OMA-IOP_RPT-Browsing-V2_3-20070822-D
Page 138 V(139)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Enabler Interoperability Report for Browsing 2.3

	Draft Version 2.3 – 22 Aug 2007

	Open Mobile Alliance

	OMA-IOP_RPT-Browsing-V2_3-20070822-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Summary
7
5.
Testing of Browsing v2.3
8
5.1
Documentation
8
5.2
Test Case Statistics
8
5.3
Test Evidence
137
5.3.1
TestFest #18 Test Summary Data
137
5.3.2
Test Case Summary from all TestFests
137
5.4
Browsing V2.3 PR Status
138
Appendix A.
Change History (Informative)
139
A.1
Approved Version History
139
A.2
Draft/Candidate Version 2.3 History
139

Figures

Erro! Não foi encontrada nenhuma entrada do índice de ilustrações.
Tables

8Table 1: Test Documentation

137Table 2: Test Case Statistics

137Table 3: TestFest #18 Information

138Table 4: Summary TestFest Information

1. Scope

OMA IOP BRO as a sub-working group (SWG) to OMA IOP WG, has compiled this report to summarize the efforts done to prove the interoperability aspects of the OMA Browsing Version 2.3 enabler, as they are being considered for approval by the OMA Technical Plenary as an OMA Enabler Release.

The content in this report in compiled based on input from Enabler Test Reports as an outcome from TestFests and Bilateral testing for the Browsing 2.3 enabler.

This document provides information needed by the OMA Technical Plenary to consider the approval of Browsing Enabler Release Version 2.3 from an IOP perspective

2. References

	 [IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.5, Open Mobile Alliance™,
OMA-ORG-IOP_Process-V1_45, URL:http://www.openmobilealliance.org/

	[BROEICS]
	Browsing version 2.3 Enabler Implementation Conformance Statement (EICS), Open Mobile Alliance™, URL:http://www.openmobilealliance.org/

	[ERELD]
	"Enabler Release Definition for Browsing", Version 2.3, Open Mobile Alliance™,
OMA-ERELD-Browsing V2_3, URL:http://www.openmobilealliance.org/

	[BRO_SPEC]
	Set of OMA Browsing 2.3 specifications, Open Mobile Alliance™, http://www.openmobilealliance.org/

	[ETS]
	Set of OMA Browsing 2.2 components Enabler Test Specifications, Open Mobile Alliance™, http://www.openmobilealliance.org/

	[ET-RPT#18]
	"Enabler Test Report for Browsing – TestFest#18", Version 2.3, Open Mobile Alliance™,
OMA-IOP-BRO-2007-0049-INP_TestFest_18_Browsing_23_ETR.pdf, URL:http://www.openmobilealliance.org/

	[ETG]
	"Enabler Test Guidelines for Browsing", Version 2.3, Open Mobile Alliance™,
OMA-ETG-Browsing-V2_3, URL:http://www.openmobilealliance.org/

	[OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

	
	

3. Terminology and Conventions

3.1 Conventions

This is an informative document, which is not intended to provide testable requirements to implementations.

3.2 Definitions

	
	

	
	

3.3 Abbreviations

	OMA
	Open Mobile Alliance

	
	

	
	

4. Summary
This report gives details of the testing carried out for the enabler and eventual findings made in connection to the testing regarding interoperability of different implementations according to [BRO_SPEC]

The work and reporting has followed the OMA IOP processes and policies [OMAIOPPROC].

The Browsing v2.3 enabler has been tested at 1 test fest. It was generated an Enabler Test Report that has been the input for this report.

Based on this evidence, the OMA IOP-BRO recommends approval of the Browsing enabler version 2.3. The reason for requesting the approval of this version with only one test fest is due to the conformance nature of Browsing and the minor difference between the version 2.3 and 2.2 already approved.
The difference is only one part of the specifications, XHTML MP 1.2 for Browsing 2.3 while XHTML MP 1.1 for Browsing 2.2. The differences in XHTML MP are also minor being the addition of 3 small new features.
5. Testing of Browsing v2.3
5.1 Documentation

This chapter lists the details of the enabler and any documentation, tools or test suites used to prove the enabler.

	Enabler:
	Browsing 2.3

	Process:
	OMA Interoperability Policy and Process [IOPPROC]

	Type of Testing
	Interoperability Testing

	Implementations tested:
	Clients and Proxies

	Validation Plan:
	Browsing 2.3 ETG

	Test Specification:
	Browsing 2.3 Enabler Test Specifications [ETS]

	Test Tool:
	OMA Browsing test server

	Test Code:
	XHTML, WCSS and ESMP test suites

	# of TestFests:
	1

	# of Bilateral Test sessions:
	3

Table 1: Test Documentation

5.2 Test Case Statistics

This chapter lists the statistics for all test cases included in [ETS]

The following status is used in the tables below:

· Runs (R): Used to indicate the total number of times the test case have been run (R = P + F + I).
· Pass (P): Used to indicate how many times the test case have been run and successfully passed.

· Fail (F): Used to indicate how many times the test cases have been run and failed (used when the failure reason is known).

· Inconclusive (I): Used to indicate how many times the test cases have been run and did not pass due to other nature than conclusive implementation or specification failure (e.g.: the failure reason cannot be clearly determined).

· Not Applicable (N/A): Used to indicate how many times the test cases have not be run due to lack of support for the required functionality to run this test case by one or more involved implementations.

· Out of Time (O): Used to indicate how many times the test cases have not been run due to lack of time.

· Problem Report (PR): Used to indicate how many PRs have been issued for the test case.

· Note: Used to indicate the cause of the Inconclusive or Failed results.

	Test Case Id
	Description
	Test Counts
	PR
	Note

	
	
	R
	P
	F
	O
	I
	
	

	xHTML-1.1-int-1
	To test basic form Module. Test input element with type set to text but with the illegal attribute checked set
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-2
	To test optgroup element in Forms module
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-3
	To test Basic Tables
	3
	2
	1
	0
	0
	
	

	xHTML-1.1-int-4
	To test hr element in Presentation module
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-5
	To test base Module. The base element specifies a base URL. The purpose is to check that this base URL is used in a correct way
	3
	2
	0
	0
	1
	
	

	xHTML-1.1-int-6
	To test base Module. The base element specifies a base URL. The purpose is to check that this base URL is used in a correct way when linking to a WML page
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-7
	To test if the interaction between WML and XHTML is handled correctly
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-8
	To test if the interaction between WML and XHTML is handled correctly using links
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-9
	To test List Module
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-10
	To test that none terminated tags generate error messages
	3
	3
	0
	0
	0
	
	

	xHTML-1.1-int-11
	To test that tags terminated in wrong order generate error messages
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-1
	To test Structure Module.
	3
	1
	0
	0
	2
	
	

	xHTML-1.2-con-2
	To test Text Module.
	3
	1
	2
	0
	0
	
	

	xHTML-1.2-con-3
	To test Hypertext Module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-4
	To test List Module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-5
	To test Basic Forms.
	3
	1
	2
	0
	0
	
	

	xHTML-1.2-con-6
	To test Basic Tables.
	3
	2
	1
	0
	0
	
	

	xHTML-1.2-con-7
	To test Image Module.
	3
	1
	1
	0
	1
	
	

	xHTML-1.2-con-8
	To test object Module. The Object Module is ignored, but objects with an image, which is possible to show, shall work as an image tag.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-9
	The Metainformation Module is ignored. This test checks that the element is ignored in a correct way..
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-10
	To test Link Module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-11
	To test if the interaction between WML and XHTML is handled correctly.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-12
	To test if the interaction between WML and XHTML is handled correctly using links.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-12
	To test Base Module. To test base Module. The base element specifies a base URL. The purpose is to check that this base URL is used in a correct way.
	3
	2
	0
	0
	1
	
	

	xHTML-1.2-con-13
	To test the Style Sheet Module
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-14
	To test the Style Attribute Module
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-15
	To test the Scripting Module. Sections ‘script’(for supported script languages) and ‘noscript’ (for unsupported script languages) are tested.
	3
	2
	0
	0
	1
	
	

	xHTML-1.2-con-16
	To test fieldset element in Forms module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-17
	To test optgroup element in Forms module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-18
	To test start element on ol.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-19
	To test value attribute on li.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-20
	To test b element in Presentation module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-21
	To test big element in Presentation module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-22
	To test hr element in Presentation module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-23
	To test i element in Presentation module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-24
	To test small element in Presentation module.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-25
	To test the Document Conformance
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-26
	If a user agent encounters an element it does not recognize or one that is misplaced (according to the DTD), it must continue to process the children of that element. If the content is text, the text must be presented to the user. The test therefore tests that, an unrecognised element is ignored and all text content is rendered.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-27
	Test miscellaneous items
	2
	0
	2
	0
	0
	
	

	xHTML-1.2-con-28
	If a user agent encounters an attribute it does not recognize, it must ignore the attribute and its value, but it must use the default attribute value as specified in the DTD. The test case there tests that, the unrecognised attribute is ignored but the default one should be used.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-29
	To test that none terminated tags generate error messages
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-30
	To test that tags terminated in wrong order generate error messages
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-31
	Test the Load event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-32
	Test the Click event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-33
	Test the Click event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-34
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-35
	Test the Submit event
	1
	1
	0
	0
	0
	
	

	xHTML-1.2-con-36
	Test the Submit event
	1
	1
	0
	0
	0
	
	

	xHTML-1.2-con-37
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-38
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-39
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-40
	Test the Submit event
	1
	1
	0
	0
	0
	
	

	xHTML-1.2-con-41
	Test the Reset event
	1
	1
	0
	0
	0
	
	

	xHTML-1.2-con-42
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-43
	Test the Submit event
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-44
	To test the rendering and displaying a GIF Image in the Browser, when the GIF Image is referenced as an “Object”, using the “data” attribute.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-45
	To test the rendering and displaying a GIF Image in the Browser, when the GIF Image is referenced as an “Object”, using the “classid” attribute.
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-46
	To verify that an Object included using the “classid” attribute takes precedence over an object included using the “data” attribute.
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-47
	To verify that an Object inclusion can handle parameters
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-48
	To verify that an Object inclusion can use the PUSH Application ID to identify the location application
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-49
	To verify support for declared objects using the “declare” attribute
	3
	2
	1
	0
	0
	
	

	xHTML-1.2-con-50
	To test the assigning of keys to a link or form control.
	3
	3
	0
	0
	0
	
	

	xHTML-1.2-con-51
	To test if the user agent uses the “title” attribute of the anchor (a) element as the link title.
	1
	1
	0
	0
	0
	
	

	xHTML-1.2-con-52
	To test the support of access to linked resources, defined by the link elements “start”, “next” and “prev”.
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-53
	To test the support of formatting of input fields.
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-54
	To test the support of formatting of input fields.
	0
	0
	0
	0
	0
	
	

	xHTML-1.2-con-55
	To test the support of formatting of input fields.
	0
	0
	0
	0
	0
	
	

	WCSS-1.1-int-1
	To test Cascade and Inheritance
	3
	3
	0
	0
	0
	113
	

	WCSS-1.1-int-2
	Supported Media
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-3
	Unsupported Media
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-int-4
	To test Margin Shorthand
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-5
	To test Padding Shorthand
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-6
	To test Border Shorthand
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-7
	To test Color property
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-8
	To test Color property(2)
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-9
	Background color
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-10
	To test when the WHITE-SPACE property is set to 'pre'
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-11
	To test when the TEXT-DECORATION property is set to 'underline' and/or ‘blink’
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-int-12
	To test Images as Markers
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-13
	To test when VISIBILITY property is set to hidden
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-14
	To test when the DISPLAY property is set to 'none'
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-15
	To test when the CLEAR property is set to 'left'
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-16
	To test when the VERTICAL-ALIGN property is set to 'super'.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-int-17
	To test style slide
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-18
	To test when the -wap-marquee-dir property value is set to 'ltr'
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-19
	To test margue speeds
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-20
	To test when Space and Comma are separated
	2
	1
	1
	0
	0
	
	

	WCSS-1.1-int-21
	To test Escape characters
	2
	1
	1
	0
	0
	
	

	WCSS-1.1-int-22
	To test Alignment
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-int-23
	To test shine through
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-1
	To test pattern matching.
	2
	0
	0
	0
	2
	
	

	WCSS-1.1-con-2
	To test syntax and parsing.
	3
	1
	2
	0
	0
	
	

	WCSS-1.1-con-3
	To test data types.
	3
	1
	1
	0
	1
	
	

	WCSS-1.1-con-4
	To test assigning property values, cascading and inheritance.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-5
	To test media types.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-6
	To test associating style sheets with XML documents.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-7
	To test pattern matching.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-8
	To test padding properties.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-9
	To test border width.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-10
	To test border colour.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-11
	To test border style.
	2
	2
	0
	0
	0
	
	

	WCSS-1.1-con-12
	To test border shorthand property
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-13
	To test foreground colour.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-14
	To test background colour.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-15
	To test background images.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-16
	To test background shorthand property.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-17
	To test font family.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-18
	To test font style.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-19
	To test font variant.
	2
	2
	0
	0
	0
	
	

	WCSS-1.1-con-20
	To test font weight.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-21
	To test font size.
	3
	2
	0
	0
	1
	
	

	WCSS-1.1-con-22
	To test font shorthand property.
	3
	2
	0
	0
	1
	
	

	WCSS-1.1-con-23
	To test lists.
	3
	2
	0
	0
	1
	
	

	WCSS-1.1-con-24
	To test text indentation.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-25
	To test text alignment.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-26
	To test text decoration.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-27
	To test text transformation.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-28
	To test white space.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-29
	To test visual effects.
	1
	0
	1
	0
	0
	
	

	WCSS-1.1-con-30
	To test display properties.
	3
	2
	0
	0
	1
	
	

	WCSS-1.1-con-31
	To test float positioning.
	3
	3
	0
	0
	0
	
	

	WCSS-1.1-con-32
	To test float flow control.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-33
	To test content width and height.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-34
	To test CSS Extension: Marquee.
	3
	2
	1
	0
	0
	
	

	WCSS-1.1-con-35
	To test CSS Extension: Access keys.
	2
	1
	1
	0
	0
	
	

	WCSS-1.1-con-36
	To test CSS Extension: Input.
	2
	1
	1
	0
	0
	
	

	ESMP-1.0-int-c-1
	To test the support for Inline Script Execution
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-int-c-2
	To test the support for Deferred Script Execution
	2
	2
	0
	0
	0
	
	

	ESMP-1.0-int-c-3
	To test font the support for File Based Script Execution
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-int-c-4
	To test the semicolon support at end of statements
	3
	3
	0
	0
	0
	
	

	ESMP-1.0-int-c-5
	To test the support for EvalError exception.
	3
	3
	0
	0
	0
	
	

	ESMP-1.0-int-c-6
	To test the Native Object Support – String Object
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-int-c-7
	To test the Native Object Support – Error Object
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-int-c-8
	To test the support for DOM2 compliant event binding
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-int-c-9
	To test the Host Object Support – parent global Object
	1
	0
	1
	0
	0
	
	

	ESMP-1.0-int-c-10
	To test the Host Object Support – navigator Object
	3
	1
	2
	0
	0
	
	

	ESMP-1.0-int-c-11
	To test the Host Object Support – history Object.
	3
	1
	2
	0
	0
	
	

	ESMP-1.0-int-c-12
	To test the Host Object Support – location Object
	3
	1
	2
	0
	0
	
	

	ESMP-1.0-int-s-1
	To test the UTF-16 Code point support
	2
	2
	0
	0
	0
	
	

	ESMP-1.0-int-s-2
	To test the UTF-8 Code point support
	3
	2
	1
	0
	0
	
	

	ESMP-1.0-int-s-3
	To test the semicolon support at end of statements
	3
	3
	0
	0
	0
	
	

	ESMP-1.0-int-s-4
	To test the ECMAScript Language Syntax and semantics
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-2
	To test the UTF-16 Code point support.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-3
	To test the UTF-8 Code point support.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-5
	To test the semicolon support at end of statements.
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-7
	To test the ECMAScript Language Syntax and semantics.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-8
	To test the support for eval().
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-9
	To test the support for EvalError exception.
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-10
	To test the support for dynamic function creation.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-11
	To test the support for the with statement.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-12
	To test the support for dynamic modification of built-in objects.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-13
	To test the version properties for all native objects
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-14
	To test that all non-native, built-in objects are enumerable.
	1
	0
	0
	0
	1
	
	

	ESMP-1.0-con-15
	To test that All native, built-in objects are enumerable.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-16
	To test the Native Object Support – Global Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-17
	To test the Native Object Support – Array Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-18
	To test the Native Object Support – String Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-19
	To test the Native Object Support – Regular Expression Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-20
	To test the Native Object Support – Boolean Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-21
	To test the Native Object Support – Number Object.
	3
	0
	2
	0
	1
	
	

	ESMP-1.0-con-22
	To test the Native Object Support – Math Object
	3
	0
	2
	0
	1
	
	

	ESMP-1.0-con-23
	To test the Native Object Support – Date Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-24
	To test the Native Object Support – Error Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-25
	To test the Native Object Support – Object Creation.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-26
	To test the Native Object Support – Function Object - dynamic function construction.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-27
	To test the support for Native Error Types.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-28
	To test the support for Inline Script Execution.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-29
	To test the support for Deferred Script Execution.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-30
	To test font the support for File Based Script Execution.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-31
	To test the abnormal termination error reporting.
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-32
	To test the support for Aborted Script completion.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-33
	To test the support for XHTML Events.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-34
	To test the support for DOM2 compliant event binding.
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-35
	To test the Host Object Support – parent global Object.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-36
	To test the Host Object Support – navigator Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-37
	To test the Host Object Support – history Object.
	3
	0
	2
	0
	1
	
	

	ESMP-1.0-con-38
	To test the Host Object Support – location Object.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-39
	To test the Host Object Support – Basic document Object.
	3
	0
	2
	0
	1
	
	

	ESMP-1.0-con-41
	To test the DOM Object Support – Exception Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-42
	To test the DOM Object Support – Node Object – Property Support.
	2
	0
	1
	0
	1
	
	

	ESMP-1.0-con-43
	To test the DOM Object Support – Node Object – Data Interrogation Methods.
	3
	2
	0
	0
	1
	
	

	ESMP-1.0-con-45
	To test the DOM Object Support – Node Object – Structural Modification Mutation Methods.
	3
	0
	2
	0
	1
	
	

	ESMP-1.0-con-46
	To test the DOM Object Support – document Object - Data Interrogation Methods.
	2
	0
	0
	0
	2
	
	

	ESMP-1.0-con-47
	To test the DOM Object Support – document Object – Structural Modification Mutation Methods.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-48
	To test the DOM Object Support – NodeLlist Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-49
	To test the DOM Object Support – Element Object – Property Support.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-50
	To test the DOM Object Support – Element Object – Data Interrogation Methods.
	3
	0
	1
	0
	2
	
	

	ESMP-1.0-con-51
	To test the DOM Object Support – Element Object – Data Modification Methods.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-52
	To test the DOM Object Support – Element Object – Structural Modification Mutation Methods.
	3
	1
	1
	0
	1
	
	

	ESMP-1.0-con-53
	To test the DOM Object Support – Text Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-55
	To test the XHTML DOM Support – XHTML Document Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-56
	To test the XHTML DOM Support – Link Object.
	3
	0
	0
	0
	3
	
	

	ESMP-1.0-con-57
	To test the XHTML DOM Support – Image Object.
	3
	0
	0
	0
	3
	
	

	ESMP-1.0-con-58
	To test the XHTML DOM Support – Form Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-59
	To test the XHTML DOM Support – Text Input Object.
	1
	0
	0
	0
	1
	
	

	ESMP-1.0-con-62
	To test the XHTML DOM Support – Radio Input Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-63
	To test the XHTML DOM Support – Checkbox Input Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-64
	To test the XHTML DOM Support – Submit Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-65
	To test the XHTML DOM Support – Reset Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-66
	To test the XHTML DOM Support – Select Element Object.
	1
	0
	0
	0
	1
	
	

	ESMP-1.0-con-67
	To test the XHTML DOM Support – Option Element Object.
	2
	1
	0
	0
	1
	
	

	ESMP-1.0-con-68
	To test the XHTML DOM Support – Screen Object.
	3
	1
	0
	0
	2
	
	

	UAPROF-2.0-int-01
	The purpose of this test is to check that the User Agent Profile transport is correct. The profile MUST be transported using WSP. Upon opening a WSP session with a WAP gateway, the UAProf-aware client conveys its profile information within the WSP Connect request
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-int-02
	The purpose of this test case is to check that the User Agent Profile transport is correct. The profile MUST be transported using W-HTTP. In the case where the mobile terminal supports wireless profiled HTTP (W-HTTP) it may transmit the CPI data in the x-wap-profile header with each HTTP request that is made
	1
	1
	0
	1
	0
	
	

	UAPROF-2.0-int-03
	The purpose of this test case is to check that User Agent Profile data is translated correctly by the WAP gateway/proxy. From the mobile client to the WAP gateway/proxy, the User Agent profile data is transferred over WSP. From the gateway to the origin server, the User Agent Profile is transported over the Internet. In the WAP architecture specification , and as specified in Section 8.2.3.3, HTTP is assumed to be the transport mechanism for Internet-related information, using the HTTP 1.1 mechanisms for header management and caching.
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-int-04
	The purpose of this test case is to check that User Agent Profile data is forwarded correctly by the WAP gateway/proxy. From the mobile client to the WAP gateway/proxy, the User Agent profile data is transferred over W-HTTP. From the gateway to the origin server, the User Agent Profile is transported over the Internet. In the WAP architecture specification , and as specified in Section 8.2.3.3, HTTP is assumed to be the transport mechanism for Internet-related information, using the HTTP 1.1 mechanisms for header management and caching .
	0
	0
	0
	1
	0
	
	

	UAPROF-2.0-int-05
	The purpose of this test is to check that the transport of a User Agent Profile-Diff header is correct. The profile change is transported using WAP/WSP
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-int-06
	The purpose of this test is to check that the transport of an x-wap-profile-diff is correct. The profile change is transported using W-HTTP.
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-int-07
	The purpose of this test case is to check that Profile-Diff is translated correctly by the WAP gateway/proxy. From the mobile client to the WAP gateway/proxy, the data is transferred over WSP. From the gateway to the origin server, the data is transported over the Internet. In the WAP architecture specification , and as specified in HTTP is assumed to be the transport mechanism for Internet-related information, using the HTTP 1.1 mechanisms for header management and caching.
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-int-08
	The purpose of this test case is to check that x-wap-profile-diff data is forwarded correctly by the WAP gateway/proxy. From the mobile client to the WAP gateway/proxy, the data is transferred over W-HTTP. From the gateway to the origin server, the data is transported over the Internet. In the WAP architecture specification, and as specified in HTTP is assumed to be the transport mechanism for Internet-related information, using the HTTP 1.1 mechanisms for header management and caching.
	0
	0
	0
	0
	0
	
	

	UAPROF-2.0-con-01
	The purpose of this test is to validate the UAProf and CC/PP format constraints of the User Agent Profile sent by the Client device.
	1
	1
	0
	1
	0
	
	

	UAPROF-2.0-con-02
	The purpose of this test is to validate the RDF format of the User Agent Profile sent by the Client device.
	2
	2
	0
	0
	0
	
	

	UAPROF-2.0-con-03
	The purpose of this test is to validate the datatype definitions of the User Agent Profile sent by the Client device.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-1
	When a URL does not include a fragment identifier (a hash mark followed by a name), the URL references a deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-2
	When a URL contains a fragment identifier (a hash mark followed by a name), the URL references an individual card within a WML deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-3
	When a relative URL is encountered, it is resolved against the Base URL of the deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-4
	When no character encoding is specified, the default character encoding can be assumed (UTF-8).
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-5
	When a named character entity is encountered (e.g. &), its associated element from the document character set replaces the character entity in the text.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-6
	When a decimal numeric character entity is encountered, its associated element from the document character set replaces the character entity in the text.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-7
	When a hexadecimal numeric character entity is encountered, its element from the document character set replaces the character entity in the text.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-8
	When a numeric character entity is enountered, it is translated into the corresponding character in the document character set.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-9
	When a named character entity is enountered, it is translated into the corresponding character in the document character set.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-10
	When an element is declared EMPTY in the WML DTD, it may be specified using the shorthand notation <ELEMENT/>. User agents shall treat documents that use this convention and are otherwise conforming as well formed.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-11
	When an element is not declared EMPTY in the WML DTD, and such an element has no contents, it may be specified as <ELEMENT/> or as <ELEMENT></ELEMENT>. User agents shall treat documents that use either convention and are otherwise conforming as well formed.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-12
	Element attribute values must be enclosed in quotation marks. When an attribute value is enclosed in single quotation marks ('), the value may contain double-quotation marks (").
	2
	1
	0
	0
	1
	
	

	WML-1.3-con-13
	Element attribute values must be enclosed in quotation marks. When an attribute value is enclosed in double quotation marks ("), the value may contain single quotation marks (').
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-14
	Element attribute values may contain character entities. Entity transformation into the document character set shall not effect the interpretation of quotation marks enclosing attribute values, nor shall it effect the parsing of attribute values.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-15
	When an XML comment (<!-- comment -->) is included in a deck, the contents of that comment shall not be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-16
	When the symbol "$", followed by an identifier, is encountered in a %PCDATA or %vdata context, it is a variable reference. The variable reference is replaced with the value of the variable thus named.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-17
	When the symbol "$", followed by an identifier enclosed in parenthesis, is encountered in a %PCDATA or %vdata context, it is a variable reference. The variable reference is replaced with the value of the variable thus named.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-18
	When the symbol "$", followed by an identifier, a colon ":" and a conversion specifier, enclosed in parenthesis, is encountered in a %PCDATA or %vdata context, it is a variable reference and an indicator as to how the variable value should be converted. The variable reference is replaced with the value of the variable thus named, converted as specified.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-19
	When the symbol "$$" is encountered in a %PCDATA or %vdata context, it is an escaped dollar-sign. The escaped dollar-sign is replaced with a dollar-sign.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-20
	When data is enclosed within a CDATA block (<![CDATA[data]] >), the data is handled as literal text and presented to the user "as is".
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-21
	When a processing instruction (<? instruction ?>) is encountered, it is ignored unless it is defined in the XML 1.0 Recommendation.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-22
	The NAME attribute of the POSTFIELD element defines the name of a field, and the VALUE attribute defines the value to associate with that NAME. When a GO task is executed the name and value of the field are sent to the server.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-23
	When a SETVAR element contains a NAME attribute that evaluates to a legal variable name, the value of that variable (in the current browser context) is set to the value of the VALUE attribute.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-24
	When the HREF attribute of the GO element specifies a URL that names a WML card or deck, prior to displaying the card (or deck), the location of the current card is pushed onto the history stack.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-25
	When the SENDREFERER attribute of the GO element is set to true, the user agent must send the URL of the deck containing this task to the server. The URL sent must be the smallest relative URL possible if it can be relative at all.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-26
	When the METHOD attribute of the GO element is set to GET, it defines the submission method for the request.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-27
	When the METHOD attribute of the GO element is not set, the submission method for the request defaults to GET.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-28
	When the SENDREFERER attribute of the GO element is set to "false" or is not set, the user agent must not send the URL of the deck containing this task to the server.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-29
	When the METHOD attribute of the GO element is set to POST, it defines the submission method for the request.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-30
	When the target of a GO element of a card is contained within the current deck the user agent must ignore all postfield elements.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-31
	When the cache-control attribure is present within the GO element and its value is set to "no-cache" the client must reload the URL from the origin server.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-32
	When the HREF attribute value of a GO element is an HTTP URI, the METHOD attribute has a value of "post" and the ENCTYPE attribute is "application/x-www-form-urlencoded" the request must be performed according to these attributes.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-33
	When the ENCTYPE attributes value of a GO element is "APPLICATION/X-WWW-FORM-URLENCODED", the field names and values must be encoded using URI-escaping, and listed in the order in which the postfields are presented.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-34
	When the ENCTYPE attributes value is "APPLICATION/X-WWW-FORM-URLENCODED", the field names and values must be encoded by the name seperated from the value by "=" and name/value pairs seperated from each other by "&".
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-35
	When the user agent only supports data submission as "APPLICATION/X-WWW-FORM-URLENCODED" content type, it may ignore the ENCTYPE attribute.
	0
	0
	0
	0
	0
	
	

	WML-1.3-con-36
	When the HREF attribute value of a GO element is an HTTP URI, the METHOD attribute has a value of "get" and the ENCTYPE attribute is "application/x-www-form-urlencoded" the request must be performed according to these attributes.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-37
	When the HREF attribute value of a GO element is an HTTP URI, the METHOD attribute has a value of "post" and the ENCTYPE attribute is "multipart/form-data" the request must be performed according to these attributes.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-38
	When a PREV element is executed, the card referenced by the previous URI in the history stack is loaded (if necessary) and executed.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-39
	When a PREV element is executed, the previous URI on the history stack is removed from the stack.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-40
	When a REFRESH element is executed, the current card is redisplayed.
	2
	1
	0
	0
	1
	
	

	WML-1.3-con-41
	When a REFRESH element is executed, any variables specified through enclosed SETVAR elements are set in the browser context prior to the card being redisplayed.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-42
	When an event-handling element is specified within a TEMPLATE element, that event-handler is available in each card of the deck.
	2
	1
	0
	0
	1
	
	

	WML-1.3-con-43
	When an event-handling element is specified within a TEMPLATE element, and an event-handling element identifying the same event is specified within a CARD element, and that handler specifies its task as NOOP, there is no event handler for the event within the card. The user agent shall not provide a control for this event in this card.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-44
	When a card level element binds a noop task and is not shadowed by another element the event will be masked and ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-45
	When a DO element is specified within a TEMPLATE element, the user agent shall behave as if the element is specified at the end of the CARD element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-46
	When a DO element is specified within a TEMPLATE element, and a DO element with the same NAME attribute is specified within a CARD element, the CARD level element overrides the TEMPLATE level element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-47
	When a DO element has a NOOP task, it shall not be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-48
	When a DO element has a task other than NOOP, it shall be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-49
	When a DO element from a TEMPLATE is overridden by a DO element in a CARD, the DO elements from the TEMPLATE shall not be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-50
	When a NAME attribute of a DO element is specified, its value names the DO element. All uniquely named, active DO elements in a DECK shall be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-51
	User agents must accept any TYPE, but may treat any unrecognised type as the equivalent of UNKNOWN.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-52
	When the OPTIONAL attribute of a DO element is set to "false" or is omitted, the DO event must be presented to the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-53
	When the TYPE attribute of the DO element is "ACCEPT" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-54
	When the TYPE attribute of the DO element is "PREV" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-55
	When the TYPE attribute of the DO element is "HELP" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-56
	When the TYPE attribute of the DO element is "RESET" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-57
	When the TYPE attribute of the DO element is "DELETE" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-58
	When the TYPE attribute of the DO element is "OPTIONS" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-59
	When the TYPE attribute of the DO element is "UNKNOWN" the user agent must display the event as an option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-60
	When an ANCHOR element is specified, its contents define a link (via a task element such as GO, PREV, or REFRESH) that is activated when the link is selected.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-61
	When the HREF attribute of the A element is specified, it defines the URL of a resource to be associated with the items within the A element. Selecting the contents of the A element causes the resource referenced to be loaded.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-62
	If the event binding element specifies an intrinsic event type which applies to its parent element, it must be ignored by the user agent.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-63
	When an ONEVENT element occurs NOT immediately within a TEMPLATE or CARD element, and the TYPE attribute of the ONEVENT element is specified using the value "onenterbackward", the ONEVENT element is ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-64
	When an ONEVENT element occurs immediately within a TEMPLATE or CARD element, and the TYPE attribute of the ONEVENT element is specified using the value "onenterforward", the ONEVENT element defines a task to be executed when the user causes the card to be entered via the GO element (or actions with identical semantics).
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-65
	When an ONEVENT element occurs NOT immediately within a TEMPLATE or CARD element, and the TYPE attribute of the ONEVENT element is specified using the value "onenterforward", the ONEVENT element is ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-66
	When an ONEVENT element occurs immediately within an OPTION element, and the TYPE attribute of the ONEVENT element is specified using the value "onpick", the ONEVENT element defines a task to be executed when the user selects or deselects the item described by the OPTION element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-67
	When an ONEVENT element occurs NOT immediately within an OPTION element, and the TYPE attribute of the ONEVENT element is specified using the value "onpick", the ONEVENT element is ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-68
	When an ONEVENT element occurs immediately within a TEMPLATE or CARD element, and the TYPE attribute of the ONEVENT element is specified using the value "ontimer", the ONEVENT element defines a task to be executed when the TIMER expires.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-69
	When an ONEVENT element occurs NOT immediately within a TEMPLATE or CARD element, and the TYPE attribute of the ONEVENT element is specified using the value "ontimer", the ONEVENT element is ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-70
	The user agent must ignore any ONEVENT element specifying a type that does not correspond to a legal intrinsic event for the immediately enclosing element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-71
	When an undefined variable is referenced within any element or attribute with a content type of %vdata, it results in the substitution of the empty string.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-72
	Variable names are case sensitive.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-73
	When a variable is referenced within any element or attribute with a content type of %vdata, and that variable reference is enclosed in parenthesis using the pattern '(' name ':' conversion ')', the value of the variable is converted before it is substituted. Legal conversion values are "noesc", "escape", and "unesc" - meaning "no change", "URL-escape the value", and "URL-unescape the value" respectively.
	2
	0
	1
	0
	1
	
	

	WML-1.3-con-74
	When a variable is referenced within any element or attribute with a content type of %vdata, and that variable reference specifies no conversion suffix, the default conversion is context sensitive. In the case of ONPICK="onenterforward", ONPICK="onenterbackward", HREF, and SRC attributes the default is escape conversion.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-75
	When variables are placed in the text(#PCDATA)of a card or into %vdata and %HREF attributes in WML elements they are replaced with the variables value.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-76
	When a string substitution occurs, the current value of the variable must not be altered.
	2
	1
	0
	0
	1
	
	

	WML-1.3-con-77
	WML variable names consist of an US-ASCII letter or underscore followed by zero or more letters, digits or underscores. Any other characters are illegal. Any variable containing illegal characters shall not be processed by the encoder. The remainder of the card should be processed and displayed.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-78
	When a variable is referenced within any element or attribute with a content type of %vdata, and that variable reference specifies no conversion suffix, the default is no conversion.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-79
	When a variable is referenced within any element or attribute with a content type of %HREF, and that variable reference specifies no conversion suffix, the default is ESCAPE conversion.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-80
	All XML parsing is complete prior to variable substitution. When a dollar-sign in any form (a character entity, for example) is followed by a variable name, it is interpreted as a variable reference.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-81
	When 2 dollar-signs in a row are encountered in a deck, they are interpreted as a single literal dollar-sign.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-82
	When a user commits the input in a SELECT element, the associated variable value is updated.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-83
	When a user commits the input in an INPUT element, the associated variable value is updated.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-84
	Whenever a user agent navigates to a resource that was not the result of an interaction with the content in the currentcontext, the user agent must establish a fresh context for that navigation.
	1
	1
	0
	0
	0
	
	

	WML-1.3-con-85
	When an ACCESS element is in the HEAD element of a deck and that deck is entered, the user agent checks to ensure that the new deck can be accessed from the current deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-86
	When the DOMAIN attribute of the ACCESS element (of a new deck) is not set, it defaults to the domain of the current deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-87
	When the PATH attribute of the ACCESS element (of a new deck) is not set, it defaults to the value "/".
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-88
	When the DOMAIN attribute of the ACCESS element (of a new deck) is set to a period separated domain suffix, the domain of the current deck is compared to this suffix - where each element specified must match exactly for access to be granted.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-89
	When the PATH attribute of the ACCESS element (of a new deck) is specified as an absolute path, it defines the path prefix that is permitted access to the deck - where each element of the prefix must match that of the current deck exactly for access to be granted.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-90
	When a deck contains more than one ACCESS element the user agent shall display an error, along with a means to continue browser navigation.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-91
	When a user agent encounters a relative path in an ACCESS element it shall convert it to an absolute path. Then it should perform prefix matching against the PATH attribute
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-92
	When an event binding (e.g. a DO or ONEVENT element) is specified within a TEMPLATE element, that specification applies to all cards in the deck.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-93
	When a DO element is specified within a TEMPLATE element, and a DO element with the same NAME attribute value is specified within a CARD element, the DO element within the CARD element takes precedence.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-94
	When the ONENTERFORWARD attribute of the CARD element is specified as a URL, it defines a resource to navitage to when the CARD is entered via a GO event or the equivalent.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-95
	When the ONENTERBACKWARD attribute of the CARD element is specified as a URL, it defines a resource to navigate to when the CARD is entered via a PREV event or the equivalent.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-96
	When the ONTIMER attribute of the CARD element is specified as a URL, it defines a resource to navigate to when the timer for the CARD expires.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-97
	When the ID attribute of the CARD element is specified as a string, it defines a name for the card. This name can then be used in the fragment portion of a URI to access the card directly.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-98
	When the NEWCONTEXT attribute of the CARD element is specified as "true", the current browser context is reinitialized when the card is entered.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-99
	When the NEWCONTEXT attribute of the CARD element is specified as "false" or is not specified, the current browser context is not initialized when the card is entered.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-100
	When the TABINDEX attribute of an element is specified as a number, it defines the relative position in the "tabbing order" within the card - where numerically greater numbers indicate a later position than numerically lesser numbers.
	0
	0
	0
	0
	0
	
	

	WML-1.3-con-101
	When the TABINDEX attribute of an input element is not specified, the user agent assigns it a position in the "tabbing order" that is later than all user-specified TABINDEX attributes within the card.
	0
	0
	0
	0
	0
	
	

	WML-1.3-con-102
	When the INAME attribute of the SELECT element is specified, it defines the name of a variable in which the index of the user selected option(s) will be stored.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-103
	When the IVALUE attribute of the SELECT element is set, it defines a default index value with which to select options within the SELECT element. If the INAME attribute is also specified, and the variable named by INAME already contains a value, the IVALUE attribute value is ignored.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-104
	When the INAME attribute of the SELECT element is set to a string, it defines the name of a variable in which to record the user's selection(s). When the MULTIPLE attribute of this SELECT element is set to TRUE, and multiple options are selected, the value of the variable named by INAME is a semi-colon separated list of selected option indices.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-105
	When the INAME attribute of the SELECT element is set to a string, it defines the name of a variable in which to record the user's selection(s). If the variable named by the INAME attribute is set when the element is displayed, the value of the variable is used as indices to pre-select option(s) within the SELECT element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-106
	When the INAME attribute of the SELECT element is specified with a variable name, and the value of that variable is 0, it indicates that no options within the SELECT element are selected.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-107
	When the INAME attribute of the SELECT element is specified with a variable name, and that variable is not set, and the VALUE or IVALUE attribute is not specified, and the MULTIPLE attribute is set to "TRUE", the selected index defaults to 0.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-108
	When the INAME attribute of the SELECT element is specified with a variable name, and that variable is set to a value greater than the largest index of the enclosed OPTION elements, and the MULTIPLE attribute is set to "TRUE", no option is selected.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-109
	When the INAME attribute of the SELECT element is not specified, and the NAME attribute is specified as a variable name, and that variable is set, the value of that variable is used to select option(s).
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-110
	When the INAME attribute of the SELECT element is not specified, and the NAME attribute is specified as a variable name, and that variable is set, but the value to which it is set does not match the VALUE attribute of an enclosed OPTION element, and the MULTIPLE attribute is set to "TRUE", no option is selected.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-111
	When the INAME attribute of the SELECT element is not specified, and the NAME attribute is specified as a variable name, and that variable is not set, and the MULTIPLE attribute is set to FALSE, the first option is selected.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-112
	When the INAME attribute of the SELECT element is not specified, and the NAME attribute is specified as a variable name, and that variable is set, but the value to which it is set does not match the VALUE attribute of an enclosed OPTION element, and the MULTIPLE attribute is set to "FALSE", the first option is selected.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-113
	When the INAME attribute of the SELECT element is specified with a variable name, and that variable is set to a value greater than the largest index of the enclosed OPTION elements, and the MULTIPLE attribute is set to "FALSE", the first option is selected.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-114
	When the NAME and INAME variables are updated the user agent must not display any side effects.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-115
	When the IVALUE attribute of the SELECT element is set, it defines a default value with which to select options within the SELECT element. If the MULTIPLE attribute of the SELECT element is set to TRUE, this default value is interpreted as a semi-colon separated list of option indices to select.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-116
	When the MULTIPLE attribute of the SELECT element is set to TRUE, the user is permitted to select multiple options from within the element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-117
	When the MULTIPLE attribute of the SELECT element is set to FALSE, the user is permitted to select only a single option from within the element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-118
	When the MULTIPLE attribute of the SELECT element is not specified, the user is permitted to select only a single option from within the element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-119
	When the NAME attribute of the SELECT element is set to a legal variable name, it defines the name of a variable in which to record the user's selection(s).
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-120
	When the NAME attribute of the SELECT element is set to a string, it defines the name of a variable in which to record the user's selection(s). When the MULTIPLE attribute of this SELECT element is set to TRUE, and multiple options are selected, the value of the variable named by NAME is a semi-colon separated list of values.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-121
	When the NAME attribute of the SELECT element is set to a string, it defines the name of a variable in which to record the user's selection(s). If the variable named by the NAME attribute is set when the element is displayed, the value of the variable is used to pre-select option(s) within the SELECT element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-122
	When the VALUE attribute of the SELECT element is set, it defines a default value with which to select options within the SELECT element.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-123
	When the VALUE attribute of the SELECT element is set, it defines a default value with which to select options within the SELECT element. If the NAME attribute is also specified, and the variable named by NAME already contains a value, the VALUE attribute value is ignored.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-124
	When the VALUE attribute of the SELECT element is set, it defines a default value with which to select options within the SELECT element. If the MULTIPLE attribute of the SELECT element is set to TRUE, this default value is interpreted as a semi-colon separated list of values to select.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-125
	When the VALUE attribute of the OPTION element is set to a string, it defines the value to be used when setting the variable named by the NAME attribute of the enclosing SELECT element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-126
	When the ONPICK attribute of the OPTION element is set to a URL, and the MULTIPLE attribute of the enclosing SELECT element is set to TRUE, it defines a task that is to be executed whenever the option is selected or deselected.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-127
	When the ONPICK attribute of the OPTION element is set to a URL, and the MULTIPLE attribute of the enclosing SELECT element is set to FALSE or not specified, it defines a task that is to be executed whenever the option is selected.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-128
	When the OPTION element contains PCDATA, that data is presented as the description of the option.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-129
	When the OPTION element contains a value with a variable reference, the variable is evaluated before the name variable is set.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-130
	When the OPTGROUP element is encountered, the implementation must allow the elements to be grouped and displayed in a hierarchical manor.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-131
	When a user agent encounters an OPTGROUP element it must display the elements children in readable manner even if OPTGROUP is not supported.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-132
	All INPUT objects that represent the input elements within the card must be initialized when the card is loaded.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-133
	When the MAXLENGTH attribute of the INPUT element is specified as a number, it defines the maximum number of characters that can be entered in the input field.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-134
	When the EMPTYOK attribute of the INPUT element is specified as "true", and the FORMAT attribute of the INPUT element is also specified, the input field may be left blank by the user.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-135
	When EMPTYOK is false, input is required even if the format mask would otherwise not require it.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-136
	When EMPTYOK is true, input is not required even if the format mask would otherwise require it.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-137
	When the FORMAT attribute of the INPUT element is specified as "*A", the text input is limited to upper-case letter, symbol or punctuation characters. Numeric characters are excluded
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-138
	When the FORMAT attribute of the INPUT element is specified as "*a", the text input is limited to lower-case letter, symbol or punctuation characters.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-139
	When the FORMAT attribute of the INPUT element is specified as "*N", the text input is limited to numeric characters.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-140
	When the FORMAT attribute of the INPUT element is specified as "*X", the text input is limited to entry of any uppercase letter, numeric character, symbol, or punctuation character.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-141
	When the FORMAT attribute of the INPUT element is specified as "*x", the text input is limited to entry of any lowercase letter, numeric character, symbol, or punctuation character.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-142
	When the FORMAT attribute of the INPUT element is specified as a backslash "\" followed by a character c, that character is displayed in the input field at the position indicated.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-143
	When the FORMAT attribute of the INPUT element is specified as a series of format characters, the input of each position in the input field is limited as specified.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-144
	When the FORMAT attribute of the INPUT element is specified as "*M", the text input is limited to any characters, but the user-agent may assume that the input is in upper-case.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-145
	When the FORMAT attribute of the INPUT element is specified as "*m", the text input is limited to any characters, but the user-agent may assume that the input is in lower-case.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-146
	When the FORMAT attribute of the INPUT element is specified as "nM", where n is a digit from 1-9 and f is one of the format characters "aAmMNXx", the number of input characters is limited to n and the type is limited to f.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-147
	When the FORMAT attribute of the INPUT element is specified as an invalid mask it must be ignored by the user agent.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-148
	The NAME attribute of the INPUT element specifies the name of a variable in which the input value is stored. If this variable is set when the INPUT element is displayed, its value is used to initialize the content of the input field.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-149
	When the TYPE attribute of the INPUT element is specified as "text", it indicates that the input field is a text entry box, and that the input is to be displayed to the user in readable form.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-150
	When the TYPE attribute of the INPUT element is specified as "password", it indicates that the input field is a password entry box, and that the input is to be displayed to the user in an illegible form.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-151
	When the TYPE attribute of the INPUT element is not specified, it defaults to "text". This indicates that the input field is a text entry box, and that the input is to be displayed to the user in readable form.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-152
	When the VALUE attribute of the INPUT element is specified, it defines the default value for the variable named by the NAME attribute. When the INPUT element is displayed and the variable named by the NAME attribute is not set, that variable is initialized with the value of the VALUE attribute.
	1
	0
	1
	0
	0
	
	

	WML-1.3-con-153
	When the VALUE attribute of the INPUT element is specified, it defines the default value for the variable named by the NAME attribute. When the INPUT element is displayed and the variable named by the NAME attribute is already set, the value of the VALUE attribute is ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-154
	When the FIELDSET element is used the user agent shall display all input fields even if it does not support FIELDSETS.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-155
	When the FIELDSET element is nested, the user agent must display all of the fields.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-156
	When the VALUE attribute of the TIMER element is specified as a positive integer value and the NAME value is not specified, the VALUE attribute defines the default starting value for the timer. Upon entering the card, the timer is started with this value. If the card is not exited prior to the expiration of the timer, the ONTIMER intrinsic event is delivered.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-157
	When the NAME attribute of the TIMER element is specified as a string, it defines a variable in which the timer value is to be stored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-158
	When the NAME attribute of the TIMER element is specified as a string, it defines a variable name. If that variable is set, the timer is initialized with the value of the variable.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-159
	When the NAME attribute of the TIMER element is specified as a string, it defines a variable name. If that variable is not set and the VALUE attribute of the TIMER element is specified, the variable is set to the value of the VALUE attribute, and then the variable is used to initialize the timer.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-160
	When the NAME attribute of the TIMER element is specified as a string, it defines a variable name. If that variable is set to zero, the timer is disabled.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-161
	When the value of the timeout is not a positive integer, the user agent must ignore the TIMER element.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-162
	When the user agent encounters white space before or after an element or attribute it should be ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-163
	When the B inline element is used, the text enclosed within the B element is displayed in a bold typeface.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-164
	When the BIG inline element is used, the text enclosed within the BIG element is displayed in a larger typeface.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-165
	When the EM inline element is used, the text enclosed within the EM element is displayed in an alternative typeface to give emphasis to the text.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-166
	When the I inline element is used, the text enclosed within the I element is displayed in an italicized typeface.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-167
	When the SMALL inline element is used, the text enclosed within the SMALL element is displayed in a smaller typeface.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-168
	When the STRONG inline element is used, the text enclosed within the STRONG element is displayed in an alternative typeface to give strong emphasis to the text.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-169
	When the U inline element is used, the text enclosed within the U element is displayed underlined.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-170
	When a non-breaking space entity is encountered, the user agent does not treat it as an inter-word space.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-171
	When a P element is empty or contains only insignificant white space, it must not impact line wrap mode.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-172
	When the ALIGN attribute of the P element is specified as "left", the text of the line is aligned on the left side of the display.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-173
	When the ALIGN attribute of the P element is specified as "center", the text of the line is centered on the display.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-174
	When the ALIGN attribute of the P element is specified as "right", the text of the line is aligned on the right side of the display.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-175
	When the ALIGN attribute of the P element is not specified, text is aligned with the left side of the display.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-176
	When the MODE attribute of the P element is specified as "wrap", the text of the line is broken onto multiple display lines at whitespace characters as needed.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-177
	When the MODE attribute of the P element is specified as "nowrap", the text of the line is displayed on a single line.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-178
	When the MODE attribute of the P element is not specified, it defaults to the MODE of the previous paragraph.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-179
	When the MODE attribute of the P element is not specified, and the P element is the first P element of the CARD, it defaults to "wrap" mode.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-180
	When a BR element is encountered, the user agent breaks the current line. Subsequent text in the paragraph is continued on the following line.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-181
	When the COLUMNS attribute of the TABLE element is specified as a non-negative integer, it defines the number of columns that each row of the table shall contain. Rows with fewer than the specified number of columns have empty columns added to their ends.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-182
	When the COLUMNS attribute of the TABLE element is specified as a non-negative integer, it defines the number of columns that each row of the table shall contain. Rows with more than the specified number of columns have any additional data collected into the last defined column of the row, with each column's data separated from the others by a single inter-word space.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-183
	When the ALIGN attribute of the TABLE element is specified as a sequence of the letters "R", "L", or "C", one for each column in the table, it defines the default alignment for data in each column as right, left, or center, respectively.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-184
	When the ALIGN attribute of the TABLE element is specified as a sequence of the letters "R", "L", or "C", but there are fewer letters than columns, the contents of the unspecified columns get the default alignment (left for left-to-right languages, right for right-to-left languages).
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-185
	When the ALIGN attribute of the TABLE element is not specified, the contents of the columns get the default alignment (left for left-to-right languages, right for right-to-left languages).
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-186
	When the ALIGN attribute of the TABLE element is specified as "D" the contents of that column will be default aligned (left for left-to-right languages, right for right-to-left languages). All extra designators should be ignored.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-187
	When the ALIGN attribute of the TABLE element is specified as an unknown designator the contents of that column will be default aligned (left for left-to-right languages, right for right-to-left languages).
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-188
	When the TD element is specified, it defines the contents of a single cell of a row of a table. The contents of the element are rendered in the cell.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-189
	When the TD element is specified, it defines the contents of a single cell of a row of a table. The contents of the element are rendered in the cell.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-190
	When the TD element is specified and but has no contents, the element must still be counted as a cell for rendering purposes.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-191
	When the ALT attribute of the IMG element is specified as a string, it defines alternate text that is displayed when the image cannot be loaded.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-192
	When the SRC attribute of the IMG element is specified as a URL, it defines the location of the image data.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-193
	When the VSPACE attribute of the IMG element is specified as a length, it defines the vertical whitespace to be inserted above and below the image.
	1
	1
	0
	0
	0
	
	

	WML-1.3-con-194
	When the HSPACE attribute of the IMG element is specified as a length, it defines the horizontal whitespace to be inserted to the left and right of the image.
	1
	1
	0
	0
	0
	
	

	WML-1.3-con-195
	When the VSPACE attribute of the IMG element is not specified, it defaults to zero length.
	1
	1
	0
	0
	0
	
	

	WML-1.3-con-196
	When the HSPACE attribute of the IMG element is not specified, it defaults to zero length.
	1
	1
	0
	0
	0
	
	

	WML-1.3-con-197
	When the ALIGN attribute of the IMG element is specified as TOP, it means that the top of the image is aligned vertically with the top of the current text line.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-198
	When the ALIGN attribute of the IMG element is specified as BOTTOM, it means that the bottom of the image is aligned vertically with the current baseline.
	2
	1
	1
	0
	0
	
	

	WML-1.3-con-199
	When the ALIGN attribute of the IMG element is specified as MIDDLE, it means that the vertical center of the image is aligned vertically with the center of the current text line.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-200
	When the ALT attribute of the IMG element is specified as a string, it defines alternate text that is displayed when the user agent does not support the image format.
	2
	2
	0
	0
	0
	
	

	WML-1.3-con-201
	When a WML deck is encoded with an alternate DTD that includes elements or attributes beyond those in the WML 1.3 specification, the user agent will render the content of the unrecognized elements.
	2
	1
	1
	0
	0
	
	

	WML-2.0-con-1
	When navigation history is stored within the history stack, the newest entry must be stored at the top and the oldest entry must be stored at the bottom.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-2
	When forward navigation occurs, a new entry must be pushed onto the history stack as a result of this.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-3
	When backward navigation occurs, a new entry must be popped from the history stack as a result of this.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-4
	When an explicitly specified card is loaded into the history stack, a minimum of the absolute url, method, value of any postfields, and any request headers must be stored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-5
	When an entry is loaded into the history stack , variable references in the resource request information must be replaced with the current value of the variable before loading takes place.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-6
	When the WML:GO task is executed, and it contains WML:SETVAR elements, the variable name and value in each WML:SETVAR element must be converted into a simple string by substituting all referenced variables.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-7
	When the WML:GO task is executed, the target URI must be identified and fetched by the user agent.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-8
	When the WML:GO task is executed, the fragment identifier of the target URI must be the card fetched.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-9
	When the WML:GO task is executed, and a fragment identifier is not specified as part of the URI, the first card in the document must be the destination.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-10
	When the WML:GO task is executed, and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains a matching element ID attribute, the fragment identifier of the target URI must be the card that holds that element with the matching ID.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-11
	When the WML:GO task is executed(to navigate to a card in the same document), and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains a matching element ID attribute, the fragment identifier of the target URI must be the card that holds that element with the matching ID and that element must be visible to the user.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-12
	When the WML:GO task is executed(to navigate to a card in the same document), and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains no matching element ID attribute, the fragment identifier of the target URI must be the first card in that document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-13
	When the WML:GO task is executed, and the WML:USE-XML-FRAGMENTS attribute in the destination document is set to 'false', and the document contains a matching card ID attribute, the fragment identifier of the target URI must be the card with the matching card ID attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-14
	When the WML:GO task is executed, and the WML:USE-XML-FRAGMENTS attribute is 'false', and the document contains no matching card ID attribute, the fragment identifier of the target URI must be the first card in that document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-15
	When the WML:GO task is executed, and the WML:USE-XML-FRAGMENTS attribute is 'false', and the document contains non-card element ID "x", the fragment identifier of the target URI must be the first card in that document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-16
	When the WML:GO task is executed, and it contains WML:SETVAR elements, the variable assignments resulting from the processing must be assigned to the current user agent context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-17
	When the WML:GO task is executed, and the destination document contains a WML:NEWCONTEXT attribute, a new user agent context must be created.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-18
	When the WML:GO task is executed to take the user to another card, an entry referring to the destination must be pushed onto the history stack.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-19
	When the WML:GO task is executed, and the destination document contains a ENTERFORWARD intrinsic event binding, the task associated with the event binding must be executed and processing must then stop.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-20
	When the WML:GO task is executed, and the destination document contains a WML:TIMER element, the timer must be started.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-21
	When the WML:GO task is executed, the destination card must be displayed using the current variable state.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-22
	When the WML:PREV task is executed, and it contains WML:SETVAR elements, the variable name and value in each WML:SETVAR element must be converted into a simple string by substituting all referenced variables.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-23
	When the WML:PREV task is executed, the history stack must be popped.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-24
	When the WML:PREV task is executed and the target URI is a card in the same document, the fragment identifier of the target URI must be the card fetched.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-25
	When the WML:PREV task is executed and the target URI is a separate document, the fragment identifier of the target URI must be the part of the document fetched.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-26
	When the WML:PREV task is executed, and a fragment identifier is not specified as part of the URI, the first card in the document must be the destination.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-27
	When the WML:PREV task is executed, and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains a matching element ID attribute, the fragment identifier of the target URI must be the card that holds that element with the matching ID.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-28
	When the WML:PREV task is executed(to navigate to a card in the same document), and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains a matching element ID attribute, the fragment identifier of the target URI must be the card that holds that element with the matching ID, and that element must be visible to the user.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-29
	When the WML:PREV task is executed(to navigate to a card in the same document), and the WML:USE-XML-FRAGMENTS attribute is 'true', and the document contains no matching element ID attribute, the fragment identifier of the target URI must be the first card in that document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-30
	When the WML:PREV task is executed, and the WML:USE-XML-FRAGMENTS attribute in the destination document is set to 'false', and the document contains a matching card ID attribute, the fragment identifier of the target URI must be the card with the matching card ID attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-31
	When the WML:PREV task is executed, and the WML:USE-XML-FRAGMENTS attribute is 'false', and the document contains no matching card ID attribute, the fragment identifier of the target URI must be the first card in that document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-32
	When the WML:PREV task is executed, and it contains WML:SETVAR elements, the variable assignments resulting from the processing must be assigned to the current user agent context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-33
	When the WML:PREV task is executed, and the destination document contains a ENTERBACKWARD intrinsic event binding, the task associated with the event binding must be executed and processing must then stop.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-34
	When the WML:PREV task is executed, and the destination document contains a WML:TIMER element, the timer must be started.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-35
	When the WML:PREV task is executed, the destination card must be displayed using the current variable state.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-36
	When the WML:REFRESH task is executed, and it contains WML:SETVAR elements, the variable name and value in each WML:SETVAR element must be converted into a simple string by substituting all referenced variables.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-37
	When the WML:REFRESH task is executed, and it contains WML:SETVAR elements, the variable assignments resulting from the processing must be assigned to the current user agent context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-38
	When the WML:REFRESH task is executed, and the document contains a WML:TIMER element, the timer must be started.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-39
	When the WML:REFRESH task is executed, the current card is re-displayed using the current variable state and processing stops.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-40
	When a task fails to fetch it's target resource, the invoking card must remain the current card.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-41
	When a task fails to fetch it's target resource, there must be no changes to the browser context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-42
	When a task fails to fetch it's target resource, there must be no intrinsic event bindings executed.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-43
	When a forms initial values have been determined, they must be committed to form control variables.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-44
	When displaying a card with form controls, the user agent must process the controls in the order in which they appear in the card.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-45
	When setting up a form control, the user agent must store the initial value of each control for use during form reset.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-46
	When a card is reached through either forward or backward navigation, the user agent must perform form initialisation.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-47
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the WML:NAME attribute is assigned, the WML:NAME attribute must name the form control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-48
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the WML:NAME attribute is assigned, and the form control variable conforms to the input mask, the initial value of the control must be the value of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-49
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the WML:NAME attribute is assigned, and the value of a form control variable does not conform to the input mask, it must be ignored and the initial value of the control must be determined by the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-50
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the WML:NAME attribute is assigned, and the value of the form control variable and the VALUE attribute do not conform to the input mask, they must be ignored and the initial value of the control must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-51
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the WML:NAME attribute is assigned, the value of a form control variable does not conform to the input mask, and the VALUE attribute is not set, the initial value of the text input control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-52
	When using a text input control, the control is an INPUT element and the TYPE attribute is set to "text", the initial value must be pre-loaded into the control, when the WML:NAME control variable is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-53
	When using a text input control, and the control is a TEXTAREA element, the WML:NAME attribute must name the form control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-54
	When using a text input control, the control is a TEXTAREA element, the WML:NAME attribute is assigned, and the form control variable conforms to the input mask, the initial value of the control must be the value of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-55
	When using a text input control, the control is a TEXTAREA element, the WML:NAME attribute is assigned, the form control variable does not conform to the input mask and the content of the TEXTAREA element conforms to the input mask, the initial value of the control must be the content of the element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-56
	When using a text input control, the control is a TEXTAREA element, the WML:NAME attribute is assigned and both the form control variable and the content of the TEXTAREA element do not conform to the input mask, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-57
	When using a text input control, the control is a TEXTAREA element, the WML:NAME attribute is assigned, the form control variable does not conform to the input mask and the TEXTAREA element is an empty element, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-58
	When using a text input control, and the control is a TEXTAREA element, the initial value must be pre-loaded into the control, when the WML:NAME control variable is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-59
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the NAME attribute is assigned, and no input mask is specified, the initial value of the control must be the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-60
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the NAME attribute is assigned, and the VALUE attribute is not specified, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-61
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the NAME attribute is assigned, and the value of the VALUE attribute conforms to the input mask, the initial value of the control must be the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-62
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", the NAME attribute is assigned, and the value of the VALUE attribute does not conform to the input mask, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-63
	When using a text input control, the control is an INPUT element and the TYPE attribute is set to "text", the initial value must be pre-loaded into the control, when the NAME control variable is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-64
	When using a text input control, the control is a TEXTAREA element, the NAME attribute is assigned, and no input mask is specified, the initial value of the control must be the content of the element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-65
	When using a text input control, the control is a TEXTAREA element, the NAME attribute is assigned, no input mask is specified, and the TEXTAREA element is an empty element, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-66
	When using a text input control, the control is a TEXTAREA element, the NAME attribute is assigned and the content of the TEXTAREA element conforms to the input mask, the initial value of the control must be the content of the element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-67
	When using a text input control, the control is a TEXTAREA element, the NAME attribute is assigned and the content of the TEXTAREA element does not conform to the input mask, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-68
	When using a text input control, and the control is a TEXTAREA element, the initial value must be pre-loaded into the control, when the NAME control attribute is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-69
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and both the WML:NAME and NAME attributes are assigned, the WML:NAME attribute takes precedence, and the NAME attribute must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-70
	When using a text input control, the control is a TEXTAREA element, and both the WML:NAME and NAME attributes are assigned, the WML:NAME attribute takes precedence, and the NAME attribute must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-71
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", neither the WML:NAME or NAME attribute is assigned, and the VALUE attribute is, the value of the VALUE attribute must be pre-loaded into the form control.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-72
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", neither the WML:NAME or NAME attribute is assigned, and the VALUE attribute is not set, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-73
	When using a text input control, the control is a TEXTAREA element, neither the WML:NAME or NAME attribute is assigned, and the form control has a content, the initial value must be the content of the element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-74
	When using a text input control, the control is a TEXTAREA element, neither the WML:NAME or NAME attribute is assigned, and the form control has no content, the initial value must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-75
	When using a text input control, the control is an INPUT element, and the TYPE attribute is set to "password", the WML:NAME attribute must name the form control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-76
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the WML:NAME attribute is assigned, and the form control variable conforms to the input mask, the initial value of the control must be the value of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-77
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the WML:NAME attribute is assigned, and the value of a form control variable does not conform to the input mask, it must be ignored and the initial value of the control must be determined by the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-78
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the WML:NAME attribute is assigned, and the value of the form control variable and the VALUE attribute do not conform to the input mask, they must be ignored and the initial value of the control must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-79
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the WML:NAME attribute is assigned, the value of a form control variable does not conform to the input mask, and the VALUE attribute is not set, the initial value of the text input control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-80
	When using a text input control, the control is an INPUT element and the TYPE attribute is set to "password", the initial value must be pre-loaded into the control, when the WML:NAME control variable is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-81
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the NAME attribute is assigned, and no input mask is specified, the initial value of the control must be the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-82
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the NAME attribute is assigned, and the VALUE attribute is not specified, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-83
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the NAME attribute is assigned, and the value of the VALUE attribute conforms to the input mask, the initial value of the control must be the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-84
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", the NAME attribute is assigned, and the value of the VALUE attribute does not conform to the input mask, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-85
	When using a text input control, the control is an INPUT element and the TYPE attribute is set to "password", the initial value must be pre-loaded into the control, when the NAME control variable is set.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-86
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and both the WML:NAME and NAME attributes are assigned, the WML:NAME attribute takes precedence, and the NAME attribute must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-87
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", neither the WML:NAME or NAME attribute is assigned, and the VALUE attribute is, the value of the VALUE attribute must be pre-loaded into the form control.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-88
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", neither the WML:NAME or NAME attribute is assigned, and the VALUE attribute is not set, the initial value of the control must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-89
	When using a hidden input control, and the WML:NAME attribute is assigned, the WML:NAME attribute must name the form control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-90
	When using a hidden input control, and the WML:NAME attribute is assigned, the initial value of the control is the value of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-91
	When using a hidden input control, the WML:NAME attribute is assigned but not set, and the VALUE attribute is specified, the initial value of the control is the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-92
	When using a hidden input control, the WML:NAME attribute is assigned but not set, and the VALUE attribute is not specified, the initial value of the control is an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-93
	When using a hidden input control, the WML:NAME attribute is not assigned, and the NAME attribute is assigned, the name of the control variable must be the value of the NAME attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-94
	When using a hidden input control, the WML:NAME attribute is not assigned, the NAME attribute is assigned, and the VALUE attribute is specified, the initial value of the control is the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-95
	When using a hidden input control, the WML:NAME attribute is not assigned, the NAME attribute is assigned, and the VALUE attribute is not specified, the initial value of the control is an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-96
	When using a hidden input control, and both the WML:NAME and NAME attributes are assigned, the WML:NAME attribute takes precedence and the NAME attribute must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-97
	When the control only permits a single selection, the WML:INAME attribute of the SELECT element is specified, it must name the variable to use to determine the default option index.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-98
	When the control only permits a single selection, the default option index has not yet been determined and the WML:IVALUE attribute of the SELECT element is specified, the default option index must be the value of the WML:IVALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-99
	When the control only permits a single selection, the default option index has not yet been determined and the WML:NAME attribute of the SELECT element is specified, it must name the variable to use to determine the default option index.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-100
	When the control only permits a single selection, the default option index has not yet been determined and the WML:VALUE attribute of the SELECT element is specified, the default option index must be the index of the option whose VALUE attribute equals the value of the WML:VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-101
	When the control only permits a single selection, no option has been pre-selected within the SELECT element, the default option index is one.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-102
	When the control only permits a single selection and the WML:INAME attribute of the SELECT element is specified, the variable named by the WML:INAME attribute must be set with the default option index.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-103
	When the control only permits a single selection and the WML:NAME attribute of the SELECT element is specified, the variable named by the WML:NAME attribute must be set with the value of the VALUE attribute on the OPTION element as the default option index.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-104
	When the control only permits a single selection, the WML:NAME attribute of the SELECT element is specified, and the VALUE attribute of the OPTION element is not, the variable named by the WML:NAME attribute must be set to a empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-105
	When the WML:INAME attribute of the SELECT element is specified and multiple selections are permitted, the WML:INAME attribute must name the variable to use to determine the default option index and the value of the named variable must be a semicolon-delimited list of the indices of the pre-selected OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-106
	When multiple selections are permitted, the default option index has not yet been determined, the WML:IVALUE attribute of the SELECT element is specified, the value of the WML:IVALUE attribute must be used to determine the default option index and this value must be a semicolon-delimited list of the indices of the pre-selected OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-107
	When multiple selections are permitted, the default option index has not yet been determined, the WML:NAME attribute of the SELECT element is specified, the value of the WML:NAME variable must be used to determine the default option index and this value must be a semicolon-delimited list of the values of the pre-selected OPTION elements VALUE attributes.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-108
	When multiple selections are permitted, the default option index has not yet been determined, the WML:VALUE attribute of the SELECT element is specified, the WML:VALUE'S value is used to determine the default option indices and must be a semicolon-delimited list of the values of the pre-selected OPTION elements VALUE attributes.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-109
	When the WML:INAME attribute of the SELECT element is specified and multiple selections are permitted, the variable named by the WML:INAME attribute must be set with the default option index.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-110
	When the WML:INAME attribute of the SELECT element is specified, multiple selections are permitted, and there are no default options, the variable named by the WML:INAME attribute must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-111
	When the WML:NAME attribute of the SELECT element is specified and multiple selections are permitted, for each index in the default indices which is greater than zero, the variable named by the WML:NAME attribute must be set to a semicolon delimited string of the VALUE attribute on the OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-112
	When the WML:NAME attribute of the SELECT element is specified, multiple selections are permitted, and there are no default options, the variable named by the WML:NAME attribute must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-113
	When the WML:NAME attribute of the SELECT element is specified, multiple selections are permitted, and all selected OPTION elements contain an empty VALUE attribute, the variable named by the WML:NAME attribute must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-114
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection and the NAME attribute is assigned, it must name the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-115
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection the NAME attribute is assigned, and exactly one OPTION has the SELECTED attribute assigned, that option is the pre-selected option.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-116
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection the NAME attribute is assigned, and more than one OPTION has the SELECTED attribute assigned, the first such option is the pre-selected option.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-117
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection and the NAME attribute is assigned, the initial value of the control variable must be the value of the pre-selected OPTION element's value attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-118
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection, the NAME attribute is assigned, and the VALUE attribute of the pre-selected OPTION element is not specified, the initial value of the control variable must be the content of the pre-selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-119
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, the control only permits a single selection, the NAME attribute is assigned, and both the VALUE attribute and the content of the pre-selected OPTION element are not specified, the initial value of the control variable must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-120
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, and the NAME attribute is assigned, the pre-selected options are those option elements with their SELECTED attribute assigned.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-121
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, the NAME attribute is assigned, and no OPTION has the SELECTED attribute assigned, there must be no pre-selected options.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-122
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, and the NAME attribute is assigned, the initial value of the form control must be a string consisting of a semicolon-delimited list of the values of the pre-selected OPTION element's VALUE attributes.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-123
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, the NAME attribute is assigned, and the VALUE attribute of the pre-selected OPTION element are not specified, the initial value of the control variable must be a string consisting of a semicolon-delimited list of the content of the pre-selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-124
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, the NAME attribute is assigned, and both the VALUE attribute and the content of the pre-selected OPTION element are not specified, the initial value of the control variable must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-125
	When neither the WML:NAME, the WML:INAME, the WML:VALUE nor the WML:INAME is assigned, multiple selections are permitted, the NAME attribute is assigned, and there are no pre-selected options, the initial value of the control variable must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-126
	When the WML:INAME, attribute of the SELECT element is assigned, the SELECTED attribute of the OPTION element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-127
	When the WML:NAME, attribute of the SELECT element is assigned, the SELECTED attribute of the OPTION element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-128
	When the WML:IVALUE, attribute of the SELECT element is assigned, the SELECTED attribute of the OPTION element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-129
	When the WML:VALUE, attribute of the SELECT element is assigned, the SELECTED attribute of the OPTION element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-130
	When the WML:INAME, attribute of the SELECT element is assigned, the NAME attribute of the SELECT element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-131
	When the WML:NAME, attribute of the SELECT element is assigned, the NAME attribute of the SELECT element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-132
	When the WML:IVALUE, attribute of the SELECT element is assigned, the NAME attribute of the SELECT element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-133
	When the WML:VALUE, attribute of the SELECT element is assigned, the NAME attribute of the SELECT element must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-134
	When the WML:NAME attribute of the INPUT element is specified, and the TYPE attribute is set to 'checkbox', the variable named by the WML:NAME attribute must hold a semicolon-delimited list of the values of the INPUT elements VALUE attribute, for all checkboxes that have been pre-selected.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-135
	When the WML:NAME attribute of the INPUT element is specified, the TYPE attribute is set to 'checkbox', and the variable named by the WML:NAME attribute has not been pre-set, there must be no pre-selected checkboxes.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-136
	When the WML:NAME attribute of the INPUT element is specified, and the TYPE attribute is set to 'radio', the variable named by the WML:NAME attribute must hold the value of the INPUT elements VALUE attribute, for the radio button that has been pre-selected.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-137
	When the WML:NAME attribute of the INPUT element is specified, the TYPE attribute is set to 'radio', and the variable named by the WML:NAME attribute has not been pre-set, there must be no pre-selected radio buttons.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-138
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the user attempts to commit input, the user agent must validate that input against the input mask, as defined by the WML:FORMAT and WML:EMPTYOK attributes or their CSS equivalents.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-139
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the user enters data into that text control, for which there is no input mask set, the user agent must set the control variable to the control's current value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-140
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the user attempts to commit input which conforms to the input mask set, the user agent must set the control variable to that value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-141
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the value input by the user into the control does not conform to the input mask, the user agent must not commit that input and must notify the user that the input was rejected, and allow the user to re-submit new input.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-142
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "text", and the value input by the user into the control does not conform to the input mask, the control variable must not be modified.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-143
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and the user attempts to commit input, the user agent must validate that input against the input mask, as defined by the WML:FORMAT and WML:EMPTYOK attributes or their CSS equivalents.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-144
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and the user enters data into that text control, for which there is no input mask set, the user agent must set the control variable to the control's current value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-145
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and the user attempts to commit input which conforms to the input mask set, the user agent must set the control variable to that value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-146
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and the value input by the user into the control does not conform to the input mask, the user agent must not commit that input and must notify the user that the input was rejected, and allow the user to re-submit new input.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-147
	When using a text input control, the control is an INPUT element, the TYPE attribute is set to "password", and the value input by the user into the control does not conform to the input mask, the control variable must not be modified.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-148
	When using a text input control, the control is a TEXTAREA element, and the user attempts to commit input, the user agent must validate that input against the input mask, as defined by the WML:FORMAT and WML:EMPTYOK attributes or their CSS equivalents.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-149
	When using a text input control, the control is a TEXTAREA element, and the user enters data into that text control, for which there is no input mask set, the user agent must set the control variable to the control's current value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-150
	When using a text input control, the control is a TEXTAREA element, and the user attempts to commit input which conforms to the input mask set, the user agent must set the control variable to that value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-151
	When using a text input control, the control is a TEXTAREA element, and the value input by the user into the control does not conform to the input mask, the user agent must not commit that input and must notify the user that the input was rejected, and allow the user to re-submit new input.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-152
	When using a text input control, the control is a TEXTAREA element, and the value input by the user into the control does not conform to the input mask, the control variable must not be modified.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-153
	When the control only permits a single selection, the WML:NAME attribute of the SELECT element is specified, the named variable must be set to the value of the VALUE attribute of the selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-154
	When the control only permits a single selection, the WML:NAME attribute of the SELECT element is specified, the value of the VALUE attribute of the selected OPTION element is not specified, the named variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-155
	When the control only permits a single selection, the WML:INAME attribute of the SELECT element is specified, the named variable must be set to the index of the selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-156
	When the control only permits a single selection, the WML:INAME attribute of the SELECT element is specified, the index numbering must begin at one and increase monotonically.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-157
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-158
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected OPTION elements that contain a VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-159
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected OPTION elements that do not contain an empty VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-160
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, but the user commits without selecting any options, the control variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-161
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, but all OPTION element VALUE attributes are set to an empty string, the SELECT elements control variable must also be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-162
	When the WML:INAME attribute of the SELECT element is specified, and multiple selections are permitted, the named variable must be set to a semicolon-delimited string of the indices of the selected OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-163
	When the WML:INAME attribute of the SELECT element is specified, and multiple selections are permitted, but the user commits without selecting any options, the control variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-164
	When the control only permits a single selection, the NAME attribute of the SELECT element is used to name the control variable, the named variable must be set to the value of the VALUE attribute of the selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-165
	When the control only permits a single selection, the NAME attribute of the SELECT element is used to name the control variable, the value of the VALUE attribute of the selected OPTION element is not specified but the content is set, the named variable must be set to the content of the selected OPTION element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-166
	When the control only permits a single selection, the NAME attribute of the SELECT element is used to name the control variable, the value of the VALUE attribute of the selected OPTION element is not specified and the content of the OPTION element is unset, the named variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-167
	When multiple selections are permitted, the NAME attribute of the SELECT element is used to name the control variable, the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected OPTION elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-168
	When multiple selections are permitted, the NAME attribute of the SELECT element is used to name the control variable, the VALUE attribute of some selected OPTION elements is not specified but the content of these selected OPTION elements is specified, the content of these selected OPTION elements must be substitued to their VALUE attribute in the semicolon-delimited string, result, of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-169
	When multiple selections are permitted, the NAME attribute of the SELECT element is used to name the control variable, the VALUE attributes of a selected OPTION elements is not specified and the content of this selected elements is not specified, this option must be ignored in the semicolon-delimited string, result, of the control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-170
	When multiple selections are permitted, the NAME attribute of the SELECT element is used to name the control variable, but the user commits without selecting any options, the control variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-171
	When the WML:INAME attribute of the SELECT element is specified, and multiple selections are permitted, the user agent must ensure that the WML:INAME variable value contains no duplicate index values.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-172
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, the user agent must contain duplicate values in the situation where multiple selected option elements have the same value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-173
	When the WML:NAME attribute of the SELECT element is specified, and multiple selections are permitted, the user agent must not allow the WML:NAME control variable to contain empty values (e.g. 'cat;"";dog').
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-174
	When the WML:NAME variable of the SELECT element is changed, due to a user selecting a option, the user agent must not exhibit display side effects, except when there is an explicit refresh task.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-175
	When the WML:INAME variable of the SELECT element is changed, due to a user selecting an option, the user agent must not exhibit display side effects, except when there is an explicit refresh task.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-176
	When the variable named by the WML:NAME of the SELECT element is changed, the user agent must update it each time, before each and every task invocation.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-177
	When the variable named by the WML:INAME of the SELECT element is changed, the user agent must update it each time, before each and every task invocation.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-178
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-179
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements that contain a VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-180
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements that do not contain an empty VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-181
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'checkbox', but the user commits without selecting any checkboxes, the control variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-182
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'checkbox', but all INPUT element VALUE attributes are set to an empty string, the named variable must also be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-183
	When the NAME attribute of the INPUT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-184
	When the NAME attribute of the INPUT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements that contain a VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-185
	When the NAME attribute of the INPUT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'checkbox', the named variable must be set to a semicolon-delimited string of the VALUE attributes of the selected INPUT elements that do not contain an empty VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-186
	When the NAME attribute of the INPUT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'checkbox', but the user commits without selecting any checkboxes, the control variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-187
	When the NAME attribute of the INPUT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'checkbox', but all INPUT element VALUE attributes are set to an empty string, the named variable must also be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-188
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'radio', the named variable must hold the value of the VALUE attribute of the selected INPUT element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-189
	When the WML:NAME attribute of the INPUT element is assigned, the TYPE attribute of the INPUT element is set to 'radio', the value of the VALUE attribute of the selected INPUT element is not specified, the named variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-190
	When the NAME attribute of the SELECT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'radio', the named variable must hold the value of the VALUE attribute of the selected INPUT element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-191
	When the NAME attribute of the SELECT element is used to name the control variable, the TYPE attribute of the INPUT element is set to 'radio', the value of the VALUE attribute of the selected INPUT element is not specified, the named variable must be set to an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-192
	When the reset button is launched, the user agent must reset the current value of each control to its initial value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-193
	When navigating away from a card containing a form, the user agent must commit the current value of each form control to its form control variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-194
	When submitting a form, and the ACTION attribute of the FORM element is set to 'get', it must define the method used to submit the data.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-195
	When submitting a form, and the ACTION attribute of the FORM element is set to 'post', it must define the method used to submit the data.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-196
	When submitting a form, any form control variables must be sent.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-197
	When calling a document of the type WML2(application/wml+xml), the user agent must process the document according to the WML variable attribute expression language.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-198
	When using the WML variable attribute expression language, the variable names must consist of a US-ASCII letter or underscore, followed by zero or more letters, digits or underscores.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-199
	When using the WML variable attribute expression language, and the 'noesc' conversion is used, the user agent must not apply any escapement to the variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-200
	When using the WML variable attribute expression language, and 'escape' conversion is used, the user agent must apply URL encoding to the string before using it in the current context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-201
	When using the WML variable attribute expression language, the 'unesc' conversion is used, the user agent must reverse URL encoding from the string before using it in the current context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-202
	When a WML2.0 user agent loads an XHTML Basic document, and that document content contains the '$', it must treat is as an ordinary text character, and not a variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-203
	When a WML2.0 user agent loads an XHTML Basic document, and that document content contains the '$$', it must treat them as ordinary text characters, and show both dollar signs.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-204
	When using the WML variable attribute expression language, in the context of variable parsing, all XML syntax must have a higher precedence than the variable syntax(e.g. entity substitution occurs before the variable substitution syntax is parsed).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-205
	When a author wishes to include a '$' character in an attribute value in a WML2 document, they must escape the dollar sign by using two dollar signs(e.g. $$).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-206
	When a variable is declared within a form control element using the WML:NAME attribute, the variable must be globally scoped.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-207
	When a form control element is placed inside of a FORM element, and that control names a variable with the WML:NAME attribute, that form control variable must be globally scoped.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-208
	When a variable is declared with the WML:SETVAR element, the variable must be globally scoped, regardless of the positioning of the WML:SETVAR element relative to a FORM element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-209
	When the value of an attribute is not to be evaluated as part of the WML variable expression language, and it is to contain a literal '$' character, it must use an escaped literal dollar sign to prevent the creation.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-210
	When a variable reference uses invalid syntax, the document must be treated as being in error.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-211
	When a WML:ONEVENT element has its TYPE attribute set to 'timer' and the timer expires, the associated event must occur.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-212
	When a card is entered and a WML:ONEVENT elements TYPE attribute is set to 'enterforward', the associated event must occur.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-213
	When a card is entered via backward navigation (e.g. a WML:PREV task), and an ENTERBACKWARD event handler is set, the associated event must occur.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-214
	When an OPTION element contains a WML:ONEVENT element with the TYPE attribute set to 'pick', and the option is chosen, the event must be processed.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-215
	When a WML:CARD element has its ONTIMER attribute set to a URL, when the timer expires the user agent must automatically navigate to the given URL.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-216
	When a WML:CARD element has its ONENTERFORWARD attribute set to a URL, and the card is entered, the user agent must automatically navigate to the given URL.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-217
	When a WML:CARD has its ONENTERBACKWARD attribute set to a URL, and the card is entered via backward navigation, the user agent must navigate to the URL stated.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-218
	When an OPTION element contains a WML:ONPICK attribute set to a URL, and the option is chosen, the event must be processed.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-219
	When the user agent handles an event, it must treat the attribute syntax as an abbreviated form of the WML:ONEVENT element, where the attribute name is mapped to the TYPE attribute of the WML:ONEVENT element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-220
	When an event binding is used, it must be scoped to the element in which it is declared.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-221
	When an event binding element specifies an event type that does not apply to its parent element, the user agent must ignore the event binding.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-222
	When conflicting event bindings are used within an element, they must be treated as an error.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-223
	When the WML:DO element is used, the only way to bind a task to the associated event is to place the task element within the WML:DO element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-224
	When a card level binding is set, the binding must appear inside a WML:CARD element and specify event-processing behaviour for that particular card.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-225
	When a document level binding is set, the binding must appear inside the HTML element and specify event-processing behaviour for each card in the document.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-226
	When a document holds an event binding at both document level and card level, the card level event binding must override the document level event binding.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-227
	When a card level-binding shadows a document-level binding, and the card-level binding specifies the NOOP task, the event binding for that event must be completely masked.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-228
	When a card-level binding specifies a NOOP task but does not override another binding, then the binding for that event must be masked and similarly ignored with no side effects.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-229
	When a document-level binding specifies a NOOP task but does not override and is not overridden by another binding, then the binding for that event must be masked and similarly ignored with no side effects.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-230
	The WML2 user agent must provide the end user access to a back key at all times.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-231
	When the back key is activated by the end user, the user agent must execute a prev task.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-232
	When the user activates a WML:DO element, the user agent must execute the associated task.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-233
	When the WML:DO element is set, the user agent must use the WML:DO element's TYPE attribute to provide a suitable mapping onto a physical user interface construct.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-234
	When the WML:DO element's TYPE attribute is set to 'accept', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-235
	When the WML:DO element's TYPE attribute is set to 'prev', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-236
	When the WML:DO element's TYPE attribute is set to 'help', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-237
	When the WML:DO element's TYPE attribute is set to 'reset', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-238
	When the WML:DO element's TYPE attribute is set to 'options', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-239
	When the WML:DO element's TYPE attribute is set to 'delete', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-240
	When the WML:DO element's TYPE attribute is set to 'unknown', the user agent must select the default presentation associated with that role.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-241
	When the WML:DO element's TYPE attribute is set to 'prev', and the default presentation is selected, the user agent must override the default behavior of the BACK key with the task associated with the WML:DO element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-242
	When there is more than one WML:DO element with it's TYPE attribute is set to 'prev', the first WML:DO element in the document order must override the BACK key.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-243
	When a card is entered and the card contains a WML:TIMER element, the timer must be initialised and started.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-244
	When a timer is started, it must decrement from its initial value, triggering the delivery of a WML-ONTIMER event on transition from a value of one to zero.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-245
	When a timer is running within a card, and the timer expires before the user exits the card, a TIMER event must occur.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-246
	When a WML:TIMER element's VALUE attribute is not set to a positive number, the user agent must ignore the WML:TIMER element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-247
	When a refresh task is invoked while a timer is running, the task must stop the timer, commit it's value to the context, and update the user agent accordingly.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-248
	When a refresh task is invoked while a timer is running, on completion of the refresh task, the user agent must treat it as an entry to a card and the timer must be restarted.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-249
	When a user agent encounters an element it does not recognize, it must continue to process the children of that element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-250
	When a user agent encounters an element it does not recognize, and that element contains content that is text, the text must be presented to the user.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-251
	When a user agent encounters an attribute it does not recognize, it must ignore the entire attribute specification(i.e. the attribute and it's value).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-252
	When a user agent encounters an attribute value it does not recognize, it must use the default attribute value(if there is one for that element).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-253
	When a document is entered, and the WML:NEWCONTEXT attribute is set to 'true', the user agent context must be initialised.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-254
	When a document is constructed, multiple WML:CARD's must be allowed.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-255
	When a document is constructed, each WML:CARD in the document must represent an individual presentation and/or interaction with the user.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-256
	When a card is entered, and the NEWCONTEXT attribute is set to 'true', the user agent must reinitialise the browser context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-257
	When using a text input control, the WML:FORMAT attribute must specify an input mask for the control.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-258
	When processing a text input control that contains a WML:FORMAT attribute, the user agent must ignore invalid masks.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-259
	When using a text input control, the user agent must be able to support ASCII graphic characters of the Unicode Basic Latin block.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-260
	When the WML:FORMAT attribute of the INPUT element is specified as "*A", the text input must be limited to upper-case letters, symbols or punctuation characters. Numeric characters are excluded.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-261
	When the FORMAT attribute of the INPUT element is specified as "*a", the text input must be limited to lower-case letters, symbols or punctuation characters.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-262
	When the FORMAT attribute of the INPUT element is specified as "*N", the text input must be limited to numeric characters.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-263
	When the FORMAT attribute of the INPUT element is specified as "*n", the text input must be limited to numeric, symbol, or punctuation characters.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-264
	When the FORMAT attribute of the INPUT element is specified as "*X", the text input must be limited to uppercase letters, numeric characters, symbols, or punctuation characters.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-265
	When the FORMAT attribute of the INPUT element is specified as "*x", the text input must be limited to lowercase letters, numeric characters, symbols, or punctuation characters.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-266
	When the FORMAT attribute of the INPUT element is specified as "nf", where n must be a natural number and f is one of the format characters "aANXx", the number of input characters is limited to n and the type is limited to f.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-267
	When the FORMAT attribute of the INPUT element contains a backslash "\" followed by a character c, that character must be displayed in the input field at the position indicated.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-268
	When WML:EMPTYOK is true, input is not required even if the format mask would otherwise require it.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-269
	When EMPTYOK is false, input is required even if the format mask would otherwise not require it.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-270
	When a FORMAT attribute of the INPUT elmement is specified such that it requires input, e.g. "M*M", and the WML:EMPTYOK attribute is not specified, the FORMAT attribute must fully define the input requirement(the user agent must treat the WML:EMPTYOK as the implied value of 'false').
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-271
	When the FORMAT attribute of the INPUT element is specified such that it allows empty input, e.g. "*f", and the WML:EMPTYOK attribute is not specified, the format attribute must fully define the input requirement(the user agent must treat the WML:EMPTYOK as the implied value of 'true'.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-272
	When a multiple-selection list generates a pick event, due to the user selecting an option, user must be taken to the card specified by the URI, when the option is selected.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-273
	When an multiple-selection list generates a pick event, due to the user de-selecting an option, user must be taken to the card specified by the URI, when the option is de-selected.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-274
	When an multiple-selection list generates a pick event, due to the user selecting an option, user must be taken to the card specified by the URI, when the option is selected.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-275
	When the IMG element is used, and there is no internal representation for the image, the image must be downloaded from the URI specified in the SRC attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-276
	When a WML:ONEVENT element is used, it must be scoped to the element in which it is declared.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-277
	When the WML:ONEVENT element is used and the TYPE attribute does not correspond to a legal event for the immediately enclosing element, the user agent must ignore the WML:ONEVENT element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-278
	When the user activates the WML:ANCHOR element, the user agent must execute the associated task.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-279
	When the WML:ANCHOR element is used, the user agent must accept the WML:ANCHOR element anywhere within the text flow.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-280
	When a document does not contain a WML:ACCESS element, access control must be disabled.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-281
	When the WML:ACCESS element is used, and the DOMAIN attribute is set, the entire element of each sub-domain must match each element exactly(e.g., www.wapforum.org shall match wapforum.org).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-282
	When the WML:ACCESS element is used, and the PATH attribute is set, the entire path elements must match each element exactly to gain access(e.g., /X/Y matches path="/X attribute, but does not match path="/XZ" attribute).
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-283
	When the WML:ACCESS element is used without specifying the DOMAIN attribute, the DOMAIN attribute must default to the current document's domain.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-284
	When the WML:ACCESS element is used without specifying the PATH attribute, the PATH attribute must default to the value '/'.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-285
	When the WML:ACCESS element is used, and the PATH attribute is set to a relative URI, and the URI matches the path to be accessed (once the user agent has converted the relative URI into an absolute path), the user agent must allow access to the destination requested.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-286
	When the WML:ACCESS element is used, and the DOMAIN and PATH attribute are set, the user agent must verify that the referring document's URI matches the values of the attributes.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-287
	When the SENDREFERER attribute of the WML:GO element is set to true, the user agent must send the URL of the deck containing this task to the server.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-288
	When the cache-control attribure is present within the WML:GO element and its CACHE-CONTROL attribute value is set to "no-cache", the client must reload the URL from the origin server.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-289
	When the cache-control attribute is present within the WML:GO element, the HTTP cache-control header must be added to the request with the same value as specified in the attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-290
	When the WML:GO element is specified, it must declare a GO task, indicating navigation to a URI.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-291
	When the WML:GO element's HREF attribute names a WML card, the user agent must display the destination card.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-292
	When the WML:GO element is specified, the METHOD attribute is set to 'get', and the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', all field names and values sent must be escaped using URI-escaping and assembled into an application/x-www-form-urlencoded content type.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-293
	When the WML:GO element is specified, the METHOD attribute is set to 'get', the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', the WML:POSTFIELD element is used to name a field, and the value of the WML:POSTFIELD's VALUE attribute references the control variable for a multiple-selection control, the field VALUE must be submitted as a semicolon-separated list of assigned values.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-294
	When the WML:GO element is specified, the METHOD attribute is set to 'get', and the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', data sent to the server must be a valid query component with the original query part and the postfields combined.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-295
	When the WML:GO element is specified, the METHOD attribute is set to 'get', and the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', all field names and values sent must e escaped using URI-escaping and assembled into an application/x-www-form-urlencoded content type.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-296
	When the WML:GO element is specified, the METHOD attribute is set to 'get', the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', the WML:POSTFIELD element is used to name a field, and the value of the WML:POSTFIELD's VALUE attribute references the control variable for a multiple-selection control, the field value must be submitted as specified in [HTML4] where one name/value pair is included for each item in the list.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-297
	When the WML:GO element is specified, the METHOD attribute is set to 'get', and the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', data sent to the server must be a valid query component with the original query part and the postfields combined.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-298
	When the WML:GO element is specified, the METHOD attribute is set to 'get', and the ENCTYPE attribute is set to 'multipart/form-data', the user agent must ignore the WML:GO element.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-299
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', all field names and values sent must be escaped using URI-escaping and assembled into an application/x-www-form-urlencoded content type.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-300
	When the WML:GO element is specified, the METHOD attribute is set to 'post', the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', the WML:POSTFIELD element is used to name a field, and the value of the WML:POSTFIELD's VALUE attribute references the control variable for a multiple-selection control, the field VALUE must be submitted as a semicolon-separated list of assigned values.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-301
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', any submission data must be sent as the body of the HTTP POST request.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-302
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'application/vnd.wap.wml.form.urlencoded', the CONTENT-TYPE header must include the CHARSET parameter to indicate the character encoding.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-303
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', all field names and values sent must be escaped using URI-escaping and assembled into an application/x-www-form-urlencoded content type.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-304
	When the WML:GO element is specified, the METHOD attribute is set to 'post', the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', the WML:POSTFIELD element is used to name a field, and the value of the WML:POSTFIELD's VALUE attribute references the control variable for a multiple-selection control, the field value must be submitted as specified in [HTML4] where one name/value pair is included for each item in the list.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-305
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'application/x-www-form-urlencoded', any submission data must be sent as the body of the HTTP POST request.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-306
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'multipart/form-data', all field names and values sent must be encoded as a 'multipart/form-data' content type.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-307
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'multipart/form-data', any submission data must be sent as the body of the HTTP POST request.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-308
	When the WML:GO element is specified, the METHOD attribute is set to 'post', and the ENCTYPE attribute is set to 'multipart/form-data', the WML:POSTFIELD element is used to name a field, and the value of the WML:POSTFIELD's VALUE attribute references the control variable for a multiple-selection control, the field value must be submitted as specified in [HTML4] where one part is included for each item in the list.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-309
	When the WML:NOOP element is specified, no operation should be carried out when the task is called.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-310
	When the WML:POSTFIELD is used, the NAME attribute must specify the field name.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-311
	When the WML:POSTFIELD is used, the VALUE attribute must specify the field value.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-312
	When the WML:SETVAR element is used, the NAME attribute must specify the name of the variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-313
	When the WML:SETVAR element is used, the VALUE attribute must specify the expression to evaluate and assign to the variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-314
	When a WML:SETVAR element contains a NAME attribute that does not evaluate to a legal variable name, the element is ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-315
	When a WML:SETVAR element contains a VALUE attribute that does not evaluate to a legal expression at runtime, the element is ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-316
	When a WML:SETVAR element contains a NAME attribute and it's value is a variable expression, the user agent must correctly evaluate the variable expression specified.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-317
	When a WML:SETVAR element contains a VALUE attribute and it's value is a variable expression, the user agent must correctly evaluate the variable expression specified.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-318
	When the WML:GETVAR element is used, the required NAME attribute must specify the name of the variable whose value is the substitution text.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-319
	When the WML:GETVAR element is used, and the variable is not set, the substitution text must be an empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-320
	When the WML:GETVAR element is used, and the NAME attribute does not evaluate to a legal variable name, the substitution text must be a empty string.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-321
	When the WML:GETVAR element is specified, the user agent must replace the element with the substitution text.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-322
	When the CONVERSION attribute of the WML:GETVAR element is specified, then it must specify the conversion to be applied to the value of the variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-323
	When the CONVERSION attribute of the WML:GETVAR element is set to 'noesc', the user agent must not apply any escapement to the variable.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-324
	When the CONVERSION attribute of the WML:GETVAR element is set to 'escape', the user agent must apply URL encoding to the string before using it in the current context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-325
	When the CONVERSION attribute of the WML:GETVAR element is set to 'unesc', the user agent must must reverse URL encoding from the string before using it in the current context.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-326
	When the WML:GETVAR element is used, no substitution of elements must be possible.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-327
	When the WML:GETVAR element is used, no substitution of attributes must be possible.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-328
	When the WML:GETVAR element references a variable, the user agent must not attempt to process the resulting string as XML markup.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-329
	When the NAME attribute of the WML:TIMER element is specified, it must define the name of the variable to be set with the value of the timer.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-330
	When the NAME attribute of the WML:TIMER element is specified, the named variable must be used to set the timeout period upon timer initialisation.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-331
	When the NAME attribute of the WML:TIMER element is specified, the named variable must be set with the current timer value when the card is exited.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-332
	When the NAME attribute of the WML:TIMER element is specified, the named variable must be set to the value of '0' when the timer expires.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-333
	When the VALUE attribute of the WML:TIMER element is specified, it must hold the default value of the variable named in the NAME attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-334
	When the NAME attribute of the WML:TIMER element is specified, and the variable value is not already set, the variable must be set with the value of the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-335
	When the NAME attribute of the WML:TIMER element is specified, and the variable value is already set, the VALUE attribute must be ignored.
	0
	0
	0
	1
	0
	
	

	WML-2.0-con-336
	When the NAME attribute of the WML:TIMER element is not specified, the timeout is always initialised to the value specified in the VALUE attribute.
	0
	0
	0
	1
	0
	
	

	WAE-2.2-con-101
	To test support of the required content types
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-102
	To test support for graphical images
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-103
	To test Vcard functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-104
	To test Vcal functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-105
	To test Multipart Message Encoding functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-106
	To test support for minimum URI length
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-107
	To test the support for charactersets UTF-8 and UTF-16
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-108
	Support for HTTP/1.1 Basic Authentication
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-109
	To test the Navigation History Model
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-110
	To test the Navigation History Back Key functionality.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-111
	To test the conversion from standard internet Multipart to WAP specific Multipart via WSP
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-112
	To test the support for the minimum URI length.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-113
	Server support for UTF-8 and UTF-16 characterset.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-114
	Unknown character behaviour.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-115
	Support for Crypto Lib encoding
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-116
	No TLS / WTLS support available
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-117
	Support for WML2
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-201
	To test support of the required content types
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-202
	Support for maintaining context between WML1, and WML2
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-203
	To test support for graphical images
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-104
	To test Vcard functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-205
	To test Vcal functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-106
	To test Multipart Message Encoding functionality
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-207
	To test support for minimum URI length
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-108
	To test the support for charactersets UTF-8 and UTF-16
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-209
	Support for HTTP/1.1 Basic Authentication
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-210
	To test the Navigation History Model
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-211
	To test the Navigation History Back Key functionality.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-212
	To test the conversion from standard internet Multipart to WAP specific Multipart via WSP
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-213
	To test the support for the minimum URI length.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-214
	Server support for UTF-8 and UTF-16 characterset.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-215
	Unknown character behaviour.
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-216
	Support for Crypto Lib encoding
	0
	0
	0
	2
	0
	
	

	WAE-2.2-con-217
	No TLS / WTLS support available
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-1
	WMLScript variables are case-sensitive.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-2
	WMLScript function names are case-sensitive.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-3
	Ensure that whitespace tokens <TAB>, <VT>, <FF>, <SP>, <LF> and <CR> are ignored between program tokens.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-4
	When a line starts with a double-slash (//), it is a single line comment. This comment is ignored by the script processor.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-5
	When a line starts with a multi-line comment delimiter (/*), the block between that delimiter and the closing comment delimiter (*/) is ignored by the script processor.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-6
	Floating point literals can be defined using the syntax "DecimalIntegerLiteral. DecimalDigits ExponentPart".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-7
	Floating point literals can be defined using the syntax ". DecimalDigits ExponentPart".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-8
	Floating point literals can be defined using the syntax "DecimalIntegerLiteral ExponentPart".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-9
	Floating point literals can be defined using the syntax "DecimalIntegerLiteral . ExponentPart".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-10
	When an escape sequence (as described in the table in 6.1.5.3) is encountered within a string literal, it is replaced with its character equivalent in the literal.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-11
	String literals of length 0 can be defined.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-12
	Boolean literals of true and false can be defined using "true" and "false".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-13
	An invalid literal can be defined using "invalid".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-14
	Function names have their own name space.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-15
	Function parameters have their own name space.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-16
	Variables have their own name space.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-17
	Pragmas have their own name space.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-18
	Within the function where it is declared, a WMLScript variable is visible outside of the block statement where it has been declared.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-19
	A WMLScript variable has a value from its declaration up to the end of the function.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-20
	A WMLScript variable can hold integer values ranging from Lang.minInt() to Lang.maxInt().
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-21
	If an operation results in an integer value outside the range of supported integer values then the result is 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-22
	A WMLScript variable can hold floating-point positive values ranging from Float.minFloat() to Float.maxFloat().
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-23
	If an operation results in a floating-point number outside the range of supported floating-point values then the result is 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-24
	A WMLScript variable which is initialized to, or assigned, a positive floating-point value lower than Float.minFloat() gets set to 0.0.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-25
	A WMLScript variable of value '-0.0' is equal to a variable of value '+0.0'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-26
	The '=' operator assigns the rhs value to the WMLScript variable on the lhs.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-27
	The '+=' operator applies the '+' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-28
	The '-=' operator applies the '-' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-29
	The '*=' operator applies the '*' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-30
	The '/=' operator applies the '/' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-31
	The 'div=' operator applies the 'div' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-32
	The '%=' operator applies the '%' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-33
	The '<<=' operator applies the '<<' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-34
	The '>>=' operator applies the '>>' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-35
	The '>>>=' operator applies the '>>>' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-36
	The '&=' operator applies the '&' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-37
	The '^=' operator applies the '^' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-38
	The '|=' operator applies the '|' operator with the value of the WMLScript variable on the lhs as the first operand and the value on the rhs as the second operand and assigns the result to this variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-39
	An assignment operator of one variable does not change the binding of any other variable.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-40
	When both operands are numbers (integer or floating-point values), the '+' operator adds the value of the first operand to the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-41
	The '-' operator subtracts the value of the second operand from the value of the first operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-42
	The '*' operator multiplies the value of the first operand by the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-43
	The '/' operator divides the value of the first operand by the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-44
	The 'div' operator divides the value of the first operand by the value of the second operand and returns the integral part of the result.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-45
	The '%' operator integer divides the value of the first operand by the value of the second operand and returns the remainder part of the result.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-46
	The '<<' operator left shifts the bits of the value of the first operand by the number of bits specified by the value of the second operand, filling the shifted bits with a zero bit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-47
	The '>>' operator right shifts the bits of the value of the first operand by the number of bits specified by the value of the second operand, filling the shifted bits with the sign bit of the first operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-48
	The '>>>' operator right shifts the bits of the value of the first operand by the number of bits specified by the value of the second operand, filling the shifted bits with a zero bit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-49
	The '&' operator performs a bitwise logical AND operation on the bits of the value of the first operand and the bits of the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-50
	The '|' operator performs a bitwise logical OR operation on the bits of the value of the first operand and the bits of the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-51
	The '^' operator performs a bitwise logical XOR operation on the bits of the value of the first operand and the bits of the value of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-52
	The '~' operator performs a bitwise logical NOT operation on the bits of the value of the operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-53
	The unary '+' operator does not change the value of its operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-54
	The unary '-' operator changes the sign bit of its operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-55
	When a prefix '++' operator is used, the value of the variable is incremented by 1 before the evaluation of the complete expression.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-56
	When a postfix '++' operator is used, the value of the variable is incremented by 1 after the evaluation of the complete expression.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-57
	When a prefix '--' operator is used, the value of the variable is decremented by 1 before the evaluation of the complete expression.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-58
	When a postfix '--' operator is used, the value of the variable is decremented by 1 after the evaluation of the complete expression.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-59
	When both operands are strings, the '+' operator concatentates the strings together.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-60
	If the first operand of the '&&' operator evaluates to 'true' then the result of the operation is the result of the evaluation of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-61
	If the first operand of the '&&' operator evaluates to 'false' then the result of the operation is 'false' and the second operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-62
	If the first operand of the '||' operator evaluates to 'false' then the result of the operation is the result of the evaluation of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-63
	If the first operand of the '||' operator evaluates to 'true' then the result of the operation is 'true' and the second operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-64
	If the operand of the unary '!' operator evaluates to 'true', then the result of the operation is 'false'. If the operand evaluates to 'false', then the result is 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-65
	If the first operand of the '&&' operator evaluates to 'invalid' then the result of the operation is 'invalid' and the second operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-66
	If the first operand of the '||' operator evaluates to 'invalid' then the result of the operation is 'invalid' and the second operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-67
	When the '+' operator is applied to string operands, the result of the operation is the concatenation of both operands.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-68
	When the '+=' operator is applied to string operands, the result of the operation is the concatenation of both operands.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-69
	The boolean literal 'true' is larger than 'false'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-70
	Comparison of integer values is based on the given integer values.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-71
	Comparison of floating-point values is based on the given floating-point values.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-72
	Comparison of string operands is based on the order of character codes of the given string values, as defined by the character set supported by the device.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-73
	When at least one of the operands of a comparison operator is 'invalid' then the result is 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-74
	The result of the comma operator is the result of the evaluation of the second operand.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-75
	If the first operand of a conditional operator '?:' evaluates to 'true', then the result of the operation is the result of the evaluation of the second operand and the third operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-76
	If the first operand of a conditional operator '?:' evaluates to 'false' or 'invalid', then the result of the operation is the result of the evaluation of the third operand and the second operand is not evaluated.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-77
	If the operand of the 'typeof' operator evaluates to an integer value, then the result of the operation is '0'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-78
	If the operand of the 'typeof' operator evaluates to a floating-point value, then the result of the operation is '1'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-79
	If the operand of the 'typeof' operator evaluates to a string value, then the result of the operation is '2'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-80
	If the operand of the 'typeof' operator evaluates to a boolean value, then the result of the operation is '3'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-81
	If the operand of the 'typeof' operator evaluates to the 'invalid' value, then the result of the operation is '4'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-82
	When the typeof operator is used to identify the type of an expression an integer value is returned.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-83
	If the operand of the 'isvalid' operator evaluates to the 'invalid' value, then the result of the operation is the boolean literal 'false'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-84
	If the operand of the 'isvalid' operator does not evaluate to the 'invalid' value, then the result of the operation is the boolean literal 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-85
	The WMLScript operators respect the operator precedence rules defined in the table of section 6.3.12.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-86
	The WMLScript operators return 'invalid' when one of the operands is 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-87
	The WMLScript operators return 'invalid' when type conversions fail.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-88
	The result type of the WMLScript operators is correct according to the table in section 7.3.12.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-89
	All parameters to functions are passed by value. A modification to the value of a parameter does not affect the value of the calling argument.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-90
	Function parameters are local variables that have been initialized before the execution of the function body. As for any other variable, they loose their value at the end of the function.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-91
	When a function call returns a return value is always returned to the calling function.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-92
	Functions defined in the same compilation unit can be called before they have been declared.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-93
	A call to a function using the 'external#function(arguments)' syntax must be resolved by calling the function defined in the external compilation unit used as prefix.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-94
	A function returns an empty string "" by default.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-95
	A function can be called as a statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-96
	When a variable statement does not contain a variable initializer, the variable is initialized to the empty string "" by default.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-97
	The variable initializer expression is evaluated every time the variable statement is executed.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-98
	If the condition expression of an if statement evaluates to 'true', then only the first statement is executed.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-99
	If the condition expression of an if statement evaluates to 'false' or 'invalid', then only the second optional 'else' statement is executed.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-100
	When 'if' statements are nested, an 'else' statement is always tied to the closest 'if' statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-101
	The condition expression of a 'while' statement is evaluated at each iteration of the statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-102
	The loop statement of a 'while' statement is executed as long as the condition expression evaluates to 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-103
	When the condition expression of a 'while' statement evaluates to 'false' or 'invalid', the execution continues with the statement following the loop statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-104
	The initializer expression of a 'for' statement is evaluated only once for each execution of the statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-105
	The optional condition expression of a 'for' statement is evaluated at each iteration of the statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-106
	The loop statement of a 'for' statement is executed as long as the optional condition expression evaluates to 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-107
	When the optional condition expression of a 'for' statement is omitted it always evaluates to 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-108
	When the condition expression of a 'for' statement evaluates to 'false' or 'invalid', the execution continues with the statement following the loop statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-109
	The optional increment expression is evaluated each time and after the loop statement is executed. It is evaluated before the condition expression for the next iteration.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-110
	When a 'break' statement is executed as part of the loop statement of a 'while' statement, the execution continues with the statement after the closest enclosing loop statement of the 'while' statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-111
	When a 'break' statement is executed as part of the loop statement of a 'for' statement, the execution continues with the statement after the closest enclosing loop statement of the 'for' statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-112
	When a 'continue' statement is executed as part of the loop statement of a 'while' statement, the execution continues with the condition expression of the closest enclosing 'while' statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-113
	When a 'continue' statement is executed as part of the loop statement of a 'for' statement, the execution continues with the increment expression of the closest enclosing 'for' statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-114
	When a return statement is executed, the execution of the function terminates and its return value is the result of the evaluation of the expression specified in the statement.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-115
	When a return statement is executed and there is no return expression, the execution of the function terminates and its return value is the empty string "".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-116
	Relative URLs defined without a hash or fragment identifier can be used as the URL for a pragma declaration.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-117
	When an external function is invoked, an access control check is performed to ensure that the destination compilation unit can be accessed from the current compilation unit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-118
	When the 'domain' attribute of the 'access' pragma is not set in the destination compilation unit, it defaults to the domain of the current compilation unit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-119
	When the 'path' attribute of the 'access' pragma is not set in the destination compilation unit, it defaults to the value "/".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-120
	When the 'domain' attribute of the 'access' pragma of a destination compilation unit is set to a period separated domain suffix, the domain of the current compilation unit is compared to this suffix - where each element specified must match exactly for access to be granted.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-121
	When the 'path' attribute of the 'access' pragma of a destination compilation unit is specified as an absolute path, it defines the path prefix that is permitted access to the compilation unit - where each element of the prefix must match that of the current compilation unit exactly for access to be granted.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-122
	When the 'path' attribute of the 'access' pragma of a destination compilation unit is specified as a relative path, it is converted to an absolute path by the user agent. It then defines the path prefix that is permitted access to the compilation unit - where each element of the prefix must match that of the current compilation unit exactly for access to be granted.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-123
	When there is no 'access' pragma in a destination compilation unit, this is equivalent to having an 'access' pragma with the 'public' attribute, and access is granted to any current compilation unit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-124
	The 'typeof' operator does not perform any type conversion and returns the exact type of a variable or expression.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-125
	An integer value is converted to a string containing the digits that form the decimal representation of its value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-126
	A floating-point value is converted to an implementation-dependent string containing the digits that form the decimal representation of its value. The resulting string representation must be equal to the original value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-127
	The boolean value 'true' is converted to string "true". The boolean value 'false' is converted to string "false".
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-128
	The value 'invalid' cannot be converted to a string value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-129
	A string can be converted to an integer value only if it contains a decimal representation of an integer number.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-130
	A floating-point value cannot be converted to an integer value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-131
	The boolean value 'true' is converted to integer value '1'. The boolean value 'false' is converted to integer value '0'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-132
	The value 'invalid' cannot be converted to an integer value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-133
	A string can be converted to a floating-point value only if it contains a valid decimal representation of a floating-point number.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-134
	An integer value is converted to a corresponding floating-point value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-135
	The boolean value 'true' is converted to floating-point value '1.0'. The boolean value 'false' is converted to floating-point value '0.0'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-136
	The value 'invalid' cannot be converted to a floating-point value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-137
	The empty string is converted to boolean value 'false'. All other strings are converted to boolean value 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-138
	An integer value '0' is converted to boolean value 'false'. All other integer numbers are converted to boolean value 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-139
	A floating-point value '0.0' is converted to boolean value 'false'. All other floating-point numbers are converted to boolean value 'true'.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-140
	The value 'invalid' cannot be converted to a boolean value.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-141
	When an operator expects operands of type boolean, if the operand is of type boolean or can be converted to a boolean value, then the operation is performed on the boolean values and its result is returned.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-142
	When an operator expects operands of type Integer, if the operand is of type Integer or can be converted to an Integer value, then the operation is performed on the Integer values and its result is returned.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-143
	When an operator expects operands of type Float, if the operand is of type Float or can be converted to a Float value, then the operation is performed on the Float values and its result is returned.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-144
	When a unary operator expects operands of either Integer or Floating Point, if the operand is of type Integer or Floating Point or can be converted to a Integer or Floating Point value, then the operation is performed on the Integer or Floating Point values and its result is returned.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-145
	The interpreter charset can be requested by using the Lang.characterSet() library function.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-146
	When a call to an external WMLScript function is made via the use of a URL fragment anchor the call will fail if the function does not exist in the external compliation unit.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-147
	When a call to an external WMLScript function is made via the use of a URL fragment anchor the parameters list is passed to the external function.
	0
	0
	0
	2
	0
	
	

	WMLS-2.0-con-148
	When a call to an external WMLScript function is made via the use of a relative URL the calling scripts base URL is used as the base URL to identify the external compliation unit location.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-1
	When the Lang.abs function is called with a value as its argument, it returns the absolute value of that argument.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-2
	When the Lang.abs function is called with an integer as its argument, it returns an integer type reflecting the absolute value of the argument.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-3
	When the Lang.abs function is called with a floating-point value as its argument, it returns a floating-point type reflecting the absolute value of the argument.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-4
	When the Lang.abs function is called with an argument that is not of type integer or floating-point, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-5
	When the Lang.min function is called with two values as arguments, it returns the smaller of the two values.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-6
	When the Lang.min function is called with two values as arguments, and the two values are equal, the first value is returned.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-7
	When the Lang.min function is called with any non-value argument(s), it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-8
	The value and type returned by the Lang.min function must be the va value of the smallest value and of type 'integer' when that value is an integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-9
	The value and type returned by the Lang.min function must be the va value of the smallest value and of type 'floating point' when that value is a floating point.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-10
	When the Lang.max function is called with two values as arguments, it returns the larger of the two values.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-11
	When the Lang.max function is called with two values as arguments, and the two values are equal, the first value is returned.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-12
	When the Lang.max function is called with any non-value argument(s), it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-13
	The value and type returned by the Lang.max function must be the value of the largest value and of type 'integer' when that value is an integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-14
	The value and type returned by the Lang.max function must be the value of the largest value and of type 'floating point' when that value is a floating point.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-15
	When the Lang.parseInt function is called with a string as an argument, it returns an integer reflecting the value of the contents of the string from its beginning up to the first character that is not '+', '-', or a decimal digit.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-16
	When the Lang.parseInt function is called with a string as an argument, and that string does not contain the representation of an integer at its beginning, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-17
	When the Lang.parseInt function detects an error when parsing its input argument, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-18
	When the Lang.parseFloat function is called with a string as an argument, it returns a floating-point value reflecting the value of the contents of the string from its beginning up to the first character that is not a legal part of a floating-point representation.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-19
	When the Lang.parseFloat function is called with a string as an argument, and that string contains no floating-point value representation, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-20
	When the Lang.parseFloat function detects an error when parsing its input argument, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-21
	When the Lang.isInt function is called with an object, it returns a boolean indicating whether the object can be converted to type integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-22
	When the Lang.isInt function is called with an object of type invalid, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-23
	When the Lang.isFloat function is called with an object, it returns a boolean indicating whether the object can be converted to type floating-point.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-24
	When the Lang.isFloat function is called with an object of type invalid, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-25
	When the Lang.maxInt function is called, it returns the largest integer value that can be represented (2147483647).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-26
	When the Lang.minInt function is called, it returns the smallest integer value that can be represented (-2147483648).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-27
	When the Lang.float function is called, it returns true if floating point operations are supported.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-28
	When the Lang.random function is called with a value as the parameter, it returns an integer value that is greater than or equal to 0 but less than or equal to the value of the parameter.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-29
	When the Lang.random function is called with a non-value as the parameter, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-30
	When the Lang.random function is called with a value of zero, it returns zero.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-31
	When the Lang.random function is called with a negative value, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-32
	When the Lang.random function is called with a floating point value as the parameter, it returns an integer value that is greater than or equal to 0 but less than or equal to the value of the parameter.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-33
	When the Lang.seed function is called with an integer as the parameter, it initializes the pseudo-random sequence using that integer and returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-34
	When the Lang.seed function is called with a floating-point value as the parameter, it first converts the value to an integer and then initializes the pseudo-random sequence using that integer and returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-35
	When the Lang.seed function is called with a non-numeric value as the parameter, invalid must be returned.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-36
	When a seed value of greater than or equal to zero is used, a repeatable sequence of pseudo-random numbers must be produced.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-37
	When the Lang.characterSet function is called, it returns an IANA-assigned integer representing the character set supported by the WMLScript Interpreter.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-38
	When the Float.int function is called with a number, it returns the integer portion of that number.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-39
	When the Float.int function is called with a non-number, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-40
	When the Float.int function is called with an integer, the result is that integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-41
	When the Float.floor function is called with a number, it returns the greatest integer value that is not greater than the given number.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-42
	When the Float.floor function is called with a non-number, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-43
	When the Float.floor function is called with an integer, it returns that integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-44
	When the Float.ceil function is called with a number, it returns the smallest integer value that is not less than the given number.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-45
	When the Float.ceil function is called with a non-number, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-46
	When the Float.ceil function is called with an integer, it returns that integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-47
	When the Float.pow function is called with two numbers val1 and val2, it returns the floating point result of raising val1 to the val2 power.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-48
	When the Float.pow function is called with two numbers val1 and val2, and val1 = 0 and val2 is less than 0, then the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-49
	When the Float.pow function is called with two numbers val1 and val2, and val1 is less than 0 and val2 is not an integer, then the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-50
	When the Float.pow function is called with either parameter not a number, then the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-51
	When the Float.round function is called with a number val1, it returns the number value that is closest to val1 and is equal to an integer.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-52
	When the Float.round function is called with a number val1, and that number is equally close to two integer values, the function returns the larger number value.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-53
	When the Float.round function is called with a number val1, and that number is already an integer, the function returns that number.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-54
	When the Float.round function is called with a non-number val1, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-55
	When the Float.sqrt function is called with a number val1, the function returns the square-root of val1.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-56
	When the Float.sqrt function is called with a number val1, and that number is less than zero, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-57
	When the Float.maxFloat function is called, it returns the maximum floating point value supported (3.40282347E+38).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-58
	When the Float.minFloat function is called, it returns the smallest non-zero floating point value supported (1.17549435E-38 or smaller).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-59
	When the String.length function is called with a string parameter String, it returns the length of that String in characters.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-60
	When the String.length function is called with a non-string parameter String, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-61
	When the String.isEmpty function is called with a string parameter String, it returns true if the string is of zero length, and false otherwise.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-62
	When the String.isEmpty function is called with a non-string parameter, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-63
	When the String.charAt function is called with a string parameter String and a number parameter Index, it returns a string of length one reflecting the character at position Index within string String.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-64
	When the String.charAt function is called with a string parameter String and a number parameter Index, and the Index is a floating-point value, it is converted to an integer. Then the function returns a string of length one reflecting the character at position Index within string String.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-65
	When the String.charAt function is called with a string parameter String and a number parameter Index, and the Index value is out of range, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-66
	When the String.charAt function is called with a non-string parameter String or a non-number parameter Index, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-67
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, the function returns a string reflecting the portion of String beginning at StartIndex and continuing for Length characters.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-68
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, and StartIndex is less than zero, the function returns a string reflecting the portion of String beginning at position zero and continuing for Length characters.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-69
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, and StartIndex is larger than the last index of String, the function returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-70
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, and Length is larger than the remaining number of characters in String, Length is replaced with the number of remaining characters.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-71
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, and Length less than or equal to zero, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-72
	When the String.subString function is called with parameters string String, number StartIndex, and number Length, and either StartIndex or Length or of type floating-point, they are converted to integers. Then the function returns a string starting at the StartIndex-th position of String and continuing for Length characters.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-73
	When the String.subString function is called with parameters non-string String, non-number StartIndex, or non-number Length, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-74
	When the String.find function is called with parameters string String and string SubString, it returns an integer reflecting the index of the first character in String that identically matches the case and encoding of the requested SubString.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-75
	When the String.find function is called with parameters string String and string SubString, and the SubString does not occur within String, the function returns -1.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-76
	When the String.find function is called with parameters string String and string SubString, and the SubString is an empty string, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-77
	When the String.replace function is called with parameters string String, string OldSubString, and string NewSubString, it returns an updated version of String in which all substrings that identically match the case and encoding of OldSubString are replaced with NewSubString.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-78
	When the String.replace function is called with parameters string String, string OldSubString, and string NewSubString, and OldSubString is an empty string. The String.replace function returns invalid.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-79
	When the String.elements function is called with parameters string String and string Separator, it returns an Integer reflecting the number of elements in String that are separated by the first character of the string Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-80
	When the String.elements function is called with parameters string String, and string Separator, and Separator is an empty string, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-81
	When the String.elements function is called with parameters string String and string Separator, where String is an empty string, it returns 1 (because an empty string is still a valid element).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-82
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, it returns a string reflecting Index-th element of String, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-83
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, and Index is less than zero, it returns a string reflecting the first element of String, where the elements is separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-84
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, and Index is larger than the number of elements in String, it returns a string reflecting the last element of String, where element is separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-85
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, and String is an empty string, then an empty string is returned.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-86
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, and Separator is an empty string, then the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-87
	When the String.elementAt function is called with parameters string String, number Index, and string Separator, and Index is of type floating-point, then it is first converted to a type integer. Then the function returns a string reflecting the Index-th element of String, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-88
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, it returns a string where the Index-th element and separator have been removed, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-89
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, and Index is less than 0, it returns a string where the first element and separator have been removed, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-90
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, and Index is larger than the number of elements, it returns a string where the last element and separator have been removed, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-91
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, and String is empty, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-92
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, and Separator is an empty string, then the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-93
	When the String.removeAt function is called with parameters string String, number Index, and string Separator, and Index is of type floating-point, then it is first converted to a type integer. Then the function returns a string reflecting the removal of the Index-th element of String, where elements are separated by the first character of Separator.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-94
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, it returns a string where the Index-th element is replaced with the contents of Element (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-95
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is less than zero, it returns a string where the first element is replaced with the contents of Element (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-96
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is larger than the number of elements, it returns a string where the last element is replaced with the contents of Element (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-97
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, and String is empty the function returns a new string with the given Element.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-98
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is of type floating-point, Index is first converted to an integer. Then the function returns a string in which the Index-th element is replaced with the contents of Element.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-99
	When the String.replaceAt function is called with parameters string String, string Element, number Index, and string Separator, and Separator is an empty string, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-100
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, it returns a string where the string Element and a Separator are inserted at the Index-th element (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-101
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is less than zero, it returns a string where the Element and a Separator are inserted prior to the first element (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-102
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is larger than the number of elements, it returns a string where Element and a Separator are appended at the end of the String (where elements are separated by the first character of Separator).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-103
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, and String is empty the function returns a string containing only Element.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-104
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, and Index is of type floating-point, Index is first converted to an integer. Then the function returns a string in which Element and a Separator are inserted at the Index-th element of String.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-105
	When the String.insertAt function is called with parameters string String, string Element, number Index, and string Separator, and Separator is an empty string, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-106
	When the String.squeeze function is called with parameter string String, it returns a string where all consecutive series of white space characters are reduced to a single white space character.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-107
	When the String.squeeze function is called with a parameter 'invalid', it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-108
	When the String.trim function is called with parameter string String, it returns a string where all trailing and leading white space characters have been removed.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-109
	When the String.trim function is called with a parameter 'invalid', it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-110
	When the String.compare function is called with parameters string String1 and string String2, and String1 is lexicographically equal to String2, the function returns 0.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-111
	When the String.compare function is called with parameters string String1 and string String2, and String1 is lexicographically less than String2, the function returns -1.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-112
	When the String.compare function is called with parameters string String1 and string String2, and String1 is lexicographically greater than String2, the function returns 1.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-113
	When the String.compare function is called with an invalid parameter, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-114
	When the String.toString function is called with a parameter Value, the function returns a string representing Value as defined in the WMLScript specification for type conversion.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-115
	When the String.toString function is called with an 'invalid' Value, the function returns the string "invalid".
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-116
	When the String.format function is called with parameters string Format and Any Value, and Format contains more than one format specifier, subsequent specifiers are replaced with the empty string in the string the function returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-117
	When the String.format function is called with parameters string Format and Any Value, and Format contains two percent signs (%) in sequence, the function returns a string in which those signs are converted into a single percent sign.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-118
	When the String.format function is called with parameters string Format and Any Value, and Format contains an invalid format specifier, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-119
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%d", the function replaces the "%d" with a representation of the value of the integer using the form [-]d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-120
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%wd" and the number of digits in "Value" is less than the specified width "w", the function replaces the "%wd" with a representation of the value of the integer using the form [-]d (where d represents 1 or more decimal digits) with blanks added to the left until the minimum width is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-121
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%wd" and the number of digits in "Value" is greater than or equal to the specified width "w", the function replaces the "%wd" with a representation of the value of the integer using the form [-]d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-122
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%wd" and "w" is a negative decimal integer, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-123
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%w.pd" and the number of digits in "Value" is less than the specified precision "p", the function replaces the "%w.pd" with a representation of the value of the integer using the form [-]d (where d represents 1 or more decimal digits) with zeros added to the left until the minimum precision is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-124
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%w.pd" and the number of digits in "Value" is greater than or equal to the specified precision "p", the function replaces the "%w.pd" with a representation of the value of the integer using the form [-]d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-125
	When the String.format function is called with parameters string "Format", a decimal integer "Value" and the "Format" contains a format specifier of the form "%w.pd" and "p" is a negative decimal integer, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-126
	When the String.format function is called with parameters string Format and Any Value, and Format contains a format specification of the pattern "%.0d" and the value of Value is zero, the function replaces the "%.0d" with an empty string in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-127
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%d", the function replaces the "%d" with a representation of the value of the string converted to an integer using the form [-]d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-128
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%d", the function replaces the "%d" with a representation of the value of the floating point converted to an integer using the form [-]d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-129
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%f", the function replaces the "%f" with a representation of the value of the floating point using the form [-]d.nnnnnn (where nnnnnn represents the default of six digits after the decimal point in the string it returns).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-130
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%wf" and the number of digits in "Value" is less than the specified width "w", the function replaces the "%wf" with a representation of the value of the floating point using the form [-]d.d (where d represents 1 or more decimal digits) with blanks added to the left until the minimum width is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-131
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%wf" and the number of digits in "Value" is greater than or equal to the specified width "w", the function replaces the "%wf" with a representation of the value of the floating point using the form [-]d.d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-132
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%wf" and "w" is a negative decimal integer, the function return 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-133
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%w.pf" and the number of digits after the decimal point in "Value" is less than the specified precision "p", the function replaces the "%w.pf" with a representation of the value of the floating point using the form [-]d.d (where d represents 1 or more decimal digits) with zeros padding until the minimum precision is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-134
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%w.pf" and the number of digits after the decimal point in "Value" is greater than or equal to the specified precision "p", the function replaces the "%w.pf" with a representation of the value of the floating point using the form [-]d.d (where d represents 1 or more decimal digits) where the digits following the decimal point are rounded to the number of digits specified by precison "p" in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-135
	When the String.format function is called with parameters string "Format", a floating point "Value" which has no digits preceeding the decimal point and the "Format" contains a format specifier of the form "%f", the function replaces the "%f" with a representation of the value of the floating point using the form [-]d.d (where d represents 1 or more decimal digits) where one digit appears before the decimal point in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-136
	When the String.format function is called with parameters string Format, a floating point Value, and Format contains a format specification of the pattern "%.0f", the function replaces the "%.0f" with a representation of Value rounded to the nearest integer with no trailing decimal point in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-137
	When the String.format function is called with parameters string Format, a floating point Value, and Format contains a format specification of the pattern "%.f", the function replaces the "%.f" with a representation of Value rounded to the nearest integer with no trailing decimal point in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-138
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%f", the function replaces the "%f" with a representation of the value of the string converted to a floating point using the form [-]d.d (where d represents 1 or more decimal digits) in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-139
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%s", the function replaces the "%s" with a representation of the string "Value" in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-140
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%ws" and the number of characters in the string "Value" is less than the specified width "w", the function replaces the "%ws" with a representation of the string "Value" with blanks added to the left until the minimum width is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-141
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%ws" and the number of characters in "Value" is greater than or equal to the specified width "w", the function replaces the "%ws" with a representation of the string "Value" in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-142
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%ws" and "w" is a negative decimal integer, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-143
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%w.ps", the function replaces the "%w.ps" with a representation of the string "Value" using the characters up to the end of the string "Value" or until the precision value is reached in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-144
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%w.ps" and w is larger than p, the function replaces the "%w.ps" with a representation of the string "Value" ignoring the value of w in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-145
	When the String.format function is called with parameters string "Format", a string "Value" and the "Format" contains a format specifier of the form "%w.ps" and "p" is a negative decimal integer, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-146
	When the String.format function is called with parameters string Format and Any Value, and Format contains a percent sign (%) followed by a period (.) and a non-negative decimal precision p followed by an "s", the function interprets Value as a string value and replaces the "%.ps" with up to p characters from Value in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-147
	When the String.format function is called with parameters string "Format", an integer "Value" and the "Format" contains a format specifier of the form "%s", the function replaces the "%s" with a representation of the integer converted to a string "Value" in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-148
	When the String.format function is called with parameters string "Format", a floating point "Value" and the "Format" contains a format specifier of the form "%s", the function replaces the "%s" with a representation of the floating point converted to a string "Value" in the string it returns.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-149
	When the URL.isValid function is called with a parameter string URL that contains an absolute URL, it returns 'true' if the URL is well formed.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-150
	When the URL.isValid function is called with a parameter string URL that contains a relative URL, it returns 'true' if the URL is well formed.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-151
	When the URL.isValid function is called with a parameter string URL that does not contain a well formed absolute or relative URL, it returns 'false'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-152
	When the URL.isValid function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-153
	When the URL.getScheme function is called with a parameter string URL that contains an absolute URL, it returns a string containing the scheme portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-154
	When the URL.getScheme function is called with a parameter string URL that contains a relative URL, it returns a string containing the scheme portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-155
	When the URL.getScheme function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-156
	When the URL.getScheme function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-157
	When the URL.getHost function is called with a parameter string URL that contains an absolute URL, it returns a string containing the hostname portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-158
	When the URL.getHost function is called with a parameter string URL that contains a relative URL, it returns a string containing the hostname portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-159
	When the URL.getHost function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-160
	When the URL.getHost function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-161
	When the URL.getPort function is called with a parameter string URL that contains an absolute URL, it returns a string containing the port-number portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-162
	When the URL.getPort function is called with a parameter string URL that contains a relative URL, it returns a string containing the port-number portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-163
	When the URL.getPort function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-164
	When the URL.getPort function is called with a parameter string URL, and that string does not contain a port number, the function returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-165
	When the URL.getPort function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-166
	When the URL.getPath function is called with a parameter string URL that contains an absolute URL, it returns a string containing the pathname portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-167
	When the URL.getPath function is called with a parameter string URL that contains a relative URL, it returns a string containing the pathname portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-168
	When the URL.getPath function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-169
	When the URL.getPath function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-170
	When the URL.getParameters function is called with a parameter string URL that contains an absolute URL, it returns a string containing the parameter portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-171
	When the URL.getParameters function is called with a parameter string URL that contains a relative URL, it returns a string containing the parameter portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-172
	When the URL.getParameters function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-173
	When the URL.getParameters function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-174
	When the URL.getParameters function is called with a parameter string URL that contains an absolute URL that has no parameter portion, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-175
	When the URL.getParameters function is called with a parameter string URL that contains a relative URL that contains no parameter portion, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-176
	When the URL.getQuery function is called with a parameter string URL that contains an absolute URL, it returns a string containing the query portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-177
	When the URL.getQuery function is called with a parameter string URL that contains a relative URL, it returns a string containing the query portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-178
	When the URL.getQuery function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-179
	When the URL.getQuery function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-180
	When the URL.getQuery function is called with a parameter string URL that contains an absolute URL that has no query portion, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-181
	When the URL.getQuery function is called with a parameter string URL that contains a relative URL that does not contain a query portion, the function returns the enpty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-182
	When the URL.getFragment function is called with a parameter string URL that contains an absolute URL, it returns a string containing the fragment portion of the URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-183
	When the URL.getFragment function is called with a parameter string URL that contains a relative URL, it returns a string containing the fragment portion of the relative URL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-184
	When the URL.getFragment function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-185
	When the URL.getFragment function is called with a parameter string URL that contains invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-186
	When the URL.getFragment function is called with a parameter string URL that contains an absolute URL that does not have a fragment portion, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-187
	When the URL.getFragment function is called with a parameter string URL that contains a relative URL that does not have a fragment portion, the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-188
	When the URL.getBase function is called, it returns a string reflecting the absolute URL (without the fragment) of the current Script file.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-189
	When the URL.getReferer function is called, it returns a string reflecting the smallest relative URL (relative to the base URL of the current compilation unit) to the resource that called the current compilation unit.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-190
	When a compilation unit calls another local function, and that function calls the URL.getReferer function, the result of url.getReferer will be same as that of calling it from the parent function.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-191
	When the URL.resolve function is called with parameters string BaseURL and string EmbeddedURL, where BaseURL is an absolute URL, the function returns an absolute URL derived from the combination of BaseURL and EmbeddedURL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-192
	When the URL.resolve function is called with parameters string BaseURL and string EmbeddedURL, where EmbeddedURL is an absolute URL, the function returns EmbeddedURL.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-193
	When the URL.resolve function is called with parameters string BaseURL and string EmbeddedURL, where either parameter's values contain invalid URL syntax, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-194
	When the URL.resolve function is called with parameters string BaseURL and string EmbeddedURL, and the BaseURL's path component is an empty string. The function returns an absolute URL derived from the combination of BaseURL and EmbeddedURL with a single slash character ("/") assumed as the path.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-195
	When the URL.escapeString function is called with a parameter string String, it returns a string in which the special characters in String are replaced with their hexadecimal escape sequences (e.g. %ff).
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-196
	When the URL.escapeString function is called with a parameter string String that contains characters not from the US-ASCII character set, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-197
	When the URL.unescapeString function is called with a parameter string String, it returns a string in which the hexadecimal escape sequences in String are replaced with the characters they represent.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-198
	When the URL.unescapeString function is called with a parameter string String that contains characters above hexidecimal FF, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-199
	When the URL.loadString function is called with the parameters string URL and string ContentType, where URL is an absolute URL and ContentType is a single content type specifier beginning with "text/", the function returns a string that contains the resource.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-200
	When the URL.loadString function is called with the parameters string URL and string ContentType, where URL is an absolute URL that cannot be loaded, the function returns an integer error code.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-201
	When the URL.loadString function is called with the parameters string URL and string ContentType, where URL is an absolute URL for which the content type does not match ContentType, the function returns an integer error code.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-202
	When the URL.loadString function is called with the parameters string URL and string ContentType, where the ContentType is not well formed, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-203
	When the URL.loadString function is called with the parameters string URL and string ContentType, where the ContentType contains leading spaces, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-204
	When the URL.loadString function is called with the parameters string URL and string ContentType, where the ContentType contains trailing spaces, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-205
	When the URL.loadString function is called with the parameters string URL and string ContentType, where more than one ContentType has been specified the function returns invalid
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-206
	When the WMLBrowser.getVar function is called with a parameter string Name, it returns the value of the browser context variable identified by Name.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-207
	When the WMLBrowser.getVar function is called with a parameter string Name, and a variable Name does not exist in the current browser context, the function returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-208
	When the WMLBrowser.getVar function is called with non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-209
	When the WMLBrowser.getVar function is called with a parameter string Name, and a variable Name is not formatted as defined in the WML 1.1 specification, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-210
	When the WMLBrowser.setVar function is called with the parameters string Name and string Value, the browser context variable Name is set to have the value Value and the function returns true.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-211
	When the WMLBrowser.setVar function is called with either parameter a non-string, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-212
	When the WMLBrowser.setVar function is called with the parameters string Name and string Value, and the value of Name does not conform to the definition of variable names in the WML 1.1 specification, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-213
	When the WMLBrowser.setVar function is called with the parameters string Name and string Value, and the value of Value is not legal CDATA as defined in the XML specification, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-214
	When the WMLBrowser.setVar function is called with the parameters string Name and string Value. The function returns false if the browser context variable Name cannot be successfully set.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-215
	When the WMLBrowser.go function is called with a parameter string URL, the WML browser queues a "GO" task to the URL and the function returns the empty string. When control returns to the WML Browser, the GO task is executed.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-216
	When the WMLBrowser.go function is called with a parameter string URL, where URL is the empty string, the WML browser cancels any previously queued GO or PREV task in the WML browser and the function returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-217
	When the WMLBrowser.go function is called with a non-string parameter, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-218
	When the WMLBrowser.go function is called with a parameter string URL, and a fatal error occurs, the WML browser cancels any pending go() requests.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-219
	When the WMLBrowser.prev function is called, the WML browser queues a "PREV" task and the function returns the empty string. When control returns to the WML Browser, the PREV task is executed.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-220
	When the WMLBrowser.go function is called with a URL of the empty string, it cancels any previous call to WMLBrowser.prev.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-221
	When the WMLBrowser.prev function is called and a fatal error occurs, the WML browser cancels any pending prev() requests.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-222
	When the WMLBrowser.newContext function is called, it clears the current WML Browser context and returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-223
	When the WMLBrowser.getCurrentCard function is called, and the current compilation unit has the same base URL as the calling WML deck, the function returns the smallest relative URL (to the base of the current compilation unit) specifying the card currently being processed by the WML Browser.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-224
	When the WMLBrowser.refresh function is called, the WML Browser updates its context and the function returns an empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-225
	When the WMLBrowser.refresh function is called, the WML Browser updates its context and the function returns an empty string. The refresh must not restart any suspended timers.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-226
	When the Dialogs.prompt function is called with the parameters string Message and string DefaultInput, the system displays the message Message supplies the string DefaultInput as the default content. When the user has changed the content, the function returns that content as a string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-227
	When the Dialogs.prompt function is called with non-string parameters, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-228
	When the Dialogs.prompt function is called with the parameters string Message and string DefaultInput, the system displays the message Message supplies the string DefaultInput as the default content.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-229
	When the Dialogs.confirm function is called with the parameters string Message, string Ok, and string Cancel, the system displays the message Message and two reply alternatives from Ok and Cancel. If the user selects the Ok string, the function returns true.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-230
	When the Dialogs.confirm function is called with the parameters string Message, string Ok, and string Cancel, the system displays the message Message and two reply alternatives from Ok and Cancel. If the user selects the Cancel string, the function returns false.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-231
	When the Dialogs.confirm function is called with the parameters string Message, string Ok, and string Cancel, where Ok and Cancel are empty strings, the system displays the message Message and two implementation-defined reply alternatives. If the user selects the "positive" choice, the function returns true.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-232
	When the Dialogs.confirm function is called with the parameters string Message, string Ok, and string Cancel, where Ok and Cancel are empty strings, the system displays the message Message and two implementation-defined reply alternatives. If the user selects the "negative" choice, the function returns false.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-233
	When the Dialogs.confirm function is called with any non-string parameters, the function returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-234
	When the Dialogs.alert function is called with a parameter string Message, it displays the message to the user, waits for the user to confirm that they have seen the message, and returns the empty string.
	0
	0
	0
	2
	0
	
	

	WMLSLib-con-235
	When the Dialogs.alert function is called with a non-string parameter, it returns 'invalid'.
	0
	0
	0
	2
	0
	
	

	
	
	
	
	
	
	
	
	
	

Table 2: Test Case Statistics

5.3 Test Evidence

Testing of implementations based upon version 2.3 of the Browsing enabler has been conducted at the following Test Fest:

· TestFest #18, Helsinki, Finland, 2nd March 2007
More details in regards to the concerned TestFests can be found below.

5.3.1 TestFest #18 Test Summary Data
	Test Report
	[ET-RPT#18]

	Date of TestFest
	26th February to 2nd of March

	Location of the TestFest
	Helsinki, Finland

	Number of OMA member companies attending the TestFest:
	4

	Number of Clients Products:
	3

	Number of Server Products:
	1+1

	Number of test sessions completed:
	3 of 3

Table 3: TestFest #18 Information

5.3.2 Test Case Summary from all TestFests
This chapter gives an overview of the result for all test cases included in [ETS] from all TestFests.

The following status is used in the tables below:

· Total number of TCs: Used in the summary to indicate how many test cases there are in total.

· Number of passed: Used in the summary to indicate how many of the total test cases that successfully has been passed.

· Number of failed: Used in the summary to indicate how many of the total test cases that has failed.

· Number of N/A: Used in the summary to indicate how many of the total test cases that has not be run due to that the implementation(s) do not support the functionality required to run this test case.

· Number of OT: Used in the summary to indicate how many of the total test cases that have not be run due to no time to run the test case.

· Number of INC: Used to indicate how many times the test cases have been run and did not pass due to other nature than conclusive implementation or specification failure (e.g.: the failure reason cannot be clearly determined).

	TestFest #
	Total # TCs
	# Passed
	# Failed
	# N/A
	# OT
	# INC

	18
	3501
	686
	111
	1440
	1173
	91

	Totals
	3501
	686
	111
	1440
	1173
	91

Table 4: Summary TestFest Information

5.4 Browsing V2.3 PR Status
The PRs raised were

	PR Number
	Affecting
	Description
	Test Case reference / Specification reference

	113
	WCSS ETS
	Test case description for WCSS-1.1-con-1:45.14.06 is incorrect. There is no css code for italic.
	WCSS-1.1-con-1:45.14.06

	114
	ESMP ETS
	Test case is wrong
	objDocum

	115
	ESMP ETS
	Test case is wrong
	ObjDocum

	116
	ESMP ETS
	Test case is wrong
	ObjNodeL

	117
	ESMP ETS
	Test case hasAttribute1.xhtml is wrong
	ObjEleme

	118
	ESMP ETS
	Test case hasAttribute2.xhtml is wrong
	ObjEleme

	119
	ESMP ETS
	Test case form_onSubmit_false.xhtml does not work
	FormObje

All of them are resolved with the CRs approved
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	
	
	

	
	
	

A.2 Draft/Candidate Version 2.3 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-IOP_RPT-Browsing-V2_3-20070822-D.doc
	23 Aug 2003
	All
	New version

	
	
	
	

	
	
	
	

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-EnablerIOOPreport-20070309-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-EnablerIOOPreport-20070309-I]

