OMA-ETS-SUPL-ATS_Framework-V2_0-2009xxxx-D
Page 5 V(24)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	Conformance Test Framework for SUPL

	Draft Version 2.0 – yy xxx 2009

	Open Mobile Alliance

	OMA-ETS-SUPL-ATS_Framework-V2_0-2009xxxx-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Definitions

83.3
Abbreviations

94.
Introduction

105.
OMA SUPL Conformance Testing Framework

105.1
TTCN-3 test system architecture

115.1.1
SUPL Protocol Data Units and Service Primitives

115.1.2
PDUs

115.1.3
Service Primitives

115.1.4
Upper Tester Primitives

125.2
Platform Adapter Requirements

135.3
TTCN-3 Compiler Requirements

146.
TTCN-3 test suite specification

146.1
About the test suite design

146.1.1
General

156.2
Naming conventions

166.2.1
Templates

176.2.2
Functions

176.3
Documentation

187.
Test suite execution

187.1
General

187.2
PIXIT

198.
Open Issues

20Appendix A.
Change History (Informative)

20A.1
Approved Version History

20A.2
Draft/Candidate Version 1.0 History

21Appendix B.
Abstract Test Suite (ATS) (Normative)

21B.1
The ATS in TTCN-3 core (text) format

22Appendix C.
On UTS, SUT Emulation & Simulation (Informative)

22C.1
About Upper Tester Server

23C.2
Test Case Validation with an Emulated SUT

24C.3
Test Case Validation using Simulation

Figures

10Figure 1: Conceptual SUPL CON Test Architecture

Tables

11Table 7: Synchronization Primitives

12Table 8: Upper Tester Primitives

13Table 9: TTCN-3 External Functions

16Table 10: TTCN-3 naming convention

17Table 11: TTCN-3 documentation tags

1. Scope

The present document describes the Abstract Test Suite (ATS) to test the OMA SUPL enabler.

The objective of the present document is to provide a basis for conformance tests for SUPL terminal equipment.

The ISO standard for the methodology of conformance testing (ISO/IEC 9646 1 [ISO9646]) and the ETSI rules for conformance testing (ETS 300 406 [ETSIMETHOD]) are used as a basis for the test methodology.

· Clause 5 describes the test system architecture used to test the SUPL terminals.

· Clause 6 describes the ATS conventions, which are intended to give a better understanding of the ATS.

· Clause 7 describes the issues related to test suite execution and validation of test cases
· Clause 8 lists open issues in the SUPL test suite implementation.
· Annex B provides information about the TTCN-3 part of the ATS.

· Annex C provides guidelines for upper tester implementation as well as testing with an emulated and simulated SUT.

2. References

2.1 Normative References

	[SUPL_TESTSPEC]
	“Enabler Test Specification for SUPL 2.0”, Version 2.0, Open Mobile Alliance™,OMA-ETS-SUPL_CON_Client-V2_0, URL:http://www.openmobilealliance.org/

	[SUPL20–AD]
	“SUPL Architecture”, Version 2.0, Open Mobile Alliance™, OMA-AD- SUPL-V2_0, URL:http://www.openmobilealliance.org/

	[ETSIMETHOD]
	ETSI ETS 300 406: "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

	[IPV6FWK]
	ETSI EG 202 568: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Testing: Methodology and Framework".

	[ISO9646]
	ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts"

	[T3CORE]
	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", Version 3.2.1.

	[T3DOC]
	Open Source TTCN-3 Documentation Tool, URL:http://www.ttcn-3.org/OpenSourceTools.htm

	[T3TCI]
	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)", Version 3.2.1.

	[T3TRI]
	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)", Version 3.2.1.

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.7, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_7, URL:http://www.openmobilealliance.org/

Terminology and Conventions

2.3 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2
Definitions

	Abstract Test Case (ATC)
	A complete and independent specification of the actions required to achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test Method, starting in a stable testing state and ending in a stable testing state. This specification may involve one or more consecutive or concurrent connections.

	Abstract Test Suite (ATS)
	A test suite composed of abstract test cases.

	Entity
	Something that has separate and distinct existence and objective or conceptual reality.

	Executable Test Suite (ETS)
	A test suite composed of executable test cases.

	Executable Test Case (ETC)
	A realization of an abstract test case.

	Implementation Conformance Statement (ICS)
	A statement made by the supplier of an implementation or system claimed to conform to a given specification, stating which capabilities have been implemented. The ICS can take several forms: protocol ICS, profile ICS, profile specific ICS, and information object ICS.

	Implementation eXtra Information for Testing (IXIT)
	A statement made by a supplier or implementer of an IUT which contains or references all of the information (in addition to that given in the ICS) related to the IUT and its testing environment, which will enable the test laboratory to run an appropriate test suite against the IUT. And IXIT can take several forms: protocol IXIT, profile IXIT, profile specific IXIT, and information object IXIT, TMP implementation statement.

	Implementation Under Test (IUT)
	An implementation of one or more OSI protocols in an adjacent user/provider relationship, being that part of a real open system which is to be studied by testing.

	Interactive Service
	A service which provides the means for bi-directional exchange of information between users. Interactive services are divided into three classes of services: conversational services, messaging services and retrieval services (source: ITU-T I.113).

	Platform Adapter (PA)
	An entity that adapts the TTCN-3 Executable to a particular execution platform

	Protocol Implementation eXtra Information for Testing (PIXIT)
	An IXIT related to testing for conformance to a given protocol specification.

	SUT Adapter (SA)
	An entity that adapts the TTCN-3 communication operations with the SUT based on an abstract test system interface and implements the real test system interface

	System Under Test (SUT)
	The real open system in which the IUT resides.

	Test Management (TM)
	An entity that provides a user interface and administers the TTCN-3 test system

	TTCN-3 Control Interface (TCI)
	A standardized interface that specifies the interaction between Test Management and TTCN-3 Executable in a test system

	TTCN-3 Executable (TE)
	The part of a TTCN-3 test system that deals with interpretation or execution of a TTCN-3 ATS

	TTCN-3 Runtime Interface (TRI)
	A standardized interface that defines the interaction of the TTCN-3 Executable with the SUT and Platform Adapter in a TTCN-3 test system

3.3
Abbreviations

	SUPL
	 Secure User Plane Location Protocol

	BER
	Basic Encoding Rules

	HTTP
	Hypertext Transfer Protocol

	IP
	Internet Protocol

	IUT
	Implementation Under test

	MTC
	Main Test Component

	OMA
	Open Mobile Alliance

	PDU
	Protocol Data Unit

	PTC
	Parallel Test Component

	RF
	Radio Frequency

	SCR
	Static Conformance Requirement

	SMS
	Short Message Service

	TCP
	Transmission Control Protocol

	TTCN-3
	Testing and Test Control Notation Version 3

	UDP
	User Datagram Protocol

	UMTS
	Universal Mobile Telecommunications System

	UTC
	Upper Tester Client

	UTS
	Upper Tester Server

3. Introduction

TTCN-3 is a testing language which has been international standardized by ETSI. This language has been specifically designed for testing and is not tied to a specific implementation under test, test tool, or testing environment. It can serve as a unifying testing technology in product testing and enable to shorten the time to market for test tools as well as products. Due to its independence of a specific test platform and device to be tested and its standardized TTCN-3 test system interfaces [TRI, TCI], TTCN-3 also opens up a bigger and more competitive market for test tool providers.

The purpose of this document is to provide conformance test framework for SUPL terminal equipment. The test framework is based on the general TTCN-3 test system architecture specified in [T3TRI, T3TCI]. The document describes the design principles applied during the specification of the TTCN-3 SUPL conformance ATS. It clarifies TTCN-3 SUT Adapter, Platform Adapter, codec, and compiler requirements as well as TTCN-3 test suite execution, and methods to valid test cases.

The document serves as an important reference for further extensions of the TTCN-3 SUPL conformance test suite.
4. OMA SUPL Conformance Testing Framework
4.1 TTCN-3 test system architecture
Figure 1 illustrates the SUPL test system architecture used for testing a real terminal implementing the OMA SUPL standards. It is based on the general TTCN test system architecture specified in [T3TRI, T3TCI].
[image: image2.wmf]BSF

SUT

(SUPL

Terminal)

Interaction Network Bearer

TCP/UDP/IP

SMS

Push

Upper

Tester

Adapter

e.g. text

utp

Upper

Tester

Server

IUT

(SUPL Implementation)

ulp

sms

TLS (PSK)

HTTP

ipi

MTC

ssc

DNS

bsf

TTCN

-

3

Executable

SUT

Adapter

Satellite

Simulator

ipc

dns

BSF

SUT

(SUPL

Terminal)

Interaction Network Bearer

TCP/UDP/IP

SMS

Push

Upper

Tester

Adapter

e.g. text

utp

Upper

Tester

Server

IUT

(SUPL Implementation)

ulp

sms

TLS (PSK)

HTTP

ipi

MTC

ssc

DNS

bsf

TTCN

-

3

Executable

SUT

Adapter

Satellite

Simulator

ipc

dns

Figure 1: Conceptual SUPL CON Test Architecture

The TTCN-3 SUT Adapter (SA) shown in Figure 1 realizes the transport of SUPL data, DNS messages, SMS notifications, HTTP BSF communication, and controls the satellite simulator. Note that this is only a conceptual model for a SA implementation. Individual components of this test architecture may or even should be (for performance reasons) implemented as separate executables from the TTCN-3 test system executable. Note that the TTCN-3 Platform Adapter (PA) is not shown in Figure 1 to simplify the test architecture illustration. For more details on PA requirements see Clause 5.2.
Tbd done describe ports
The port names associated with interfaces of the upper transport layers in Figure 1 are related as follows to OMA SUPL architecture reference points:

· tbd
The tasks of the different TTCN-3 components in Figure 1 are:

· The Main Test Component (MTC) plays the role of a test coordinator, i.e., creating, synchronizing, coordinating, and terminating DNS and BSF test components used in the test cases.
4.1.1 SUPL Protocol Data Units and Service Primitives

4.1.2 PDUs
A TTCN-3 SUPL test system shall support the encoding of following SUPL PDUs: ULP, DNS, and BSF messages.
4.1.3 Service Primitives

The SUPL test cases use a number of different SA service primitives for controlling different combinations of transport layers that shall be supported by the test system. Service primitives for each component include configuration information needed for all SA layers which may need to be changed for the execution of a test in the TTCN-3 test suite.
The following tables summarize all of these service primitives. Appendix B provides a reference to detailed TTCN-3 type definitions for all service primitives and their information elements. The relevant TTCN-3 modules are AtsSUPL_Test Configuration_TypesAndValues and … . This document imposes no restrictions on the encoding of service primitives, i.e., it is left open to SA developers. PDUs carried within the service primitives shall however comply with the encoding requirements specified in the SUPL standards (see Section 5.1.2).
TBD
	Service Primitive Type(s)
	Parameters
	Purpose

	SyncPort
	Sync Message
	Synchronizes DNS/BSF/BSM as parallel componenets

Table 7: Synchronization Primitives
4.1.4 Upper Tester Primitives

The primitives used by the upper tester reflect commands and observations that are either to be issued or checked by a human during the execution of a test based on textual instructions or directly performed on the IUT by the UTS, i.e., a special software application on top of the SUPL implementation user interface and integrated in the terminal. If there is no UTS implementation available the command should result in the posing of a question and three answers to a human terminal operator, i.e., the correct observation was made, an incorrect observation was made, and no change was observed in the terminal user interface.
Table 6 lists the collection of upper test primitives and the questions they represent. Note that that this document leaves the encoding of upper tester primitives (also for the case that a UTS is used) in the test system intentionally open. It is recommended however to choose a textual encoding of primitives to ease readability of messages sent between UTC and UTS.
	Service Primitive Type(s)
	Parameters
	Example Command/Question to human user

	PowerOnTerminalRequest/Response
	-
	Power on the terminal!
Does is start up correctly?

	PowerOffTerminalRequest/Response
	-
	Power off the terminal!
Does is close down correctly?

	RunSUPLApplicationRequest/Response
	-
	Run the SUPL application on the terminal.

Table 8: Upper Tester Primitives
4.2 Platform Adapter Requirements

TBD
	Name
	Parameters
	Return Value

	
	
	

	
	
	

Table 9: TTCN-3 External Functions
4.3 TTCN-3 Compiler Requirements

The SUPL CON test suite has been implemented and analyzed with two independent TTCN-3 Edition 3.2.1 compliant TTCN-3 compilers: Telelogic Tau 2.6 and Testing Technologies TTworkbench 1.1.1. Support of version 3.2.1 of the TTCN-3 standards is needed since the test suite uses component type extension and keep-alive component concepts.

5. TTCN-3 test suite specification
5.1 About the test suite design
5.1.1 General
TBD Review and adoptation
The SUPL CON test suite has been specified using a library approach which has also been used, e.g., in [IPV6FWK]. The test suite is specified in three layers which build on top of each other:

· LibCommon: A collection of TTCN-3 definitions useful for any test suite implementation
· LibSUPL: A collection of TTCN-3 definitions related to SUPL standards and reusable only in the context of SUPL test suite implementations.
· AtsSUPL: TTCN-3 definitions which are specific to this particular test suite, e.g., test case statements, SUT adapter configuration, etc
The library layer is composed of multiple TTCN-3 modules:

· TypesAndValues: This type of module collects TTCN-3 type and constant definitions relevant for a library. If applicable one module should be associated per specification document, e.g., an OMA standard

· Module Parameters: Collects all module parameters relevant to a given library
· Interface: Specifies a TTCN-3 component type and port types reflecting the interfaces offered by the library.

· Templates: Collects templates specified based on the types defined in the library.

· Functions: Collects function implementations of the library.

The ATS layer is decomposed of the following type of modules

· Module Parameters: Collects all module parameters relevant to the ATS only, e.g., SCRs
· Test System: Specifies TTCN-3 component types for test components in the ATS. These types are defined based on port types defined in the libraries used and are type compatible to component types defined in respective interface modules
· Test Configuration: Collects all configuration functions that map or connect component ports as well as types and templates for service primitives
· <ATC group identifier>Tests: Collects all TTCN-3 test cases specified in for the respective OMA test case group.

· Test Control: Contains only a TTCN-3 control part specification which may be used to control test execution via module parameters. For more information about this module see clause 7.1.
Test cases have been implemented by using the keep-alive concept for test components, i.e., using re-start of test component behavior, instead of an explicit synchronization mechanism. Although many test cases use create test component instances, tests execute test components so far sequentially. In general, tests are structured as follows:

· The test configuration is established, i.e., ports are mapped/unmapped using configuration functions
· SGDD and SGDU values are constructed via templates and variables and functions based on test specific requirements

· SGDD and SGDU are broadcasted

· Depending on the test at hand, invocations of upper tester functions, which encapsulate user interactions with the terminal, are followed by SUPL network functions, which encapsulate network control as well data transmissions to the terminal
· As the final step in each test case the test configuration is taken down by disconnecting and unmapping ports
5.2 Naming conventions

The naming convention is based on the following underlying principles:

· in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 9) indicating the type of TTCN-3 element it represents;

· suffixes shall not be used;

· prefixes should be separated from the body of the identifier with an underscore ("_"):

EXAMPLE 1:
c_sixteen, t_waitMax;
· only module names, test case identifiers, data type names and module parameters should begin with an upper-case letter. All other names (i.e. the part of the identifier following the prefix) should begin with a lower-case letter;

· the start of second and subsequent words in an identifier should be indicated by capitalizing the first character. Underscores should not be used for this purpose.

EXAMPLE 2:
f_authenticateUser().
Table 9 specifies the naming guidelines for each element of the TTCN-3 language indicating the recommended prefix, suffixes (if any) and capitalization.

	Language element
	Naming convention
	Prefix
	Example
	Notes

	Module
	Upper-case initial letter
	none
	LibSUPL_TypesAndValues
	

	Group
	Lower-case initial letter
	none
	messageGroup
	

	Data type
	Upper-case initial letter
	none
	SetupContents
	

	Message template
	Lower-case initial letter
	m_
	m_setupInit
	Note 1

	Message template with wildcard or matching expression
	Lower-case initial letter
	mw_
	mw_anyUserReply

	Note 2

	Port instance
	Lower-case initial letter
	none
	signallingPort
	

	Test component reference
	Lower-case initial letter
	none
	userTerminal
	

	Constant
	Lower-case initial letter
	c_
	c_maxRetransmission
	

	Constant
(defined within component type)
	Lower-case initial letter
	cc_
	cc_maxRetransmission
	

	External constant
	Lower-case initial letter
	cx_
	cx_macId
	

	Function
	Lower-case initial letter
	f_
	f_authentication()
	

	External function
	Lower-case initial letter
	fx_
	fx_calculateLength()
	

	Altstep (incl. Default)
	Lower-case initial letter
	a_
	a_receiveSetup()
	

	Test case
	All upper-case letters
	TC_
	TC_SUPL_PROV_CONF_101
	

	Variable (defined locally)
	Lower-case initial letter
	v_
	v_macId
	

	Variable
(defined within component type)
	Lower-case initial letter
	vc_
	vc_systemName
	

	Timer (defined locally)
	Lower-case initial letter
	t_
	t_wait
	

	Timer
(defined within component type)
	Lower-case initial letter
	tc_
	tc_authMin
	

	Module parameter
	All upper-case letters
	none
	PX_MAC_ID
	

	Parameterization
	Lower-case initial letter
	p_
	p_macId
	

	Enumerated Value
	Lower-case initial letter
	e_
	e_syncOk
	

	NOTE 1: This prefix must be used for all template definitions which do not assign or refer to templates with wildcards or matching expressions, e.g. templates specifying a constant value, parameterized templates without matching expressions, etc.

NOTE 2: This prefix must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, ifpresent, pattern, etc) or reference another template which assigns a wildcard or matching expression.

Table 10: TTCN-3 naming convention

5.2.1 Templates

In addition, the following conventions have been used to further help identification of the purpose of a TTCN-3 template:

· Templates should be identified with names rather than numbers.

· Templates should not modify other modified templates. Base templates which are modified must be identified in their naming.

· Templates should be specified separately for use in sending and receiving operations. The prefixes as described above must be used in identifiers for templates which either assign a wildcard or matching expression (e.g. ?, *, value list, if present, pattern, etc) or reference another template which assigns a wildcard or matching expression.

· Template definitions should avoid using matching attributes such as "*" or "?" for complete structured values, e.g. record or set of values.

· Module parameter values should be passed as parameters into templates.

· Template identifiers that include the “_def_” string have all optional fields set to omit in their template definition

EXAMPLE 3:

template Service m_def_Service(AnyUri p_Id, UInt p_version, charstring p_Name) := {

id := p_Id, version := p_version, validFrom := omit, validTo := omit, weight := omit,
serviceContentProtection := omit, baseCID := omit, emergency := omit,
protectionKeyIds := omit, ServiceTypes := omit, globalServiceId := omit,
names := { p_Name }, descriptions := omit, audioLanguages := omit,
textLanguages := omit, parentalRatings := omit, targetUserProfiles := omit,
genres := omit, extensions := omit, previewDataReferences := omit,
broadcastArea := omit, termsOfUses := omit, privateExt := omit

}
5.2.2 Functions

In addition, the following conventions have been used to further help identification of the purpose of a TTCN-3 function:

· Function identifiers that include the

· The “_ctrl_” string in function identifiers marks functions which implement SUPL network control test component behavior

EXAMPLE 4:
f_ctrl_broadcastServiceGuide(…)

· The “_data_” string in function identifiers marks functions which implement SUPL network data test component behavior

· The “_main_” string in function identifiers marks functions which implement main test component behavior, i.e., the starting and waiting for completion of SUPL Contorl, SUPL Data, and Upper Tester test component behavior

5.3 Documentation

In order to allow browsing of the SUPL ATS without the use of a specific TTCN-3 test development environment, the TTCN test suite is made available in HTML format where any definitions referenced from a given definition are linked with hyperlinks. The test suite makes use of special comment tags which can be extracted by some documentation tools, e.g., t3doc [T3DOC], to generate HTML pages for TTCN-3 test suite definitions. These tags are summarized in Table 8. Annex B provides a reference to the documentation generated by t3doc for this ATS.
	Tag
	Description

	@author
	Specifies the names of the authors or an authoring organization which either has created or is maintaining a particular piece of TTCN-3 code.

	@desc
	Describes the purpose of a particular piece of TTCN-3 code. The description should be concise yet informative and describe the function and use of the construct.

	@remark
	Adds extra information, such as the highlighting of a particular feature or aspect not covered in the description.

	@see
	Refers to other TTCN-3 definitions in the same or another module.

	@url
	Associates references to external files or web pages with a particular piece of TTCN-3 code, e.g. a protocol specification or standard.

	@returns
	Provides additional information on the value returned by a given function.

	@member
	Documents a member of structured TTCN-3 definitions.

	@param
	Documents a parameter of parameterized TTCN-3 definitions.

	@version
	States the version of a particular piece of TTCN-3 code.

Table 11: TTCN-3 documentation tags

6. Test suite execution
6.1 General

There are three means how this test suite can be executed:

1. By using the TTCN-3 control part specified in the TTCN-3 TestControl module. By default all tests part of this test suite will be executed. Relevant PIXITs defined clause 7.2 should be used to narrow the selection of tests to a desired group of tests. At this point this mode of execution does not allow to run an individual test
2. By using a TTCN-3 tool proprietary means to execute one or more tests at a time based on the interface provided by the tool provider. In this case the TTCN-3 TestControl module should be excluded from the test suite compilation.

3. By integrating your own TTCN-3 Test Management (TM) entity implementation that is integrated with the TTCN-3 test system via the TCI-TM interface [T3TCI]. In this case the TTCN-3 TestControl module should be excluded from the test suite compilation. The operation of such a TM implementation, e.g., to select execution of specific tests, is beyond the scope of this document.

6.2 PIXIT

TTCN-3 allows fixing of some test suite information without recompilation of TTCN-3 code, e.g., just prior to test execution. This information is referred to as module parameters in TTCN-3 or more generally PIXIT (Partial Protocol Implementation Extra Information for Testing). This clause discusses all such parameters relevant for the SUPL ATS.
Note that TTCN-3 test systems are likely to require configuration beyond the setting of TTCN-3 module parameters, e.g., configuration specific to a test tool or SUT Adapter, prior to a test execution. Such configuration is however beyond the scope of this document. It is the responsibility of TTCN-3 SUPL test tool providers to document such configuration needs.
The following module parameters configure test case selection in the TTCN-3 control part:
· PX_ALL_ TCS

Specifies to execute all the SUPL test cases
The following module parameters are related to SUPL Subscription Management (BSM):

· PX_BSM_FQDN
Specifies the SUPL Subscription Management (BSM) Server FQDN
· PX_MCC
Specifies the Mobile Country Code
· PX_MNC
Specifies the Mobile Network Code
· PX_KEY_GROUP
Specifies the a group of SEK/PEKs that are identified by the same Key group part of the SEK/PEK ID
· PX_KEY_NUMBER
Specifies within a key group, which SEK/PEK is used

7. Open Issues

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ETS-
SUPL-ATS_Framework-v2_0

	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix B. Abstract Test Suite (ATS)
(Normative)

B.1 The ATS in TTCN-3 core (text) format
ATS has been produced using the TTCN-3 notation according to ES 201 873-1 [T3CORE].

This test suite can be found as attachment to this document in subfolfer ttcn..

HTML documentation is attached to this document in subfolfer ttcndoc..

Appendix C. On UTS, SUT Emulation & Simulation
(Informative)
C.1 About Upper Tester Server
In order to completely automate conformance and interoperability testing, the upper interface of the IUT needs to be accessible to TTCN-3 test cases. The specification of this upper interface is not standardized by many base specifications, e.g., there are no primitives defined for requesting the IUT to send a specific message or to check if one has been received. Consequently, implementations of this interface are vendor specific and may even vary between different IUTs.

In conformance testing methodology the tight integration problem can be resolved by implementing an Upper Tester Server (UTS) in the SUT, i.e., outside of the test system. The purpose of the UTS is to implement an IUT application which is integrated and interacts with the IUT directly in the SUT. The UTS is controlled from test system by an Upper Tester Client (UTC) TTCN-3 test component. The UTC communicates with the UTS in the SUT via the Upper Tester SUT Adapter. Therefore, next to driving the IUT, another task of the UTS is to convert the messages sent by UTC into concrete proprietary IUT interface calls and vice versa.

[image: image3]

C.2 Test Case Validation with an Emulated SUT

A test system can also be used with emulated SUTs, e.g., for in-house testing. Here, the real IUT is not running in target hardware but in an emulation environment.

· A well supported protocol, e.g., TCP/IP or a serial interface, and a wired connection replaces the SUT Adapter that is actually required for execution against real SUT.
· Service and configuration primitives need to be implemented in this SUT adapter using “dummy” routines.
· The Upper Tester SUT adapter Upper Tester Server and may need to be adapted to fit the emulated SUT.

[image: image4]
Figure C.1: Example Setup for Testing Case Validation with Emulated SUT

The main benefits of this form of validation is that

· eliminates need of complex SUT Adapters and codecs for test execution
· does not require any changes or extensions to the TTCN-3 test suite

· it allows a validation of tests against a real IUT implementation

· allows easy debugging of an IUT

· offers the ability to execute test and at the same time observe IUT not in real but simulated time

C.3 Test Case Validation using Simulation

The test cases in a test suite can be simulated, by executing them against other TTCN-3 test case that implement the responses of a (perfect) System under Test (SUT), i.e., simulate the SUT.
· Test and simulated SUT behavior may either be interact at TTCN-3 level via TTCN-3 connections or, preferably, via SUT Adapters (which requires that the simulated SUT code is implemented as its own, separate test suite). In the latter case, the adapter used may use standardized encoding schemes and an IP socket connection for message transport (regardless of the encoding and transport requirement imposed by the IUT). Figure C.3 illustrates the later simulation configuration.

· Service and configuration primitives need to be implemented in this SUT adapter using “dummy” routines.

[image: image5.emf]

TTCN - 3

executable

SUT

Socket connection

 test case

 executable

Figure C.3: Example Setup for Testing Case Validation with Simulated SUT
The SUT simulation tests using the same data type definitions as the TTCN-3 test suite specification and simply inverts the behavior of the test cases in such a way that they will trigger either positive or negative verdicts.
· eliminates need of complex SUT Adapters and codecs for test execution

· does not require any changes or extensions to the TTCN-3 test suite

Simulation of the test cases will improve the quality of a TTCN-3 test suite detecting a number of errors not detected by static analysis. The types of errors detected include:

· Synchronization errors between parallel test components, e.g. causing that the test case execution never terminates.

· Program flow errors in test components, e.g. loops with incorrect termination conditions or missing "repeat" statements causing the premature termination of the test case execution.

· Use of incorrect test configuration.

· Incorrect or missing handling of messages from the SUT, causing the test case to fail the IUT even if the IUT satisfies the conformance requirement.

· Missing verdict assignments.
Standardized Interface

TTCN-3 Test System

Upper Tester Adapter

TTCN-3 Test Suite

SUT Adapter

Emulated SUT

Upper Tester Server

IUT

Adaptation layer

TCP/IP or serial interface

UT PCO

LT PCO

Action

Proprietary Interface

Proprietary Interface

Action

LT PCO

UT PCO

Standardized Interface

Lower layers

Upper Tester Server

SUT

LT SUT Adapter

TTCN-3 Test Suite

Upper Tester Adapter

TTCN-3 Test System

IUT

(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]
(2009 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]

_1205653034.doc

TTCN-3

 test case

executable

SUT

 executable

Socket connection

