OMA-TS-BCAST-CON-Framework-v1_0-20071010-D
Page 23 V(29)

	[image: image1.jpg]
	

	Conformance Test Framework for Mobile Broadcast Services

	Draft Version 1.0 – 10 October 2007

	Open Mobile Alliance

	OMA-TS-BCAST-CON-Framework-v1_0-20071010-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Abbreviations

94.
Introduction

105.
OMA BCAST Conformance Testing Framework

105.1
TTCN-3 test system architecture

115.1.1
BCAST Protocol Data Units and Service Primitives

115.1.2
PDUs

115.1.3
Service Primitives

135.1.4
Upper Tester Primitives

135.2
Platform Adapter Requirements

135.3
TTCN-3 Compiler Requirements

156.
TTCN-3 test suite specification

156.1
About the test suite design

156.1.1
General

166.2
Naming conventions

176.2.1
Templates

186.3
Documentation

197.
Test suite execution

197.1
General

197.2
PIXIT

237.3
Use of BCAST IUT simulation

24Appendix A.
Change History (Informative)

24A.1
Approved Version History

24A.2
Draft/Candidate Version <current version> History

25Appendix B.
Abstract Test Suite (ATS) (Normative)

25B.1
The ATS in TTCN-3 core (text) format

26Appendix C.
On UTS, SUT Emulation & Simulation (Informative)

26C.1
About Upper Tester Server

27C.2
Test Case Validation with an Emulated SUT

28C.3
Test Case Validation using Simulation

Figures

10Figure 1: Conceptual BCAST CON Test Architecture

Tables

12Table 1: Stream Server Service Primitives

12Table 2: File Server Service Primitives

12Table 3: FLUTE Service Primitives

12Table 3: HTTP Service Primitives

13Table 4: SMS & MMS Service Primitives

13Table 5: Upper Tester Primitives

13Table 7: TTCN-3 External Functions

17Table 6: TTCN-3 naming convention

18Table 7: TTCN-3 documentation tags

1. Scope

The present document describes the Abstract Test Suite (ATS) to test the OMA BCAST enabler.

The objective of the present document is to provide a basis for conformance tests for BCAST terminal equipment.

The ISO standard for the methodology of conformance testing (ISO/IEC 9646 1 [ISO9646]) and the ETSI rules for conformance testing (ETS 300 406 [ETSIMETHOD]) are used as a basis for the test methodology.

· Clause 5 describes the test system architecture used to test the BCAST terminals.

· Clause 6 describes the ATS conventions, which are intended to give a better understanding of the ATS.

· Annex B provides information about the TTCN-3 part of the ATS.

· Annex C provides guidelines for upper tester implementation as well as testing with an emulated and simulated SUT.

2. References

2.1 Normative References

	[ISO9646]
	ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts"

	[ETSIMETHOD]
	ETSI ETS 300 406: "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

	[T3CORE]
	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", Version 3.2.1.

	[T3TRI]
	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)", Version 3.2.1.

	[T3TCI]
	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)", Version 3.2.1.

	[IPV6FWK]
	ETSI EG 202 568: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Testing: Methodology and Framework".

	[BCAST10–AD]
	“Mobile Broadcast Services Architecture”, Open Mobile Alliance™, OMA-AD- BCAST-V1_0, URL:http://www.openmobilealliance.org/

	[BCAST10–ESG]
	“Service Guide for Mobile Broadcast Services”, Open Mobile Alliance™, OMA-TSBCAST_ServiceGuide-V1_0, URL:http://www.openmobilealliance.org/

	[BCAST10–Distribution]
	“Mobile Broadcast Services Architecture”, Open Mobile Alliance™, OMA-TS-BCAST_Distribution-V1_0, URL:http://www.openmobilealliance.org/

	[FLUTE]
	“File Delivery over Unidirectional Transport”, RFC 3926

	[SDP]
	“Session Description Protocol”, RFC 2327

	[T3DOC]
	Open Source TTCN-3 Documentation Tool, URL:http://www.ttcn-3.org/OpenSourceTools.htm

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version x.y, Open Mobile Alliance™,
OMA-ORG-Dictionary-Vx_y, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2
Abbreviations

	Abstract Test Case (ATC)
	A complete and independent specification of the actions required to achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test Method, starting in a stable testing state and ending in a stable testing state. This specification may involve one or more consecutive or concurrent connections.

	Abstract Test Suite (ATS)
	A test suite composed of abstract test case.

	BER
	Basic Encoding Rules

	BCAST
	 Mobile Broadcast Services

	DVB-H
	Digital Video Broadcasting - Handheld

	Entity
	Something that has separate and distinct existence and objective or conceptual reality.

	Executable Test Case (ETC)
	A realization of an abstract test case.

	Executable Test Suite (ETS)
	A test suite composed of executable test cases.

	Implementation Conformance Statement (ICS)
	A statement made by the supplier of an implementation or system claimed to conform to a given specification, stating which capabilities have been implemented. The ICS can take several forms: protocol ICS, profile ICS, profile specific ICS, and information object ICS.

	Implementation eXtra Information for Testing (IXIT)
	A statement made by a supplier or implementer of an IUT which contains or references all of the information (in addition to that given in the ICS) related to the IUT and its testing environment, which will enable the test laboratory to run an appropriate test suite against the IUT. And IXIT can take several forms: protocol IXIT, profile IXIT, profile specific IXIT, and information object IXIT, TMP implementation statement.

	IP
	Internet Protocol

	IUT
	Implementation Under test

	FD
	File Distribution

	FDT
	File Distribution Table

	FLUTE
	File Delivery over Unidirectional Transport

	HTTP
	Hypertext Transfer Protocol

	Implementation Under Test (IUT)
	An implementation of one or more OSI protocols in an adjacent user/provider relationship, being that part of a real open system which is to be studied by testing.

	Interactive Service
	A service which provides the means for bi-directional exchange of information between users. Interactive services are divided into three classes of services: conversational services, messaging services and retrieval services (source: ITU-T I.113).

	MBMS
	Multimedia Broadcast Multicast Service

	MMS
	Multimedia Messaging Service

	MTC
	Main Test Component

	OMA
	Open Mobile Alliance

	Platform Adapter (PA)
	An entity that adapts the TTCN-3 Executable to a particular execution platform

	Protocol Implementation eXtra Information for Testing (PIXIT)
	An IXIT related to testing for conformance to a given protocol specification.

	PDU
	Protocol Data Unit

	PTC
	Parallel Test Component

	RF
	Radio Frequency

	RTP
	Real-Time Transport Protocol

	RTSP
	Real-Time Streaming Protocol

	SRTP
	Secure Real-Time Transport Protocol

	SCR
	Static Conformance Requirement

	SD
	Stream Distribution

	SDP
	Session Description Protocol

	SGDD
	Service Guide Delivery Descriptor

	SGDU
	Service Guide Delivery Unit

	SMS
	Short Message Service

	System Under Test (SUT)
	The real open system in which the IUT resides.

	SUT Adapter (SA)
	An entity that adapts the TTCN-3 communication operations with the SUT based on an abstract test system interface and implements the real test system interface

	TCP
	Transmission Control Protocol

	Test Management (TM)
	An entity that provides a user interface and administers the TTCN-3 test system

	TTCN-3
	Testing and Test Control Notation Version 3

	TTCN-3 Control Interface (TCI)
	Currently a proprietary interface that specifies the interaction between Test Management and TTCN-3 Executable in a test system

	TTCN-3 Executable (TE)
	The part of a test system that deals with interpretation or execution of a TTCN-3 ETS

	TTCN-3 Runtime Interface (TRI)
	An interface that defines the interaction of the TTCN-3 Executable with the SUT and Platform Adapter in a test system

	UDP
	User Datagram Protocol

	UMTS
	Universal Mobile Telecommunications System

	UTC
	Upper Tester Client

	UTS
	Upper Tester Server

4. Introduction

This document provides a framework for the implementation of TTCN-3 conformance test cases for the OMA BCAST enabler. It specifies BCAST test system adapter and codec requirements. Also it presents the BCAST test suite design as well as test execution related information.
5. OMA BCAST Conformance Testing Framework
5.1 TTCN-3 test system architecture
Figure 1 illustrates the BCAST test system architecture used for testing a real terminal implementing the OMA BCAST standards. It is based on the general TTCN test system architecture specified in [T3TRI, T3TCI].
[image: image2.jpg]
Figure 1: Conceptual BCAST CON Test Architecture

The SUT Adapter (SA) shown in Figure 1 realizes the transport of BCAST service guides, session descriptions, files, or images, the reception of SMS and MMS messages, transfer of file data, and the generation of audio and video traffic. Note that this is only a conceptual model for a SA implementation. Individual components of this test architecture may or even should be (for performance reasons) implemented as separate executables from the TTCN-3 test system executable.
Internally, the SA shall provide a number of different transport mechanisms that include FLUTE [FLUTE] (applicable in context of both, broadcast as well as interactive channel), and HTTP (only applicable in context of interaction channel). The file server component shall handle the transfer of TTCN-3 external files. The streaming server component shall stream of audio and video data towards the terminal. Although not explicitly shown in this figure, the SA should be able to transfer files and stream data via both, interaction as well as broadcast network bearers (it shall at least support broadcast of data). SMS and MMS centers shall allow the reception of a SMS or MMS message from a terminal and inform test components of their content. The lowest layer of the SA shall support one but may include a number of different broadcast and interaction network bearers, e.g., DVB-H and/or MBMS and/or BCMCS for the realization of the broadcast network bearer as well as GPRS via GSM and/or UTMS and/or CDMA for the realization of the interaction network bearer. The selection of the desired RF module in the SA to be used for a given test, e.g., DVB-H or MBMS or BCMCS for the broadcast network, is assumed to be externally configured in the SA based on IP address information. The upper test adapter shall implement either a textual or graphical interface to a human user (i.e., asking him or her to perform actions on the BCAST terminal and observe its behavior) or integrate directly with the upper interface of the IUT (see Annex C.1 for more information).

Finally, although not shown in this figure, the SA shall also integrate the support of content protection and GZIP utilities with all various transport scenarios, e.g., GZIP may be used to encode service guides. Similarly, content protection shall be supported for distribution files as well as audio or video streams. The use of these two utilities is communicated from the test suite via service primitive parameters.
The SA is accessed by TTCN-3 test cases via a TTCN-3 system component which offers ports for service guide announcement channel (ac), service guide broadcast channels (bc), interactive channel (ic), streaming server control (ssc), file server control (fsc), SMS notification (sms), MMS notification (mms), and upper test communication (user). All messages exchanged via these ports are composed of a service primitive part and a protocol data unit (PDU) part (which is carried in payload of the service primitive). All port interfaces have been designed in such a manner that all the information required by the SA for message transport, is contained in the service primitive part, i.e., SA implementations shall not need to decode any PDU information.
The port names associated with interfaces of the upper transport layers in Figure 1 are related as follows to OMA BCAST architecture reference points (excluding content protection reference points):

· ac: SG-5

· bc : SG-5, FD-5
· ic: SG-6, FD-6, SI-8
· mms: SI-8
· sms: SI-8
· fsc: FD-5
· ssc: indirectly SD-5 (broadcast network only), SD-6 (interaction network only)

The tasks of the different TTCN-3 components in Figure 1 are:

· The Main Test Component (MTC) plays the role of a test coordinator, i.e., creating, synchronizing, coordinating, and terminating the BCAST Network Control, BCAST Network Data, and Upper Tester Client (UTC) test components used in the test cases. This test component does not interact with the SA.
· BCAST Network Control test component plays the role of a lower tester. It uses one of the relevant channel ports, announcement or broadcast or interactive, to generate BCAST network control plane traffic, e.g., sending out SGDDs or SGDUs. When using the interactive channel this component also observes BCAST terminal requests. This component interacts with the SA using BCAST FLUTE, HTTP, SMS, and MMS service primitives discussed in Clause 5.1.3 as well as the PDUs defined in Clause 5.1.2.
· BCAST Network Data test component plays also the role of a lower tester. It uses the stream and file server control ports to request the generation of BCAST data plane traffic, i.e., stream video and audio or transfer a file respectively. If multiple stream and/or file distributions are needed then each stream or file distribution should be handled by a dedicated BCAST Network Data test component. Each component interacts with the SA using BCAST Streaming and File Server Control service primitives defined in Clause 5.1.3.

· The Upper Tester Client (UTC) is a test component plays the role of an upper tester. It communicates via the user port either directly with a human user or with the Upper Tester Server (UTS) which is integrated with the IUT in the SUT. Upper tester primitives and indications are defined in Clause 5.1.3. The UTS is discussed in Annex C.1.
5.1.1 BCAST Protocol Data Units and Service Primitives

5.1.2 PDUs
A TTCN-3 BCAST test system shall support the encoding of following BCAST PDUs: Service Delivery Descriptor (SGDD), Service Guide Delivery Unit (SGDU), Service Guide Response and Interactivity Media Document.
Appendix B provides a reference to detailed TTCN-3 type definitions for all of these PDUs and their information elements which all have been directly derived from the BCAST standards. Here, the relevant TTCN-3 modules are LibBCast_Service Guide_TypesAndValues, LibBCast_FileStreamDistribution_TypesAndValues, LibBCast_Common_TypesAndValues and AtsBCast_Interactivity_TypesAndValues. It is the responsibility of the codecs in the TTCN-3 test system to encode and decode from this abstract representation to a transfer syntax that is compliant to the respective standardized OMA BCAST XML schemas. SGDU encoding is an exception which should comply with the requirements stated in [BCAST10–ESG] clause 5.4.1.3.
5.1.3 Service Primitives

The BCAST test cases use a number of different SA service primitives for controlling different combinations of transport layers that shall be supported by the test system. Service primitives for each component include configuration information needed for all SA layers which may need to be changed for the execution of a test in the TTCN-3 test suite.
The following tables summarize all of these service primitives. Appendix B provides a reference to detailed TTCN-3 type definitions for all service primitives and their information elements. The relevant TTCN-3 modules are AtsBCast_Test Configuration_TypesAndValues and LibBCast_UpperTesterPrimitives_TypesAndValues. This document imposes no restrictions on the encoding of service primitives, i.e., it is left open to SA developers. PDUs carried within the service primitives shall however comply with the encoding requirements specified in the BCAST standards (see Section 5.1.2). Note that GZIP and content protection component do not have their own primitives defined but are instead integrated in other service primitives, i.e., content encoding and content protection parameters, respectively.
	Service Primitive Type(s)
	Parameters
	Purpose

	StartStreamingRequest/Response
	Stream Identifier, Stream file, SDP, Content Protection, Service Protection
	Starts to broadcast or unicast a stream from an audio or video or an Interactivity Media Document

	StopStreamingRequest/Response
	Stream Identifier
	Stops a specific stream

Table 1: Stream Server Service Primitives
	Service Primitive Type(s)
	Parameters
	Purpose

	StartFileTransferRequest/Response
	Transfer Identifier, File List, SDP, Content Protection, Service Protection
	Starts to transfer TTCN-3 external files, e.g., images, or an Interactivity Media Document

	StopFileTransferRequest/Response
	Transfer Identifier
	Stops a specific file transfer

Table 2: File Server Service Primitives

	Service Primitive Type(s)
	Parameters
	Purpose

	StartFluteSessionRequest/Response
	Session Identifier, FDT with content encoding flag, Payload
	Allocates resources and starts a FLUTE session. Payload may only SGDD or SGDU

	StopFluteSessionRequest/Response
	Session Identifier
	Stops a FLUTE transmission releasing resources

Table 3: FLUTE Service Primitives
	Service Primitive Type(s)
	Parameters
	Purpose

	HttpPostIndication
	Connection Identifier, SG Request Type, Key Value Pairs, Streaming Report
	Indicates that HTTP POST message has been received from the terminal

	HttpGetIndication
	Connection Identifier, URI
	Indicates that HTTP GET message has been received from the terminal

	HttpResponseRequest/Response
	Connection Identifier, Response Code, Payload (SGDU, SG response, etc)
	Sends a HTTP response to the terminal

	HttpSubscriptionRequestIndication
	Connection Identifier, Service Name
	Indicates that a HTTP subscribe message has been received from the terminal

Table 4: HTTP Service Primitives
	Service Primitive Type(s)
	Parameters
	Purpose

	SmsReceptionIndication
	SMS Content
	Indicate that a SMS message has been received from the terminal

	MmsReceptionIndication
	MSM Content
	Indicate that a MMS message has been received from the terminal

Table 5: SMS & MMS Service Primitives
5.1.4 Upper Tester Primitives

The primitives used by the upper tester reflect commands and observations that are either to be issued or checked by a human during the execution of a test based on textual instructions or directly performed on the IUT by the UTS, i.e., a special software application on top of the BCAST implementation user interface and integrated in the terminal. If there is no UTS implementation available the command should result in the posing of a question and three answers to a human terminal operator, i.e., the correct observation was made, an incorrect observation was made, and no change was observed in the terminal user interface.
Table 6 lists the collection of upper test primitives and the questions they represent. Note that that this document leaves the encoding of upper tester primitives (also for the case that a UTS is used) in the test system intentionally open. It is recommended however to choose a textual encoding of primitives to ease readability of messages sent between UTC and UTS.
	Service Primitive Type(s)
	Parameters
	Example Command/Question to human user

	PowerOnTerminalRequest/Response
	-
	Power on the terminal!
Does is start up correctly?

	ClearServiceGuideCacheRequest/Response
	-
	Clear the service guide cache on the terminal!
Has the cache clearance been confirmed?

	PowerOffTerminalRequest/Response
	-
	Power off the terminal!
Does is close down correctly?

	RunBCastApplicationRequest/Response
	-
	Run the BCAST application on the terminal.

Does the boot-strap service guide show up?

	GetServiceGuideRequest/Response
	Service guide identifier
	Request to change to the <SG ID> service guide!
Does the display name of the service guide change to <SG ID>?

	UpdateServiceGuideRequest/Response
	
	Request to update the display of currently selected service guide.
Has the update been confirmed?

	CheckServiceRequest/Response
	Service identifier
	Browse the service guide on the terminal.
Can you locate the <Service ID> service?

	SelectServiceRequest/Response
	Service identifier
	Select the <Service ID>!
Is the service further expanded?

	CheckContentPresenceRequest/Response
	Content identifier, Start & End Time
	Can you locate the program <Content ID> being associated with this service? Is the start time <Start time> and end time <End Time>?

	CheckInteractivityRequest/Response
	Interactivity identifier
	Can you locate the <Interactivity ID> interactivity being associated with this service?

	SelectInteractivityRequest/Response
	Interactivity identifier
	Select the <Interactivity ID> interactivity.
Can you locate further interactivity information?

	CheckInteractivityChoicesRequest/Response
	Choices
	Browse the service guide on the terminal.
Can you locate these interactivity choices: <Choices>?

	SelectInteractivityChoiceRequest/Response
	Choice
	Select the interactivity choice <Choice>!
Does the terminal report a successful selection?

	UseServiceRequest/Response
	Service identifier
	Use the <Service ID>!
Do you hear and/or see the content appear on the terminal?

	SelectLanguageRequest/Response
	Audio/text, Language identifier
	Select the <Language ID> in BCAST options as <audio/text> language!
Does the terminal accept the change?

	CheckLanguageRequest/Response
	Content Identifier, Audio/text, Language identifier
	Does the terminal show <Content ID> with <audio/text> in <Language ID> language?

	CheckVideoRequest/Response
	Content identifier
	Does the terminal show the program <Content ID>?

	CheckPreviewRequest/Response
	File Reference or text
	Does the terminal display <File Reference or text > as a preview of the service?

	CheckFileRequest/Response
	File identifier
	Browse the service guide on the terminal.
Can you locate the <File ID> file for download?

	SelectFileRequest/Response
	File identifier
	Select the <File ID> file for download!
Does the terminal report a successful selection?

	CheckFileReceivedRequest/Response
	File identifier
	Is the file <File ID> received successfully?

	CheckPurchaseInfoRequest/Response
	Info
	Can you locate the purchase info <Info> on the terminal?

	PurchaseServiceRequest/Response
	Service identifier
	Subscribe to <Service ID>service!
Does the terminal accept the subscription?

	CheckBrowserRequest/Response
	XHTML file reference
	Does the terminal HTML application display the contents of <File Reference>?

Table 6: Upper Tester Primitives
5.2 Platform Adapter Requirements

The time model to be supported in a BCAST platform adapter is wall clock time. The following table describes the external functions used by BCAST test cases that need to be implemented by a BCAST TTCN-3 test system as part of the platform adapter.
	Name
	Parameters
	Return Value

	fx_getNTPTime
	-
	The first 32 Bits integer part of the NTP timestamp.

	fx_getDateTime
	NTP Time
	The Date Time representation of the NTP time

Table 7: TTCN-3 External Functions
5.3 TTCN-3 Compiler Requirements

The BCAST CON test suite has been implemented and analyzed with two independent TTCN-3 Edition 3.2.1 compliant TTCN-3 compilers: Telelogic Tau 2.6 and Testing Technologies TTworkbench 1.1.1. Support of version 3.2.1 of the TTCN-3 standards is needed since the test suite uses component type extension and keep-alive component concepts.

6. TTCN-3 test suite specification
6.1 About the test suite design
6.1.1 General

The BCAST CON test suite has been specified using a library approach which has also been used, e.g., in [IPV6FWK]. The test suite is specified in three layers which build on top of each other:

· LibCommon: A collection of TTCN-3 definitions useful for any test suite implementation
· LibBCast: A collection of TTCN-3 definitions related to BCAST standards and reusable only in the context of BCAST test suite implementations.
· AtsBCast: TTCN-3 definitions which are specific to this particular test suite, e.g., test case statements, SUT adapter configuration, etc
The library layer is composed of multiple TTCN-3 modules:

· TypesAndValues: This type of module collects TTCN-3 type and constant definitions relevant for a library. If applicable one module should be associated per specification document, e.g., an OMA standard

· Module Parameters: Collects all module parameters relevant to a given library
· Interface: Specifies a TTCN-3 component type and port types reflecting the interfaces offered by the library.

· Templates: Collects templates specified based on the types defined in the library.

· Functions: Collects function implementations of the library.

The ATS layer is decomposed of the following type of modules

· Module Parameters: Collects all module parameters relevant to the ATS only, e.g., SCRs
· Test System: Specifies TTCN-3 component types for test components in the ATS. These types are defined based on port types defined in the libraries used and are type compatible to component types defined in respective interface modules
· Test Configuration: Collects all configuration functions that map or connect component ports as well as types and templates for service primitives
· <ATC group identifier>Tests: Collects all TTCN-3 test cases specified in for the respective OMA test case group.

· Test Control: Contains only a TTCN-3 control part specification which may be used to control test execution via module parameters. For more information about this module see clause 7.1.
Test cases have been implemented by using the keep-alive concept for test components, i.e., using re-start of test component behavior, instead of an explicit synchronization mechanism. Although many test cases use create test component instances, tests execute test components so far sequentially. In general, tests are structured as follows:

· The test configuration is established, i.e., ports are mapped/unmapped using configuration functions
· SGDD and SGDU values are constructed via templates and variables and functions based on test specific requirements

· SGDD and SGDU are broadcasted

· Depending on the test at hand, invocations of upper tester functions, which encapsulate user interactions with the terminal, are followed by BCAST network functions, which encapsulate network control as well data transmissions to the terminal
· As the final step in each test case the test configuration is taken down by disconnecting and unmapping ports
6.2 Naming conventions

The naming convention is based on the following underlying principles:

· in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 9) indicating the type of TTCN-3 element it represents;

· suffixes shall not be used;

· prefixes should be separated from the body of the identifier with an underscore ("_"):

EXAMPLE 1:
c_sixteen, t_waitMax;
· only module names, test case identifiers, data type names and module parameters should begin with an upper-case letter. All other names (i.e. the part of the identifier following the prefix) should begin with a lower-case letter;

· the start of second and subsequent words in an identifier should be indicated by capitalizing the first character. Underscores should not be used for this purpose.

EXAMPLE 2:
f_authenticateUser().
Table 9 specifies the naming guidelines for each element of the TTCN-3 language indicating the recommended prefix, suffixes (if any) and capitalization.

	Language element
	Naming convention
	Prefix
	Example
	Notes

	Module
	Upper-case initial letter
	none
	LibBCast_TypesAndValues
	

	Group
	Lower-case initial letter
	none
	messageGroup
	

	Data type
	Upper-case initial letter
	none
	SetupContents
	

	Message template
	Lower-case initial letter
	m_
	m_setupInit
	Note 1

	Message template with wildcard or matching expression
	Lower-case initial letter
	mw_
	mw_anyUserReply

	Note 2

	Port instance
	Lower-case initial letter
	none
	signallingPort
	

	Test component reference
	Lower-case initial letter
	none
	userTerminal
	

	Constant
	Lower-case initial letter
	c_
	c_maxRetransmission
	

	Constant
(defined within component type)
	Lower-case initial letter
	cc_
	cc_maxRetransmission
	

	External constant
	Lower-case initial letter
	cx_
	cx_macId
	

	Function
	Lower-case initial letter
	f_
	f_authentication()
	

	External function
	Lower-case initial letter
	fx_
	fx_calculateLength()
	

	Altstep (incl. Default)
	Lower-case initial letter
	a_
	a_receiveSetup()
	

	Test case
	All upper-case letters
	TC_
	TC_BCAST_PROV_CONF_101
	

	Variable (defined locally)
	Lower-case initial letter
	v_
	v_macId
	

	Variable
(defined within component type)
	Lower-case initial letter
	vc_
	vc_systemName
	

	Timer (defined locally)
	Lower-case initial letter
	t_
	t_wait
	

	Timer
(defined within component type)
	Lower-case initial letter
	tc_
	tc_authMin
	

	Module parameter
	All upper-case letters
	none
	PX_MAC_ID
	

	Parameterization
	Lower-case initial letter
	p_
	p_macId
	

	Enumerated Value
	Lower-case initial letter
	e_
	e_syncOk
	

	NOTE 1: This prefix must be used for all template definitions which do not assign or refer to templates with wildcards or matching expressions, e.g. templates specifying a constant value, parameterized templates without matching expressions, etc.

NOTE 2: This prefix must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, ifpresent, pattern, etc) or reference another template which assigns a wildcard or matching expression.

Table 8: TTCN-3 naming convention

6.2.1 Templates

In addition, the following conventions have been used to further help identification of the purpose of a TTCN-3 template:

· Templates should be identified with names rather than numbers.

· Templates should not modify other modified templates. Base templates which are modified must be identified in their naming.

· Templates should be specified separately for use in sending and receiving operations. The prefixes as described above must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, if present, pattern, etc) or reference another template which assigns a wildcard or matching expression.

· Template definitions should avoid using matching attributes such as "*" or "?" for complete structured values, e.g. record or set of values.

· Module parameter values should be passed as parameters into templates.

· Template identifiers that include the “_def_” string have all optional fields set to omit in their template definition

EXAMPLE 3:

template Service m_def_Service(AnyUri p_Id, UInt p_version, charstring p_Name) := {

id := p_Id, version := p_version, validFrom := omit, validTo := omit, weight := omit,
serviceContentProtection := omit, baseCID := omit, emergency := omit,
protectionKeyIds := omit, ServiceTypes := omit, globalServiceId := omit,
names := { p_Name }, descriptions := omit, audioLanguages := omit,
textLanguages := omit, parentalRatings := omit, targetUserProfiles := omit,
genres := omit, extensions := omit, previewDataReferences := omit,
broadcastArea := omit, termsOfUses := omit, privateExt := omit

}
6.2.2 Functions

In addition, the following conventions have been used to further help identification of the purpose of a TTCN-3 function:

· Function identifiers that include the

· The “_ctrl_” string in function identifiers marks functions which implement BCAST network control test component behavior

EXAMPLE 4:
f_ctrl_broadcastServiceGuide(…)

· The “_data_” string in function identifiers marks functions which implement BCAST network data test component behavior

· The “_sim_” string in function identifiers marks functions which implement simulated IUT behavior (see clause 7.3 and Annex C.3)
6.3 Documentation

In order to allow browsing of the BCAST ATS without the use of a specific TTCN-3 test development environment, the TTCN test suite is made available in HTML format where any definitions referenced from a given definition are linked with hyperlinks. The test suite makes use of special comment tags which can be extracted by some documentation tools, e.g., t3doc [T3DOC], to generate HTML pages for TTCN-3 test suite definitions. These tags are summarized in Table 8. Annex B provides a reference to the documentation generated by t3doc for this ATS.
	Tag
	Description

	@author
	Specifies the names of the authors or an authoring organization which either has created or is maintaining a particular piece of TTCN-3 code.

	@desc
	Describes the purpose of a particular piece of TTCN-3 code. The description should be concise yet informative and describe the function and use of the construct.

	@remark
	Adds extra information, such as the highlighting of a particular feature or aspect not covered in the description.

	@see
	Refers to other TTCN-3 definitions in the same or another module.

	@url
	Associates references to external files or web pages with a particular piece of TTCN-3 code, e.g. a protocol specification or standard.

	@returns
	Provides additional information on the value returned by a given function.

	@member
	Documents a member of structured TTCN-3 definitions.

	@param
	Documents a parameter of parameterized TTCN-3 definitions.

	@version
	States the version of a particular piece of TTCN-3 code.

Table 9: TTCN-3 documentation tags

7. Test suite execution
7.1 General

There are three means how this test suite can be executed:

1. By using the TTCN-3 control part specified in the TTCN-3 TestControl module. By default all tests part of this test suite will be executed. Relevant PIXITs defined clause 7.2 should be used to narrow the selection of tests to a desired group of tests. At this point this mode of execution does not allow to run an individual test
2. By using a TTCN-3 tool proprietary means to execute one or more tests at a time based on the interface provided by the tool provider. In this case the TTCN-3 TestControl module should be excluded from the test suite compilation.

3. By integrating your own TTCN-3 Test Management (TM) entity implementation that is integrated with the TTCN-3 test system via the TCI-TM interface [T3TCI]. In this case the TTCN-3 TestControl module should be excluded from the test suite compilation. The operation of such a TM implementation, e.g., to select execution of specific tests, is beyond the scope of this document.

7.2 PIXIT

TTCN-3 allows fixing of some test suite information without recompilation of TTCN-3 code, e.g., just prior to test execution. This information is referred to as module parameters in TTCN-3 or more generally PIXIT (Partial Protocol Implementation Extra Information for Testing). This clause discusses all such parameters relevant for the BCAST ATS.
Note that TTCN-3 test systems are likely to require configuration beyond the setting of TTCN-3 module parameters, e.g., configuration specific to a test tool or SUT Adapter, prior to a test execution. Such configuration is however beyond the scope of this document. It is the responsibility of TTCN-3 BCAST test tool providers to document such configuration needs.
The following module parameters configure test case selection in the TTCN-3 control part:
· PX_ALL_ TCS

Specifies to execute all the BCAST test cases

· PX_ALL_SP_TCS
Specifies to execute all the Service Provisioning test cases
· PX_ALL_SG_TCS
Specifies to execute all the Service Guide test cases
· PX_ALL_FD_TCS
Specifies to execute all the File and Stream Distribution test cases
· PX_ALL_SI_TCS
Specifies all Service Interaction test cases
· PX_ALL_CP_TCS
Specifies to execute all the Content Protection test cases
The following module parameters are related to BCAST network bearer information:
· PX_BROADCAST_NETWORK_BEARER
Specifies the broadcast network bearer to be used in SG fragments by test cases, i.e., DVB-H, MBMS or BMCMS
· PX_INTERACTION_NETWORK_BEARER
Specifies the interaction network bearer to be used in SG fragments by test cases, i.e., GPRS/GSM, GPRS/CDMA, GPRS/UMTS
The following module parameters can be used to configure Service Guide information:
· PX_SGDD_ID_1
Specifies the globally unique URI of the SGDD

· PX_SGDU_ID_1

Specifies the globally unique URI of the SGDU.

· PX_SGDU_SERVICE_ID_1
Specifies the globally unique URI for the Service fragment
· PX_SGDU_CONTENT_ID_1/2
Specifies the globally unique URI for the respective Content fragment.
· PX_SGDU_SCHEDULE_ID_1/2
Specifies the globally unique URI for the respective Schedule fragment.
· PX_SGDU_ACCESS_ID_1/2
Specifies the globally unique URI for the respective Access fragment.
· PX_SGDU_PREVIEW_DATA_ID_1
Specifies the globally unique URI for the Preview Data fragment
· PX_SGDU_PURCHASE_ITEM_ID_1

Specifies the globally unique URI for the Purchase Item fragment

· PX_SGDU_PURCHASE_DATA_ID_1

Specifies the globally unique URI for the Purchase Data fragment

· PX_SGDU_ PURCHASE _CHANNEL_ID_1

Specifies the globally unique URI for the Purchase Channel fragment

· PX_SGDU_ INTERACTIVITY_DATA_ID_1

Specifies the globally unique URI for the Interactivity fragment

The following module parameters can be used to configure the Purchase Item fragment:
· PX_PURCHASE_URL
Specifies the Purchase URL in the Purchase Channel fragment
· PX_MONETARY_PRICE
Specifies a value for the Price Info element of the Purchase Item fragment.
· PX_CURRENCY
Specifies the currency associated with the PX_MONETARY_PRICE, e.g., euro
The following parameters can be used to configure the content of the Interactivity Media Document:
· PX_MEDIA_DOCUMENT_ID
Specifies the ‘id’ of the globally unique URI of the Interactivity Media Document
· PX_ MEDIA_DOCUMENT_GROUP_ID

Specifies the globally unique URI of the Interactivity Media Document Group
· PX_PRELISTEN_INDICATOR

Specifies the pre-Listen Indicator of the Interactivity Data fragment
· PX_MEDIA_OBJECT_SET_URI

Specifies the Content Location of the Media Object Set
The following module parameter is related to SMS handling:
· PX_SMS_URI
Specifies the URI of the SMS
The following module parameters are related to MMS content:

· PX_MMS_TEMPLATE
Specifies the file name of a MMS template

· PX_MMS_VOTE_A_PICTURE

Specifies the file name of a picture
· PX_MMS_VOTE_B_PICTURE

Specifies the file name of a picture
· PX_MMS_TEXT_FILE

Specifies the file name of a text file
The following module parameters are related to XHTML information:
· PX_XHTML_FILE_ID

Specifies the file name of the XHTML file
· PX_XHTML_CONTENT_TYPE

Specifies the content type of the XHTML file
The following module parameters are related to file distribution:
· PX_PICTURE_ID

Specifies the file name of a picture, e.g., file1.jpg
· PX_FILE_ID

Specifies the file name of a video to be broadcasted, e.g., video1.mov
· PX_PLAY_TIME

Specifies the time in seconds for the video to broadcasted by the network.
The following module parameters are related to Session Description Protocol (SDP) information:
· PX_SDP_ PROG_1/2_REF_ID
Specifies the ID of SDP for respective TV channel programs
· PX_SDP_PROG_1/2
Specifies SDP information for broadcasting respective TV Channel programs.
· PX_SDP_LANGUAGE_1/2
Specifies an SDP for broadcasting the respective TV channel program in a particular language.
· PX_SDP_FILE_DELIVERY
Specifies the SDP to be used for file delivery over FLUTE, e.g., test case BCAST-1.0-DIST-conf-102
· PX_SDP_SERVICE_PROTECTION_IPSEC
Specifies the SDP to be used for the Content Protection test cases using IPSec, e.g., test case BCAST-1.0-ConProt-conf-101
· PX_SDP_SERVICE_PROTECTION_SRTP

Specifies the SDP to be used for the Content Protection test cases using SRTP, e.g., test case BCAST-1.0-ConProt-conf-102
· PX_SDP_SERVICE_PROTECTION_ISMA

Specifies the SDP to be used for the Content Protection test cases using ISMACrypt, e.g., test case BCAST-1.0-ConProt-conf-103
Note that it is the responsibility of the person executing the TTCN-3 BCAST test cases that all SDP module parameters are specified correctly in its textually encoded format [SDP]. The TTCN-3 BCAST test cases check neither content nor syntactical and semantic correctness of these values.

7.3 Use of BCAST IUT simulation

This test suite has been developed and validated with a TTCN-3 simulation of a (perfect) BCAST IUT. The TTCN-3 test cases and functions that simulate the BCAST IUT are specified separately in TTCN-3 modules xxx and xxx. Validation with simulation is explained in more detail in Annex C.3. In order to activate the use of the simulated IUT the module parameter PX_SIMULATE_TC needs to be set to the value ‘true’ prior to test execution.
Note that the execution of the simulation does not require any real BCAST codecs, SUT or Platform Adapters. Instead generic codec schemes (which are available in a number of TTCN-3 development environmenta) and dummy adapter stubs can be used to execute the TTCN-3 test suite against the simulated BCAST SUT.
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

	OMA-xxyyz-V1_0-20021001-A
	01 Oct 2002
	Initial document to address the basic starting point

 Ref TP Doc# OMA-TP-2002-1234-xxyyzForApproval

	OMA-xxyyz-V1_1-20030405-A
	05 Apr 2003
	description of changed

 Ref TP Doc# OMA-TP-2003-0321-xxyyzV1_1forApproval

A.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-xxyyz-V1_2
	30 Jun 2003
	3.2, 8.2, 11.4, App A
	Incorporates input to committee:

 OMA-XY-2003-0053-CR_SpellingCorrections

 OMA-XY-2003-0098-CR_AddSectionOnPeanutButter

	
	12 Aug 2003
	9.2.2.2, 11.3
	Incorporates input to committee:

 OMA-XY-2003-0101R2-CR_ImproveJellyReferences

	Candidate Version

OMA-xxyyz-V1_2
	16 Sep 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0abc-CandidateRequest_xxyyz_V1_2

	Draft Version

OMA-xxyyz-V1_2
	24 Sep 2003
	6.8
	Status changed to Draft (demoted) to address important class 1 CR

 OMA-XY-2003-0172-CR_AddSectionOnJellyGoesOnTop

	Candidate Versions

OMA-xxyyz-V1_2
	13 Nov 2003
	n/a
	Status changed to Candidate by TP

 TP ref # OMA-TP-2003-0def-CandidateRequest_xxyyz_V1_2_again

	
	21 Dec 2003
	4.2, 6.3
	Minor CR to address interpretation of bread references

 OMA-XY-2003-0205-CR_SlicedBreadClarification

Notice sent to TP of minor update

 TP ref # OMA-TP-2003-0ghi-CandidateUpdateNotice_xxyyz_V1_2

	
	12 Jan 2004
	4.2, 6.6
	Minor CR to cover cases where knife not available

 OMA-XY-2004-0012-CR_SpreadingWithoutKnife

Notice sent to TP of minor update

 TP ref # OMA-TP-2004-0jkl-CandidateUpdateNotice_xxyyz_V1_2

Appendix B. Abstract Test Suite (ATS)
(Normative)

B.1 The ATS in TTCN-3 core (text) format
ATS has been produced using the TTCN-3 notation according to ES 201 873-1 [T3CORE].

This test suite can be downloaded as a zip file from the OMA document server (ttcnats-20071010-D.zip).

HTML documentation for this test suite can be downloaded as a zip file from the OMA document server (ttcndoc-20071010-D.zip).

Appendix C. On UTS, SUT Emulation & Simulation
(Informative)
C.1 About Upper Tester Server
In order to completely automate conformance and interoperability testing, the upper interface of the IUT needs to be accessible to TTCN-3 test cases. The specification of this upper interface is not standardized by many base specifications, e.g., there are no primitives defined for requesting the IUT to send a specific message or to check if one has been received. Consequently, implementations of this interface are vendor specific and may even vary between different IUTs.

In conformance testing methodology the tight integration problem can be resolved by implementing an Upper Tester Server (UTS) in the SUT, i.e., outside of the test system. The purpose of the UTS is to implement an IUT application which is integrated and interacts with the IUT directly in the SUT. The UTS is controlled from test system by an Upper Tester Client (UTC) TTCN-3 test component. The UTC communicates with the UTS in the SUT via the Upper Tester SUT Adapter. Therefore, next to driving the IUT, another task of the UTS is to convert the messages sent by UTC into concrete proprietary IUT interface calls and vice versa.

[image: image3]

C.2 Test Case Validation with an Emulated SUT

A test system can also be used with emulated SUTs, e.g., for in-house testing. Here, the real IUT is not running in target hardware but in an emulation environment.

· A well supported protocol, e.g., TCP/IP or a serial interface, and a wired connection replaces the SUT Adapter that is actually required for execution against real SUT.
· Service and configuration primitives need to be implemented in this SUT adapter using “dummy” routines.
· The Upper Tester SUT adapter Upper Tester Server and may need to be adapted to fit the emulated SUT.

[image: image4]
Figure C.1: Example Setup for Testing Case Validation with Emulated SUT

The main benefits of this form of validation is that

· eliminates need of complex SUT Adapters and codecs for test execution
· does not require any changes or extensions to the TTCN-3 test suite

· it allows a validation of tests against a real IUT implementation

· allows easy debugging of an IUT

· offers the ability to execute test and at the same time observe IUT not in real but simulated time

C.3 Test Case Validation using Simulation

The test cases in a test suite can be simulated, by executing them against other TTCN-3 test case that implement the responses of a (perfect) System under Test (SUT), i.e., simulate the SUT.
· Test and simulated SUT behavior may either be interact at TTCN-3 level via TTCN-3 connections or, preferably, via SUT Adapters (which requires that the simulated SUT code is implemented as its own, separate test suite). In the latter case, the adapter used may use standardized encoding schemes and an IP socket connection for message transport (regardless of the encoding and transport requirement imposed by the IUT). Figure C.3 illustrates the later simulation configuration.

· Service and configuration primitives need to be implemented in this SUT adapter using “dummy” routines.

[image: image5.emf]

TTCN-3

executable

SUT

Socket connection

 test case

 executable

Figure C.3: Example Setup for Testing Case Validation with Simulated SUT
The SUT simulation tests using the same data type definitions as the TTCN-3 test suite specification and simply inverts the behavior of the test cases in such a way that they will trigger either positive or negative verdicts.
· eliminates need of complex SUT Adapters and codecs for test execution

· does not require any changes or extensions to the TTCN-3 test suite

Simulation of the test cases will improve the quality of a TTCN-3 test suite detecting a number of errors not detected by static analysis. The types of errors detected include:

· Synchronization errors between parallel test components, e.g. causing that the test case execution never terminates.

· Program flow errors in test components, e.g. loops with incorrect termination conditions or missing "repeat" statements causing the premature termination of the test case execution.

· Use of incorrect test configuration.

· Incorrect or missing handling of messages from the SUT, causing the test case to fail the IUT even if the IUT satisfies the conformance requirement.

· Missing verdict assignments.
Standardized Interface

TTCN-3 Test System

Upper Tester Adapter

TTCN-3 Test Suite

SUT Adapter

Emulated SUT

Upper Tester Server

IUT

Adaptation layer

TCP/IP or serial interface

UT PCO

LT PCO

Action

Proprietary Interface

Proprietary Interface

Action

LT PCO

UT PCO

Standardized Interface

Lower layers

Upper Tester Server

SUT

LT SUT Adapter

TTCN-3 Test Suite

Upper Tester Adapter

TTCN-3 Test System

IUT

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]

_1205653034.doc

TTCN-3

 test case

executable

SUT

 executable

Socket connection

