OMA-DM-LightweightM2M-2013-0039-CR_Moving_Response_Code_Chapter[image: image6.jpg]
Change Request

OMA-DM-LightweightM2M-2013-0039-CR_Moving_Response_Code_Chapter
Change Request

Change Request

	Title:
	Moving Response Code Chapter
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	DM LightweightM2M

	Doc to Change:
	OMA-TS-LightweightM2M-V1_0_0-20130314-D

	Submission Date:
	28 Mar 2013

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Editorial

	Source:
	Seongyoon Kim, LGE, seongyoon.kim@lge.com
Seungkyu Park, LGE, seungk.park@lge.com

	Replaces:
	n/a

1 Reason for Change

This CR suggests moving section 10 to section 9.3. Response code defined in section 10 is dependent on CoAP so 9.3 is right place.

Contents are not changed at all.

2 Impact on Other Specifications

None
3 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

4 Recommendation

DM WG to review and agree this CR
5 Detailed Change Proposal
Change 1: Update Response Code chapter
9. Transport Layer Binding and Encoding
The LWM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LWM2M interfaces.
9.1 Required Features

For realization of the LWM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LWM2M.

· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.

· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].

· GET, PUT, POST and DELETE methods MUST be supported. LWM2M Operations map to these methods.

· A subset of Response Codes MUST be supported needed for LWM2M response message mapping.

· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object Instance and Resource being requested.

· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.

· The Uri-Query Option MUST be supported.

· The Content-Type Option MAY be used to indicate the media type of the payload. A default value of plain/text is assumed, allowing this option to be elided for most payloads.

· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.

9.2 URI Identifier & Operation Mapping

Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LWM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object Instance or Resource that the request is for, and is encoded in Uri-Path options. The LWM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LWM2M Operations for each interface are mapped to CoAP Methods.

9.2.1 Registration Interface

The registration interface is used by a LWM2M Client to register with a LWM2M Server, identified by the LWM2M Server URI. Registration is performed by sending a CoAP POST to the LWM2M Server URI, with registration parameters passed as query string parameters as per Table 1 and Object and Object Instances included in the payload as per [RFC6690]. The Client MAY add “</>;ct=50” in the payload to inform the Server of the Client supporting JSON data format for all the Objects. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration.

Registration update is performed by sending a CoAP PUT to the Location path returned to the LWM2M Client as a result of a successful registration.

De-registration is performed by sending a CoAP DELETE to the Location path returned to the LWM2M Client as a result of a successful registration.

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Write Uplink
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}
	2.01 Created
	4.00 Bad Request

	Update Uplink
	PUT
	/{location}?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
&lwm2m={version}
	2.04 Changed
	4.00 Bad Request

	Delete Uplink
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request

Table 2: Operation to Method and URI Mapping

[image: image1.png]
Figure 1: Example registration, update and de-registration exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)

Editor’s Note: add example of update message when the parameter value is changed.
9.2.2 Bootstrap Interface

The bootstrap interface is used to optionally configure a LWM2M Client so that it can successfully register with a LWM2M Server. The client bootstrap operation is performed by sending a CoAP POST request to the LWM2M Server at the /bs path including the Endpoint Client Name as a query string parameter.

In client initiated bootstrap, when the Server receives Request Bootstrap logical operation, the Server performs Write logical operation. In server initiated bootstrap, the Server performs Write logical operation. The Write logical operation targets to an Object Instance or a Resource. The Write logical operation can be sent multiple times. Different from Write operation in Device Management and Service Enablement interface, the Client MUST write the payload regardless of an existence of the targeting Object Instance or Resource.
	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Request Bootstrap
	POST
	/bs?ep={Endpoint Client Name}
	2.04 Changed
	4.00 Bad Request

	Write
	PUT
	/{Object ID}/{Object Instance ID}/ {Resource ID}
	2.04 Changed
	4.00 Bad Request

Table 4: Operation to Method and URI Mapping

[image: image2.emf]LWM2M Client

POST /bs?ep=node34141

2.03 Valid

LWM2M Server

PUT /1/0

{Server Object Instance}

PUT /2/0

{Access Control Object Instance}

Figure 2: Example of Client initiated Bootstrap exchange.

[image: image3.emf]LWM2M Client

LWM2M Server

PUT /1/0

{Server Object Instance}

PUT /2/0/2

{ACL Resource of

Access Control Object Instance}

Figure 2: Example of Server initiated Bootstrap exchange.

Editor’s note: re-design the above figure to align with the others.

9.2.3 Device Management & Service Enablement Interface

The Device Management & Service Enablement Interface is used to access an Object Instance or an individual Resource of an Object Instance. An Object Instance is identified by the path /{Object ID}/{Object Instance ID}. If Object doesn’t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0. A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.
An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value in the corresponding Plain Text, TLV or JSON format.

An Object Instance or Resource is Written to by sending a CoAP PUT to the corresponding path. The request includes the value to be written in the corresponding Plain Text, TLV or JSON format.

A Resource is Executed by sending a CoAP POST to the corresponding path.

An Object Instance is created by sending a CoAP POST to the corresponding path. The request includes the value to be written in the corresponding TLV or JSON format.

An Object Instance is deleted by sending a CoAP DELETE to the corresponding path.
	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read
	GET
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write
	PUT
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Execute
	POST
	/{Object ID}/{Object Instnace ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Create
	POST
	/{Object ID}/{Object Instance ID}
	2.01 Created
	4.00 Bad Request, 4.05 Method Not Allowed, XXX ID Not Allowed

	Delete
	DELETE
	/{Object ID}/{Object Instance ID}
	2.02 Deleted
	4.00 Bad Request, 4.05 Method Not Allowed, XXX instance ID Not Existing

Table 3: Operation to Method Mapping

Editor’s note: example figure of Create and Delete operation is needed
Editor’s note: We need to verify the success codes as there are discrepency in the coap specs. Another way would be to remove the success codes and rely on the COAP specs instead.
[image: image4.png]
Figure 3: Example of Device Management & Service Enablement interface exchanges.

Editor’s Note: Update above figure /3/0/ (/3/0/0, /3/1/ (/3/0/1, /2/5/ (/2/0/5,
9.2.4 Information Reporting Interface

Periodic and event-triggered reporting about resource values from the LWM2M Client to the LWM2M Server is achieved through CoAP Observation [OBSERVE]. This simple mechanism allows the LWM2M Server to send an Observe GET request for an Object Instance, which results in asynchronous notifications whenever that Object Instance changes (periodically or as a result of an event). The minimum and maximum period of notifications can be controlled by including the minimum (pmin) and/or maximum (pmax) period for notifications to be sent in seconds.

	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read Downlink
	GET with Observe option
	/{Object ID}/{Object Instnace ID}/{Resource ID}?pmin={minimum period}&pmax={maximum period}
	2.05 Content with Observe option
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Uplink
	Asynchronous Response
	
	2.04 Changed
	

Table 7: Operation to Method Mapping
[image: image5.png]
Figure 4: Example of an Information Reporting exchange.

Editor’s Note: Update above figure /21/4 (/21/0/4

9.3 Response Codes

This Chapter lists available response codes of each logical operation. The codes are divided into each interface. These are the only valid response codes defined in this specification.
	Logical Operations
	Available CoAP Response Codes
	Reason Phrase

	Device Discovery and Registration Interface

	Register
	2.01 Created
	Register operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified

	Update
	2.04 Changed
	Update operation is completed successfully

	
	4.00 Bad Request
	The mandatory parameter is not specified or unknown parameter is specified or URI is not found

	De-register
	2.02 Deleted
	De-register operation is completed successfully

	
	4.00 Bad Request
	URI is not found

	 Bootstrap Interface

	TBD
	
	

	
	
	

	 Device Management and Service Enablement Interface

	Read
	2.05 Content
	Read operation is completed successfully

	
	4.00 Bad Request
	

	
	4.04 Not Found
	URI of Read operation is not found

	
	4.01 Unauthorized
	ACL Permission Denied

	
	4.05 Method Not Allowed
	Access Type Permission Denied

	Write
	2.04 Changed
	Read operation is completed successfully

	
	4.00 Bad Request
	The format of data to be written is different

	
	4.04 Not Found
	URI of Write operation is not found

	
	4.01 Unauthorized
	ACL Permission Denied

	
	4.05 Method Not Allowed
	Access Type Permission Denied

	Execute
	2.04 Changed
	Execute operation is completed successfully

	
	4.00 Bad Request
	

	
	4.04 Not Found
	URI of Execute operation is not found

	
	4.01 Unauthorized
	ACL Permission Denied

	
	4.05 Method Not Allowed
	Access Type Permission Denied

	Information Reporting Interface

	Observe
	2.05 Content
	Observe operation is completed successfully

	
	4.00 Bad Request
	

	
	4.04 Not Found
	URI of Observe operation is not found

	
	4.05 Method Not Allowed
	

	Cancel Observation
	TBD
	

	Notify
	2.04 Changed
	Notify operation is completed successfully

9.4 Transport Bindings
9.4.1 UDP Binding

The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

9.4.2 SMS Binding

CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LWM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LWM2M Server including the node’s MSISDN number. The LWM2M Client MAY interact with the server using both UDP and SMS bindings.

10.

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20110101-I]

_1425991135.vsd
LWM2M Client

POST /bs?ep=node34141

2.03 Valid

_1425991136.vsd
LWM2M Client

