OMA-TS-BCAST-CON-Framework-v1_0-2007xxyy-D
Page 20 V(23)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Conformance Test Framework for Mobile Broadcast Services

	Draft Version 1.0 – yy xx 2007

	Open Mobile Alliance

	OMA-TS-BCAST-CON-Framework-v1_0-2007xxyy-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
8
5.
OMA BCAST Conformance Testing Framework
9
5.1
TTCN-3 test system architecture
9
5.1.1
BCAST Protocol Data Units and Primitives
10
5.1.2
PDUs
10
5.1.3
Configuration Primitives
11
5.1.4
Upper Tester Primitives
12
5.2
TTCN-3 test suite specification
13
5.2.1
Library based test suite implementation
13
5.2.2
Naming conventions
14
5.2.3
Documentation
16
5.3
Test suite configuration
16
Appendix A.
Change History (Informative)
18
A.1
Approved Version History
18
A.2
Draft/Candidate Version <current version> History
18
Appendix B.
Abstract Test Suite (ATS) (Normative)
19
B.1
The ATS in TTCN-3 core (text) format
19
Appendix C.
On UTS, SUT Emulation and Simulation (Informative)
20
C.1
Specifying an Upper Tester Server
20
C.2
Using the ATS for Testing with an Emulated SUT
21
C.3
Test case simulation
22

Figures

9Figure 1: Conceptual BCAST CON Test Architecture

Tables

12Table 1: Stream Server Primitives

12Table 2: FLUTE Primitives

12Table 3: ALC Primitives

13Table 4: RTSP Primitives

13Table 5: HTTP Primitives

13Table 6: SMS Primitives

13Table 7: MMS Primitives

14Table 8: HTTP Primitives

16Table 1: TTCN-3 naming convention

17Table 10: TTCN-3 documentation tags

1. Scope

The present document describes the Abstract Test Suite (ATS) to test the OMA BCAST enabler.

The objective of the present document is to provide a basis for conformance tests for BCAST terminal equipment.

The ISO standard for the methodology of conformance testing (ISO/IEC 9646 1 [ISO9646]) and the ETSI rules for conformance testing (ETS 300 406 [ETSIMETHOD]) are used as a basis for the test methodology.

· Clause 5 describes the test system architecture used to test the BCAST terminals.

· Clause 6 describes the ATS conventions, which are intended to give a better understanding of the ATS.

· Annex B provides the TTCN-3 part of the ATS.

· Annex C provides guidelines for upper tester implementation as well as testing with an emulated and simulated SUT.

2. References

2.1 Normative References

	[ISO9646]
	ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts"

	[ETSIMETHOD]
	ETSI ETS 300 406: "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

	[T3CORE]
	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".

	[T3TRI]
	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)"

	[T3TCI]
	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

	[IPV6FWK]
	ETSI EG 202 568: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Testing: Methodology and Framework".

	[BCAST10–AD]
	“Mobile Broadcast Services Architecture”, Open Mobile Alliance™, OMA-AD- BCAST-V1_0, URL:http://www.openmobilealliance.org/

	[BCAST10–ESG]
	“Service Guide for Mobile Broadcast Services”, Open Mobile Alliance™, OMA-TSBCAST_ServiceGuide-V1_0, URL:http://www.openmobilealliance.org/

	[BCAST10–Distribution]
	“Mobile Broadcast Services Architecture”, Open Mobile Alliance™, OMA-TS-BCAST_Distribution-V1_0, URL:http://www.openmobilealliance.org/

	[FLUTE]
	“File Delivery over Unidirectional Transport”, RFC XXXX

	[ALC]
	“Asynchronous Layered Coding”, RFC XXX

	[SDP]
	“Session Description Protocol”, RFC XXX

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

<< Add definitions in new rows of the following table as needed. The following examples show how dictionary references should be made as well as locally defined terms. This table should be maintained in sorted alphabetic order based on the labels of the terms.

Examples:

Entity
Use definition #1 from [OMADICT]

Interactive Service
Use definition from [OMADICT]

Local Term
The definition description would be presented directly

DELETE THIS COMMENT>>

	
	

3.3
Abbreviations

	ALC
	Asynchronous Layered Coding

	ATS
	Abstract Test Suite

	ATS
	Abstract Test Suite

	BER
	Basic Encoding Rules

	BCAST
	Basic Encoding Rules

	DVB-H
	Digital Video Broadcasting - Handheld

	IP
	Internet Protocol

	IUT
	Implementation Under test

	FD
	File Distribution

	FDT
	File Distribution Table

	FLUTE
	File Delivery over Unidirectional Transport

	HTTP
	Hypertext Transfer Protocol

	MBMS
	Multimedia Broadcast Multicast Service

	MMS
	Multimedia Messaging Service

	MTC
	Main Test Component

	OMA
	Open Mobile Alliance

	PIXIT
	Partial Protocol Implementation Extra Information for Testing

	PDU
	Protocol Data Unit

	PTC
	Parallel Test Component

	RF
	Radio Frequency

	RTP
	Real-Time Transport Protocol

	RTSP
	Real-Time Streaming Protocol

	SRTP
	Secure Real-Time Transport Protocol

	SCR
	Static Conformance Requirement

	SD
	Stream Distribution

	SDP
	Session Description Protocol

	SGDD
	Service Guide Delivery Descriptor

	SGDU
	Service Guide Delivery Unit

	SMS
	Short Message Service

	TC
	Test Case

	TTCN-3
	Testing and Test Control Notation

	UDP
	User Datagram Protocol

	UMTS
	Universal Mobile Telecommunications System

	UTC
	Upper Tester Client

	UTS
	Upper Tester Server

	TC
	Test Case

	TCP
	Transmission Control Protocol

4. Introduction

<< From a market perspective...

· What can you do with this specification?

· What problem does this solve?

· How can this specification be applied?

· Consider the target audience and provide deployment examples as possible.

DELETE THIS COMMENT >>

5. OMA BCAST Conformance Testing Framework
5.1 TTCN-3 test system architecture
Figure 1 illustrates the BCAST test system architecture used for testing a real terminal implementing the OMA BCAST standards. More information for this architecture is provided below. The test system architecture is based on the general TTCN test system architecture specified in [T3TRI,T3TCI].
[image: image2.jpg]SuT stréam ‘ Content
Adapter gepverctrl | Utilities BT GZIP
v |
Streaming flute alc
Server E—
rtsp http mms sms utp
(SRTP + v 4 y v
SD-5/6 FLUTE ALC RTSP || HTTP || MMS
v SMS || Upper
TCP/UDP/IP(sec) Tester
Adapter
Broadcast Network Bearer Interaction Network Bearer e.g. text
e.g. DVB-H, MBMS e.g. UMTS

SUT
(BCAST
Terminal)

IUT

(BCAST Implementation)

Figure 1: Conceptual BCAST CON Test Architecture

The SUT Adapter (SA) shown in Figure 1 realizes the transport of BCAST service guides, session descriptions, as well as the generation of audio and video streaming traffic. Note that this is only a conceptual model for a SA implementation. Individual components of it may or even should be (for performance reasons) implemented as separate executables from the TTCN-3 test system executable.
Internally the SA provides a number if different transport mechanisms that include FLUTE [FLUTE] and ALC [ALC] (both applicable in context of broadcast we as well as interactive channels) and HTTP, RTSP, MMS, SMS (only applicable in context of interaction channel). The streaming server component allows the streaming of audio and video. Although not explicitly shown in this figure, should be able to stream data via both, interaction as well as broadcast, network bearers. The lowest layer of the SA includes a number of broadcast and interaction network bearers, i.e., DVB-H, MBMS, and GPRS/GSM/UTMS. The upper test adapter should implement either a textual or graphical interface to a human user (i.e., asking him or her to perform actions on the BCAST terminal and observe its behavior) or integrate directly with the upper interface of the IUT (see Annex C.2 for more information).

Finally, content protection and GZIP components can be understood as utilities that may be applied in various transport scenarios, e.g., GZIP may be used to encode service guide delivery units or/and service guide delivery descriptors. Similarly, content protection may be applied prior to the distribution of audio or video streams as well as files.

The port names associated with interfaces of the upper transport layers in Figure 1 are related as follows to OMA BCAST architecture reference points (excluding content protection reference points):

· flute & alc: SG-5, FD-5, FD-6
· http: SG-6, FD-6, SI-8
· rtsp: FD-6
· mms: SI-8
· sms: SI-8
· streamServerCtrl: indirectly SD-5 (broadcast network only), SD-6 (interaction network only)

The tasks of the different TTCN-3 components in Figure 1 are:

· The Main Test Component (MTC) plays the role of a test coordinator, i.e., creating, synchronizing, coordinating, and terminating BCAST Network Data, BCAST Network Control, and Upper Tester Client (UTC) test components used in the test cases. The communication between the MTC and the Parallel Test Components (PTCs) is done in TTCN-3 via synchronization ports.

· BCAST Network Control is a PTC that plays the role of a lower tester. It uses any of the relevant transport ports generate BCAST network control plane traffic, e.g., send out SGDDs or SGDUs. When using of the interactive channel this component also observes BCAST terminal responses. This component interacts with the test adapter using both, interactive and broadcast channel, configuration APIs (outlined in Clause 5.3) and handles all BCAST PDUs defined in Clause 5.2.
· BCAST Network Data is a PTC that plays the role of a lower tester. It uses the stream server control port to request the generation of BCAST data plane traffic, i.e., files or streams. If multiple stream and/or file distributions are needed then each stream or file distribution should be handled by a dedicated BCAST Network Data test component. Each component interacts with the test adapter using both, interactive and broadcast channel, configuration APIs (outlined in Clause 5.3).

· UTC is a test component that plays the role of a upper tester. It communicates via the utp port either directly with a human use or with the Upper Tester Server (UTS) which is integrated with the IUT in the SUT. Upper tester commands and indications are listed in Clause 3.

· All PTCs also interact with the SUT Adapter to configure their respective message transport. x shows the list of Configuration Messages that can be used for such configuration.
5.1.1 BCAST Protocol Data Units and Primitives

5.1.2 PDUs
The test system supports the following BCAST PDUs: Service Delivery Descriptor (SGDD), Service Guide Delivery Unit (SGDU), Service Guide Response, and Session Description Protocol (SDP). Currently, for SGDUs, only Service, Content, Schedule, Access, Interactivity Data, and Preview Data service fragments are supported in more detail (i.e., have been further structured).
Appendix C provides detailed TTCN-3 type definitions for all of these PDUs and their information elements which all have been directly derived from the BCAST standards. It is the responsibility of the codecs in the TTCN-3 test system to encode and decode from this abstract representation to a transfer syntax that is compliant to the respective standardized OMA BCAST XML schemas. SGDU encoding is an exception which should comply with the requirements stated in [BCAST10–ESG] clause 5.4.1.3. SDP encoding should comply with the rules defined by [SDP]
5.1.3 Configuration Primitives

The test system offers a number of SA configuration primitives for controlling different combinations of transport layers. Primitives for each component include configuration information needed for all SA layers which may potentially involved in a test. Information on the desired RF module, e.g., DVB-H or MBMS, is assumed to be connected internally in the SA with IP address information.
The following tables summarize the main configuration primitives. Appendix C provides detailed TTCN-3 type definitions for all configuration primitives and their information elements. There are no restrictions on the encoding of configuration primitives, i.e., it is left open to SUT adaptation developers. Note that GZIP and content protection component do not have their own primitives defined but are instead integrated in other configuration primitives, i.e., content encoding and content protection parameters, respectively.
	Primitive Type(s)
	Parameters
	Purpose

	StartStreamingRequest/Response
	Stream Identifier, File, SDP, Content Protection
	Starts to broadcast or unicast a stream from a audio or video file

	StopStreamingRequest/Response
	Stream Identifier
	Stops a specific stream

Table 1: Stream Server Primitives
	Primitive Type(s)
	Parameters
	Purpose

	StartFluteSessionRequest/Response
	Session Identifier, SDP, FDT, Content Encoding, Files, Symbol Loss, Content Protection; Symbol Info
	Allocates resources and starts a FLUTE session

	PauseFluteSessionRequest/Response
	Session Identifier
	Pauses a FLUTE transmission without releasing resources

	ResumeFluteSessionRequest/Response
	Session Identifier
	Resumes paused FLUTE transmission without allocating resources

	StopFluteSessionRequest/Response
	Session Identifier
	Stops a FLUTE transmission releasing resources

Table 2: FLUTE Primitives
	Primitive Type(s)
	Parameters
	Purpose

	StartAlcSessionRequest/Response
	Session Identifier, SDP, Files, Content Encoding, Content Protection
	Allocates resources and starts an ALC session

	StopAlcSessionRequest/Response
	Session Identifier
	Stops an ALC transmission releasing resources

Table 3: ALC Primitives
	Primitive Type(s)
	Parameters
	Purpose

	RtspSetupIndication
	URI
	Indicates that RTSP SETUP message has been received from terminal

	RtspPlayIndication
	URI
	Indicates that RTSP PLAY message has been received from terminal

	RtspPauseIndication
	URI
	Indicates that RTSP PAUSE message has been received from terminal

	RtspTeardownIndication
	URI
	Indicates that RTSP TEARDOWN message has been received from terminal

Table 4: RTSP Primitives
	Primitive Type(s)
	Parameters
	Purpose

	HttpPostIndication
	Connection Identifier, SG Request Type, Key Value Pairs, Streaming Report
	Indicates that HTTP POST message has been received from terminal

	HttpGetIndication
	Connection Identifier, URI
	Indicates that HTTP GET message has been received from terminal

	HttpResponseRequest/Response
	Connection Identifier, Code, Symbol Loss, SG response, SGDU
	Sends a HTTP response to terminal

Table 5: HTTP Primitives
	Primitive Type(s)
	Parameters
	Purpose

	SmsGetIndication
	Message body
	TBD

	MmsGetIndication
	Message body
	TBD

Table 6: SMS & MMS Primitives
5.1.4 Upper Tester Primitives

The primitives used by the upper tester reflect commands and observations that are either to be issued or checked by a human tester based on textual interaction or directly performed on the IUT, i.e., by a special software application on top of the IUT user interface and integrated in the SUT, i.e., a upper tester server (UTS). If the is no soft UTS implementation available the command should result in questions and always propose three answers to the human, i.e., the correct observation was made, an incorrect observation was made, and nothing was observed.
Table 8 lists the collection of upper test primitives and the questions they represent. Note that the encoding of upper tester primitives in the test system is left open. It is recommended however to choose a textual encoding of primitives to ease readability.
	Primitive Type(s)
	Parameters
	Example Command/Question

	PowerOnTerminalRequest/Response
	-
	Power on the terminal!
Does is start up correctly?

	PowerOffTerminalRequest/Response
	-
	Power off the terminal!
Does is close down correctly?

	SelectTerminalBearerRequest/Response
	Broadcast and interactive bearer types
	Select <Broadcast bearer> as bearer for broadcast channel and < Interactive bearer> as bearer for interactive channel.

Is the selected bearer selection accepted?

	RunBCastApplicationRequest/Response
	-
	Run the BCAST application on the terminal.

Does the boot-strap service guide show up?

	CheckServicePresenceRequest/Response
	Service identifier
	Browse the service guide on the terminal.
Can you locate the <Service ID> service?

	SelectServiceRequest/Response
	Service identifier
	Select the <Service ID>.
Do you hear and/or see the program appear on the terminal in the selected language?

	CheckContentPresenceRequest/Response
	Content identifier
	Browse the service guide on the terminal.
Can you locate the program <Content ID>?

	GetServiceGuideRequest/Response
	Service guide identifier
	Request to change to the <SG ID> service guide!
Does the display name of the service guide change to <SG ID>?

	UpdateServiceGuideRequest/Response
	
	Request to update the currently selected service guide.
Can you see the changes in the program?

	SelectContentRequest/Response
	Content identifier
	Select the <Content ID> program
Do you hear and/or see the program appear on the terminal in the selected language?

	SelectLanguageRequest/Response
	Audio/text, Language identifier
	Select the <Language ID> in BCAST options as <audio/text> language !
Does the terminal accept the change?

	SelectContentProtectionRequest/Response
	Protection identifier
	Enable <Protection ID> content protection handling in BCAST options!
Does the terminal accept the change?

	SubscribeRequest/Response
	Service identifier
	Subscribe to <Service ID>service!
Does the terminal accept the subscription?

	TBDRequest/Response
	TBD
	TBD

Table 8: Upper Tester Primitives
5.2 TTCN-3 test suite specification
5.2.1 Library based test suite implementation

The BCAST CON test suite has been specified using a library approach which has also been used, e.g., in [IPV6FWK]. The test suite is specified in three layers which build on top of each other:

· LibCommon: A collection of TTCN-3 definitions useful for any test suite implementation
· LibBCast: A collection of TTCN-3 definitions related to BCAST standards and reusable only in the context of BCAST test suite implementations.
· AtsBCast: TTCN-3 definitions which are specific to this particular test suite, e.g., test case statements, SUT adapter configuration, etc
Each library layer is composed of multiple TTCN-3 modules:

· TypesAndValues: This type of module collects TTCN-3 type and constant definitions relevant for a layer. If applicable one module should be associated per specification document, e.g., an OMA standard

· ModulePars: Collects all module parameters relevant to a given layer

· Interface: Specifies a TTCN-3 component type and port types reflecting the interfaces offered by the layer.

· Templates: Collects templates specified based on the types defined in the layer.

· Behavior: Collects atomic interactions at the interface. Does not set verdicts.

The ATS layer specification n is decomposed of the following type of modules

· ModulePars: Collects all module parameters relevant to the ATS only, e.g., SCRs
· Test system: Specifies TTCN-3 component types for test components in the ATS. These types are defined based on port types defined in the library layers and are type compatible to component types defined in respective interface modules
· Premables: Composes preamble functions based on library behavior, assigns verdicts, and synchronizes.

· Postambles: Composes postamble functions based on library behavior, assigns verdicts, and synchronizes.

· TPFunctions: Specifies the test body. Attempts to use library behavior wherever possible, uses templates, types and values, assigns verdicts, and synchronizes. One TPFunction is specified per test component. Functions are grouped according to structure of OMA BCAST CON test case specification document.

· TCFunctions: Specifies testcase statement and if applicable the highest level of behavior for parallel test components. Invokes preamble, TP function, and postamble. MTC invokes only acts as test component coordinator and invokes synchronization server functions. Constructs are grouped according to structure of OMA BCAST CON test case specification document.
5.2.2 Naming conventions
The naming convention is based on the following underlying principles:

· in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 9) indicating the type of TTCN-3 element it represents;

· suffixes shall not be used;

· prefixes should be separated from the body of the identifier with an underscore ("_"):

EXAMPLE 1:
c_sixteen, t_waitMax;
· only module names, test case identifiers, data type names and module parameters should begin with an upper-case letter. All other names (i.e. the part of the identifier following the prefix) should begin with a lower-case letter;

· the start of second and subsequent words in an identifier should be indicated by capitalizing the first character. Underscores should not be used for this purpose.

EXAMPLE 2:
f_authenticateUser().
Table 9 specifies the naming guidelines for each element of the TTCN-3 language indicating the recommended prefix, suffixes (if any) and capitalization.
	Language element
	Naming convention
	Prefix
	Example
	Notes

	Module
	Upper-case initial letter
	none
	LibBCast_TypesAndValues
	

	Group
	Lower-case initial letter
	none
	messageGroup
	

	Data type
	Upper-case initial letter
	none
	SetupContents
	

	Message template
	Lower-case initial letter
	m_
	m_setupInit
	Note 1

	Message template with wildcard or matching expression
	Lower-case initial letter
	mw_
	mw_anyUserReply

	Note 2

	Port instance
	Lower-case initial letter
	none
	signallingPort
	

	Test component reference
	Lower-case initial letter
	none
	userTerminal
	

	Constant
	Lower-case initial letter
	c_
	c_maxRetransmission
	

	Constant
(defined within component type)
	Lower-case initial letter
	cc_
	cc_maxRetransmission
	

	External constant
	Lower-case initial letter
	cx_
	cx_macId
	

	Function
	Lower-case initial letter
	f_
	f_authentication()
	

	External function
	Lower-case initial letter
	fx_
	fx_calculateLength()
	

	Altstep (incl. Default)
	Lower-case initial letter
	a_
	a_receiveSetup()
	

	Test case
	All upper-case letters
	TC_
	TC_BCAST_PROV_conf_101
	

	Variable (defined locally)
	Lower-case initial letter
	v_
	v_macId
	

	Variable
(defined within component type)
	Lower-case initial letter
	vc_
	vc_systemName
	

	Timer (defined locally)
	Lower-case initial letter
	t_
	t_wait
	

	Timer
(defined within component type)
	Lower-case initial letter
	tc_
	tc_authMin
	

	Module parameter
	All upper-case letters
	none
	PX_MAC_ID
	

	Parameterization
	Lower-case initial letter
	p_
	p_macId
	

	Enumerated Value
	Lower-case initial letter
	e_
	e_syncOk
	

	NOTE 1: This prefix must be used for all template definitions which do not assign or refer to templates with wildcards or matching expressions, e.g. templates specifying a constant value, parameterized templates without matching expressions, etc.

NOTE 2: This prefix must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, ifpresent, pattern, etc) or reference another template which assigns a wildcard or matching expression.

Table 9: TTCN-3 naming convention

5.2.2.1 Templates
· Templates should be identified with names rather than numbers.

· Templates should not modify other modified templates. Base templates which are modified must be identified in their naming.

· Templates should be specified separately for use in sending and receiving operations. The prefixes as described above must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, if present, pattern, etc) or reference another template which assigns a wildcard or matching expression.

· Template definitions should avoid using matching attributes such as "*" or "?" for complete structured values, e.g. record or set of values.

· PIXIT parameter values should be passed as parameters into templates.

5.2.3 Documentation

In order to allow browsing of the BCAST CON TTCN-3 test suite without the use of a specific TTCN-3 test development environment, the TTCN test suite is made available in HTML format where any definitions referenced from a given definition are linked with hyperlinks. The documentation in the test suite makes use of special comment tags used by the tool that converts the test suite to the HTML format. These tags are defined in clause 9 of [IP6FWK] and summarized in Table 10.
	Tag
	Description

	@author
	Specifies the names of the authors or an authoring organization which either has created or is maintaining a particular piece of TTCN-3 code.

	@desc
	Describes the purpose of a particular piece of TTCN-3 code. The description should be concise yet informative and describe the function and use of the construct.

	@remark
	Adds extra information, such as the highlighting of a particular feature or aspect not covered in the description.

	@see
	Refers to other TTCN-3 definitions in the same or another module.

	@url
	Associates references to external files or web pages with a particular piece of TTCN-3 code, e.g. a protocol specification or standard.

	@returns
	Provides additional information on the value returned by a given function.

	@member
	Documents a member of structured TTCN-3 definitions.

	@param
	Documents a parameter of parameterized TTCN-3 definitions.

	@version
	States the version of a particular piece of TTCN-3 code.

Table 10: TTCN-3 documentation tags
5.3 Test suite configuration
TTCN-3 allows fixing of some test suite information as late as during the time of test case execution. This information is referred to as module parameters in TTCN-3 or more generally PIXIT (Partial Protocol Implementation Extra Information for Testing). This clause discusses all such parameters relevant for the BCAST CON particular test suite.
Note that TTCN-3 test systems may require additional configuration, e.g., of SUT Adapter, prior to a test execution. Such configuration is however beyond the scope of this document. The documentation of it is the responsibility of test platform providers.
· PX_SRC_BCAST_xx_ddd

Specifies support for a given OMA SCR. SCRs are checked prior to the test execution as part of test selection. A test is only executed if all required SCRs (both mandatory and optional) are marked as supported.

· PX_broadcast_network_bearer

Selects the broadcast network bearer to be used by the test case, i.e., DVB-H, MBMS, or BMCMS

· PX_interaction_network_bearer

Selects the interaction network bearer to be used by the test case, i.e., GPRS/GSM, GPRS/CDMA, or GPRS/UMTS

· PX_preamble_sg_delivery_channel

Allows selecting either broadcast or interactive channel to be used in preambles of BCAST test executions
· PX_preamble_file_distribution_protocol

Allows selecting either FLUTE or ALC only as file transfer protocol in preambles of BCAST test executions. The default is FLUTE.

· PX_terminal_IP_information

Specifies the terminal IP version 4 or version 6 address and port. If an IPv4 address is specified any communication with the SUT in a test will be performed used IPv4. If an IPv6 address is specified any communication with the SUT in a test will be performed used IPv6.
· PX_terminal_streaming_information

Specifies all the streaming related information about the terminal, e.g., supported audio/video codecs, data rates, port numbers, security options, etc..

TO BE COMPLETED

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

 Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-xxyyz-V1_2
	30 Jun 2003
	3.2, 8.2, 11.4, App A
	Incorporates input to committee:

 OMA-XY-2003-0053-CR_SpellingCorrections

 OMA-XY-2003-0098-CR_AddSectionOnPeanutButter

	
	12 Aug 2003
	9.2.2.2, 11.3
	Incorporates input to committee:

 OMA-XY-2003-0101R2-CR_ImproveJellyReferences

	Candidate Version

OMA-xxyyz-V1_2
	16 Sep 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

	Draft Version

OMA-xxyyz-V1_2
	24 Sep 2003
	6.8
	Status changed to Draft (demoted) to address important class 1 CR

 OMA-XY-2003-0172-CR_AddSectionOnJellyGoesOnTop

	Candidate Versions

OMA-xxyyz-V1_2
	13 Nov 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0def-CandidateRequest_xxyyz_V1_2_again

	
	21 Dec 2003
	4.2, 6.3
	Minor CR to address interpretation of bread references

 OMA-XY-2003-0205-CR_SlicedBreadClarification

Notice sent to TP of minor update

 TP ref # OMA-TP-2003-0ghi-CandidateUpdateNotice_xxyyz_V1_2

	
	12 Jan 2004
	4.2, 6.6
	Minor CR to cover cases where knife not available

 OMA-XY-2004-0012-CR_SpreadingWithoutKnife

Notice sent to TP of minor update

 TP ref # OMA-TP-2004-0jkl-CandidateUpdateNotice_xxyyz_V1_2

Appendix B. Abstract Test Suite (ATS)
(Normative)

B.1 The ATS in TTCN-3 core (text) format
ATS has been produced using the TTCN-3 notation according to ES 201 873-1 [T3CORE].

[image: image3.emf]C:\Documents and Settings\schulzs\Desktop\CTI_OMA_BCAST_CON\Deliverables\TTCN3_v0_0_1.zip

Appendix C. On UTS, SUT Emulation and Simulation
(Informative)
C.1 Specifying an Upper Tester Server
In order to completely automate conformance and interoperability testing, the upper interface of the IUT needs to be accessible to TTCN-3 test cases. The specification of this upper interface is not standardized by the BCAST base specification, e.g., there are no primitives defined for requesting the BCAST stack to send a specific burst or to check if one has been received. Consequently, implementations of this interface are vendor specific and may even vary between different IUTs.

In conformance testing methodology the tight integration problem can be resolved by implementing an Upper Tester Server (UTS) in the SUT, i.e., outside of the test system. The purpose of the UTS is to play the role of a BCAST application which interacts with the BCAST stack in the terminal. It is, however, controlled by the test system with the Upper Tester Client test component via a message channel. Therefore, another task of the UTS is to convert the messages sent by UTC into concrete BCAST stack interface calls and vice versa. This allows a fairly generic design and encoding of a protocol between the UTS and UTC.
C.2 Using the ATS for Testing with an Emulated SUT
A BCAST CON test system can also be used with emulated SUTs, e.g., for in-house testing. Here:

IUT is a software application – usually not running in target hardware but in an emulation environment.
· A protocol, e.g., TCP/IP or a serial interface, and a wired connection replaces the RF parts in the SUT Adapter, i.e., the air interface would be circumvented

· The ATS would not require changes, because it is independent of the actual message transport.
· Upper Tester Server may need to be adapted to fit the emulated SUT.

[image: image4]
Figure C.1: Testing Architecture with Emulated SUT
C.3 Test case simulation
The test cases in the BCAST CON test suite can be simulated, by execution of the compiled test case against a System Under Test (SUT) implementation.

The TTCN-3 simulation executes a selected TTCN-3 test case against a System Under Test (SUT) executable that implements the expected behaviour of a conforming IUT using TTCN-3. The two executable programs connect, e.g., via a socket connection and exchange BER encoded data messages. Figure C.2 illustrates a simulation configuration.

[image: image5.emf]

TTCN - 3

executable

SUT

Socket connection

 test case

 executable

Figure C.2: TTCN test case simulation configuration

The SUT executable is also a generated from a TTCN-3 specification using the same data type definitions as the BCAST CON test suite specification. The SUT specification also may need to be modified to match the test case selected for simulation.

· Simulation of the test cases will improve the quality of the BCAST CON TTCN-3 test suite detecting a number of errors not detected by static analysis. The types of errors detected include:

· Synchronization errors between parallel test components, e.g. causing that the test case execution never terminates.
· Program flow errors in test components, e.g. loops with incorrect termination conditions or missing "repeat" statements causing the premature termination of the test case execution.
· Use of incorrect test configuration.
· Incorrect or missing handling of messages from the SUT, causing the test case to fail the IUT even if the IUT satisfies the conformance requirement.
· Missing verdict assignments.

The goal of validation with simulation is usually to ensure that test cases pass when executed against a conformant IUT.

Standardized Interface

BCAST Test System

TTCN-3 Upper �Tester Client

TTCN-3 BCAST ATS

SUT Adapter

Emulated SUT

Upper Tester Server

BCAST Implementation

Adaptation layer

TCP/IP or serial interface

UT PCO

LT PCO

Action

Proprietary Interface

�Still missing SMS, MMS, XHTML user interactions

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]

_1246132697/TTCN3_v0_0_1.zip

LibBCast_UpperTesterPrimitives_TypesAndValues.ttcn

//* @desc This file specifies upper tester primitives which are exchanged

//* either between the upper tester client and a server which is either

//* a human user or software integrated in SUT (on top of IUT)

//* @author ETSI OMA BCAST CON Project

//* @version 0.0.1

module LibBCast_UpperTesterPrimitives_TypesAndValues {

 //* @desc Requests to turn on terminal

 type record PowerOnTerminalRequest {

 }

 //* @desc Requests to turn off terminal

 type record PowerOffTerminalRequest {

 }

 //* @desc Requests to select a broadcast as well as interactive netwrok beaerer, e.g., in BCAST browser

 type record SelectBearerRequest {

 BroadcastBearerType broadcastBearerType,

 InteractiveBearerType interactiveBearerType,

 }

 type enumerated BroadcastBearerType {

 e_dvb_h,

 e_mbms,

 e_bmcms

 }

 type enumerated Observation {

 e_gsm_gprs,

 e_cdma_gprs,

 e_umts_gprs

 }

 //* @desc Requests to run BCAST application on terminal

 type record RunBCastRequest {

 }

 //* @desc Requests to check service availability, e.g., in BCAST browser

 type record CheckServicePresenceRequest {

 charstring serviceIdentifier

 }

 //* @desc Requests to select a specific service, e.g., in BCAST browser

 type record SelectServiceRequest {

 charstring serviceIdentifier

 }

 //* @desc Requests to select a specific service, e.g., in BCAST browser

 type record CheckContentPresenceRequest {

 charstring contentIdentifier

 }

 //* @desc Requests to request a specific service guide, e.g., in BCAST browser

 type record GetServiceGuideRequest {

 charstring serviceGuideIdentifier

 }

 //* @desc Requests to update the currently selected service guide, e.g., in BCAST browser

 type record UpdateServiceGuideRequest {

 }

 //* @desc Requests to select a specific content in a service, e.g., in BCAST browser

 type record SelectContentRequest {

 charstring contentIdentifier

 }

 //* @desc Requests to select a specific audio or text language, e.g., in BCAST application options

 type record SelectLanguageRequest {

 LanguageType languageType,

 charstring language

 }

 type enumerated LanguageType {

 e_audio, e_text

 }

 //* @desc Requests to subscribe to a specific service, e.g., in BCAST browser

 type record SubscribeRequest {

 charstring serviceIdentifier

 }

 //* @desc A generic response which is returned for all upper test requests.

 type record GenericUtsResponse {

 Observation observation

 }

 type enumerated Observation {

 e_requestedObservationMade,

 e_differentObservationMade,

 e_nochangeObserved

 }

} // end module AtsBCast_ConfigPrimitives_TypesAndValues

AtsBCast_ConfigPrimitives_TypesAndValues.ttcn

//* @desc This file specifies SUT Adapter configuration primitives

//* @author ETSI OMA BCAST CON Project

//* @version 0.0.1

module AtsBCast_ConfigPrimitives_TypesAndValues {

 import from LibBCast_ServiceGuideResponse_BasicTypesAndValues { type ServiceGuideResponse }

 import from LibCommon_BasicTypesAndValues all;

 import from LibBCast_FileStreamDistribution_TypesAndValues all;

 import from LibBCAST_Common_TypesAndValues all;#

 //* @desc This group specifies information to be forwarded from

 //* TTCN-3 to the FLUTE application

 group fluteConfigPrimitives {

 type record StartFluteSessionRequest {

 UInt fluteSessionId,

 Sdp sdp,

 Fdt fdt,

 // Used to indicate, e.g., zipping, of all files

 ContentEncoding contentEncoding optional,

 //* A value of false means the receiver should receive all FLUTE packets

 boolean dropFluteSymbols,

 FluteFileInfoList fluteFileInfo,

	 ServiceProtection serviceProtection optional

 };

 type charstring FdtFile;

 //* @desc Should contain "GZIP" to zip flute session file

 type charstring ContentEncoding;

 type record length(1..infinity) of FluteFileInfo FluteFileInfoList;

 type record FluteFileInfo {

 AnyUri contentLocation, // contains file name

 // Used to indicate, e.g., zipping, of individual files

 ContentEncoding contentEncoding optional

 // more params may be needed

 };

 type record StartFluteSessionResponse {

 //* In case the dropFluteSymbols field is true in the preceding

 //* StartFluteSessionRequest this parameter shall indicate dropped

 //* FLUTE symbols using the ABNF rule sbn_info specified in

 //* OMA FD Clause 5.3.3.5.1; otherwise it should be set to omit

 charstring sbnInfo optional,

 charstring returnCode

 }

 type record PauseFluteSessionRequest {

 UInt fluteSessionId

 };

 type record PauseFluteSessionResponse {

 charstring returnCode

 }

 type record ResumeFluteSessionRequest {

 UInt fluteSessionId

 };

 type record ResumeFluteSessionResponse {

 charstring returnCode

 }

 type record StopFluteSessionRequest {

 UInt fluteSessionId

 };

 type record StopFluteSessionResponse {

 charstring returnCode

 }

 }// End fluteConfigPrimitives

 //* @desc This group specifies information to be forwarded from

 //* TTCN-3 to the ALC application

 group alcConfigPrimitves {

 type record StartAlcSessionRequest {

 UInt alcSessionId,

 	 Sdp sdp,

 	AlcFileInfoList alcFileInfos,

	 ContentProtection contentProtection optional

 };

 type record length(1..infinity) of AlcFileInfo AlcFileInfoList;

 type record AlcFileInfo {

 AnyUri contentLocation, // contains file names

 UInt toi,

 // Used to indicate, e.g., zipping, of individual files

 ContentEncoding contentEncoding optional,

 UInt8 fecEndcodingId optional

 	 // more params may be needed

 };

 type record StartAlcSessionResponse {

 charstring returnCode

 }

 type record StopAlcSessionRequest {

 UInt alcSessionId

 };

 type record StopAlcSessionResponse {

 charstring returnCode

 }

 }// End alcConfigPrimitives

 //* @desc These primitves extract information from or

 //* provide it to the upper interface of a RTSP stack

 group rtspConfigPrimitives {

 // Requests to initialize flute session

 type record RtspSetupIndication {

 AnyUri rtspUri

 }

 // Requests to start file transfer

 type record RtspPlayIndication {

 AnyUri rtspUri

 }

 // Requests to stop file transfer

 type record RtspPauseIndication {

 AnyUri rtspUri

 }

 // Requests to close file transfer

 type record RtspTeardownIndication {

 AnyUri rtspUri

 }

 } // end rtspConfigPrimitives

 //* @desc These primitves extract information from or

 //* provide it to the upper interface of a HTTP stack

 group httpConfigPrimitives {

 // Note: Modifications to types still likely to cover HTTP use in service provisioning

 //* @desk Used for terminal requests on interactive channel

 //* @remark if serviceGuideRequestType and keyValuePairs are bothomitted

 //* then default view to service guide shall be sent (see OMA SG doc 5.4.3.2)

 type record HttpPostIndication {

 //* Contains a unique identifier for the (TCP) connection on which the POST

 //* was received

 UInt connectionId,

 //* Indicates the requested SG kind

 ServiceGuideRequestType serviceGuideRequestType optional,

 //* Indicates more detailed SG requests

 KeyValuePairList keyValuePairs optional,

 //StreamingAssociatedProcedureDescription streamingAssociatedProcedureDescription optional, Note - guess this should be in GET not POST

 //* Contains a terminal streaming reception report (if requested)

 StreamingReceptionReport streamingReceptionReport optional

 }

 //* @desc Used for terminal signalling of file repair or to request

 //* fragments referenced in a SGDU

 type record HttpGetIndication {

 //* Contains a unique identifier for the (TCP) connection on which the GET

 //* was received

 UInt connectionId,

 AnyUri messageUri

 }

 type enumerated ServiceGuideRequestType {

 e_sgdd, e_sgdu, e_sgdd_sgdu

 }

 type record length(0..infinity) of KeyValuePair KeyValuePairList;

 type record KeyValuePair {

 charstring key,

 charstring valuePart optional

 }

 //*

 type record HttpResponseRequest {

 UInt connectionId,

 //* http code to be used, e.g., 200 (OK)

 UInt responseCode,

 //* This field shall only be set in case of file repair responses; syntax is

 //* follows the one used in the corresponding HTTP GET URI

 charstring sbnInfo optional,

 ResponsePayload responsePayload optional

 }

 type union ResponsePayload {

 ServiceGuidePayload ServiceGuidePayload,

 charstring text

 }

 type record ServiceGuidePayload {

 ServiceGuideResponse serviceGuideResponse,

 ServiceGuideDeliveryUnit serviceGuideDeliveryUnit optional

 }

 type record HttpResponseResponse {

 charstring returnCode

 }

 } // end httpConfigPrimitives

 group smsConfigPrimitives {

 type record SmsGetIndication {

 charstring messageBody // should be further structured

 }

 } // end smsConfigPrimitives

 group mmsConfigPrimitives {

 type record MmsGetIndication {

 charstring messageBody // should be further structured

 }

 } // end mmsConfigPrimitives

 //* @desc This group specifies information to be forwarded from

 //* TTCN-3 to the streaming server

 group streamingServerPrimitives {

 type record StartStreamingRequest {

	 UInt streamId,

	 charstring inputDataFileName,

	 //* Includes IP information, codecs, rates, unicast vs broadcast, etc

	 Sdp sdp,

	 ContentProtection contentProtection optional,

	 ServiceProtection serviceProtection optional // for future use

 };

 type charstring ContentProtection; // should be further structured in future, e.g., with selection switch for SRTP or IPsec

 type charstring ServiceProtection; // should be further structured in future, e.g., keys, algorithms, etc

 type record StartStreamingResponse {

 charstring returnCode

 }

 type record StopStreamingRequest {

	 UInt streamId

 };

 type record StopStreamingResponse {

 charstring returnCode

 }

 } // end streamServerPrimitives

} // end module AtsBCast_ConfigPrimitives_TypesAndValues

LibBCast_Common_TypesandValues.ttcn

//* @desc This file collects definitions used by multiple BCAST type

//* definition modules

//* @author ETSI OMA BCAST CON Project

//* @version 0.0.1

module BCastLib_Common_TypesAndValues {

 type record length(1..infinity) of AnyUri AnyUriList;

 type charstring AnyUri;

 type charstring SdpFile; // should be further structured

 type charstring MbmsUsbdFragment; // could be further structured in future

 //* @desc Values shoudl be specified in UTC format

 type charstring DateTime with { encode "use 'dateTime' XML builtin type" };

} // end module BCastLib_Common_TypesAndValues

LibBCast_FileStreamDistribution_TypesAndValues.ttcn

//* @desc This file specifies types and costants defined in OMA BCAST FD

//* @author ETSI OMA BCAST CON Project

//* @version 0.0.1

module LibBCast_FileStreamDistribution_TypesAndValues {

 import from LibCommon_BasicTypesAndValues all;

 import from LibBCast_Common_BasicTypesAndValues all;

 type charstring FileAssociatedProcedureDescription; // should be further structured in future

 //* @desc Derived from table in section 6.3.1 of OMA FD document

 type record StreamingAssociatedProcedureDescription {

 UInt32 offsetTime optional,

 UInt32 randomTimePeriod optional,

 AnyUriList serverUri,

 MeasurementType measurementType,

 charstring mbmsMeasurement optional

 };

 // Streaming Associated Procedure Description

 type record MeasurementType {

 boolean sessionMeasurement optional,

 FixedDurationMeasurement fixedDurationMeasurement optional,

 IntervalMeasurement intervalMeasurement optional,

 ThresholdMeasurement thresholdMeasurement optional,

 EventTriggeredMeasurement eventTriggeredMeasurement optional

 };

 type record FixedDurationMeasurement {

 UInt startRTPTimestamp,

 UInt endRTPTimestamp

 }

 type record IntervalMeasurement {

 UInt interval

 } 	

 type record ThresholdMeasurement {

 float threshold

 } 	

	

 type record EventTriggeredMeasurement {

 float trigger

 } 	

 //* @desc Derived from table in section 6.3.2 of OMA FD document

 type record StreamingReceptionReport {

 AnyUri globalserviceId,

 DeviceId deviceId,

 SessionIdList sessionIds,

 charstring mbmsMetrics,

 }

 type record DeviceId {

 UInt8 deviceType

 } 	

 group predefinedDeviceTypeValues {

 const UInt8 c_dvbDeviceId := 0;

 const UInt8 c_3gppDeviceId := 1;

 const UInt8 c_3gpp2DeviceId := 2;

 }

 type record length(1..infinity) of SessionId SessionIdList;

 type record SessionId {

 AnyUri id,

 ContentList contents

 } 	

 type record length(1..infinity) of Content ContentList;

 type record Content {

 AnyUri globalContentId,

 UInt8 reportType,

 UInt measurementStartRTPTimeStamp,

 UInt measurementEndRTPTimeStamp,

 UInt expectedTotalPackets optional,

 UInt receivedTotalPackets optional,

 UInt lostTotalPackets optional,

 float receptionRatio,

 UInt serviceArea optional,

 UInt cellId optional

 } 	

 group predefinedReportTypeFieldValues {

 const UInt8 c_sessionMeasurement := 0;

 const UInt8 c_fixedDurationMeasurement := 1;

 const UInt8 c_intervalMeasurement := 2;

 const UInt8 c_thresholdCheckingMeasurement := 3;

 const UInt8 c_eventTriggeredMeasurement := 4;

 const UInt8 c_mbmsMeasurement := 5;

 }

} // end module LibBCast_FileStreamDistribution_TypesAndValues

LibBCast_ServiceGuide_TypesAndValues.ttcn

//* @desc This file specifies SGDD, SGDU, SG Reponse, and SG fragments as

//* well as related costants as defined in OMA BCAST SG document

//* @author ETSI OMA BCAST CON Project

//* @version 0.0.1

module LibBCast_ServiceGuide_TypesAndValues {

 import from LibCommon_BasicTypesAndValues all;

 import from LibBCast_Common_TypesAndValues all;

 import from LibBCast_FileStreamDistribution_TypesAndValues all;

 group pduTypes {

 group serviceGuideDeliveryDescriptor {

 type record ServiceGuideDeliveryDescriptor {

 AnyUri id optional,

 UInt version optional,

 NotificationReception notificationReception optional,

 BSMList bsmList optional,

 DescriptorEntryList descriptorEntries

 PrivateExt privateExt optional

 }

 type charstring NotificationReception; // could be further structured in future

 type charstring BSMList; // could be further structured in future

 type record length (1.. infinity) of DescriptorEntry DescriptorEntryList;

 type record DescriptorEntry {

 DescriptorGroupingCriteria descriptorGroupingCriteria optional,

 Transport transport optional,

 AlternativeAccessURLList alternativeAccessURLs optional,

 ServiceGuideDeliveryUnitList serviceGuideDeliveryUnits

 }

 type charstring DescriptorGroupingCriteria; // could be further structured in future

 type record Transport {

 charstring ipAddress,

 UInt16 portNumber,

 charstring srcIpAddress optional,

 UInt16 transmissionSessionId,

 UInt32 versionIdLength optional, // VERY optional

 boolean hasFDT

 }

 type record length(1..infinity) of AnyUri AlternativeAccessURLList;

 type record length(1..infinity) of ServiceGuideDeliveryUnit ServiceGuideDeliveryUnitList;

 type record ServiceGuideDeliveryUnit {

 UInt transportObjectId,

 AnyUri contentLocation,

 UInt validFrom optional,

 UInt validTo optional,

 FragmentList fragments

 }

 type record length(1..infinity) of Fragment FragmentList;

 type record Fragment {

 UInt transportObjectId optional, // mandatory if send via broadcast!

 AnyUri id,

 UInt version,

 UInt validFrom optional,

 UInt validTo optional

 UInt8 fragmentEncoding,

 UInt8 fragmentByte optional,

 FragmentGroupingCriteria fragmentGroupingCriteria optional

 }

 type charstring FragmentGroupingCriteria; // could be further structured in future

 type charstring PrivateExt; // could be further structured in future

 } // end group serviceGuideDeliveryDescriptor

 group serviceGuideResponse {

 type record ServiceGuideResponse {

 UInt status, // Note: should use only values 0, 7, 8, 17, 18, 20, 21, 23, 28..255

 ServiceGuideDeliveryDescriptorList ServiceGuideDeliveryDescriptors optional,

 PrivateExt privateExt optional

 }

 type record length (1.. infinity) of ServiceGuideDeliveryDescriptor ServiceGuideDeliveryDescriptorList;

 } // end group serviceGuideResponse

 group serviceGuideDeliveryUnit {

 //* @remark The codec must compute and add/remove offset, reserved,

 //* and number of SG fragments fields; in addition it is expected to

 //* handle in decoding out of sequenence arrival of fragments

 type record ServiceGuideDeliveryUnit {

 //* information about all fragments contained in this SGDU

 UnitHeaderInfoList unitHeaderInfos,

 XmlFragmentList xmlFragments,

 SdpFragmentList sdpFragments,

 //* MBMS User Service Bundle Descriptions (USBD)

 MbmsUsbdFragmentList mbmsUsbdFragments,

 //* List of file Associated Delivery Reports (ADP)

 FileAdpList FileAdps,

 } with {

 encode "OMA SG Document Section 5.4.1.3"

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec should concatenate/seperate list elements

 //* based on the fixed list element length

 type record length(0..infinity) of UnitHeaderInfo UnitHeaderInfoList;

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must compute and add/remove the offset field

 type record UnitHeaderInfo {

 UInt32 fragmentTransportId,

 UInt32 fragmentVersion

 } with {

 variant (fragmentTransportId) "most signifcant byte first";

 variant (fragmentVersion) "most signifcant byte first";

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must concatenate/seperate list elements

 //* based on the list element type structure, and

 //* compute and add/remove the fragmentEncoding field

 //* for each list element

 type record length(0..infinity) of XmlFragment XmlFragmentList;

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must compute and add/remove the fragmentType field.

 //* In case of the other fragment the union codec must not add/remove the

 //* fragmentType field.

 type union XmlFragment {

 Service service,

 Content content,

 Schedule schedule,

 Access access,

 PurchaseItem purchaseItem,

 PurchaseData purchaseData,

 PurchaseChannel purchaseChannel,

 PreviewData previewData,

 InteractivityData interactivityData,

 //* This alternative may be used to enter "unspecified(0)" or extensions

 OtherXmlFragment otherXmlFragment

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec shall simply concatenate/separate fields

 type record OtherXmlFragment {

 UInt8 fragmentType,

 charstring fragment

 } with {

 variant (fragmentType) "most signifcant byte first";

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must concatenate/seperate list elements

 //* based on the list element type structure

 type record length(0..infinity) of SdpFragment SdpFragmentList;

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec shall simply concatenate/seperate fields

 type record SdpFragment {

 UInt32 validFrom,

 UInt32 validTo,

 bitstring fragmentId,

 Sdp sdpFragment

 } with {

 variant (validFrom) "most signifcant byte first";

 variant (validTo) "most signifcant byte first";

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must concatenate/seperate list elements

 //* based on the list element type structure

 type record length(0..infinity) of MbmsUsbdFragment MbmsUsbdFragmentList;

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec shall simply concatenate/separate fields

 type record MbmsUsbdFragment {

 UInt32 validFrom,

 UInt32 validTo,

 bitstring fragmentId,

 Usbd usbdFragment

 } with {

 variant (validFrom) "most signifcant byte first";

 variant (validTo) "most signifcant byte first";

 }

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec must concatenate/seperate list elements

 //* based on the list element type structure

 type record length(0..infinity) of FileAdp FileAdpList;

 //* @remark This type is binary (NOT XML) encoded!

 //* The codec shall simply concatenate/separate fields

 type record FileAdp {

 UInt32 validFrom,

 UInt32 validTo,

 bitstring fragmentId,

 FileAssociatedProcedureDescription fileAdp

 } with {

 variant (validFrom) "most signifcant byte first";

 variant (validTo) "most signifcant byte first";

 }

 } // end group serviceGuideDeliveryUnit

 } // end group pduTypes

 group xmlFragments {

 group serviceFragment {

 type record Service {

 AnyUri id,

 UInt version,

 UInt validFrom optional,

 UInt validTo optional

 UInt16 weight optional,

 boolean serviceContentProtection optional,

 charstring baseCID optional,

 boolean emergency optional,

 ProtectionKeyIdList protectionKeyIds optional,

 ServiceTypeList ServiceTypes optional,

 AnyUri globalServiceId optional,

 // Start of Service guide

 //* Service name list

 NameList names,

 DescriptionList descriptions optional,

 AudioLanguageList audioLanguages optional,

 TextLanguageList textLanguages optional,

 ParentalRatingList parentalRatings optional,

 TargetUserProfileList targetUserProfiles optional,

 GenreList genres optional,

 ExtensionList extensions optional,

 // End of Service guide

 PreviewDataReferenceList previewDataReferences optional,

 BroadCastArea broadcastArea optional,

 TermsOfUseList termsOfUses optional,

 PrivateExt privateExt optional

 }

 type record length(1..infinity) of UInt8 ProtectionKeyIdList;

 const UInt8 c_protectionKeyId_keyDomainId := 0;

 type record length(1..infinity) of UInt8 ServiceTypeList;

 const UInt8 c_unspecified_ServiceType := 0;

 const UInt8 c_basicTv_ServiceType := 1;

 const UInt8 c_basicRadio_ServiceType := 2;

 const UInt8 c_riServices_ServiceType := 3;

 const UInt8 c_cachecast_ServiceType := 4;

 const UInt8 c_fileDownloadServices_ServiceType := 5;

 const UInt8 c_softwareManagementServices_ServiceType := 6;

 const UInt8 c_notification_ServiceType := 7;

 const UInt8 c_serviceGuide_ServiceType := 8;

 const UInt8 c_terminalProvisioning_ServiceType := 9;

 type record length(1..infinity) of charstring NameList;

 type record length(1..infinity) of charstring DescriptionList;

 type record length(1..infinity) of AudioLanguage AudioLanguageList;

 //* @desc See rules for usage and encoding in OMA SG 5.1.2.1

 type record AudioLanguage {

 AnyUri id optional,

 charstring language SdpTag

 }

 type charstring TextLanguageList; // could be structured further in future

 type charstring ParentalRatingList; // could be structured further in future

 type charstring TargetUserProfileList; // could be structured further in future

 type charstring GenreList; // could be structured further in future

 type charstring ExtensionList; // could be structured further in future

 type record length(1..infinity) of PreviewDataReference PreviewDataReferenceList;

 type record PreviewDataReference {

 AnyUri idRef,

 UInt8 usage

 }

 const UInt8 c_unspecified_usage := 0;

 const UInt8 c_serviceByServiceSwitching_usage := 1;

 const UInt8 c_serviceGuideBrowsing_usage := 2;

 const UInt8 c_servicePreview_usage := 3;

 const UInt8 c_barker_usage := 4;

 const UInt8 c_alternativeToBlackout_usage := 5;

 type charstring BroadCastArea; // could be structured further in future

 type charstring TermsOfUseList; // could be structured further in future

 type charstring PrivateExt; // could be structured further in future

 }

 group scheduleFragment {

 type record Schedule {

 AnyUri id,

 UInt version,

 boolean defaultSchedule optional,

 boolean onDemand optional,

 UInt validFrom optional,

 UInt validTo optional

 ScheduleServiceReference scheduleServiceReference,

 InteractivityDataReferenceList interactivityDataReferences optional,

 ContentReferenceList contentReferences optional,

 PreviewDataReferenceList previewDataReferences optional,

 TermsOfUseList termsOfUses optional,

 PrivateExt privateExt optional

 }

 type record ScheduleServiceReference {

 AnyUri idRef,

 AnyUri audioLanguageIdRef optional,

 AnyUri textLanguageIdRef optional

 }

 type record length(1..infinity) of InteractivityDataReference InteractivityDataReferenceList;

 type record InteractivityDataReference {

 AnyUri idRef,

 AutoStartList autoStarts optional,

 DistributionWindowList distributionWindows optional

 }

 type record length(1..infinity) of UInt AutoStartList;

 type charstring DistributionWindowList; // could be structured further in future

 type record length(1..infinity) of ContentReference ContentReferenceList;

 type record ContentReference {

 AnyUri idRef,

 AnyUri contentLocation,

 AnyUri audioLanguageIdRef optional,

 AnyUri textLanguageIdRef optional,

 boolean repeatPlayback optional,

 AutoStartList autoStarts optional,

 DistributionWindowList distributionWindows optional,

 PresentationWindowList presentationWindows optional

 }

 type charstring DistributionWindowList; // could be structured further in future

 //* @desc Used for expressing start and end time for scheduled rendering of cachecast content

 type charstring PresentationWindowList; // could be structured further in future

 }

 group serviceContentFragment {

 type record Content {

 AnyUri id,

 UInt version,

 UInt validFrom optional,

 UInt validTo optional

 AnyUri globalContentId optional,

 boolean emergency optional,

 boolean serviceContentProtection optional,

 charstring baseCID optional,

 ContentServiceReferenceList contentServiceReferences optional,

 ProtectionKeyIdList protectionKeyIds optional,

 // Start of Service guide

 //* Service name list

 NameList names,

 DescriptionList descriptions optional,

 //* Applicable to scheduled rendering of non-cachecast content

 DateTime startTime optional,

 //* Applicable to scheduled rendering of non-cachecast content

 DateTime endTime optional,

 AudioLanguageList audioLanguages optional,

 TextLanguageList textLanguages optional,

 ParentalRatingList parentalRatings optional,

 TargetUserProfileList targetUserProfiles optional,

 GenreList genres optional,

 ExtensionList extensions optional,

 // End of Service guide

 PreviewDataReferenceList previewDataReferences optional,

 BroadCastArea broadcastArea optional,

 TermsOfUseList termsOfUses optional,

 PrivateExt privateExt optional

 }

 type record length(1..infinity) of ContentServiceReference ContentServiceReferenceList;

 type record ContentServiceReference {

 AnyUri idRef,

 UInt16 weight optional

 }

 }

 group accessFragment {

 type record Access {

 AnyUri id,

 UInt version,

 UInt validFrom optional,

 UInt validTo optional,

 AccessType accessType,

 KeyManagementSystemList keyManagementSystems optional,

 EncryptionTypeList encryptionTypes optional,

 AccessServiceReferenceList accessServiceReferences optional,

 ScheduleReferenceList scheduleReferences optional,

 TerminalCapabilityRequirement terminalCapabilityRequirement optional,

 UInt bandwidthRequirement optional,

 ServiceClassList serviceClasses,

 PreviewDataReferenceList previewDataReferences optional,

 NotificationReception notificationReception optional

 PrivateExt privateExt optional

 }

 type union AccessType {

 BroadCastDelivery broadCastDelivery,

 UniCastDeliveryList uniCastDeliverys

 }

 type record BroadCastDelivery {

 BdsType bdsType optional,

 SessionDescription sessionDescription,

 //* field shall be present with ALC but shall not be present with FLUTE

 FileDescription fileDescription optional,

 }

 type record BdsType {

 UInt8 bcType optional,

 VersionList versions optional

 }

 const UInt8 c_ipdcOverDvbH_bcType := 0;

 const UInt8 c_3gppMbms_bcType := 1;

 const UInt8 c_3gpp2Bcmcs_bcType := 2;

 type charstring VersionList;

 //* @remark The presence of sdp and sdpRef fields is mutually exclusive!

 type record SessionDescription {

 //* inline SDP

 Sdp sdp optional,

 SdpRef sdpRef optional,

 UbsdRef usbdref optional,

 AdpRef adpRef optional

 }

 type charstring SdpRef; // could be structured further in future

 type charstring UbsdRef; // could be structured further in future

 //* @remark If both uri and idRef are present they must be identical

 type record AdpRef {

 AnyUri uri optional,

 AnyUri idRef optional

 }

 type record FileDescription {

 charstring contentType optional,

 charstring contentEncoding optional,

 UInt8 fecOtiFecEncodingId optional,

 UInt32 fecOtiFecInstanceId optional,

 UInt32 maximumSourceBlockLength optional,

 UInt32 fecOtiEncodingSymbolLength optional,

 UInt32 maxNumberOfEncodingSymbols optional,

 Oct64 fecOtiSchemeSpecificInfo optional,

 FileList files

 }

 type record length(1..infinity) of File FileList;

 //* @desc More info on parameters available in RFC 3926 3.4.2

 type record File {

 AnyUri contentLocation,

 UInt toi,

 UInt32 contentLength optional

 UInt32 transferLength optional,

 charstring contentType optional,

 charstring contentEncoding optional,

 Oct64 contentMd5 optional,

 UInt8 fecOtiFecEncodingId optional,

 UInt32 fecOtiFecInstanceId optional,

 UInt32 maximumSourceBlockLength optional,

 UInt32 fecOtiEncodingSymbolLength optional,

 UInt32 maxNumberOfEncodingSymbols optional,

 Oct64 fecOtiSchemeSpecificInfo optional

 }

 type record length(1..infinity) of UniCastDelivery UniCastDeliveryList;

 type record UniCastDelivery {

 UcType ucType,

 AnyUrlList accessServerUrls,

 SessionDescription sessionDescription,

 AnyUrlList serviceAccessNotificationUrls optional

 }

 const UInt8 c_http_ucType := 0;

 const UInt8 c_wap10_ucType := 1;

 const UInt8 c_wap2x_ucType := 2;

 const UInt8 c_rtspRtp_ucType := 3;

 const UInt8 c_rtspRtp3gppPss_ucType := 4;

 const UInt8 c_rtspRtp3gpp2Mss_ucType := 5;

 const UInt8 c_fluteUnicast_ucType := 6;

 type charstring KeyManagementSystemList; // could be structured further in future

 type UInt8 EncryptionTypeList;

 const UInt8 c_ipsec_encryptType := 0;

 const UInt8 c_strp_encryptType := 1;

 const UInt8 c_ismaCryp_encryptType := 2;

 const UInt8 c_dcf_encryptType := 3;

 type record length(1..infinity) of AccessServiceReference AccessServiceReferenceList;

 type record AccessServiceReference {

 AnyUri idRef

 }

 type charstring ScheduleReferenceList; // could be structured further in future

 type charstring TerminalCapabilityRequirement; // could be structured further in future

 type record length(1..infinity) of charstring ServiceClassList;

 type charstring NotificationReception; // could be structured further in future

 }

 group purchaseItemFragment {

 type charstring PurchaseItem; // could be structured further in future

 }

 group purchaseDataFragment {

 type charstring PurchaseData; // could be structured further in future

 }

 group purchaseChannelFragment {

 type charstring PurchaseCannel; // could be structured further in future

 }

 group previewDataFragment {

 type charstring PreviewDataItem; // should be structured further

 }

 group interactivityDataFragment {

 type charstring InteractivityDataItem; // should be structured further

 }

 } // end group xmlFragments

 type record length(1..infinity) of Fragment FragmentList;

 group serviceFragment {

 }

 type record Fragment {

 UInt transportObjectId optional, // mandatory if send via broadcast!

 AnyUri id,

 UInt version,

 UInt validFrom optional,

 UInt validTo optional

 UInt8 fragmentEncoding,

 UInt8 fragmentByte optional,

 FragmentGroupingCriteria fragmentGroupingCriteria optional

 }

 type charstring FragmentGroupingCriteria; // could be further structured in future

 type charstring PrivateExt; // could be further structured in future

 }

_1205653034.doc

TTCN-3

 test case

executable

SUT

 executable

Socket connection

