic Alert message for Alerts generated by the DM Client that MAY have a relation to a Management Object. In the case of a relation to a Management Object then the SourceURI property MUST identify the address to that Management Object.

Anytime after the Generic Alert is generated, the DM Client MAY send a Generic Alert message to the DM Server using the Package#1 or the Package#3. The Generic Alert message SHALL only be sent from the DM Client to the DM Server.

The properties of the Generic Alert are as follows:

· AlertType to define the type of this Generic Alert,
· SourceURI to specify the address to the node in the Management Object that is related to this Generic Alert. This MUST be a ClientURI as specified in the section 6.1,
· TargetURI to specify the additional address for the Generic Alert. This MUST be a ClientURI as specified in the section 6.1. The usage of the TargetURI is not specified in this specification,
· Mark to specify the importance level. The valid importance levels are "fatal", "critical", "minor", "warning", "informational", "harmless" and "indeterminate". If the parameter is omitted then the default importance level "informational" is assumed,
· DataType to specify the MIME media type for the Data,
· Data to carry the additional data for the Generic Alert. The format and content of the Data property is not specified in this specification.
This specification only specifies what is required from the protocol perspective, and each Generic Alerts MAY have additional requirements for the format and content of the Data property. For the unrecognized AlertType or the unrecognized Data property, the DM Server MUST silently ignore the Generic Alert. The DM Server MUST NOT send any status codes for the Generic Alerts regardless of that the DM Server successfully processes the Generic Alert or not.
The following table summarizes the properties of a Generic Alert:
	Property
	Description
	Occurrence

	AlertType
	The type of the Generic Alert
	One

	SourceURI
	The address to the node in the Management Object that is related to this Generic Alert
	ZeroOrOne

	TargetURI
	The additional address related to the Generic Alert.
	ZeroOrOne

	Mark
	The importance level
	ZeroOrOne

	DataType
	The MIME type for the Data. This property MUST be present if the Data property exists.
	ZeroOrOne

	Data
	The additional data for the Generic Alert. The format and the content of the Data are not specified in this specification
	ZeroOrOne

OMA DM 1.x Protocol also specifies the Generic Alert that is widely used in Management Objects. The interworking issues between the OMA DM 2.0 Generic Alert and the OMA DM 1.x Generic Alerts is resolved in the section 14.1.

5.4.1 Asynchronous Reporting for DM Commands
Synchronous reporting MUST be used for all DM commands except the EXEC command. For the EXEC command, the DM Client returns the status of the EXEC command either synchronously (i.e. the final status code in the response package) or asynchronously, via the Generic Alert mechanism. If the ServerURI is present in the EXEC command, the DM Client MUST use the asynchronous reporting; otherwise it is up to the DM Client to decide which reporting mechanism is used for the EXEC command depending on the nature of the management operation.

If the asynchronous reporting is used, the DM Client MUST return the status code "202 Accepted" in the response Package#3. After completing the EXEC command, the final status code will be returned in the Generic Alert either in the Package#1 or Package#3. Additional Generic Alert data for the asynchronous reporting might be defined for each EXEC command, which is out-of-scope of this specification.
6. Device Management Object
6.1 ClientURI Addressing Scheme
OMA DM 2.0 supports the ClientURI addressing that can be used to identify each node(s) in the device. The addressing is represented as a URI format that is compatible with [RFC3986]. The DM Server MUST support the ClientURI addressing scheme. The DM Client MUST support the ClientURI addressing scheme except the query component, the x-name component and the wildcard that are OPTIONAL for the DM Client.
6.1.1 Syntax
ClientURI MUST follow below format represented in ABNF [RFC4234]. Note that ALPHA, unreserved is adapted from RFC3986.
ClientURI

= MOID "/" mo-inst path-from-miroot ["?" query]
mo-inst

= MIID / x-name / "" / "*"
path-from-moroot
= "/" / 1*("/" node-name)
node-name

= real-name / x-name / "*"

real-name

= 1*unreserved
x-name

= "(" ALPHA ")"
In general, the MOID and mo-inst (if present) components point to an MO instance, and the path-from-moroot component points to node(s) in the MO instance by describing the relative path from the MO instance root node.
6.1.1.1 The MOID and mo-inst Component

The MOID component MUST be the MOID of the MO instance that has node(s) the ClientURI targets. The mo-inst component MUST be one of the followings:
· MIID: This MUST be the MIID of the MO instance that has node(s) the ClientURI targets. The MIID MUST be unique within MO instances for the same MOID in the device. The MOID and MIID pair can uniquely identify an MO instance in the device
· x-name: This is represented by three characters such as "(x)" or "(y)", and the ALPHA component in the x-name component MUST be uniquely assigned within all x-name component in one ClientURI. The corresponding nv fields MUST be provides to resolve the actual MO instance

· empty string (i.e., ""): This can be used when there is only one MO instance for the specified MOID
· wildcard ("*"): All MO instances with the specified MOID are addressed
6.1.1.2 The path-from-moroot Component

The path-from-moroot component can be single character "/" that addresses the MO instance root node, or can be organized as the sequence of node-name starting from the child node of the MO instance root node. The node-name MUST be one of the followings:

· real-name: This MUST be the actual node name

· x-name: This is represented by three characters such as "(x)" or "(y)", and the ALPHA component in the x-name component MUST be uniquely assigned within all x-name components in one ClientURI. The corresponding nv fields MUST be provided to resolve the actual node

· Wildcard ("*"): All nodes at the specified position are addressed

Named nodes MUST be addressed by the real-name component; while un-named nodes can be addressed by any (i.e., the real-name component, the x-name component and the wildcard). Note that the ClientURI uses "(" and ")" instead of "<" and ">" because using "<" and ">" is not compatible with RFC3986.
6.1.1.3 The query Component
The query component contains additional information for the CleintURI. The query component is indicated by the first question mark and terminated by the end of the ClientURI. The query component is organized as the sequence of "field=value" separated by an ampersand "&".
This specification defines below standard fields that can be used in the query component, but vendor-specific extensions for additional fields are also possible. The DM Client MUST ignore unrecognized fields.
	Fields
	Format
	Description
	Occurrence
	Applied DM Cmds

	level
	lv=<n>
	<n> represents a positive integer. If this field is specified, the client MUST only include n sublevels of child nodes; otherwise, all child nodes will be included.
	ZeroOrOne
	GET, HPOST, HPUT

	node-value
	nv=<path>:<val>
	This field can be used to resolve the x-name component. <path> MUST begin with "(" ALPHA ")" where the ALPHA component indicates the corresponding x-name component in the ClientURI. Starting from the corresponding x-name component, <path> indicates the relative path to the leaf node. Multiple nv fields can be specified for the same ALPHA component.

<val> MUST specify the value for the leaf node specified by the <path>.
The nv field can be said to be "satisfied" if the node specified by the <path> has the value specified by the <val>.
	ZeroOrMore
	All that can have the ClientURI

	cache validator
	cv=<val>
	<val> indicates the cache validator for the node represented by the ClientURI. See the section 9 for details.
	ZeorOrOne
	GET, HPUT, HPOST

6.1.2 Resolving ClientURI

The DM Client MUST resolve the ClientURI into a unique location if the wildcard is not used in the ClientURI. If the wildcard is used, the ClientURI might be interpreted to identify multiple nodes in the device, and a list of MO data MUST be returned where each member of the list MUST represent each matched MO data by the ClientURI.
This resolving procedure consists of two steps; finding the MO instance(s), and finding the node(s) within the MO instances. The DM Client MUST follow below procedures to resolve ClientURI:
Step 1: Finding the MO instance(s) according to the mo-inst component. The MIID, x-name, empty string and wildcard for the mo-inst component MUST be interpreted as follows:
· MIID: To proceed to the Step2, the DM Client MUST find only one MO instance for the specified MOID and MIID. If no or multiple MO instances are found, an error code MUST be returned
· x-name: To proceed to the Step2, the DM Client MUST find only one MO instance that satisfies all corresponding nv fields for this x-name component. If no or multiple MO instances are found, an error code MUST be returned

· Empty string: To proceed to the Step2, the DM Client MUST find only one MO instance for the MOID. If no or multiple MO instances are found, an error code MUST be returned

· Wildcard: All MO instances for the specified MOID MUST be considered in the Step2. If there is no MO instance for the MOID, an error code MUST be returned

Step 2: Within MO instance(s) found in the Step 1, the DM Client resolves the path-from-moroot component. The real-name, x-name and the wildcard in the path-from-moroot component MUST be interpreted as follows:

· real-name: The actual node name MUST be matched.

· x-name: The DM Client MUST find only one node that satisfies all corresponding nv fields for this x-name component; otherwise an error code MUST be returned.

· Wildcard: All nodes at the specified location are addressed.
6.1.3 Addressing Examples

In this section, illustrative examples for addressing schemes are shown.

[image: image6.png](<x> ID
/

MOID: urn:oma:mo:moid:1.0 Setting
Data)—(<x>* Date
Value
D N\ [
(morooﬁ “GPS (m°r°°t2) “Temperature”
/‘ Setting / | [Setting
WIID: left “0xA2” MIID: right ‘x12”
A Date { A Date
Data 1 J 2.1 Data 1) <1217
L | Value L | Value
“121,65.2’ 2
) N\ [Date 2 N\ [Date
T 22 T #12.27
L | Value L | Value
“117.1,21.2° 9

Figure 5: Addressing Scheme Examples; MO definition and two instances for it
· "urn:oma:mo:moid:1.0/left/" identifies the moroot1 node
· "urn:oma:mo:moid:1.0//" cannot be resolved since there are two MO instances

· "urn:oma:mo:moid:1.0/(x)/?nv=(x)/ID:Temperature" identifies the moroot2/ID node
· "urn:oma:mo:moid:1.0/(x)/Data/1/Value?nv=(x)/ID:GPS" identifies the moroot1/Data/1/Value node

· "urn:oma:mo:moid:1.0/right/Data/(x)/Value?nv=(x)/Date:12.1" identifies the moroot2/Data/1/Value node

· "urn:oma:mo:moid:1.0/(x)/Data/(y)/Value?nv=(x)/ID:GPS&nv=(y)/Date:12.2" identifies the moroot1/Data/2/Value node

· "urn:oma:mo:moid:1.0/*/Setting" identifies two nodes; the moroot1/Setting and moroot2/Setting node
· "urn:oma:mo:moid:1.0/(x)/Data/*/Value?nv=(x)/ID:GPS" identifies two nodes; the moroot1/Data/1/Value and moroot1/Data/2/Value node

· "urn:oma:mo:moid:1.0/(x)/Data/*/Value?nv=(x)/ID:GPS&nv=(x)/Setting:0xB2" cannot be resolved since there is no MO instances satisfying the two nv fields

· "urn:oma:mo:moid:1.0/*/Data/*/Value" identifies four nodes; the moroot1/Data/1/Value, moroot1/Data/2/Value, moroot2/Data/1/Value, and moroot2/Data/2/Value node
6.2 ServerURI Addressing Scheme
ServerURI MAY include some parameters within the ‘[‘ character and the ‘]’ character that the DM Client MUST replace with its own values before it is used. After these parameters are replaced, the ServerURI MUST be encoded as a URI as defined in [RFC3986]. All non-supported values MUST be replaced with the integer value “-1”. The following values are defined:

	Name
	Description
	DM Client Support

	DevID
	Unique identifier of the device.
The value of the <x>/DevID node in the DevInfo MO MUST be used.
	MUST

	MNC
	Home network’s Mobile Network Code [3GPP 23.003]
If the DM Client is not associated with a mobile network then this value MUST be -1.
	MUST

	MCC
	Home Network’s Mobile Country Code [3GPP 23.003]
If the DM Client is not associated with a mobile network then this value MUST be -1.
	MUST

	CMNC
	Current Mobile Network Code [3GPP 23.003]
If the DM Client is not associated with a mobile network then this value MUST be -1.
	MUST

	CMCC
	Current Mobile Country Code [3GPP 23.003]
If the DM Client is not associated with a mobile network then this value MUST be -1.
	MUST

	SPName
	Service Provider Name [3GPP 31.102]
If the DM Client is not associated with a mobile network then this value MUST be -1.
	MUST

6.3 Management Object Definition
Each device that supports OMA DM 2.0 MUST contain Management Objects. Management Object is the set of related nodes for a specific function, and the type of the Management Object is defined by the MOID. Standard Management Objects are defined in the section 11; however, proprietary Management Objects can be specified as well by using the same Management Object definition specified in this section. OMA DM 2.0 does not require that Management Objects in the device are organized as a hierarchical tree structure since the nodes are addressed based on the Management Object.
6.3.1 Nodes
Nodes are the entities that can be manipulated by management actions carried over the OMA DM Protocol, and there are two types of nodes; the leaf node and the interior node.

The leaf node can have a value assigned to the node, and the value might be small as an integer or large and complex like a background picture or firmware image. OMA DM Protocol is agnostic about the node values and the meaning of the node value is specified by the Management Object. The leaf node cannot have a child node. An interior node can have child nodes, and cannot have a node value.

To define nodes for the Management Object, the following MUST be specified:

	Definition
	Description

	Name
	This indicates the node name. The format of the node name MUST follow the below ABNF format where the unreserved is adapted from [RFC3986]:

node_name = "<" 1*unreserved ">" / 1*unreserved
The node name that starts with "<" and ends with ">" represents the un-named node.

	Status
	if the value is "Required" then the DM Client MUST support the node (if the parent node is supported); if the value is "Optional", then the node is not unconditional mandatory to support in the implementation.

	Occurrence
	This indicates the number of instances that MAY occur for the node. The valid values are the followings:

· One: The number of node MUST be exact one

· ZeroOrOne: The number of nodes is zero or one. The DMS can add the node when the current occurrence was zero
· ZeroOrMore: The number of nodes is zero or more. The DMS can add the node up to the number of device allows

· OneOrMore: The number of nodes is one or more. The DMS can add the node up to the number of device allows

· ZeroOrN: The number of nodes is zero or multiple number. The DMS can add the node up to the number specified as the part of MO specification

· OneOrN: The number of node is one or multiple number. The DMS can add the node up to the number specified as the part of MO specification

	Format
	Data format which is stored on node. Allowed values are "node", "null", "b64", "bin", "bool", "chr", "int", "xml", "date", "time", and "float". Node with the format "node" is the interior node; otherwise it is the leaf node. The format "null" means the node MUST NOT have the node value.

	Access Type
	This specifies the access type that indicates which operations are allowed for the node. The valid values are the combination of the followings:

· R: This node is readable

· W: This node is writable

· E: This node is executable

For example, "R" means this is read-only node. "RE" means this is readable and executable, but cannot be written. "W" means this is write-only node. If nothing specified, it means that this node is not exposed to the DM Server.

	Description
	This indicates the description for the node that specifies the behaviour related to the node.

6.3.1.1 Permanent and Dynamic Nodes
Nodes in the Management Object can be either permanent or dynamic.
For the permanent node, the DM Server cannot create or delete permanent nodes at run-time. An attempt by the DM Server to delete a permanent node will return status "405 Command Not Allowed". The same status code will also be returned for all attempts to modify the name of a permanent node.
Dynamic nodes can be created and deleted at run-time by the DM Servers. The HGET command is used to create new dynamic nodes. The DELETE command is used to delete the dynamic node and all its properties. If an interior node with child nodes is deleted, all child nodes MUST also be deleted.

The permanent node can be indicated by the occurrence definition of the node. Regardless of the type of the node (i.e., leaf or interior node), if the occurrence is set to 'one', then it is the permanent node.

The permanent node MAY be the child of either a dynamic or a permanent node. In such cases, the permanent child node is created at the same time its parent node is created.
6.3.1.2 Un-named and Named Node

Un-named are nodes which act as placeholders in the Management Object and are instantiated with information when the nodes are used at run-time. The un-named node is easily distinguishable since it starts with "<" and ends with ">" in the Management Object definition. Mostly un-named node is represented as "<x>", but an informative name can be given such as "<MOID>" that helps understanding the node name comes from the MOID. Unlike the un-named node, the named node has a fixed name. The node name does not need to be unique within the Management Object, but it MUST be unique within the child nodes belonging to the same parent node.
6.3.1.3 Node Definition Example
Following table is an example of the node definition:

	Including the node name, the path from the MO root node is specified here. For example, "<x>/bar" means the name of this node is "bar" that is located under the MO root node "<x>".

	
	Status
	Occurrence
	Format
	Access Types
	

	
	Required
	OneOrMore
	node
	R
	

	
	The description for the node can be specified here.

6.3.2 Graphical Representation of MO

In order to make it easier to quickly get an overview of how an MO is organized and its intended use, a simplified graphical notation in the shape of a block diagram is used in the technical specification documents. The following is an example of what a MO can look like when it is expressed using the graphical notation:
[image: image7.jpg]Tateriork) (<07 Tei i

[Requized tiea=]

Leats

)) (TUaiguevenasiNamsT ™)

)—EJ&B{C 1

Figure 6: Example of a MO pictured using the graphical notation
Each block in the graphical notation corresponds to a defined node, and the text is the name of the node. If the text starts with "<" and ends with ">", it is the un-named node. The nodes which the DM Client is required to support are drawn in the graphical notation with solid line, while nodes whose support is not mandatory for the DM Client are drawn with a dotted line. Leaf nodes are drawn as rectangle while interior nodes are drawn as rectangle with rounded corners.
The occurrence information is appended at the end of node name with the marker. The valid markers and their meaning are defined in the following table. If none of these markers is used the default occurrence is exactly 'One':
	Marker
	Meaning

	+
	Occurrence of OneOrMore

	*
	Occurrence of ZeroOrMore

	?
	Occurrence of ZeroOrOne

	+N
	Occurrence of OneOrN

	*N
	Occurrence of ZeroOrN

.Some MOs specify explicit names of nodes but the name is still assigned at run-time. These nodes MAY NOT be described as "<x>" and it is possible to use the syntax [NodeName] where “NodeName” is a logical name for the node. In this case the graphical representation and the DDF File will contain the logical name of the node to improve the readability.

Naturally, this graphical overview does not show all details of the full description, but it provides a good map of the description so that it is easier to find the individual node. Although the figure only provides an overall view of the description, there are still some things worth noticing.

All blocks with names in place occur exactly once, except "Leaf2", "InteriorA/<x>", "InteriorB/<x>", all "Ext" nodes and their children.

"Leaf3", "InteriorB", all "Ext" and their children nodes are optional to be supported by the DM Client.

All nodes whose name starts with "Leaf" and the node "[AAuthLevel]" are leaf nodes. They might contain data but cannot contain child nodes; all other nodes are interior nodes; they cannot contain data but can contain child nodes.

The un-named leaf nodes might be marked with * or +. This means that although the description only contains one node description at this position in the tree, there can be any number of instantiated nodes at run-time, including none in the first case, at least one in the second.
The next figure shows an example of what the above Management Object definition can be instantiated in the device at run-time:

[image: image8.jpg]Tnteriord

Chilanol

Tei]

Childooz

Ten]

Ext

}—(HyCampany }—{FyExeention |

Ttk

}—{ Hightevel

Ext

Standardizationforum L

Stamarararen 1]

StandardParam 2

Standardizationforw B

}—[CoE_param |

Figure 7: Example of an instance of this MO
The difference between this figure and the previous one is that now the un-named blocks have been instantiated and some optional nodes are not shown.

Note that none of the stored data in the leaf nodes is shown in the figure: only the node names are visible.
7. Object Serialization
The DM Server and the DM Client exchanges the DM packages as specified in the section 5.4. In this section, the DM packages are defined in details.

7.1 Binary Format for Package#0
The binary format for the DM Notification package consists of a 2 bytes fixed-sized part containing the Headers followed by a variable part containing the Options. The byte order for DM Notification package MUST be Big Endian (Network order).
The delivery and transport of the DM Notification is specified in the Appendix D.
7.1.1 Package Header
The following figure describes the format of the DM Notification header part:
 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| VER | OC | RESERVED |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| OPTIONS (if any) ...
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Figure 8: DM Notification package Format
DM Notification header has the fixed size with the 32 bytes. DM Notification header fields MUST appear in order as described in the following table:
	Header Fields
	Bit Length
	Descriptions

	VER
	4
	Version of DM Notification package

	OC
	5
	Number of Options included in the DM Notification package

	RESERVED
	7
	Reserved for future Header fields

Table 2: DM Notification Header Fields
7.1.2 Package Option

In the DM Notification package, Options MUST appear in the increasing order of their Option Number. Each Option is specified by the Option Delta, the Option Length and the Option Value as shown in the below figure.
 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Option Delta | Option Length |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Option Value ...
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Figure 9: Message Option Format he cates the e actual Option Number amp might not be needed)

· Option Delta
The Option-Delta field indicates the difference between the Option Number of this Option and the previous Option. The value of this field is specified using 4 bits. This field is used for calculating the actual Option Number as the sum of its Option Delta and the all preceding Option Deltas. For the first Option in the DM Notification package, the Option Delta becomes the Option Number.
· Option Length
The Option-Length field specifies the length of the Option Value, in bytes. For instance, if the Option Length value is 3 then the Option Value size is 3 bytes. The value of this field is specified using 12 bits. When the Option carries no value, then the Option-Length field MUST have the value 0 and no Option Value follows. Hence the shortest Option can be 2 bytes long if it carries no Option Value.
· Option Value
The format of the Option Value depends on the respective Option.
7.2 JSON Format for Package#1

The MIME type for this format MUST be "application/vnd.oma.dm.initiation+json". JSON schema for the Package#1 is as follows:
{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "OMA DM Package#1 JSON Schema",

"type": "object",

"properties": {

"MOS": {

"type": "array",

"items": {

"type": "object",

"properties": {

"DDF": {"type": "string"},

"MOID": {"type": "string"},

"MIID": {

"type": "array",

"items": {"type": "string"}

}

}

}

"required": false

 },

"Alert": {

"$ref": "#alert_json_schema",

"required": false

 }

}

}
This is an illustrative example of Package#1.
POST /dmclient/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.initiation+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.devicemgmt.org
{

"MOS": [

{

"DDF": "http://www.vendor.com/DDF/devinfo1.0.ddf",

"MOID": "urn:oma:mo:oma-dm-devinfo:1.0",

"MIID": [miid1]

},

{

"DDF": "http://www.vendor.com/DDF/oma-sessioninfomo1.0.ddf",

"MOID": "urn:oma:mo:oma-sessioninfomo:1.0",

"MIID": [miid1]

}

],

"Alert": [

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component1",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

},

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component2",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

}

]

}
7.3 JSON Format for Package#2

The MIME type for this format MUST be "application/vnd.oma.dm.request+json". JSON schema for the Package#2 is as follows:
{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "OMA DM Package#2 JSON Schema",

"type": "object",

"properties": {

"Cmd": {

"type": "array",

"items": {

"type": "array",

"items": {

"description": "DM cmd, parameters in order",

"type": "string",

}

}

"required": true

}

}
}
This is an illustrative example of package#2.
HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["HPOST",

"https://DMcontent.DMserver.operator.com/[DevID]",

"urn:oma:mo:oma-dm-devinfo:1.0//",

"urn:oma:mo:oma-sessioninfomo:1.0//"],

["HGET", "https://DMcontent.DMserver.operator.com/new_mo"],

["GET", "urn:oma:mo:oma-sessioninfomo:1.0//CBT"]

]

}
7.4 JSON Format for Package#3

The MIME type for this format MUST be "application/vnd.oma.dm.response+json". The JSON schema for the Package#3 is as follows:

{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "OMA DM Package#3 JSON Schema",

"type": "object",

"properties": {

"Status": {

"type": "array",

"items": {

"description": "status codes are ordered in the same sequence with the DM commands in the Package#2",

"type": "object",

"properties": {

"sc": {

"type": "number",

"required": true

},

"URI": {

"type": "array",

"required": false,

"items": {

"type": "string",

"required": false

}

}

}

},

"required": true

},

"Alert": {

"$ref": "#alert_json_schema",

"required": false

}
}
This is an illustrative example of Package#3 that is a response to the example Package#2 in the section 7.3.
POST /dmclient/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.response+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.devicemgmt.org
{

"Status": [

{"sc": 200},

{"sc": 200, "URI": ["urn:oma:mo:oma-mo:1.0/miid1/", "urn:oma:mo:oma-mo:1.0/miid2/"]},

{"sc": 200}

],

"Alert": [

{

"AlertType": "urn:oma:at:dcmo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-dcmo:1.0/Capability123/Operations/Enable",

"Mark": "warning",

"DataType": "int",

"Data": {

"DM1x": 1404

}

}

]
}
7.5 Management Object Serialization
The MIME type for this format MUST be "application/dmmo+json". The JSON schema is the following:

{

"$schema": "http://json-schema.org/draft-04/schema#",

"Title": "Management Object JSON Schema",

"type":"object",

"properties": {

"DDF": {"type": "url"},

"ClientURI": {"type": "string"},

"MOData": {

"type": "object"

}

}

}
The following conversion rules MUST be applied:

· Interior Node: The interior node MUST be represented as JSON Object containing the NodeName as label and a JSON Object as value. This Object contains the structure of child nodes. If the child nodes are not transferred, the empty JSON object “{}” MUST be specified.
· Leaf Node: The leaf node content MUST be represented as JSON object whose type MUST be compliant to the one specified in the related DDF file.
This is the example of JSON serialized MO content:
{

"DDF": "http://www.vendor.com/DDF/devinfo1.0.ddf",

"ClientURI": "oma:mo:oma-dm-devinfo:1.0//",

"MOData": {

"DevInfo": {

"DevID": "IMEI:493005100592800",

"Man": "Vendor",

"Mod": "DM_Client",

"DmV": "2.0",

"Lang": "en",

"DevType": "smartphone",

"OEM": "",

"FwV": "android4.0.4",

"SwV": "Vendor1.2",

"HwV": ""

}

}
}
7.6 Generic Alert
This is the JSON Schema associated with the Generic Alert:
{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "OMA DM Generic Alert",

"type":"object",

"properties": {

"Alert": {

"type": "array",

"items": {

"AlertType": {"type": "string"},

"SourceURI": {"type": "string"},

"TargetURI": {"type": "string"},

"Mark": {"type": "string"},

"DataType": {"type": "string"},

"Data": {

"type": "object",

"description": "the format is out-of-scope of this specification"

}

}

}

}
}
This is an illustrative example of Generic Alert.
{

"Alert": [

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component1",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

},

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component2",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

}

]
}
8. Bootstrap
The following bootstrap methods are supported:

· Factory Bootstrap, the bootstrap configuration are preloaded from factory
· Smartcard Bootstrap, DM Client retrieves the Bootstrap Message from a Smartcard

· Client initiated bootstrap. DM Client retrieves the Bootstrap Message from a DM Bootstrap Server, whose URL is known to the Device.
Bootstrap sequence

The DM Client SHALL follow the procedure specified as below when attempting to bootstrap a DM Device:

1. If the DM Device has Smartcard, the DM Client MUST try to obtain Bootstrap Message from the Smartcard
2. If the DM Client is not configured using the Smartcard Bootstrap method, the DM Client MUST try to obtain the Bootstrap message by using Factory Bootstrap method.
3. If the DM Client is neither Smartcard bootstrapped nor factory bootstrapped then it MUST request bootstrap from the Bootstrap server
When Bootstrap Message has been successfully installed in the DM Device, the DM Client is ready to initiate a management session with the DM Server.
8.1 SmartCard bootstrap

In this scenario, the DM Client fetches at start, the Bootstrap Message from its connected Smartcard .

[image: image9.emf]
Figure 10: SmartCard bootstrap
8.2 Factory bootstrap

In this case all parameters to access the DM Server are already configured in the DM Client from factory.
8.3 Client initiated bootstrap
In this scenario, the Device requests and retrieves the bootstrap package from a DM Bootstrap Server, whose URL is known to the Device a priori, as shown in Figure 11.

[image: image10.emf]Device DM Bootstrap Server

HTTPS Get

DM bootstrap data

DM Server

Perform DM

bootstrapping

Management

session

B

o

o

t

s

t

r

a

p

Figure 11: Client initiated bootstrap

This request for retrieving bootstrap MUST contain the following parameters if they are available in the DM Client:

· MNC, Mobile Network Code

· MCC, Mobile Country Code

· DevID, Device Identifier, same as in DevInfo

Editor Note: update this text when the smartcard support is finalised.

Editor Note: wait with the request until authenticated with SIM card.
9. Protocol Security

9.1 Security for DM Notification
The level of the security, required for the DM Notification, could be various. This specification does not provide the full security suite to cover those various cases. The DM Notification specified in this specification provides the integrity and authentication based on the SHA256-DIGEST Option. The TIMESTAMP Option also can be used to prevent the reply attacks. However, this specification does not provide any means for guaranteeing the confidentiality for the DM Notification. In the case that the DM Notification does not satisfy the security level required for the deployment, the underlying transport layer security MUST be used.

To use the SHA256-DIGEST Option, credentials MUST be provisioned at the device, and the <x>/Credentials/Noti sub-tree in the DM Account MO MAY be used, but other approaches are not precluded.
9.2 Security for DM Session
The DM Protocol does not provide any security mechanisms to guarantee the integrity and confidentiality of DM session and for the mutual authentication between the DM Client and the DM Server. Instead, the transport layer security mechanism MUST be used such as HTTPS, HTTP authentication, etc.

For the transport layer security, the necessary credentials MUST be provisioned at the device, and the <x>/Credentials/Transport sub-tree in the DM Account MO SHOULD be used, but other approaches are not precluded.

Only authorized DM Servers MUST execute DM commands for the targeted node, and for the authorization, this specification provides the access control mechanism using the Delegation Access Control MO. Refer to the section 11.3 for details.
9.3 Security for Bootstrap

TBD
10. DM Client behavior

10.1 Just in Time Configuration

DM Client MAY identify itself or upon a local request that configuration is missing or needs an update. There could for example be a local application in the device that triggers this request but when and on what condition this is done is outside of the scope of this specification.

Precondition for this is that the DM Client is configured with the DEFAULT DM Command with the ServerURI for the requested Management Object Type (MOID).

If the DM Client has decided to use this mechanism then the DM Client MUST perform the same operation as the DM Command HGET without ClientURI parameter on the preconfigured ServerURI. The only difference is that the DM Client MUST NOT provide any status back to the DM Server.

Created MO instances can be retrieved using the HPUT, HPOST or GET command that retrieves all MO instances for the MOID.

Example 1 (MMS):
DM Client receives the DEFAULT command with the below parameters:
· ServerURI: https://prov.dmserver.com/Settings/[MCC]/[MNC]/MMS
· MOID: urn:oma:mo:oma-mms:1.3
When the MMS Client start up without configuration it request the DM Client to perform an HTTP GET to the ServerURI above there the "[MCC]" and "[MNC]" are replaced with the real values. The retrieved data by the HTTP GET will be stored at the location decided by the DM Client. The DM Server can retrieve the changed MO data by sending the GET command to the ClientURI " urn:oma:mo:oma-mms:1.3/*/".
Example 2 (RCS):
DM Client receives the DEFAULT command with the below parameters:
· ServerURI: https://rcsprov.gsma.org/Settings/[MCC]/[MNC]/RCS
· MOID: urn:gsma:mo:rcs:rcse:1.0
When the RCS Client starts up it triggers the DM Client to retrieve configuration so the DM Client will perform an HTTP GET to the ServerURI above there the "[CMCC]" and "[CMNC]" are replaced with the real values. The retrieved data by the HTTP GET will be stored at the location decided by the DM Client. The DM Server can retrieve the changed MO data by sending the GET command to the ClientURI "urn:gsma:mo:rcs:rcse:1.0/*/".
11. DM 2.0 Standard Management Objects

11.1 DevInfo Management Object
The following figure shows an overview of the management object.
[image: image11.jpg]

Figure 10: The DevInfo Management Object

	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the root node for the DevInfo MO. The MOID for the DevInfo MO MUST be: "urn:oma:mo:oma-dm-devinfo:1.2".

	<x>/Bearer

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	node
	Get
	

	
	An optional, interior node in which items related to the bearer (CDMA, etc.) are stored. Use of this sub tree can be mandated by other standards.

	<x>/DevID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This leaf node specifies the global unique identifier for the device. The value of this node MUST be either an absolute or a relative URI or a well-known URN. Possible formats for this node are listed in the below table, but other formats are not precluded.

Type
Descriptions

IMEI URN
Identify International Mobile Equipment Identifiers [3GPP-TS_23.003]. The IMEI URN specifies a valid, 15 digit IMEI. The format of the URN is IMEI:###############
ESN URN
Identify an Electronic Serial Number. The ESN specifies a valid, 8 digit ESN. The format of the URN is ESN:########
MEID URN
Identify a Mobile Equipment Identifier. The MEID URN specifies a valid, 14 digit MEID. The format of the URN is MEID:##############
UUID URN
Identify an Universally Unique IDentifier (UUID). The UUID specifies a valid, hex digit character string as defined in [RFC4122]. The format of the URN is UUID:########-####-####-############

	<x>/Man

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The manufacturer identifier (manufacturer specified string).

	<x>/Mod

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	A model identifier (manufacturer specified string).

	<x>/DmV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	OMA device management client version identifier (manufacturer specified string).

	<x>/Lang

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	The current language setting of the device. The syntax of the language tags and their use are defined in [RFC1766]. Language codes are defined by ISO in the standard ISO639-2.

	<x>/DevType

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Device type, for example PDA, pager, or phone (manufacturer specified string).

	<x>/OEM

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Original Equipment Manufacturer of the device (manufacturer specified string).

	<x>/FwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Firmware version of the device (manufacturer specified string).

	<x>/SwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Software version of the device (manufacturer specified string).

	<x>/HwV

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	Hardware version of the device (manufacturer specified string).

	<x>/Ext

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is for vendor-specific extensions to store the device related information.

11.2 DM Account Management Object

The following figure shows an overview of the management object.

[image: image12.jpg]

Figure 11: The DM Account Management Object
	<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrMore
	Node
	Get
	

	
	This interior node acts as a placeholder for one or more instances of this object. Management Object Identifier for this management object MUST be: "urn:oma:mo:oma-dm-dmacc:2.0".

	<x>/ServerID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node specifies a server identifier for the management server used in the management session. This identifier MUST be uniquie within the DM Client.

	<x>/Name

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node specifies user displayable name for the management server.

	<x>/Permissions

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	No Get
	

	
	This interior node is the parent node for the permission related information that is provided during the bootstrap only. The actors such as a user MAY reject the bootstrap message based on the information. This node and all child nodes MUST NOT be exposed in the DM Client.

	<x>/Permissions/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	OneOrMore
	node
	No Get
	

	
	This node groups the permission related information for a specific MOID.

	<x>/Permissions/<x>/MOID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	No Get
	

	
	This node specifies the MOID for this group. Based on this node, the MOS (Management Object Supported) information is exposed to the DM Server as specified in the section 5.2.2, and the DM Server gets the access rights for MO instances as specified in the section 11.3.
The wildcard "*" MAY be used for the value of this node, and it MUST be interpreted for all MOIDs that the DM Client supports.

	<x>/Credentials

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is the parent node for credentials managed by the DM Server.

	<x>/Credentials/Noti

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is the parent node for credentials used for DM Notification. If this interior node is presented and the SHA256-DIGEST Option is specified in the DM Notification, then the DM Client MUST authenticate the DM Notification using the SHA256-DIGEST Option.

	<x>/Credentials/Noti/AuthType

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	This node specifies the authentication type. The value of this node MUST be one of the followings:

Valid Value
Descriptions

0

SHA256 digest as specified in [RFC6234]

	<x>/Credentials/Noti/AuthData

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bin
	Get
	

	
	This node specifies the authentication data related to the authentication type indicated by the <x>/Credentials/Noti/AuthType node.

	<x>/Credentials/Noti/AuthSecret

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bin
	No Get
	

	
	This node specifies the authentication secret related to the authentication type indicated by the <x>/Credentials/Noti/AuthType node.

	<x>/Credentials/Transport

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is the parent node for credentials used for securing the DM session by the transport layer. If this node is present, the DM Client MUST use credentials specified in the child nodes for transport layer security mechanism. If this node is not present, the credentials for the transport layer security MUST be delivered via the out-of-scope mechanisms.

	<x>/Credentials/Transport/AuthData

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bin
	Get
	

	
	This node specifies the authentication data used for the transport layer security. For example, this node can store the certificate or the public key for the DM Client, which can be used for the transport security.

	<x>/Credentials/Transport/AuthSecret

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	bin
	No Get
	

	
	This node specifies the authentication secret used for the transport layer security. For example, this node can store the private key for the DM Client, which can be used for the transport security.

	<x>/Push

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This node is a placeholder node for platform or vendor specific push mechanism.

	<x>/Push/...

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This location is reserved for standardized push mechanisms not defined in this chapter.

	<x>/Push/Ext

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is for vendor-specific extensions to store the device related information.

11.3 Delegation Access Control MO
This specification supports the access control mechanism to ensure that only authorized DM Servers can invoke DM commands on the MO instances. The access control mechanism is designed with the following principles:

· The bootstrap message contains a list of MOIDs (the Permissions/<x>/MOID node in DM Account MO) that the DM Server may manage. Accepting this bootstrap message does not mean that the DM Server can immediately manage the MO instances for the provisioned MOIDs. To manage a specific MO instance for the provisioned MOID, the DM Server MUST get permissions for the MO instance. The DM Client MUST ensure that the DM Server shall not manage Management Objects whose MOID is not provisioned at the bootstrap
· The creator (i.e., the DM Server, a local application) automatically gets the exclusive full permissions for the new MO instance by default
· By principle, the access rights are assigned per each MO instance that is used to authorize the DM command targeting the node in the MO instance. In addition, the access rights can be assigned to a part (e.g., a sub-tree or a leaf node) of the MO instance that overwrites the access rights assigned to the MO instance. This is necessary to interwork with DM 1.x ACL mechanism. Please refer to the section 14.2 for details
· Via this Management Object, the access right information for the MO instance is only exposed to the DM Server that has the delegation permission for the MO instance
The DM Server MUST support the access control mechanism and the Delegation Access Control MO. The DM Client SHOULD support the access control mechanism, and MUST support the Delegation Access Control MO if supporting the access control mechanism.
If the DM Client does not support the access control mechanism, the DM Client MUST consider that every authenticated DM Server has full permissions for all MO instances.
The following figure shows an overview of the Management Object.
[image: image13.jpg]D>* J—<x>*

[Eeat Woae]

Fermissions (o7

Reguized Node

Figure 12: Delegation Access Control MO
	<MOID>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrMore
	node
	Get
	

	
	This interior node is the placeholder for permissions regarding all MO instances for a particular MOID specified by the name of this node. The name of this node MUST be the MOID.

The MOID for this Management Object MUST be: "urn:oma:mo:oma-dm-dacmo:1.0".

	<MOID>/<MIID>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	ZeroOrMore
	node
	Get
	

	
	This interior node is the placeholder for permissions regarding an MO instance identified by the MOID as specified by the <MOID> node and the MIID as specified by the name of this node. The name of this node MUST be the MIID of the MO instance.

	<MOID>/<MIID>/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	 This interior node is the placeholder for permissions regarding an MO instance.

	<MOID>/<MIID>/<x>/Path

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	ZeroOrOne
	chr
	Get
	

	
	This node specifies the path to a certain node in the MO instance. The format of this node MUST conform to the path-from-moroot component of the ClientURI as specified in the section 6.1.1.2. Hence this node describes the relative path from the MO instance root node. The permissions specified by the <MOID>/<MIID>/<x>/Permissions node are applied to the sub-tree addressed by this node unless the permissions are overwritten at the descendent node.
If this node is not present, the default path "/" MUST be assumed.
This node is useful to interwork with the DM 1.3 ACL mechanism and the details are explained in the section 14.2.

	<MOID>/<MIID>/<x>/Permissions

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node groups permissions regarding the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node in the MO instance. If the <MOID>/<MIID>/<x>/Path node is not present, the default path "/" MUST be assumed.

	<MOID>/<MIID>/<x>/Permissions/<x>

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This interior node is the placeholder for permissions regarding the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node in the MO instance.

	<MOID>/<MIID>/<x>/Permissions/<x>/MAID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node specifies the Management Authority that can be the DM Server or the local application running in the device. The value of this node MUST contain either the server identifier (i.e., one of values from the <x>/ServerID in the DM Account MO) or the application identifier. The value MUST be encoded as a URN with the prefix "serverid:" for a server identifier or "appid:" for an application identifier. The format of the application identifier might be platform-dependent, and out-of-scope of this specification.
The wildcard "*" MAY be used for the value of this node, and it MUST mean every DM Server and every local application.
The Management Authority identified by this node has the permissions specified by the <MOID>/<MIID>/<x>/Permissions/<x>/AR node for the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node.

	<MOID>/<MIID>/<x>/Permissions/<x>/AR

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get
	

	
	This node specifies the access rights that the Management Authority identified by the <MOID>/<MIID>/<x>/Permissions/<x>/MAID node has for the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node.
If a Management Authority has a Delegate access right, then the Management Authority SHOULD be able to change the access rights for the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node unless the permissions are overwritten at the descendent node.

Even if the Management Authority (the delegating MA) has the Delegate access rights, the DM Client MUST reject the delegation request if the delegated Management Authority does not provide the MOID of the MO instance during the bootstrap.
The value of this node is a summary of the access rights value in this table:

Logical Operations
Commands for the Logical Operation
Value

Read
GET/HPUT/HPOST
1

Write
HGET/DELETE
2

Execute
EXEC
4

Delegate
HGET to modify the access rights of the sub-tree addressed by the <MOID>/<MIID>/<x>/Path node
8

11.3.1 Examples for this Management Object

In this section, illustrative examples for this Management Object are given, and the permissions are controlled only for the MO instances. Hence in this example, the <MOID>/<MIID>/<x>/Path node is not present, which means all specified permissions are for the MO instances, not for the part of the MO instance. Other examples to use the <MOID>/<MIID>/<x>/Path node are shown in the section 14.2.

For the DM Account MO, three DM Servers have been bootstrapped, and three MO instances of the DM Account MO are created in the device with the MIIDs; "dms1", "dms2" and "dms3". For the DevInfo MO, there exists only one MO instance in the device. Below shows the configurations of the Delegation Access Control MO for this case:

[image: image14.emf]DacMO urn:oma:mo:oma-dm-dmacc:2.0 dms1 1 Permissions dms1 MAID (“DMS1”)

AR (15)

dms2 1 Permissions dms2 MAID (“DMS2”)

AR (15)

dms3 1 Permissions dms3 MAID (“DMS3”)

AR (15)

urn:oma:mo:oma-dm-devinfo:1.2 miid1 1 Permissions 1 MAID (“*”)

AR (1)

MAID (“DMS1”)

AR (15)

dms1

Figure 13: Examples for Delegation Access Control MO

11.4 Session Information Management Object
Session Information Management Object exposes the DM session information to the DM Server. The DM Server can request to include this MO in the Package#1 by using the REQ-MO Option in the Notification.

The DM Server and the DM Client MUST support this MO.

The pictorial description for this MO is as follows:
[image: image15.jpg]Requized Node

Figure 14: Session Information Management Object
	<x>

	
	Status
	Tree Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get, No Replace
	

	
	This interior node is the root node for the Session Information Management Object. The MOID for this MO MUST be: "urn:oma:mo:oma-sessioninfomo:1.0".

	<x>/CBT

	
	Status
	Tree Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get, No Replace
	

	
	This node provides bearer type information over which the DM session is currently being carried. The content of this node is an integer with the value in range from 0 to 255, and currently the following values are allocated for different bearer types. For the bearer types not covered in this version of specification the value '0' (Other Bearer Type) MUST be used.
Value
Name
Description
0
OTHERS/UNKNOWN
Other bearer types not covered in this list or the bearer type is unknown
1
MOBILE
The bearer type is mobile (e.g., 3GPP, 3GPP2, WiMAX, etc.)
2
WIRELESS

The bearer type is wireless (e.g., WLAN, Bluetooth, etc.)
3

WIRELINE

To indicate the bearer type is wireline (e.g., Ethernet, DSL, etc.)

	<x>/ROAMING

	
	Status
	Tree Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	int
	Get, No Replace
	

	
	This node indicated the roaming status for the current DM session if the value of the <x>/CBT node is "MOBILE"; it is undefined in other cases.
The following values are valid:
Value

Description

0

Current DM session is not over a roaming connection.

1

Current DM session is over a roaming connection

2

It is unknown if the current DM Session is over a roaming connection.

12. Management Object Cache
When the DM Server retrieves an MO data (an entire MO or a part of an MO) from the DM Client, the Management Object cache can be utilized for reducing network traffic and the response latency. The Management Object cache is a mechanism to locally store the copy (i.e. cache) of the MO data in the DM Server, and the subsequent requests for the same MO may refer to the local cache if a certain conditions are met; the cache hit.

The DM Client MAY support this mechanism, and the DM Server SHOULD support this mechanism.

12.1 Cache Validator

A cache validator is an entity which gives the freshness information for the local cache. The typical examples of the cache validator are a timestamp or an opaque identifier like the HTTP ETag.
Only MO instances can be cached, and these MO instances are called as cacheable MO instances. To use the cache mechanism, the cacheable MO instances MUST be selected first. How to select these cacheable MO instances is out-of-scope of this specification. For each cacheable MO instance, the DM Client MUST assign the cache validator, and MUST update the cache validator for any changes of the MO instance.

The cache validation is a process to check whether the cache is still good or becomes stale. Since the cache validator is assigned to the cacheable MO instance, the cache validation MUST return true if any parts of the MO instance have not been modified compared to the local cache of the DM Server; otherwise, the cache validation MUST return false.

Although the cache validator is assigned to the cacheable MO instance, the cache validator can be used for all read operations (i.e., GET/HPUT/HPOST) that target any node in the cacheable MO instance. For example, if the ClientURI of the GET command targets a leaf node in the cacheable MO instance, the cache validator for the MO instance can be provided in the cv field, and the DM Server receives "304 Not Modified" if the whole MO instance is not modified.
12.2 Request and Response with Cache

The DM Server requests the MO data using the cache mechanism as follows:

Step 1: The DM Server wants to request an MO data identified by the ClientURI.

Step 2a: If the DM Server has the cache validator for the MO instance that has the node the ClientURI targets, then the DM Server SHOULD send the DM command (i.e., the GET/HPUT/HPOST command) to the ClientURI with the cv field. The cv field in the ClientURI provides the cache validator for the MO instance.

Step 2b: If the DM Server does not have the cache validator for the MO instance that has the node the ClientURI targets, then the DM Server MUST send the DM command to the ClientURI without the cv field.

The DM Client responds to the MO data request with the cache mechanism as follows:

Step 1: The DM Client receives a DM command to retrieve an MO data identified by the ClientURI.

Step 2a: If the ClientURI of the DM command does not have the cv field, the DM Client MUST return the requested MO data. In case that the ClientURI targets the root node of the cacheable MO instance, then the DM Client SHOULD additionally return the cache validator for the MO instance. The process is terminated here.
Step 2b: If the ClientURI of the DM command has the cv field, the DM Client MUST run the cache validation.

Step 3a: If the cache validation returns true, the DM Client MUST return "304 Not Modified", and MUST NOT send the requested MO data.

Step 3b: If the cache validation returns false, the DM Client MUST return the requested MO data. In case that the ClientURI targets the root node of the cacheable MO instance, then the DM Client SHOULD additionally return the cache validator for the MO instance.
13. The Management Object
Nodes are the entities that can be manipulated by management actions carried over the OMA DM protocol. The OMA DM protocol is agnostic about the contents, or values, of the Nodes and treats the Leaf Node values as opaque data.

An Interior Node can have an unlimited number of child Nodes linked to it in such a way that the complete collection of all Nodes in a management database forms a tree structure. Each Node in a tree MUST have a unique URI.

DM Client SHOULD indicate the Node name case sensitivity in the DDF using the CaseSense.

13.1 Device Description Framework

13.1.1 Framework Properties of Node

The properties that describe Nodes in the device description framework are specified with framework property elements. These are not the same as the run-time properties of an instantiated Node in a device. These properties express other information about Nodes that DM Servers might need. The framework properties MUST NOT be changed at run-time as such a change might introduce discrepancies between the run-time Node and the corresponding description. The following table defines the framework Node properties.

	Property
	Support
	Explanation

	AccessType
	MUST
	Specifies which commands are allowed on the Node.

	DefaultValue
	MAY
	The Node value used in a device unless specifically set to a different value.

	Description
	MUST
	The human readable description of the Node.

	DFFormat
	MAY
	The data format of the described Node.

	Occurrence
	MUST
	Specifies the number of instances that MAY occur of the Node.

	Scope
	MAY
	Specifies whether this is a Permanent or Dynamic Node.

	DFTitle
	MAY
	The human readable name of the Node

	DFType
	MUST
	For LeafNodes, the MIME type of the Node value.

For Interior Nodes, the Management Object Identifier or empty.

	CaseSense
	MAY
	Specifies whether the Node name and names of descendant Nodes in the tree below should be treated as case sensitive or case insensitive.

Table 3: Framework Properties
13.1.2 Framework Elements

This section explains the elements used in the description framework DTD.
14. DM 1.x Interworking Issues
14.1 DM 1.x Generic Alert Interworking
OMA DM 1.x Protocol specifies the Generic Alert mainly for two purposes; the asynchronous reporting and Client Initiated Alert. DM 2.0 Generic Alert can be used for those two purposes as well, and is backward compatible with the DM 1.x Generic Alert only in the functional level.

DM 2.0 Generic Alert properties (i.e., AlertType, SourceURI, TargetURI, Mark, DataType and Data) can be used (see the section 5.3) to delivery the DM 1.x Generic Alert. One difference is that, for the asynchronous reporting, the correlator in DM 1.x Generic Alert is not used in DM 2.0 since on receiving the asynchronous reporting the DM Server can find out the DM command that triggers the asynchronous reporting based on the SourceURI property. The interworking issues mainly reside in the delivery of the Generic Alert data since the Generic Alert data does not have a fixed format. Each specification for Management Objects defines the format of the Generic Alert data; mostly in the form of xml. These MO-specific Generic Alert data MAY be converted to JSON format since the conversion from the xml to JSON is obvious. For example, the SCOMO [SCOMO] shows the following example for the asynchronous reporting:

<Alert>

<CmdID>2</CmdID>

<Data>1226</Data> <!-- Generic Alert -->

<Correlator>correlator1</Correlator>

<Item>

<Source><LocURI>

./SCM/Inventory/Delivered/Package456/Operations/Install

</LocURI></Source>

<Target><LocURI>./SCM/Inventory/Deployed/Component1</LocURI></Target>

<Meta>

<Type xmlns=“syncml:metinf”>

urn:oma:at:scomo:1.0:OperationComplete

</Type>

<Format xmlns=“syncml:metinf”>xml</Format>

<Mark xmlns=“syncml:metinf”>warning</Mark>

</Meta>

<Data>

<![CDATA[

<ResultCode>1200</ResultCode> <!-- SCOMO Result Code -->

<Identifier>Component1ID</Identifier>

]]>

</Data>

</Item>

<Item>

<Source><LocURI>

./SCM/Inventory/Delivered/Package456/Operations/Install

</LocURI></Source>

<Target><LocURI>./SCM/Inventory/Deployed/Component2</LocURI></Target>

<Meta>

<Type xmlns=“syncml:metinf”>

urn:oma:at:scomo:1.0:OperationComplete

</Type>

<Format xmlns=“syncml:metinf”>xml</Format>

<Mark xmlns=“syncml:metinf”>warning</Mark>

</Meta>

<Data>

<![CDATA[

<ResultCode>1200</ResultCode> <!-- SCOMO Result Code -->

<Identifier>Component2ID</Identifier>

]]>

</Data>

</Item>

</Alert>
Above DM 1.x Generic Alert MAY be represented as the DM 2.0 Generic Alert by converting Generic Alert data to JSON object. The conversion rules are out-of-scope of this specification, and one example can be as follows:

{

"Alert": [

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component1",

"Mark": "warning",

"DataType": "application/json",

"Data": {

"ResultCode": 1200,

"Identifier": "Component1ID"

}

},

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component2",

"Mark": "warning",

"DataType": "application/json",

"Data": {

"ResultCode": 1200,

"Identifier": "Component2ID"

}

}

]

}
In the other hand, DM 1.x Generic Alert data can be directly delivered in the DM 2.0. For this, the Data JSON object MUST have the name/value pair where the name MUST be "DM1x", and the value MUST be copied from the <Data> element in the DM 1.x. In case that the CDATA is used in the <Data> element, the CDATA MUST be eliminated. DM 2.0 Generic Alert using this approach is as follows:

{

"Alert": [

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component1",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

},

{

"AlertType": "urn:oma:at:scomo:1.0:OperationComplete",

"SourceURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Download/Package1/Operations/DownloadInstall",

"TargetURI": "urn:oma:mo:oma-scomo:1.0/SCOMO1/Inventory/Deployed/Component2",

"Mark": "warning",

"DataType": "text/xml",

"Data": {

"DM1x": "<ResultCode>1200</ResultCode> <!-- SCOMO Result Code --><Identifier>Component1ID</Identifier>"

}

}

]

}
It is up to the implementation to use which approache, and other approaches are not precluded as well.
14.2 DM 1.x ACL Mechanism Interworking

TBD
14.3 DM 1.x DDF Interworking
TBD
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior 2.0 version

A.2 Draft/Candidate Version 2.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-DM_Protocol-V2_0
	09 Aug 2011
	All
	First template version

	
	3 Oct 2011
	1

5

5
	Applying CR:

· OMA-DM-DMNG-2011-0040R01-CR_TS_Intro

· OMA-DM-DMNG-2011-0041R03-CR_TS_Overview

· OMA-DM-DMNG-2011-0042R01-CR_TS_Overview2

	
	25 Oct 2011
	6

7
	Applying CR:

· OMA-DM-DMNG-2011-0054R02-CR_TS_DMProtocol

· OMA-DM-DMNG-2011-0055R01-CR_TS_JSONStructure

	
	5 Dec 2011
	8

6.2
	Applying CR:

· OMA-DM-DMNG-2011-0069R01-CR_TS_DMMessageFormat

· OMA-DM-DMNG-2011-0070R01-CR_TS_END

· OMA-DM-DMNG-2011-0080R02-CR_TS_DMAcc

	
	12 Mar
	10
	Applying 2012 Template & CR:

· OMA-DM-DMNG-2012-0005R02-CR_Proto_MO

· OMA-DM-DMNG-2012-0004R01-CR_ProtoTS_Reorg

	
	04 May 2012
	5.2, 6.3

9 (new)
	Renumbering of tables and figures.

Applying CRs:

· OMA-DM-DMNG-2011-0074R05-CR_DM_Resource_Cache

· OMA-DM-DMNG-2012-0006R01-CR_Use_Of_DDF_File

· OMA-DM-DMNG-2012-0012R01-CR_Command_Clarifications

	
	29 Jun 2012
	2.1

5.2.3

6.3

7.1
	Applying CRs:

· OMA-DM-DMNG-2012-0025R02-CR_Transfer_MO_JSON
· OMA-DM-DMNG-2012-0029R01-CR_Commands_and_JSON_format
· OMA-DM-DMNG-2012-0033R01-CR_Notification
· OMA-DM-DMNG-2012-0034R01-CR_Cmd_Name
· OMA-DM-DMNG-2012-0035-CR_Parameter_for_Cache

	
	20 Jul 2012
	6

9
	Applying CRs:

· OMA-DM-DMNG-2012-0036R02-CR_Security_Considerations
· OMA-DM-DMNG-2012-0037R01-CR_Transaction_Model
· OMA-DM-DMNG-2012-0039R01-CR_Sub_Parameter_and_Encoding
· OMA-DM-DMNG-2012-0043R01-CR_Request_with_Indirect_CV
· OMA-DM-DMNG-2012-0044R01-CR_END_Command_Clarification

	
	13 Aug 2012
	8
	Incorporated CR:

 OMA-DM-DMNG-2012-0046R01-CR_Access_Control_Principles
Editorial changes

	
	19 Sept 2012
	5.1

5.2.3, 9.1

8, 8.1

5.2.2
	Incorporated CR’s:

 OMA-DM-DMNG-2012-0054R01-CR_Addressing_Scheme
 OMA-DM-DMNG-2012-0055-CR_TS_Correction
 OMA-DM-DMNG-2012-0056R01-CR_ACL_Definition
 OMA-DM-DMNG-2012-0058-CR_Characters_of_occurrency

	
	01 Nov 2012
	4, 5.3, 5.4, 5.5, 5.5.2, 5.5.3, 5.7, 7.1.2, 7.3, 7.4, 8, 8.1, 10.2, 10.3, 10.4, 12.1.1, 13, 14
	Incorporated CRs:

 OMA-DM-DMNG-2012-0052R04-CR_User_Interaction
 OMA-DM-DMNG-2012-0059-CR_Bangkok_Comments_Resolving
 OMA-DM-DMNG-2012-0061R02-CR_Protocol_Overview_Update
 OMA-DM-DMNG-2012-0062R01-CR_ACL_Format_and_Example
Editorial changes

	
	20 Nov 2012
	5.1, 5.6, 5.7, 5.8, 6.2.3, 7.2, 7.3, 7.4, 12.1, 12.1.1
	Incorporated CRs:

 OMA-DM-DMNG-2012-0066R01-CR_MOS_Path_Fix
 OMA-DM-DMNG-2012-0067R02-CR_Command_Updates
 OMA-DM-DMNG-2012-0068R02-CR_Package_Flow
 OMA-DM-DMNG-2012-0069R01-CR_Transaction_Model_Updates
 OMA-DM-DMNG-2012-0070R01-CR_Generic_Alert
 OMA-DM-DMNG-2012-0071R01-CR_Status_Header
 OMA-DM-DMNG-2012-0072R02-CR_Framework_Properties_of_Node
 OMA-DM-DMNG-2012-0073R03-CR_Fix_Management_Object_Serialization
 OMA-DM-DMNG-2012-0074R01-CR_TS_MessageID
Editorial changes

	
	02 Jan 2013
	7,8,10
	Incorporated CRs:

 OMA-DM-DMNG-2012-0064R07-CR_Protocol_Packages
 OMA-DM-DMNG-2012-0078R01-CR_DevInfo
Editorial changes

	
	25 Jan 2013
	5.8.7

8.1.2.2

14
	Incorporated CRs:

OMA-DM-DMNG-2013-0001-CR_Web_based_UI_Session
OMA-DM-DMNG-2012-0079R01-CR_Preferred_Connection_Type

	
	30 Jan 2013
	8.1
	Incorporated CR:
OMA-DM-DMNG-2013-0005R01-CR_DM_2.0_Notification

	
	08 Feb 2013
	All
	Incorporated CR:
OMA-DM-DMNG-2013-0006R03-CR_TS_Reorganization

	
	01 Mar 2013
	All
	Incorporated CRs:
OMA-DM-DMNG-2011-0079R06-CR_TS_AccessRights
OMA-DM-DMNG-2012-0076R02-CR_TS_ServerURI
OMA-DM-DMNG-2013-0004R03-CR_Session_Info_MO
OMA-DM-DMNG-2013-0007R02-CR_Addressing_Scheme_Update
OMA-DM-DMNG-2013-0008-CR_Status_Codes
OMA-DM-DMNG-2013-0009R01-CR_DM_Account_Updates
OMA-DM-DMNG-2013-0010R01-CR_JSON_Schema_Ref
OMA-DM-DMNG-2013-0011R01-CR_TS_Push_GCM
Editorial changes

	
	13 Mar 2013
	5
9
10
	Incorporated CRs:

OMA-DM-DMNG-2012-0075R04-CR_TS_CMD_Default
OMA-DM-DMNG-2013-0012R03-CR_CONT_command
OMA-DM-DMNG-2013-0013-CR_Merging_ACL_into_DAC_MO
Editorial changes

	
	27 Mar 2013
	3.2
5.2.1

5.2.2

5.4.1

6.1.1.1
	Incorporated CRs:
OMA-DM-DMNG-2013-0014R01-CR_MO_Instance_Definition
OMA-DM-DMNG-2013-0015R01-CR_MIID_Explanation
OMA-DM-DMNG-2013-0016R01-CR_MOS_Access_Conditions
OMA-DM-DMNG-2013-0018R01-CR_DM_Notification_Updates
Editorial changes

	
	15 Apr 2013
	All
	Incorporated CRs:

OMA-DM-DMNG-2013-0017R03-CR_Multipart_Content_Type_for_Response
OMA-DM-DMNG-2013-0020R01-CR_Notification_Delivery_Transport
OMA-DM-DMNG-2013-0021R01-CR_DAC_MO_Updates
OMA-DM-DMNG-2013-0022R01-CR_Status_Codes_Updates
OMA-DM-DMNG-2013-0023R01-CR_ServerURI_Updates
OMA-DM-DMNG-2013-0024R01-CR_DM_Account_MO_Updates
OMA-DM-DMNG-2013-0026-CR_ClientURI_Updates
OMA-DM-DMNG-2013-0027-CR_MOS_Notification_Option
OMA-DM-DMNG-2013-0029-CR_Simplified_Cache
OMA-DM-DMNG-2013-0030R01-CR_HGET_Status_Code__Updates
OMA-DM-DMNG-2013-0031R01-CR_Command_Parameter_Updates
OMA-DM-DMNG-2013-0032R01-CR_TS_BootStrap
OMA-DM-DMNG-2013-0033-CR_TS_NoMOReqInNotification
Editorial Changes

	
	6 May 2013
	5.2,

7,

10.2,

10.3
	Incorporated CRs:

OMA-DM-DMNG-2013-0025R05-CR_JSON_Format_Updates_for_Pkg1_2
OMA-DM-DMNG-2013-0034R03-CR_JSON_Format_Updates_for_Pkg3
OMA-DM-DMNG-2013-0035-CR_DAC_and_DMAcc_MO_Updates
Editorial Changes

	
	8 May 2013
	7.4,

Appendix F
	Incorporated CRs:

OMA-DM-DMNG-2013-0036-CR_Protocol_Examples
OMA-DM-DMNG-2013-0037R01-CR_Package_3_JSON_Schema
Editorial Changes

	
	24 May 2013
	All
	Incorporated CRs:

OMA-DM-DMNG-2013-0039R01-CR_Bug_Fix_and_Editorials

	
	5 Jun 2013
	All
	Incorporated CRs:

OMA-DM-DMNG-2013-0038R02-CR_DM_1.3_Generic_Alerts_Interworking
OMA-DM-DMNG-2013-0040R01-CR_Status_Codes_Updates
OMA-DM-DMNG-2013-0041R01-CR_Protocol_Package_Security
OMA-DM-DMNG-2013-0042-CR_Asynchronous_Reporting
OMA-DM-DMNG-2013-0043R01-CR_DM_1.3_ACL_Interworking
OMA-DM-DMNG-2013-0047R01-CR_TS_Editorials
OMA-DM-DMNG-2013-0048R01-CR_Management_Object_Definition_Updates
OMA-DM-DMNG-2013-0050R02-CR_SmartCard_Bootstrap

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

B.2 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix C. Response Status Codes for DM Commands (Normative)
The response status codes for DM commands are a numeric text value. The codes are divided into 4 classes. The only valid values are the standard values defined in this specification.
	Status Codes
	Reason Phrase
	Applied DM Commands

	Successful 2xx

	200 OK
	The DM command completed successfully:
· HPUT/HPOST: at least one of the requested ClientURI is successfully sent to the Data Repository
· HGET: the retrieved data is successfully stored at the device
· SHOW: the UI session is successfully initiated regardless of whether the user interaction is successful or not

· DEFAULT: the command is successfully received
	All

	202 Accepted
	Accepted for processing. The asynchronous reporting mechanism is used to report the actual results.
	EXEC

	204 No Content
	The request was successfully completed but no data is being returned. The response code is also returned in response to the GET command when the target has no content.
	GET

	Redirection 3xx

	304 Not Modified
	The request carries the cache validator and the access is allowed, but the MO data identified by the ClientURI is not modified according to the cache validation process.
	GET, HPUT, HPOST

	Originator Exceptions 4xx
	

	400 Bad Request
	The requested command could not be performed because of malformed syntax in the command.
	All

	403 Forbidden
	The requested command failed because the sender does not have adequate access rights on the recipient.
	Except SHOW, CONT, END

	404 Not Found
	The requested target was not found:

· HPUT/HPOST: all specified ClientURIs were not found

· HGET, DELETE, EXEC, GET, DEFAULT: the specified ClientURI was not found
	Except SHOW, CONT, END

	405 Command Not Allowed
	The requested command is not allowed on the node identified by the ClientURI:

· EXEC: ClientURI identifies the non-executable node
· DELETE: the node identified by the ClientURI is mandatory
	EXEC, DELETE

	415 Unsupported Media Type
	The request is refused because the request uses a format not supported by the requested resource for the requested method:

· HGET: the retrieved data by the HTTP GET is unrecognized
	HGET

	419 ServerURI Error
	The ServerURI provided causes errors:

· HGET: HTTP GET to the ServerURI is failed, and no data is received
· HPUT/HPOST: at least one of the ClientURIs is ready to be sent to the ServerURI. But, HTTP PUT/POST request to the ServerURI is failed
	HGET, HPUT, HPOST

	Recipient Exception 5xx

	500 Internal Error
	The recipient encountered an unexpected condition which prevented it from fulfilling the request.
	All

	501 Not Implemented
	The recipient does not support the features to fulfil the request. This is the appropriate response when the recipient does not recognize the requested command and is not capable of supporting it for any resource.
	All

	503 Service Unavailable
	The recipient is currently unable to handle the request due to a temporary overloading or maintenance of the recipient. The implication is that this is a temporary condition; which will be alleviated after some delay.
	All

	506 Device Full
	The response indicates that the recipient has not enough storage space for the data.
	HGET

	507 User Rejected
	The request is not executed since the user rejected the request.
	All

	Application specific codes 1xxx

	1000 – 1999
	These status codes are application specific status codes and the meanings of these are not defined in this specification.

It is recommended to define status codes with the same grouping as above within this application specific interval but it is the application that defines the allowed values:

Successful
12xx

Redirection
13xx

Originator Exceptions
14xx

Recipient Exception
15xx
	Application Dependent

Appendix D. DM Notification Delivery and Transport
(Normative)
DM Notification package can be delivered from the DM Server to the DM Client by using various transports. SMS is a good example for such a transport, and also Google Cloud Messaging for Android (GCM) can be used for the DM Notification package delivery. Other transports are not precluded and can be used on their availabilities.
D.1 Connectionless WAP Push
The DM Notification package MAY be sent to the DM Client using the Push OTA Protocol over WSP (OTA-WSP) [PushOTA] with the following additional rules:

· The package MUST be sent using the non-secure connectionless push.

· Application-ID 0x07 MUST be used.

· Content-Type Code 0x58 MUST be used (application/vnd.syncml.dm.notification).

· Other Push header fields may be included; however the total length of the Push header MUST NOT exceed 48 bytes (to ensure that there is sufficient space for the Push message body that contains the DM Notification package).
For devices on cellular networks, connectionless WAP Push is typically delivered over SMS. For IP-capable devices, connectionless WAP Push MAY be delivered over UDP. In order to receive non-secure connectionless WAP Push over UDP, an IP-capable device MUST listen to the IANA registered port number for connectionless WAP Push (i.e. 2948).
D.1.1 Using non WAP Push capable devices
If the receiver is not a WAP device, it is very unlikely that any other application would be active on the same port, which has been publicly registered with IANA. The decoding of the message headers is very straightforward even if the device lacks a full WAP stack and therefore the device MUST examine if the message has been sent to the default WAP push port (2948) and if the Application-ID and the MIME type are one assigned to the OMA DM Notification Initiation Package. If this information is correct then the message MUST be routed to the OMA Device Management application.
D.2 GCM (Google Cloud Messaging)

GCM (Google Cloud Messaging for Android) is a service that allows the 3rd party application server to send data to its Android applications on the device. By using GCM, the DM Notification package can be delivered from the DM Server to the DM Client. In this case, The DM Server takes the role of the 3rd party application server, and the DM Client runs as an Android application in the device.
DM Client MAY support GCM. DM Servers MAY support GCM. If the DM Client supports the optional GCM functionality then it MUST support the GCM functionality as defined in this appendix.

D.2.1 GCM Overview
(Informative)
This is an example message flow there GCM is used:

[image: image16.emf]GCM

DM Client

GCM

2.1) GCM Internal Registration

-Sender ID

-App. ID

2.2) App Unique RegID

4a) Register

-RegID

-Params

DM Server

Push

Engine

5) Store

-RegID

-Params

7) GetDeviceInfo

-RegID

-DevInfo etc

8) GCM Push Notification

-RegID List

-API Key

-DM Notification Message

9) GCM Push

-DM Notification Message

DM Server

Admin

6) Push Event

-Filter conditions

2) GCMRegister

-SenderID

1) Bootstrap:

-SenderID

-RegURL

-UnregURL

-Params

3b) OnRegistered

-RegID

Mobile

11) DM Session

DB Storage

-RegID

Interface specified elswere with some part of the content specified in DM

Interface specified elswere

Interface specified in DM

10) GCM OnMessage

-DM Notification Message

3a) OnRegistered

-RegID

4b) UnRegister

-RegID

-Params

D.2.2 Message Flow

The procedure to support DM with GCM is:

1 The DM Server MUST deliver the DM Server specific GCM configuration as part of the DM Bootstrap

2 The DM Client MUST register itself to the GCM service

3-5
When the DM Client receiving OnRegister or UnRegister event from the GCM service it MUST respectively register or unregister itself to the DM Server. This registration MUST contain the RegID which is the GCM identifier for that DM Client instance which MUST be remembered in the DM Server.

6-10 When the DM Server wants to initiate a DM Session to a specific DM Client it MUST send a DM Notification Message via the GCM interface.

11 The DM Client MUST handle the Notification according to the procedure when retrieving an DM Notification

D.2.3 Bootstrap (Interface 1)

The DM Server MAY indicate for the DM Client that the DM Servers supports GCM to notify the DM Client. The DM Server MUST include the following nodes in the DM Account Management Object as part of the Bootstrap:

	Push/GCM

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	node
	Get
	

	
	This location is reserved for GCM push mechanisms.

	Push/GCM/SenderID

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node MUST contain the sender ID [GCM] to identify the service.

	Push/GCM/RegURL

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node MUST contain the URI for where the DM Client MUST register itself after receiving a Register [GCM] event.

	Push/GCM/UnRegURL

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node MUST contain the URI for where the DM Client MUST unregister itself after receiving an UnRegister [GCM] event.

	Push/GCM/RegParams

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Required
	One
	chr
	Get
	

	
	This node MAY contain additional registrations parameters that the DM Client MUST use during register and unregister. If this string exists, it MUST be encoded as the URI query component [RFC3986].

	Push/GCM/Ext

	
	Status
	Occurrence
	Format
	Min. Access Types
	

	
	Optional
	One
	node
	Get
	

	
	This interior node is for vendor-specific extensions to store the device related information.

D.2.4 Registration and Unregistration (Interface 4)

The DM Client MUST send an HTTP POST to the Push/GCM/RegURL or to the Push/GCM/UnREgURL that is provisioned during the bootstrap for registration or unregistration respectively. The MIME Type MUST be “application/x-www-form-urlencoded;charset=UTF-8”. The HTTP body MUST contain the key “RegId” with the value of the RegId that was received from the GCM Service together with the value of the Push/GCM/RegParams node if that was included in the bootstrap. This string MUST be encoded as a query string as defined in the URI. The same security as in DM-2 MUST be used with the same credentials.

D.2.5 Push Notification (Interface 8,10)

The content of the DM Notification message MUST be encoded to a base64 string. The DM Server MUST send the Push Message to the GCM Service and include the key “SMS” with the value of the base64 encoded DM Notification message. DM Client MUST process the push message when received from the GCM Service.

Informative Note: See the GCM Service for different format and how to encode the push message.
Appendix E. Using Multipart Content-Type for Response
(Normative)

When the DM Server sends the GET command to the DM Client, the DM Client returns the requested MO data. Those data is not included in the Package#3, but they are embedded in the HTTP message (i.e., the HTTP POST message) that carries the Package#3.

To embed the data for the GET command, the multipart/form-data Content-Type MUST be used. The first encapsulation of the multipart-body MUST be the Package#3 as specified in the section 5.2.4. For the GET command with the status code "200 OK" a corresponding encapsulation MUST be provided to embed the data. The corresponding encapsulation MUST be identified by the name attribute in the Content-Disposition header that specifies the sequence order of the status code (starting from 0). Note that multipart, encapsulation, multipart-body and name are the defined terms in [RFC1521].

In case that no data are embedded (e.g., the status codes for all GET commands are either "404 Not Found" or "304 Not Modified"), then the multipart/form-data Content-Type MUST NOT be used and the Content-Type of the HTTP message MUST be set to MIME media type of the Package#3.

For the GET command, if the ClientURI is resolved into a single leaf node, the value of the leaf node MAY be directly embedded into the encapsulation using the MIME media type for the value of the leaf node as the Content-Type. Alternatively, Management Object serialization MAY be used, and in this case the Content-Type MUST be the MIME media type of the Management Object serialization (e.g., application/dmmo+json).

For example, the Package#2 that includes the GET commands is as follows:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["GET", "urn:oma:mo:oma-dm-devinfo:1.2//DevID"],

["GET", "urn:oma:mo:oma-dm-devinfo:1.2//DevID"],

["GET", "urn:oma:mo:oma-sessioninfomo:1.0//"],

["HPUT", "http://www.data.com/MOData", "urn:oma:mo:oma-moid:1.0//"],

["GET", "urn:oma:mo:invalid-moid:1.0//"],

["HGET", "http://www.dms1.com/","urn:oma:mo:oma-dm-dmacc:2.0/dms1/AuthNoti/AuthSecret"]

]
}
The response by the DM Client using the multipart/form-data Content-Type is as follows:
POST /dmclient/dm20 HTTP/1.1

Content-Type: multipart/form-data; boundary=simple_boundary
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.devicemgmt.org
--simple_boundary
Content-Disposition: form-data

Content-Type: application/vnd.oma.dm.response+json
{

"Status": [

200,

200,

200,

200,

404,

200

]
}

--simple_boundary
Content-Disposition: form-data; name="0"
Content-Type: text/plain

IMEI:493005100592800
--simple_boundary
Content-Disposition: form-data; name="1"
Content-Type: application/dmmo+json
{

"DDF": "http://www.vendor.com/DDF/oma-dm-devinfo1.2.ddf",

"ClientURI": "urn:oma:mo:oma-dm-devinfo:1.2//DevID",

"MOData": {

"DevID": "IMEI:493005100592800"

}

}
--simple_boundary
Content-Disposition: form-data; name="2"
Content-Type: application/dmmo+json
{

"DDF": "http://www.vendor.com/DDF/oma-sessioninfomo1.0.ddf",

"ClientURI": "urn:oma:mo:oma-sessioninfomo:1.0//",

"MOData": {

"SessionInfoMO": {

"CBT": 1,

"ROAMING": 0

}

}

}
--simple_boundary--
Appendix F. Protocol Examples
(Informative)
In this section several protocol scenarios will be demonstrated. In examples, mandatory HTTP header fields might be missing.
F.1 Examples for Retrieving MO data

In this section an example is presented in which the DM Server retrieves several MO data from the device using various DM commands (i.e., GET, HPOST and HPUT).

Package#1 that initializes the DM session is as follows (no Client Initiated Alerts and the DM Notification does not include the REQ-MOS Option):
POST /dmserver/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.initiation+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.dms.com

{

}

Package#2 to request the DevInfo Management Object and the list of all deployed software component identifiers is as follows:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["GET", "oma:mo:oma-dm-devinfo:1.0//"],

["GET", "urn:oma:mo:oma-scomo:1.0//Inventory/Deployed/*/ID"]

]

}
For the GET command, multipart/form-data is used to send the Package#3 and to embed the requested MO data as specified in Appendix E. HTTP message for this is as follows:

POST /dmserver/dm20 HTTP/1.1

Content-Type: multipart/form-data; boundary=boundary
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.dms.com
--boundary
Content-Disposition: form-data

Content-Type: application/vnd.oma.dm.response+json
{

"Status": [

200,

200

]
}

--simple_boundary
Content-Disposition: form-data; name="0"
Content-Type: application/dmmo+json
{

"DDF": "http://www.vendor.com/DDF/devinfo1.0.ddf",

"ClientURI": "oma:mo:oma-dm-devinfo:1.0//",

"MOData": {

"DevInfo": {

"DevID": "IMEI:493005100592800",

"Man": "Vendor",

"Mod": "DM_Client",

"DmV": "2.0",

"Lang": "en",

"DevType": "smartphone",

"OEM": "",

"FwV": "android4.0.4",

"SwV": "Vendor1.2",

"HwV": ""

}

}
}
--simple_boundary
Content-Disposition: form-data; name="1"
Content-Type: application/dmmo+json
{

{

"DDF": "http://www.vendor.com/DDF/oma-scomo1.0.ddf",

"ClientURI": "urn:oma:mo:oma-scomo:1.0//Inventory/Deployed/pkg1/ID",

"MOData": {

"ID": "pkg1_id"

}

},

{

"DDF": "http://www.vendor.com/DDF/oma-scomo1.0.ddf",

"ClientURI": "urn:oma:mo:oma-scomo:1.0//Inventory/Deployed/pkg2/ID",

"MOData": {

"ID": "pkg2_id"

}

}

}
--simple_boundary--
The DM Server requests to send the current state of the Camera in the device to the Data Repository, and at the same time, the DM Server terminates the DM session. The Package#2 for this is as follows:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["HPOST", "http://www.dr.com/camera_state?DevID=IMEI:493005100592800"

"urn:oma:mo:oma-dcmo:1.0/(x)/Enabled?nv=(x)/Property:Camera"],

["END"]

]

}
Package#3 is not sent due to the END command. Instead, HTTP messages, that are not part of the DM session, are exchanged between the DM Client and the Data Repository. The HTTP POST request from the DM Client to the Data Repository is as follows:

POST /camera_state?DevID=IMEI:493005100592800 HTTP/1.1

Content-Type: text/plain
Host: www.dr.com
true
The HTTP response from the Data Repository to the DM Client is as follows:

HTTP/1.1 200 OK
F.2 Examples for Modifying MO data
In this section an example is presented in which the DM Server modifies several MO data in the device using the HGET command.
Package#1 that initializes the DM session is as follows (the DM Notification includes the REQ-MOS Option):
POST /dmclient/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.initiation+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.dms.com

{

"MOS": [

{

"DDF": "http://www.vendor.com/DDF/devinfo1.0.ddf",

"MOID": "urn:oma:mo:oma-dm-devinfo:1.0",

"MIID": ["miid1"]

},

{

"DDF": "http://www.vendor.com/DDF/oma-sessioninfomo1.0.ddf",

"MOID": "urn:oma:mo:oma-sessioninfomo:1.0",

"MIID": ["miid1"]

},

{

"DDF": "http://www.vendor.com/DDF/oma-dm-dmacc2.0.ddf",

"MOID": "urn:oma:mo:oma-dm-dmacc:2.0",

"MIID": ["miid_dms1"]

},

{

"DDF": "http://www.vendor.com/DDF/oma-dcmo1.0.ddf",

"MOID": "urn:oma:mo:oma-dcmo:1.0",

"MIID": []

}

]
}
The DM Server updates the authentication secret for the DM Notification with the following Package#2:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["HGET", "http://www.dms.com/new_secret?DevID=IMEI:493005100592800",

"urn:oma:mo:oma-dm-dmacc:2.0/(x)/AuthNoti/AuthSecret?nv=(x)/ServerID:DMS_ID1"]

]

}
After receiving the Package#2, the DM Client sends the HTTP GET request to the received ServerURI "http://www.dms.com/new_secret?DevID=IMEI:493005100592800" as follows:

GET /new_secret?DevID=IMEI:493005100592800 HTTP/1.1

Host: www.dms.com

The DM Client receives the following HTTP message as the response:

HTTP/1.1 200 OK
Content-Type: text/plain

AB123CES121XX90TPOWQESEFSE33

Note that above two HTTP messages are not part of the DM session. After the DM Client updates the AuthNoti/AuthSecret node in the DM Account MO with the received value "AB123CES121XX90TPOWQESEFSE33", the Package#3 is sent to the DM Server as follows:

POST /dmserver/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.response+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.dms.com
{

"Status": [

200

]
}

Now the DM Server sends the new DCMO instance to manage "USB" with the following Package#2:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["HGET", "http://www.dms.com/dcmo_usb"]

]

}
After receiving the Package#2, the DM Client sends the HTTP GET request to the received ServerURI as follows:

GET /dcmo_camera HTTP/1.1

Host: www.dms.com

The DM Client receives the following HTTP message as the response:

HTTP/1.1 200 OK
Content-Type: application/dmmo+json

{

"DDF": "http://www.vendor.com/DDF/dcmo1.0.ddf",

"ClientURI": "urn:oma:mo:oma-dcmo:1.0//",

"MOData": {

"usb": {

"Property": "USB",

"Group": "I/O",

"Description": "USB Control",

"Enabled": "true"

}

}
}
After the DM Client creates the new DCMO instance, the Package#3 is sent to the DM Server as follows (the stored location for the new DCMO instance is delivered together with the status code):

POST /dmserver/dm20 HTTP/1.1

Content-Type: application/vnd.oma.dm.response+json
Accept: application/vnd.oma.dm.request+json
OMADM-DevID: IMEI:493005100592800
Host: www.dms.com
{

"Status": [

200, "urn:oma:mo:oma-dcmo:1.0/usb/"

]
}

The DM Server terminates the DM session with the following Package#2:

HTTP/1.1 200 OK
Content-Type: application/vnd.oma.dm.request+json
{

"CMD": [

["END"]

]

}
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]
(2013 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20130101-I]

_1414290149.vsd
�

�

DM Client

Data
Repository

2. HTTP response

1. HTTP POST to ServerURI with MO data

_1418656273.vsd
�

�

�

DM Client

DM Server

Web Browser
Component

Web Server
Component

1. Initiate to load the ServerURI

2. HTTP request to the ServerURI

UI session continues

3. Store the results for the user interaction

4. Transmit the results
for the user interaction

_1431853240.vsd
�

�

DacMO

_1422684335.vsd
GCM

DM Client

GCM

2.1) GCM Internal Registration
- Sender ID
- App. ID

2.2) App Unique RegID

4a) Register
- RegID
- Params

DM Server Push Engine

5) Store
- RegID
- Params

Interface specified elswere with some part of the content specified in DM

Interface specified elswere

Interface specified in DM

7) GetDeviceInfo
- RegID
- DevInfo etc

8) GCM Push Notification
- RegID List
- API Key
- DM Notification Message

9) GCM Push
- DM Notification Message

DM Server

Admin

6) Push Event
- Filter conditions

2) GCMRegister
- SenderID

1) Bootstrap:
- SenderID
- RegURL
- UnregURL
- Params

11) DM Session

DB Storage
- RegID

3b) OnRegistered
- RegID

Mobile

10) GCM OnMessage
- DM Notification Message

3a) OnRegistered
- RegID

4b) UnRegister
- RegID
- Params

_1414290239.vsd
�

�

�

DM Client

1. HTTP GET to ServerURI

Data
Repository

2. HTTP response containing MO data

3. store the received MO data

_1414288938.vsd
�

�

DM Client

DM Server

If the DM session continues

3. Processing DM commands (END cmd terminates
DM session)

0. (Package#0) DM Notification (server initiated case)

1. (Package#1) DM session Initiation

2. (Package#2) DM commands

4. (Package#3) Results and Alerts

_1362903411.vsd
Device

DM Bootstrap Server

HTTPS Get

DM bootstrap data

DM Server

Perform DM
bootstrapping

Management
session

Bootstrap

