OMA-TS-LightweightM2M-V1_0-201211130-D
Page 42 V(44)

	[image: image1.jpg]
	

	Lightweight Machine to Machine

Technical Specification

	Draft Version 1.0 – 30 Nov 2012

	Open Mobile Alliance

	OMA-TS-LightweightM2M-V1_0-201211130-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
7
3.
Terminology and Conventions
8
3.1
Conventions
8
3.2
Definitions
8
3.3
Abbreviations
8
4.
Introduction
9
5.
Protocol Overview
10
6.
Interfaces
11
6.1
Device Discovery & Registration Interface
12
6.1.1
Registration
13
6.1.2
Update
13
6.1.3
De-registration
13
6.2
Bootstrap Interface
14
6.2.1
Bootstrap Information
14
6.2.2
Bootstrap Modes
14
6.2.3
Re-bootstrap
15
6.3
Management & Service Interface
16
6.3.1
Read
16
6.3.2
Write
17
6.3.3
Execute
17
6.4
Information Reporting Interface
17
6.4.1
Observe
18
6.4.2
Notify
19
6.4.3
Cancel Observation
20
7.
Identifiers and Resources
21
7.1
Resource Model
21
7.2
Identifiers
22
7.3
Data Formats for Transferring Resource Information
22
7.3.1
Plain Text
23
7.3.2
Opaque
23
7.3.3
TLV
23
7.3.4
JSON
23
8.
Security Consideration
25
8.1
Channel Security
25
8.2
Access Control
25
8.2.1
Access Control List (ACL)
25
8.2.2
Access Type
26
8.2.3
Authorization
26
8.2.4
Querying ACL/Access Type
27
9.
Transport Layer Binding and Encoding
28
9.1
Required Features
28
9.2
URI Identifier & Operation Mapping
28
9.2.1
Registration Interface
28
9.2.2
Bootstrap Interface
29
9.2.3
Information & Management Interface
30
9.2.4
Information Reporting Interface
31
9.3
Transport Bindings
32
9.3.1
UDP Binding
32
9.3.2
DTLS Binding
32
9.3.3
SMS Binding
32
10.
Response Codes
33
Appendix A.
Example Objects and Resources
34
Appendix B.
LWM2M Object Template and Guidelines (Informative)
35
B.1
Object Template
35
B.2
Guidelines
35
Appendix C.
LWM2M Objects defined by OMA (Normative)
36
C.1
LWM2M Object: LWM2M Server
36
C.2
LWM2M Object: Access Control
38
C.3
LWM2M Object: Device
38
C.4
LWM2M Object: Connectivity
39
C.5
Firmware
39
Appendix D.
Change History (Informative)
42
D.1
Approved Version History
42
D.2
Draft/Candidate Version <current version> History
42
Appendix E.
Static Conformance Requirements (Normative)
43
E.1
SCR for XYZ Client
43
E.2
SCR for XYZ Server
43
Appendix F.
<Additional Information>
44
F.1
App Headers
44
F.1.1
More Headers
44

Figures

9Figure 1: Example Figure

Tables

9Table 1: Example Table

1. Scope

<< Define as it relates to Open Mobile Alliance Activity. If it adds clarity, define what is not in the scope. DELETE THIS COMMENT >>

2. References

The policy for reference lists is:

1.
OMA documents listed should have at least one approved version – draft-only docs should not be referenced. Exception exists for documents that will be approved with or after the referenced doc is approved (may be part of same enabler package). In short – approved docs should not reference unapproved docs.

2.
When a reference is made to an OMA specification, then Open Mobile Alliance with the TM symbol (™) should be used in the description.

3.
The name + version (no date) for OMA specifications are generally sufficient – dates should be used only if there is a specific reason to limit the usage.

4.
For references to WAP Forum docs, dates should not be included as DID's for the old WAP Forum specifications are enough and the reference description should refer to WAP Forum™.

5.
References to other affiliate docs should similarly provide sufficient information to uniquely determine the needed document and should provide the appropriate source information.

6.
The URL for OMA material (new OMA and affiliate) should always be http://www.openmobilealliance.org (an exception is OMNA that is reached through http://www.openmobilealliance.org/tech/omna)

Models to use

[REFLABEL]
<General Model> “Ref Title”, Ref information (source, date, id),
URL:http//<ref-source>/

[OMADOC]
<OMA Model> “OMA Document Title”, Open Mobile Alliance™, OMA‑<docname>{‑<version>}, URL:http//www.openmobilealliance.org/

If there are no entries in the table – enter ‘none’ to be clear.
DELETE THIS COMMENT

2.1 Normative References

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[LWM2M-AD]
	“Lightweight Machine to Machine Architecture”, Open Mobile Alliance™, OMA-AD-LightweightM2M-V1_0, URL:http://www.openmobilealliance.org/

	[CoAP]
	Shelby, Z., Hartke, K., Bormann, C., and B. Frank, "Constrained Application Protocol (CoAP)", draft-ietf-core-coap-12 (work in progress), Sept 2012.

	[OBSERVE]
	Hartke, K. “Observing Resources in CoAP”, draft-ietf-core-observe-07 (work in progress), Sept 2012.

	[RFC6690]
	Shelby, Z. “Constrained RESTful Environments (CoRE) Link Format”, RFC6690, Aug 2012.

	[RFC6347]
	Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, January 2012.

	[RFC6655]
	McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS", RFC6655, July 2012.

	
	<< Add/Remove reference rows as needed! >>

2.2 Informative References

	
	

	
	<< Add/Remove reference rows as needed! >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

.

3.2 Definitions

	Term 1
	Definition

	Term 2
	Definition

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	xxx
	xxx

	
	

4. Introduction

<< From a market perspective...

· What can you do with this specification?

· What problem does this solve?

· How can this specification be applied?

· Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

5. Protocol Overview

6. Interfaces
According to the architecture diagram [LWM2M-AD], there are four interfaces: 1) Device Discovery and Registration 2) Bootstrap 3) Management and Service 4) Information Reporting. The logical operations for the four interfaces can be classified as uplink operations and downlink operations. There are three types of logical operations in the downlink, including “read”, “write”, “execute”. There is one type of logical operation in the uplink “write”.
Figure 1 shows the logical operation model for interface “Device Discovery and Registration”. For this interface, the operation is uplink “write”. The write operation on this interface consists of three different variations, registration, update, and de-registration.

[image: image2.emf]LWM2M

Server

LWM2M

Client

write

Uplink

Figure 1 Device Discovery and Registration
Figure 2 shows the logical operation model for interface “Bootstrap”. For this interface, the operation is downlink “write”. This operation allows the LWM2M Server to set Resources of the bootstrap Object on the LWM2M Client for the purpose of bootstrap configuration.

[image: image3.emf]LWM2M

Server

LWM2M

Client

write

Downlink

Figure 2 Bootstrap
Figure 3 shows the logical operation model for interface “Management and Service”. For this interface, the operations are downlink “read”, “write” and “execute”. These operations are used to interact with the Resources and Objects of the LWM2M Client. Read is used to read the current value of one or more Resources, write is used to update the value of one or more Resources, and execute is used to initiate an action defined by a Resource.

[image: image4.emf]LWM2M

Server

LWM2M

Client

read, write, execute

Downlink

Figure 3 Management and Service

Figure 4 shows the logical operation model for interface “Information Reporting”. For this interface, the operation is uplink “write”. This operation sends the LWM2M Server a new value related to a Resource on the LWM2M Client.

[image: image5.emf]LWM2M

Server

LWM2M

Client

write

Uplink

Figure 4 Information Reporting

The relationship between logical operations and interfaces is listed in the following table 1.

Table 1 the relationship of logical operations and interfaces

	Interfaces
	Direction
	Logical Operation

	Device Discovery and Registration
	Uplink
	Write (Register, Update, De-register)

	Bootstrap
	Downlink
	Write

	Management and Service
	Downlink
	Read, Write, Execute

	Information Reporting
	Uplink
	Write

6.1 Device Discovery & Registration Interface

The Discovery & Registration Interface is used by a LWM2M Client to register with one or more LWM2M Servers, maintain each registration and de-register from a Server. The registration is based on the Resource Model and Identifiers defined in Section Error! Reference source not found.. When registering, the LWM2M Client indicates its Endpoint Name, registration lifetime and the list of Objects the Client supports. The registration is soft state, with a lifetime indicated by the registration lifetime. The LWM2M Client periodically performs an update and allows the Client to update its registration information. If the lifetime of a registration expires without receiving a new registration or update from the Client, the Server removes the registration. Finally, when shutting down or discontinuing use of a Server, the Client performs a de-registration.
[image: image6.png]
Figure 1 Registration Interface example flows.

6.1.1 Registration

Registration is performed when a Client sends a registration write operation to the Server. The registration includes the Endpoint Client Name (which MUST be unique on that Server) along with optional Lifetime and SMS Binding Support parameters, and the list of Objects that the Client supports.

Note: Server records the IP address from the registration message

Table 2 Registration parameters
	Parameter
	Required
	Default Value
	Notes

	Endpoint Client Name
	Yes
	
	See Error! Reference source not found.

	Lifetime
	No
	86400
	The lifetime of the registration in seconds. The registration is removed by the Server if a new registration or update is not received within this lifetime.

	SMS Binding Support
	No
	
	Inclusion of this parameter indicates the Client supports the SMS binding. The value of this parameter is the MSISDN of the Client can be reached at.

	Supported Objects
	Yes
	
	The list of Objects supported by the Client.

The list of Supported Objects is included in the payload of the registration message. Each Object is described as a Link in the CoRE Link Format [RFC6690]. The Target component of the link is required, and consists of the Object path. Any other parameters included in the link MUST be silently ignored, unless specified for use by this specification. The Media Type of this payload is application/link-format.

The payload for a Client supporting the Bootstrap, Firmware Update and Device example Objects from Appendix A would simply be:

</1>,</2>,</3>
6.1.2 Update

Periodically, the Client updates its registration with a Server by sending an update write Operation to the Server. This update message contains no logical parameters and no payload. When a Client’s IP addres or port changes for any reason, the Client MUST send a new update write Operation to the Server.

If the Client wishes to change its registered information, then it sends a new registration message to the Server.

Note: to add a lifetime parameter.

6.1.3 De-registration
When a Client will no longer be available, the Client SHOULD send a de-registration write Operation to the Server. Upon receiving this message, the Server will remove the registration information from the Server.

6.2 Bootstrap Interface

Bootstrap process is used for the LWM2M Server to provision essential information into the LWM2M Client to make the LWM2M Client be able to register to a certain LWM2M Server.
This chapter describes what information is conveyed in bootstrap message, where the LWM2M Client puts that information and how the LWM2M Server provisions the bootstrap information. Please note that since the LWM2M Client may be pre-configured before deploying the LWM2M Device (e.g. at manufacture), the LWM2M Client SHOULD support this interface and the LWM2M Server MUST support the interface.

Editor’s Note: Security Mechanism for bootstrap interface must be provided. This security mechanism must be differentiated from security mechanism of the other interfaces.

6.2.1 Bootstrap Information

This section specifies what information is conveyed in the bootstrap message from the LWM2M Server to the LWM2M Client and where the LWM2M Client stores the information.

The information is listed in Table X. A LWM2M Client MAY be configured to use one or more LWM2M Servers, with a set of bootstrap information for each LWM2M Server.

	Entity
	Semantics
	Description

	LWM2M Server Account
	Object
	Stores the LWM2M Server account information which contains LWM2M Server URI, the security mode to use and suitable keying material for the security mode.
If the account of the LWM2M Server is removed, all the information related to the LWM2M Server MUST be removed.

Editor’s Note: other parameter can be added when defining real Object and this description may move to real Object chapter.
6.2.2 Bootstrap Modes
The LWM2M enabler defines two bootstrap modes: pre-configured and client initiated bootstrap.
Note: other modes, for instance SmartCard Bootstrap Mode, should be considered.

Note: discuss LWM2M Server for Bootstrap could be different from LWM2M Server for Registration

6.2.2.1 Pre-configured

In this mode, the LWM2M Client is already provisioned at manufacturer. Therefore the LWM2M Client doesn’t need any communication with the LWM2M before the registration.

6.2.2.2 Client initiated Bootstrap

Client initiated bootstrap is used when the LWM2M Server wants to provision the bootstrap information dynamically depending on the deploying environment. Prior to the client initiated bootstrap, The LWM2M Client needs to be pre-configured with a bootstrap URI. The below figure shows the client initiated bootstrap flows.

[image: image7.emf]LWM2M Client

1. Request bootstrap to bootstrap URI

2. Provision bootstrap information

LWM2M Server

Figure 1. Procedure of Client Initiated Bootstrap

Step #1: Request bootstrap to bootstrap URI

The LWM2M Client requests bootstrap to bootstrap URI which has been pre-provisioned. When requesting the bootstrap, the LWM2M Client sends its Endpoint Client Name.

Step #2: Provision bootstrap information

The LWM2M Server provisions bootstrap information which is specified in 6.2.1.

EDITOR NOTE: Need to discuss provisioning from a SIM card in this section.

6.2.3 Re-bootstrap

If the LWM2M Client and the LWM2M Server cannot communicate by the other interfaces due to security key mismatch or some other reasons, the LWM2M Client or the LWM2M Server MAY perform re-bootstrap process.

Re-bootstrap is based on the client initiated bootstrap to provide variable bootstrap information (e.g. security key, security mode). In re-bootstrap process of the LWM2M Server, the LWM2M Server provisions the bootstrap information specified in 6.2.1 and the LWM2M Client removes the account of the LWM2M Server and all the information related to the LWM2M Server (e.g. ACL) and installs new account of the LWM2M Server.

Bootstrap information in re-bootstrap may contain a “keepServerInfo” parameter which indicates to keep the LWM2M Server related information so if the parameter is contained in bootstrap information, the LWM2M Client doesn’t removes the LWM2M Server related information and just updates the account of the LWM2M Server. Since the LWM2M Server related information is changed dynamically, this parameter may help in this situation to keep latest information the LWM2M Server owns in the LWM2M Client. The below figure shows the re-bootstrap flows.

[image: image8.emf]LWM2M Client

1. Request re-bootstrap to bootstrap URI

2. Provision bootstrap information

LWM2M Server

0. Notify needs of re-bootstrap (Optional)

Figure 2. Re-bootstrap Procedure

Step #0: Notify needs of re-bootstrap

The LWM2M Server may notify the LWM2M Client of the fact that re-bootstrap is needed. This step is only valid when the LWM2M Server initiates the re-bootstrap procedure. The notification contains URI for re-bootstrap.

Step #1: Request re-bootstrap to bootstrap URI

The LWM2M Client requests re-bootstrap to bootstrap URI which has been sent in step 1. When requesting the re-bootstrap, the LWM2M Client sends its device information and supported security mode.

Step #2: Provision bootstrap information

The LWM2M Server provisions bootstrap information which is specified in 6.2.1. The bootstrap information may contain “keepServerInfo” parameter to keep the LWM2M Server related information.

Editor’s Note: related LWM2M Server information should be updated.
Note: list of steps regarding bootstrap
6.3 Management & Service Interface

This interface is used by the LWM2M Server to access Resources available from a LWM2M Client using Read, Write or Execute operations. The operations that a Resource supports are defined in the definition of its Object.

[image: image9.png]
6.3.1 Read

The Read operation is used to access the value of a Resource, an array of Resource Instances or an entire Object at once. The Read operation has the following parameters:
Table 1 Read parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object to read, if no Resource ID is indicated, then the whole Object is returned.

	Resource ID
	No
	-
	Indicates the Resource to read.

6.3.2 Write

The Write operation is used to change the value of a Resource, an array of Resources Instances or multiple Resources from an Object at once. The Write operation has the following parameters:
Table 2 Write parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object to write, if no Resource ID is indicated, then the included payload is an Object containing the Resource values to be written.

	Resource ID
	No
	-
	Indicates the Resource to write. The payload is the new Resource or Resource Instances.

	New Value
	Yes
	-
	The new value included in the payload to update the Object or Resource.

6.3.3 Execute

The Execute operation is used to initiate some action, and an associated value MAY be included depending on the Resource definition. Such a value can be used to pass possible parameters needed for the execution task to the Client, e.g. the number of seconds to wait before rebooting on a reboot resource. The presence and format of this Execute Value is defined by the Object specification. The Execute operation can only be performed on individual resources. A LWM2M Client MUST return an error on receiving an operation to execute an Object.
Table 3 Execute parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object.

	Resource ID
	Yes
	-
	Indicates the Resource to execute.

	Execute Value
	No
	-
	The execute value included in the payload to update the Object or Resource (if the Resource supports a value for execution).

EDITOR’S NOTE: Remove the Execute Value parameter. Same can be achieved with another resource.

EDITOR’S NOTE: No longer a Section 6.3.4.

6.4 Information Reporting Interface

This interface is used by a LWM2M Server to observe any changes in a Resource on a LWM2M Client, receiving notifications when new values are available. This observation relationship is initiated by sending an Observe operation to the L2M2M Client for an Object or Resource. This operation MAY contain optional Maximum and/or Minimum Period parameters to control how often these notifications are sent. The Minimum Period has a default value of 1 second, and to limit congestion notifications for an Observation SHOULD NOT be sent faster than this. An observation ends when a Cancel Observation operation is performed or the LWM2M Server is no longer reachable.

[image: image10.png]
6.4.1 Observe

The Observe operation includes the following parameters:
Table 4 Observe parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object to observe, if no Resource ID is indicated, then the whole Object is observed.

	Resource ID
	No
	-
	Indicates the Resource to observe.

	Minimum Period
	No
	1
	When present, the minimum period indicates the minimum time in seconds the server SHOULD wait between sending a new notification. In the absence of this parameter, the Minimum Period is defined by the Default Minimum Period set in the LWM2M Server Object related to that Server.

	Maximum Period
	No
	-
	When present, the maximum period indicated the maximum time in seconds the server SHOULD wait between sending the next notification (regardless if the value has changed). In the absence of this parameter, the maximum period is up to the server. The maximum period MUST be greater than the minimum period parameter. In the absence of this parameter, the Maximum Period is defined by the Default Maximum Period set in the LWM2M Server Object related to that Server.

EDITOR’S NOTE: Explain that the period is calculated from the last notification about that resource.

EDITOR’S NOTE: Explain that to set an exact period set min=max=period. Change text in table note to “maximum period MUST be greater or equal to the minumum period”.

EDITOR’S NOTE: Specify that a Client MAY adjust periods according to its sleep or communication schedules.

The following example shows how the Minimum and Maximum period parameters work as shown in Figure 1. A Server makes an Observation for a temperature resource that is updated inside the Client at irregular periods (based on change). The Server makes an Observation with Minimum Period = 10 Seconds and Maximum Period = 60 Seconds. The Client will wait at least 10 Seconds before sending a Notification to the Server (even if the resource has changed before that), and no longer than 60 Seconds before sending a Notification (even if the resource has not changed yet). The Notification is sent anywhere between 10-60 seconds upon change.

[image: image11.png]
Figure 1 Example of Minimum and Maximum periods in an Observation.
6.4.2 Notify

The Notify operation is sent to the LWM2M Server during a valid observation on an Object or Resource. This operation includes the new value of the Object or Resource.
Table 5 Notify parameters
	Parameter
	Required
	Default Value
	Notes

	Updated Value
	Yes
	-
	The new value included in the payload about the Object or Resource.

6.4.3 Cancel Observation

The Cancel Observation operation is sent to the LWM2M Client to end an observation relationship. The operation includes the following parameters:
Table 5 Cancel Observation parameters
	Parameter
	Required
	Default Value
	Notes

	Object ID
	Yes
	-
	Indicates the Object to stop observing, if no Resource ID is indicated, then the whole Object is indicated.

	Resource ID
	No
	-
	Indicates the Resource to stop observing.

EDITOR’S NOTE: No longer a Section 6.4.4.
7. Identifiers and Resources

This section defines the identifiers and resource model for the LWM2M Enabler.

7.1 Resource Model

The LWM2M Enabler defines a simple resource model where each piece of information made available by the LWM2M Client is a Resource, and Resources are logically organized into Objects. Figure 1 illustrates this structure, and the relationship between Resources, Objects and the LWM2M Client. The LWM2M Client may have any number of Resources, each of which belongs to an Object.
[image: image12.png]
Figure 1 Relationship between LWM2M Client, Object and Resources
Resources are defined per Object, and each resource is given a unique identifier within that Object. Resources are accessed directly by the LWM2M Server. Each Resource is defined to have one or more Operations that it supports. A Resource MAY contain multiple instances of that Resource. Objects and Resources SHOULD have associated Access Control Lists (ACLs) that control what the LWM2M Server can access using what operations. Figure 2 shows which operations the resources support, and how Objects and Resources are associated with ACLs. In the example, Resource 1 supports read, write and execute, while Resource 2 supports only read operations.

[image: image13.png]
Figure 2 Supported operations and access control lists

An Object defines a grouping of Resources, for example the Firmware Update Object would contain all the Resources used for firmware update purposes. Each Object is assigned a unique OMA Management Object ID and corresponding ID Index, which may be used to perform Group Operations on the set of Resources associated with that Object. The LWM2M enabler defines standard Objects and Resources and vendor specific Objects may be added for their own uses.
EDITOR NOTE: Add more clarification about the vendor specific Objects.
7.2 Identifiers

Seven identifiers are defined by the LWM2M Enabler: Endpoint Client Name, LWM2M Server URI, Short Server ID, Human Readable Object URN, Object ID, Resource ID and Resource Instance ID. These identifiers are defined in Table 1.
Table 3 Definition of LWM2M terms

	Identifier
	Semantics
	Description

	Endpoint Client Name
	String (max 63 bytes)
	Uniquely identifies the LWM2M Client on one LWM2M Server. Provided to the Server during Registration For example the IMEI, serial number or a logical name of the device.

	LWM2M Server URI
	URI
	Uniquely identifies the LWM2M Server. Provided to the Client during Bootstrap procedure.

	Short Server ID
	16-bit unsigned integer
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.
Default Short Server ID is 0 and default Short Server ID MUST not be used for identifying the LWM2M Server

	Human Readable Object URN
	URN for the OMA Management Object
	Assigned by the object specification

	Object ID
	16-bit unsigned integer
	Uniquely identifies the Object in the LWM2M Client. Short integer ID, assigned by OMA

	Resource ID
	16-bit unsigned integer
	Uniquely identifies the Resource in the Object. Short integer ID, assigned by the object specification

	Resource Instance ID
	16-bit unsigned integer
	Uniquely identifies the Resource Instance in the Resource. Short integer ID, assigned by the LWM2M Server/Client

Editor’s Note: where to store these identifiers is TBD

7.3 Data Formats for Transferring Resource Information
Four data formats are defined by the LWM2M Enabler in this section. The LWM2M Server MUST support all data formats. The plain text and opaque formats MUST be supported by both the LWM2M Server and the LWM2M Client. The LWM2M Client MUST support the TLV data format for Object or multiple-instance Resource requests.

The Object specification defines the data format that a Resource supports, either plain text or opque for singular Resources or TLV for multiple instance Resources.

In addition to the data formats defined in the Object specification, a LWM2M Client MAY choose to support the JSON format for Object or multiple instance Resource requests.

7.3.1 Plain Text

The plain text format is used for write and read operations on singular Resources where the value of the resource is simply represented as as a UTF-8 encoded string (similar to the Media Type text/plain). This string can contain a character sequence, integer number, decimal number or any other sequence of valid UTF-8 characters.
For example a request to Resource 0 from Object 3 would return the following plain text payload:

Open Mobile Alliance
This data format has a Media Type of application/lwm2m-plain (TBD).
7.3.2 Opaque

The opque format is used for write and read operations on singular Resources where the value of the resource is an opaque sequence of binary octets (similar to the Media Type application/octet-stream). This data format is used for binary resources such as firmware images or application specific binary formats.
This data format has a Media Type of application/lwm2m-opaque (TBD).
7.3.3 TLV

For requests to Objects or Resources with multiple instances, the binary TLV (type-length-value) format is used to represent an array of values using a company binary representation, which is easy to process on simple embedded devices.

The format is an array of the following byte sequence, where each array entry represents a Resource or Resource Instance:

	Field
	Format and Length
	Description

	ID
	16-bit unsigned integer
	The Resource ID or Resource Instance ID of the array entry

	Length
	16-bit unsigned integer
	The Length of the following field in bytes

	Value
	Sequence of bytes, length indicated by the Length field
	Either a plain text or opque value depending on the Resource’s data format

EDITORS NOTE: Mention that if there is a singular value in the array, that is OK.

This data format has a Media Type of application/lwm2m-tlv.

7.3.4 JSON

For requests to Objects or Resources with multiple instances, a simple JSON format may be used where a set of values is represented. Each entry of the JSON format is a key:value pair, where the key is the Resource ID for requests to an Object or the instance number for requests to a Resource with multiple instances.

This data format has a Media Type of application/lwm2m-json (TBD).

The format when an Object is requested follows the following syntax:

{ "<Resource ID>":"<Value>",
 "<Resource ID>":"<Value>",

 "<Resource ID>":"<Value>"

}
For example a request to Example Object 3 in the example would return the following JSON payload:

{ "0":"Open Mobile Alliance",
 "1":"LWM2M v1.0",

 "2":"9347112"
}
The format when a Resource with multiple instances is requested follows the following syntax:

{

 "<Resource Instance ID>":"<Value>",
 "<Resource Instance ID>":"<Value>",

 "<Resource Instance ID>":"<Value>"

}

8. Security Consideration

8.1 Channel Security

Editor’s note: if we decide to use CoAP, we can rely on underlying layer security mechanism so we don’t need to define any mechanisms here. However, the related DTLS binding information and mandatory DTLS modes could be defined here instead of in the protocol binding section.
8.2 Access Control

8.2.1 Access Control List (ACL)

To authorize the logical operation sent from the LWM2M Server, the LWM2M Client uses Access Control List (ACL) to determine which the LWM2M Server can do which logical operations on the resources in the LWM2M Client. ACL is assigned per Object and the ACL value is applied to all the Resources and Instances of the Resources which belong to the Object.
ACL is represented in the list of Short Server ID and access right of the corresponding LWM2M Server. Using the Short Server ID instead of the LWM2M Server URI can reduce the space overhead and increase the processing efficiencies. The access right is 1 byte and each bit of the access right represents whether the respective logical operation is authorized or not. For example, if 1st bit of access right is 1, then the LWM2M Server is authorized to read the Object and Resources or Instances of Resources in the Object. Detail information of ACL is described in the table X.

Editor’s Note: who can control/modify ACL is TBD
Default ACL entry, consisting of default Short Server ID (i.e. 0) and its access right, MAY be used to grant a certain access right to the LWM2M Servers which are not specified in ACL of Object. It means that the LWM2M Servers which own its ACL entry in ACL have the access right of the ACL entry and the other LWM2M Servers which do not own its ACL entry in ACL have the access right of the default ACL entry if default ACL entry exists in ACL. Therefore if ACL has default ACL entry only, all the LWM2M Servers have the same access right of the default ACL entry.

	Field
	Format and Length
	Description

	ACL
	Variable bytes depending on the number of ACL entries
	List of ACL entries

	ACL entry
	3 bytes
	The first 2 bytes: Short Server ID
The last 1 byte: access right

1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

8.2.2 Access Type

Access type defines which logical operation the Resource supports. Therefore access type is assigned per the Resource and all the Instances of the Resource inherit the access type. The access type is 1 byte and each bit of the access type represents whether the respective logical operation is supported by the Resource or not. For example, if 1st bit of access type is 1, it means that the Resource supports read logical operation.

Editor’s Note: Access Type is a constant value, normally assigned when the resource is created. How the LWM2M Server learns the access type is TBD (e.g., through the resource discovery).
	Field
	Format and Length
	Description

	Access Type
	1 byte
	1st lsb: Read

2nd lsb: Write

3rd lsb: Execute

Other bits are reserved for future use

8.2.3 Authorization
For authorizing logical operation sent from the LWM2M Server, the LWM2M Client verifies the access based on the conjunction of the access right and the access type. This chapter specifies how the LWM2M Client obtains access right of the LWM2M Server and authorizes logical operation on Resource or Resource Instance and on Object separately.
The LWM2M Server and the LWM2M Client MUST support the authorization procedure described in this section.
8.2.3.1 Obtaining Access Right

For obtaining access right of Object for a certain LWM2M Server, the LWM2M Client MUST performs the following procedure:

1. If the LWM2M Client has only one LWM2M Server account, the LWM2M Server has full access right (i.e. write, read, execute) and ACL of Object is ignored.

2. If the LWM2M Client has more than one LWM2M Server account, the LWM2M Client finds an access right of LWM2M Server according to ACL of Object the LWM2M Server accesses.

A. If ACL has ACL entry which contains Short Server ID of the LWM2M Server, the LWM2M Server has an access right of the ACL entry.

B. If ACL doesn’t have ACL entry of the LWM2M Server, the LWM2M Server has an access right of a default ACL entry if the default ACL entry exists.

C. If ACL doesn’t have ACL entry of the LWM2M Server and the default ACL entry doesn’t exist, the LWM2M Server has no access right.
8.2.3.1 Operation on Resource or Resource Instance
If the LWM2M Server accesses a Resource or Resource Instance(s), the LWM2M Client gets an access right of the LWM2M Server for Object that Resource or Resource Instance(s) belongs to according to 8.2.3.1 and check whether the access right is granted enough to performthe logical operation. If it is not granted, the LWM2M Client MUST send “ACL Permission Denied” error code to the LWM2M Server. If the access right is granted, the LWM2M Client verifies whether the Resource or the Resource Instance(s) supports the logical operation. If the logical operation is not supported by the Resource or the Resource Instance, the LWM2M Client MUST send “Access Type Permission Denied” error code to the LWM2M Server. If the Resource supports the logical operation, the LWM2M Client performs the logical operation and sends response if needed
8.2.3.2 Operation on Object
If the LWM2M Server accesses an Object, the LWM2M Client finds anaccess right of the LWM2M Server for Object according to 8.2.3.1 and check whether the access right is granted enough to perform the logical operation. If the logical operation is not granted, the LWM2M Client MUST send “ACL Permission Denied” to the LWM2M Server. If the access right is granted, the LWM2M Client checks whether each Resource supports the logical operation. If the logical operation is “write”, the LWM2M Client MUST perform the logical operation on the Object and sends response only if all the Resources in the operation are allowed to perform the “write” logical operation. If it is not allowed, the LWM2M Client MUST inform the LWM2M Server of which Resources don’t support the logical operation of by sending “Access Type Permission Denied” error code for the Resources. If the logical operation is “read”, the LWM2M Client MUST retrieve all the Resources except the Resource(s) which doesn’t support “read” operation and sends the retrieved Resource(s) information to the LWM2M Server. If the logical operation is “execute”, the LWM2M Client MUST not perform the logical operation.
Note: If Object Instance is introduced, these sections should be updated
8.2.4 Querying ACL/Access Type

Editor’s Note: ACL is exposed to the LWM2M Server through an interface which will be defined later. The LWM2M Server can modify the ACL using this interface.
Editor’s Note: how to query ACL and access type is TBD
9. Transport Layer Binding and Encoding

The LWM2M interfaces use the IETF Constrained Application Protocol [CoAP] as an underlying transfer protocol across IP and SMS bearers. This protocol defines the message header, request/response codes, message options and retransmission mechanisms. This section defines the subset of features from the IETF CoAP specification to be used by LWM2M interfaces.
9.1 Required Features

For realization of the LWM2M interfaces, only the basic binary CoAP message header, and a small subset of options are required. This section explicitly defines the features of the CoAP standard that are required for LWM2M.

· The 4-byte binary CoAP message header is defined in Section 3 of [CoAP]. This same base message is used for Request and Response interactions.

· Confirmable, Acknowledgement and Reset messages MUST be supported. The Reset message is used as a message layer error message in response to a malformed Confirmable message. Non-Confirmable messages MAY be used by a Client for sending Information Reporting notifications as per [Observe].

· GET, PUT, POST and DELETE methods MUST be supported. LWM2M Operations map to these methods.

· A subset of Response Codes MUST be supported needed for LWM2M response message mapping.

· The Uri-Path Option MUST be supported to indicate the identifier of the interface, Object and Resource being requested.

· The Location-Path Option MUST be supported to indicate the handle of a registration for future update and delete operations.

· The Uri-Query Option MUST be supported.

· The Content-Type Option MAY be used to indicate the media type of the payload. A default value of plain/text is assumed, allowing this option to be elided for most payloads.

· The Token Option MAY be used to enable multiple requests in parallel with an endpoint, and MUST be supported for the Information Reporting interface.

9.2 URI Identifier & Operation Mapping

Although CoAP supports a URI in requests, it is not used in the same way as in HTTP. The URI in CoAP is broken down into binary parts, minimizing overhead and complexity. In LWM2M only path segment and query string URI components are needed. The URI path is used to simply identify the interface, Object or Resource that the request is for, and is encoded in Uri-Path options. The LWM2M Registration interface also makes use of query string parameters to pass on meta-data with the request separately from the payload. Each query parameter is encoded in a Uri-Query Option. Likewise, the LWM2M Operations for each interface are mapped to CoAP Methods.

9.2.1 Registration Interface

The registration interface is used by a LWM2M Client to register with a LWM2M Server, identified by the LWM2M Server URI. Registration is performed by sending a CoAP POST to the LWM2M Server URI, with registration parameters passed as query string parameters as per Table 1 and supported Objects included in the payload as per [RFC6690]. The response includes Location-Path Options, which indicate the path to use for updating or deleting the registration.

Registration update is performed by sending a CoAP PUT to the Location path returned to the LWM2M Client as a result of a successful registration.

De-registration is performed by sending a CoAP DELETE to the Location path returned to the LWM2M Client as a result of a successful registration.

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Write Uplink
	POST
	/rd?ep={Endpoint Client Name}<={Lifetime}&sms={MSISDN}
	2.01 Created
	4.00 Bad Request

	Update Uplink
	PUT
	/{location}
	2.04 Changed
	4.00 Bad Request

	Delete Uplink
	DELETE
	/{location}
	2.02 Deleted
	4.00 Bad Request

Table 2: Operation to Method and URI Mapping

[image: image14.png]
Figure 1: Example registration, update and de-registration exchanges (shorthand in [CoAP] example style, actual messages using CoAP binary headers)

9.2.2 Bootstrap Interface

The bootstrap interface is used to optionally configure a LWM2M Client so that it can successfully register with a LWM2M Server. The client bootstrap operation is performed by sending a CoAP GET request to the LWM2M Server at the /bs path including the Endpoint Client Name as a query string parameter. The response will include the needed resources of the Bootstrap Object for that Client in TLV format.

Editor’s Note: The re-bootstrap interface needs definition.

	Logical Operation
	CoAP Method
	URI
	Success
	Failure

	Read Uplink
	GET
	/bs?ep={Endpoint Client Name}
	2.05 Content
	4.00 Bad Request

Table 4: Operation to Method and URI Mapping

[image: image15.png]
Figure 2: Example of a client bootstrap exchange.

9.2.3 Information & Management Interface

The Information & Management Interface is used to access an Object or an individual Resource of an Object. An Object is identified by the path /{Object ID} and a resource by the path /{Object ID}/{Resource ID}.

An Object or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value in the corresponding Plain Text, TLV or JSON format.

An Object or Resource is Written to by sending a CoAP PUT to the corresponding path. The request includes the value to be written in the corresponding Plain Text, TLV or JSON format.

An Object or Resource is Executed by sending a CoAP POST to the corresponding path. The request MAY include a payload if so specified by the Resource.

	Logical Operation
	CoAP Method
	Path
	Success
	Failure

	Read Downlink
	GET
	/{Object ID}/{Resource ID}
	2.05 Content
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Downlink
	PUT
	/{Object ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Execute Downlink
	POST
	/{Object ID}/{Resource ID}
	2.04 Changed
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

Table 3: Registration Interface URI

[image: image16.png]
Figure 3: Example of Information & Management interface exchanges.

9.2.4 Information Reporting Interface

Periodic and event-triggered reporting about resource values from the LWM2M Client to the LWM2M Server is achieved through CoAP Observation [OBSERVE]. This simple mechanism allows the LWM2M Server to send an Observe GET request for an object, which results in asynchronous notifications whenever that object changes (periodically or as a result of an event). The minimum and maximum period of notifications can be controlled by including the minimum (pmin) and/or maximum (pmax) period for notifications to be sent in seconds.

	Interface
	CoAP Method
	Path
	Success
	Failure

	Read Downlink
	GET with Observe option
	/{Object ID}/{Resource ID}?pmin={minimum period}&pmax={maximum period}
	2.05 Content with Observe option
	4.00 Bad Request, 4.04 Not Found, 4.05 Method Not Allowed

	Write Uplink
	Asynchronous Response
	
	2.04 Changed
	

Table 7: Operation to Method Mapping
[image: image17.png]
Figure 4: Example of an Information Reporting exchange.

9.3 Transport Bindings
9.3.1 UDP Binding

The CoAP binding for UDP is defined in [CoAP]. The protocol has a IANA registered scheme of coap:// and a default port of 5683. The UDP binding is used in NoSec (no security) mode. Reliability over the UDP transport is provided by the built-in retransmission mechanism of CoAP.

9.3.2 DTLS Binding

The DTLS binding for CoAP is defined in Section 9 of [CoAP]. Datagram Transport Layer Security (DTLS) [RFC6347] is a long-lived session based security solution for UDP. It provides a secure handshake with session key generation, mutual authentication, data integrity and confidentiality. DTLS is also used for authorization on individual CoAP resources. A LWM2M implementation MUST support the Pre-Shared Key mode of DTLS with Cipher TLS_PSK_WITH_AES_128_CCM_8 [RFC6655] as defined in Section 9.1.3.1 of [CoAP], and in addition MAY support Raw Public Key or Certificate modes as defined in Section 9.1.3.2 and 9.1.3.3 of [CoAP], respectively.

An LWM2M Client and Server SHOULD keep a DTLS session in use as long as possible (even across sleep cycles).
Editor’s Note: Decide if Raw Public Key would be a more suitable MUST IMPLEMENT security mode for LWM2M.

9.3.3 SMS Binding

CoAP is used over SMS in this transport binding by placing a CoAP message in the SMS payload using 8-bit encoding. SMS concatenation MAY be used for messages larger than 140 characters. CoAP retransmission is disabled for this binding. An LWM2M Client indicates the use of this binding by including a parameter (sms) in its registration to the LWM2M Server including the node’s MSISDN number. The LWM2M Client MAY interact with the server using both UDP and SMS bindings.

10. Response Codes

The response codes are an integer value. The only valid values are the standard values defined in this specification.
Editor’s Note: How to format Response codes is TBD
Note: CoaP codes will be used in this table
	Status Codes
	Reason Phrase

	Successful

	
	

	
	

	Recipient Exception

	XXX
	ACL Permission Denied

	XXX
	Access Type Permission Denied

	Originator Exception

	
	

	
	

	
	

Appendix A. Example Objects and Resources

This section lists example Objects and Resources that LWM2M could define. The actual objects will be defined in an object specification.
	Example Object
	Human Readable Object URN

Editor Note: If this is not needed, then we remove it.
	Example Object ID
	Example Resource
	Example Resource ID
	Logical Operations

	Bootstrapping
	urn:oma:mo:lwm2m2:bootstrapping
	1
	
	
	

	
	
	
	Server Location
	0
	R, W

	
	
	
	Endpoint Name
	1
	R

	Firmware Update
	urn:oma:mo:lwm2m2:firmware
	2
	
	
	

	
	
	
	Firmware
	0
	R, W

	
	
	
	Firmware Name
	1
	R

	
	
	
	Last Updated
	2
	R

	
	
	
	Version
	3
	R, W

	
	
	
	Size
	4
	R, W

	
	
	
	Do Upgrade
	5
	E

	Device Info
	urn:oma:mo:lwm2m2:device
	3
	
	
	

	
	
	
	Manufacturer
	0
	

	
	
	
	Model Number
	1
	

	
	
	
	Serial Number
	2
	

	
	
	
	Device ID
	3
	

	Location
	urn:oma:mo:lwm2m2:location
	4
	
	
	

	
	
	
	GPS Location
	0
	

	
	
	
	GPS Fix
	1
	

	
	
	
	APN Location
	2
	

	
	
	
	X,Y Location
	3
	

	
	
	
	Update Period
	4
	

	Bearer Info
	urn:oma:mo:lwm2m2:bearer
	…
	
	
	

Editor’s Note: Add an example about how to access multiple instances of resource.

Editor’s Note: Reserve range for OMA, other SDO, vendors for object ID registration.
Editor’s Note: How to reuse the existing management objects need further study.
Appendix B. LWM2M Object Template and Guidelines (Informative)

This Appendix provides the template to be used for the specification of LWM2M objects. Furthermore, guidelines for the creation of LWM2M objects are provided.
B.1 Object Template

Appendix C.x
 LWM2M Object: <LWM2M object name>
Decription:
Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	
	
	
	

Resource info:

	Resource
	Resource ID
	Operations
	Multiple

Instances?
	Type
	Range or Enumeration
	Units

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any

B.2 Guidelines

LWM2M objects must be registered with OMNA. The registration process is outlined here: <link

Appendix C. LWM2M Objects defined by OMA (Normative)

This Appendix provides LWM2M Objects defined by OMA. Other organizations and companies may define additional LWM2M according to the guidelines and template provided in Annex B

The following LWM2M objects have been defined by OMA

· LWM2M Server

· Access Control

· Device

· Connectivity

· Firmware

C.1 LWM2M Object: LWM2M Server

Description: This LWM2M objects provides the data related to a LWM2M server, the initial access rights, and security related data.
Object Info:
	Object
	Object ID
	Object URN
	Multiple Instances?

	LWM2M Server
	0
	
	Yes

Resource Info:

	Resource Name
	Resource ID
	Access Type
	Multiple

Instances?
	Type
	Range or Enumeration
	Units
	Descriptions

	LWM2M Server URI
	0
	R, W
	No
	String

	0 – 255 bytes
	-
	Uniquely identifies the LWM2M Server, and is in the form:

“coaps://host:port”, where host is an IP address or FQDN, and port is the UDP port of the Server.

	Security Mode
	1
	R, W
	No
	Integer
	8 bit
	-
	Determines which security mode of CoAP is used
0: Pre-Shared Key mode
1: Raw Public Key mode
2: Certificate mode

	Security Key
	2
	R, W
	No
	Binary
	Variable
	-
	Stores security key of security mode. The format of the keying material is defined by the security mode.

	Short Server ID
	4
	R
	No
	Integer
	16 bit
	-
	Short integer ID, assigned by the LWM2M Client. This identifier uniquely identifies each LWM2M Server configured for the LWM2M Client.

default Short Server ID (i.e. 0) MUST not be used for identifying the LWM2M Server

	Default Minimum Period
	5
	R, W
	No
	Integer
	16-bit
	s
	The default value the Client should use for the Minimum Period of an Observation in the absence of this parameter being included in an Observation.

	Default Maximum Period
	6
	R, W
	No
	Integer
	16-bit
	s
	The default value the Client should use for the Maximum Period of an Observation in the absence of this parameter being included in an Observation.

Note: other Resource Info template should be updated
C.2 LWM2M Object: Access Control

Description: This LWM2M objects provides the access control lists.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Access Control
	1
	
	Yes

Resource Info:

	Resource
	Resource ID
	Operations
	Multiple

Instances?
	Type
	Range or Enumeration
	Units

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any

C.3 LWM2M Object: Device

Description: This LWM2M objects provide a range of device related information which can be queried by the LWM2M server, and a device restart function.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Device
	2
	
	No

Resource Info:

	Resource
	Resource ID
	Operations
	Multiple

Instances?
	Type
	Range or Enumeration
	Units

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any

C.4 LWM2M Object: Connectivity

Description: This LWM2M objects enables management of parameters related to connectivity.

Object info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Connectivity
	3
	
	No

Resource Info:

	Resource
	Resource ID
	Operations
	Multiple

Instances?
	Type
	Range or Enumeration
	Units

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any

C.5 Firmware

Description: This LWM2M objects enables FW management incl. querying the installed FW, updating FW and activate FW.

Object Info:

	Object
	Object ID
	Object URN
	Multiple Instances?

	Firmware
	4
	
	No

Resource Info:

	Resource
	Resource ID
	Operations
	Multiple

Instances?
	Type
	Range or Enumeration
	Units

	Resource Name
	0
	R, W, E
	Yes/No
	String,

Integer,

Decimal,

Boolean,

Binary,

Time,

Date
	If any
	If any

Appendix D. Change History
(Informative)

D.1 Approved Version History

	Reference
	Date
	Description

	
	
	

	
	
	

	
	
	

D.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-TS-LightweightM2M-V1_0-20120904-D
	04 Sep 2012
	all
	TS baseline agreed as in

 OMA-DM-LightweightM2M-2012-0078-INP_TS_kick_off

	Draft Version

OMA-TS-LightweightM2M-V1_0-20120918-D
	18 Sep 2003
	6, 7
	Incorporates input to committee:
OMA-DM-LightweightM2M-2012-0083R01-CR_Skeleton_Base_Line
OMA-DM-LightweightM2M-2012-0090R02-CR_TS_Resource_Model

OMA-DM-LightweightM2M-2012-0061R04-CR_Interfaces

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121024-D
	24 Oct 2012
	6, 7, Appendix A
	OMA-DM-LightweightM2M-2012-0095R01-CR_TS_Interface_and_Resource_Additions

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121030-D
	30 Oct 2012
	7, 8
	OMA-DM-LightweightM2M-2012-0097R01-CR_Identifiers_and_Security_Considerations

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121117-D
	17 Nov 2012
	2, 6, 7, 8, 9, 10
	OMA-DM-LightweightM2M-2012-0088R04-CR_Transfer_Protocol
OMA-DM-LightweightM2M-2012-0098R02-CR_Bootstrap_Information_and_Modes
OMA-DM-LightweightM2M-2012-0099R01-CR_Default_ACL_Entry
OMA-DM-LightweightM2M-2012-0100R02-CR_Authorization_Procedure_and_Error_Code
OMA-DM-LightweightM2M-2012-0104R01-CR_Registration_Interface

	Draft Version

OMA-TS-LightweightM2M-V1_0-20121130-D
	30 Nov 2012
	
	OMA-DM-LightweightM2M-2012-0107R01-CR_Appendix_for_LWM2M_Objects.
OMA-DM-LightweightM2M-2012-0106R02-CR_Information_Interfaces.
OMA-DM-LightweightM2M-2012-0108R01-CR_LWM2M_Server_Account_Object.
OMA-DM-LightweightM2M-2012-0109R01-CR_Authorization_Update

Appendix E. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

The following is a model of a set of SCR tables. DELETE THIS COMMENT

E.1 SCR for XYZ Client

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-C-001
	Something mandatory
	Section x.y
	M
	(XYZ-C-001 OR XYZ-C-003) AND
 XYZ-C-002

	XYZ-C-002
	Something optional
	Section x.y
	O
	

	XYZ-C-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MCF

	XYZ-C-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OCF

E.2 SCR for XYZ Server

	Item
	Function
	Reference
	Status
	Requirement

	XYZ-S-001
	Something mandatory
	Section x.y
	M
	XYZ-S-001 OR XYZ-S-002 OR XYZ-S-003

	XYZ-S-002
	Something optional
	Section x.y
	O
	

	XYZ-S-003
	Dependencies on ZYX
	Section x.y
	M
	ZYX:MSF

	XYZ-S-004
	Dependencies on ZYX
	Section x.y
	O
	ZYX:OSF

Appendix F. <Additional Information>

If needed, add annex to provide additional information to support the document. In general, this information should be informative, as normative material should be contained in the primary body of the document.

Note that the styles for the headers in the appendix (App1, App2, App3) are different than the main body. The use below is intended to validate the styles to be used. Remove if not needed.

DELETE THIS COMMENT

F.1 App Headers

<More text>

F.1.1 More Headers

<More text>

F.1.1.1 Even More Headers

<More text>

�Note for the editor: this is reference to Identifiers table

(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]
(2012 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20060101-I]

_1409557644.vsd
LWM2M
Server

LWM2M
Client

write

Downlink

_1413379784.vsd
LWM2M Client

1. Request bootstrap to bootstrap URI

2. Provision bootstrap information

_1413617090.vsd
LWM2M Client

1. Request re-bootstrap to bootstrap URI

2. Provision bootstrap information

_1409557645.vsd
LWM2M
Server

LWM2M
Client

write

Uplink

_1409557643.vsd
LWM2M
Server

LWM2M
Client

read, write, execute

Downlink

_1409557642.vsd
LWM2M
Server

LWM2M
Client

write

Uplink

