Error! No text of specified style in document.
Page 48 V(55)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for Dynamic Navigation

	Draft Version 1.0 – 07 Nov 2011

	Open Mobile Alliance

OMA-TS-REST_NetAPI_DynNav-V1_0-20111222-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
8
4.1
Version 1.0
8
5.
Dynamic Navigation API definition
9
5.1
Resources Summary
9
5.2
Data Types
19
5.2.1
XML Namespaces
19
5.2.2
Structures
19
5.2.2.1
Type: TripList
19
5.2.2.2
Type: Trip
19
5.2.2.3
Type: Route
20
5.2.2.4
Type: Segment
20
5.2.2.5
Type: SubscriptionList
21
5.2.2.6
Type: Subscription
21
5.2.2.7
Type: Notification
22
5.2.2.8
Type: AreaList
22
5.2.2.9
Type: Area
22
5.2.2.10
Type: EventList
23
5.2.2.11
Type: CategorizedEventListReference
23
5.2.2.12
Type: Event
23
5.2.2.13
Type: POIListsSet
24
5.2.2.14
Type: POIList
24
5.2.3
Enumerations
24
5.2.3.1
Enumeration: [Enumeration Name]
25
5.2.4
Values of the Link “rel” attribute
25
5.3
Sequence Diagrams
25
5.3.1
Lightweight application requesting routing information and related traffic data from the DynNav server]
25
5.3.2
Request of traffic information related to routes estimated by a Navigation Device
28
5.3.3
Smart ND requesting traffic and Points Of Interest information
30
6.
Detailed specification of the resources
32
6.1
Resource: [Description of the resource]
32
6.1.1
Request URL variables
32
6.1.1.1
Light-weight relative resource paths
32
6.1.2
Response Codes and Error Handling
33
6.1.3
GET
33
6.1.3.1
Example 1: [Example title] (Informative)
34
6.1.3.1.1
Request
35
6.1.3.1.2
Response
35
6.1.3.2
Example 2: [Example title] (Informative)
35
6.1.3.2.1
Request
35
6.1.3.2.2
Response
35
6.1.4
PUT
35
6.1.4.1
Example 1: [Example title] (Informative)
35
6.1.4.1.1
Request
36
6.1.4.1.2
Response
36
6.1.4.2
Example 2: [Example title] (Informative)
36
6.1.4.2.1
Request
36
6.1.4.2.2
Response
36
6.1.5
POST
36
6.1.5.1
Example 1: [Example title] (Informative)
36
6.1.5.1.1
Request
37
6.1.5.1.2
Response
37
6.1.5.2
Example 2: [Example title] (Informative)
37
6.1.5.2.1
Request
37
6.1.5.2.2
Response
37
6.1.6
DELETE
37
6.1.6.1
Example 1: [Example title] (Informative)
37
6.1.6.1.1
Request
38
6.1.6.1.2
Response
38
6.1.6.2
Example 2: [Example title] (Informative)
38
6.1.6.2.1
Request
38
6.1.6.2.2
Response
38
Appendix A.
Change History (Informative)
39
A.1
Approved Version History
39
A.2
Draft/Candidate Version 1.0 History
39
Appendix B.
Static Conformance Requirements (Normative)
40
B.1
SCR for REST.FUNCAREA Server
40
B.1.1
SCR for REST.FUNCAREA.FUNCTION Server
40
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
41
C.1
[Operation]
41
C.1.1
Example (Informative)
42
C.1.1.1
Request
42
C.1.1.2
Response
42
Appendix D.
JSON examples (Informative)
43
D.1
[Example Title] (section [section number cross reference])
43
Appendix E.
[Baseline specification] operations mapping (Informative)
44
Appendix F.
Light-weight resources for [FuncArea] (Informative)
45
Appendix G.
Authorization aspects (Normative)
46

Figures

11Figure 1 Resource structure defined by this specification

18Figure 2 [Caption of this flow]

Tables

31Table 1 [Baseline specification] operations mapping

1. Scope

This specification defines a RESTful API for Dynamic Navigation using HTTP protocol bindings, based on application requirements and architecture defined in [DynNav_ER]
2. References

2.1 Normative References

	[DynNav_ER]
	“OMA Dynamic Navigation Enabler”, Open Mobile Alliance™, OMA-ER-DynNav-V1_0, URL:http://www.openmobilealliance.org/

	[IETF Draft Forte]
	Labels for Common Location-Based Services, URL:http://tools.ietf.org/html/draft-forte-ecrit-service-classification-03

	[TTI LOC]
	“Traffic and Travel Information (TTI)” ISO/TS 24530, Part 2: tpeg-locML, URL:http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=54706

	[TTI RTM]
	“Traffic and Travel Information (TTI)” ISO/TS 24530, Part 3: tpeg-rtmML, URL:http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=54706

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_SUP_FUNCAREA]
	“XML schema for the RESTful Network API for [Functional Area]”, Open Mobile Alliance™, OMA-SUP-XSD_rest_netapi_funcarea-V1_0, URL: http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC4776]
	IETF RFC 4776, Dynamic Host Configuration Protocol (DHCPv4 and DHCPv6) Option for Civic Addresses Configuration Information

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_POI]
	W3C Points of Interest Core, URL:http://www.w3.org/TR/2011/WD-poi-core-20110512/

	[W3C_URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1 [only needed if www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

	<< Add/Remove reference rows to this table as needed - DELETE This Row >>

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

For the purpose of this TS, all definitions from the OMA Dictionary apply [OMADICT].

3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	POI
	Point Of Interest

	REST
	REpresentational State Transfer

	RTM
	Road Traffic Message

	SCR
	Static Conformance Requirements

	TPEG
	Transport Protocol Expert Group

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

	<< Add/Remove abbreviation rows to this table as needed - DELETE This Row>>

4. Introduction

<< Alternative 2: This is a suggestion for the introduction if there is no baseline specification. Use either alternative 1 or alternative 2. >>

The Technical Specification of the RESTful Network API for Dynamic Navigation (DynNav)] contains HTTP protocol bindings for dynamic routing of vehicle based on real time traffic information, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding). Requirement and architecture for the DynNav application are defined in [DynNav_ER].
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

<< Include a list of supported operations >>

5. Dynamic Navigation API definition
This section is organized to support a comprehensive understanding of the Dynamic Navigation API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
<< Include a description that is specific for this Functional Area TS >>

Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.
All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix F provides a list of all light-weight resources. [This sentence applies if there are light-weight resources defined in this specification. Wording if there are no light-weight resources defined in this specifications is as follows:Appendix F provides a list of all light-weight resources, where applicable.] Appendix G defines authorization aspects to control access to the resources defined in this specification.

Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_NetAPI_Common].
Note: Throughout this document client and application can be used interchangeably.
5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Dynamic Navigation.

The "apiVersion" URL variable SHALL have the value [insert value, such as "1"] to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image6.emf]/trips

//{serverRoot}/{apiVersion}

/ dynnav/{appId}

/{tripId}

/routes

/{routeId}

/areas

/{areaId}

/events

/{eventId}

/subscriptions

/{subscriptionId}

/pois

/{poiListId}

/poiAreas

/{poiAreaId}

Figure 1 Resource structure defined by this specification

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.

Purpose: Trips management
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All trips created by the application
	/trips

	TripList (used for GET)

Trip (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all trips created by the application.
	No

	Create new trip

	No

	Single trip description

	/trips/{tripId}

	Trip
	Read trip settings, preferences and link to the related routes

	No
	No

	Delete trip.

Purpose: Management of routes defined for a trip
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Routes related to a trip

	/trips/{tripId}/routes

	Route

common:ResourceReference (optional alternative for POST response)
	No

	No

	Add a new route to the trip

	No

	Single route description
	/trips/{tripId}/routes/{routeId}

	Route
	Read data about specified route

	No
	No

	Delete route.

Purpose: Subscriptions management for Route, Area and Trip updates
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions crated by the application

	/subscriptions

	SubscriptionList (used for GET)

Subscription (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read list of all subscriptions created by the application.

	No

	create new subscription

	No

	Subscription settings
	/subscriptions/{subscriptionId}
	Subscription
	Read subscribed resources
	Update subscription settings
	No
	Delete subscription

Purpose: Callback notifications for Route, Area and Trip updates

	Resource
	URL
<specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client notification about route, area and trip updates
	<specified by the client when a subscription is created>
	Notification
	no
	no
	Notifies client about updates in subscribed resources (routes, areas and trips).
	no

Purpose: Area management
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All areas created by the application

	/areas

	AreaList (used for GET)

Area (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read links to all areas

	No
	Create a new area

	No

	Traffic Information related to an area
	/areas/{areaId}
	Area
	Read area information
	No
	No
	Delete an area

Purpose: Evenst management
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All events related to the application

	/events

	EventList
	Read all available events

	No
	No

	No

	Single event information
	/events/{eventId}
	Event
	Read a single event
	No
	No
	No

Purpose: POI management
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/dynnav/{appId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	POIs lists related to a route
	/trips/{tripId}/routes/{routeId}/pois

	POIListsSet (used for GET)

POIList (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read the set of references to lists of POIs
	No
	Create a list of POIs

	No

	List of POIs related to a route matching parameters defined by the user
	/trips/{tripId}/routes/{routeId}/pois/{poiListId}
	POIList
	Read the set of POIs defined in the list
	No
	No
	Delete a list of POIs

	POIs lists defined for an area
	/poiAreas

	POIListsSet (used for GET)

POIList (used for POST)

common:ResourceReference (optional alternative for POST response)
	Read the set of references to lists of POIs
	No
	Create a list of POIs

	No

	List of POIs related to an area matching parameters defined by the user
	/poiAreas/{poiAreaId}
	POIList
	Read the set of POIs defined in the list
	No
	No
	Delete a list of POIs

	
	
	
	

	
	
	
	
	
	
	

	

	

	

	

	

	

	

	

	
	

	

	
	
	
	

	

<< Use Arial Narrow font size 10 for these tables >>

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for thethe DynNav] data types is:

urn:oma:xml:rest netapi:dynnav:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_DYNNAV].
5.2.2 Structures

·
·

The subsections of this section define the data structures used in the DynNav[Functional Area] API.
Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: TripList

List of trips crated by the application.

	Element
	Type
	Optional
	Description

	trip
	Trip[0…unbounded]
	Yes
	It may contain an array of Trip

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named tripList of type TripList is allowed in request and/or response bodies.

5.2.2.2 Type: Trip

Description of single trip defined by the application for which route information and/or traffic information is provided.

	Element
	Type
	Optional
	Description

	originWGS84
	Location_Point
	Yes
	Location_Point structure is defined in tpeg-locML [TTI LOC]. At least one element originWGS84 or originAddress MUST be specified.

	originAddress
	Civic Location Format
	Yes
	Civic Location Format is defined by IETF [RFC4776]. At least one element originWGS84 or originAddress MUST be specified.

	destinationWGS84
	Location_Point
	Yes
	Location Point structure is defined in tpeg-locML [TTI LOC]. At least one element destinationWGS84 or destinationAddress MUST be specified.

	destinationAddress
	Civic Address Format
	Yes
	Civic Location Format is defined by IETF [RFC4776]. At least one element destinationWGS84 or destinationAddress MUST be specified.

	waypoints
	Location_Point [0…unbounded]
	Yes
	Location_Point structure is defined in tpeg-locML [TTI LOC].

	startingTime
	xsd:dateTime
	Yes
	Starting time of the planned trip. If not present, current time is assumed.

	tollRoad
	xsd:boolean
	Yes
	If true or not present, toll road are allowed.

	vehicleType
	Vehicle_Info
	Yes
	Vehicle_Info structure is defined in tpeg-rtmML [TTI RTM].

	calculateRoute
	xsd:boolean
	Yes
	If false or not present, server should not propose routes.

	link
	common:Link [0..unbounded]
	Yes
	Links to routes related to the trip. Attribute “rel” must be set to “Route”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named trip of type Trip is allowed in request and/or response bodies.

5.2.2.3 Type: Route

The Route information structure describes a path that matches trips parameters.

	Element
	Type
	Optional
	Description

	travellingTime
	xsd:float
	Yes
	Total travelling time (in minutes) for the route

	distance
	xsd:float
	Yes
	Total distance (in Km) of the route

	origin
	Location_Point
	No
	Location_Point structure is defined in tpeg-locML [TTI LOC].

	segment
	Segment [1…unbounded]
	No
	Sequence of road segments that form the route

	trafficEvents
	CategorizedEventListReference [0..unbounded]
	Yes
	List of traffic events as defined in tpeg-rtmML [TTI RTM], grouped into categories.

	link
	common:Link
	Yes
	Reference to the route for which it is proposed as alternative. Attribute “rel” must be set to “Route”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named route of type Route is allowed in request and/or response bodies.

5.2.2.4 Type: Segment

Description of single segments that comprise the route.

	Element
	Type
	Optional
	Description

	endPoint
	Location_Point
	No
	Location_Point structure as defined in tpeg-locML [TTI LOC]. The starting point of the segment should be assumed equal to the ending point of the previous segment (or the trip origin for the first segment)

	midwayPoint
	Location_Point [0…unbounded]
	Yes
	Location_Point structure as defined in tpeg-locML [TTI LOC].

	linkName
	xsd:string
	Yes
	Name of the road that the segment belongs to

	distance
	xsd:float
	Yes
	Length of the segment in km

	travellingTime
	xsd:float
	Yes
	Estimated time to cover the segment expressed in minutes, it includes regular travelling time and delay

	delay
	xsd:float
	Yes
	Estimated delay along the segment expressed in minutes

	speed
	xsd:float
	Yes
	Estimated speed along the segment expressed in m/s

	performance
	xsd:string
	Yes
	Description of traffic conditions along the segment. This field should be encoded according to tpeg rtmML definition [TTI RTM]

5.2.2.5 Type: SubscriptionList

List of subscriptions.
	Element
	Type
	Optional
	Description

	subscription
	Subscription [0…unbounded]
	Yes
	It may contain an array of Subscription

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named subscriptionList of type SubscriptionList is allowed in request and/or response bodies..

5.2.2.6 Type: Subscription

Individual subscription to notifications

	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification endpoint and parameters.

	link
	common:Link [1…unbounded]
	No
	References to resources to which subscribe to. Attribute “rel” attribute indicates type of resource subscribed. It may assume the following values:

· “Trip”: in order to get notified of new route proposals

· “Route”: in order to be notified of new traffic events and performance parameters updates

· “Area”: in order to be notified of new traffic events and performance parameters updates

Attribute “href” specifies the URL of subscribed resource. Subscribed resource’s type must be the same of that specified in “rel” attribute.

	trackingProc
	xsd:boolean
	Yes
	If present and set to True, the application communicate to the server user’s availability to provide position information through an external location application.

	deviceLocationURI
	xsd:anyURI
	Yes
	This parameter is used by the server for accessing to Navigation Device position information.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named subscription of type Subscription is allowed in request and/or response bodies.

5.2.2.7 Type: Notification

Notification about updates in subscribed routes, areas and trips.

	Element
	Type
	Optional
	Description

	link
	common:Link [0…unbounded]
	No
	Link to updated resources. Attribute “rel” attribute indicates type of resource updated and may assume “Route”, “Area” and “Trip” values.

A root element named notification of type Notification is allowed in request and/or response bodies.

5.2.2.8 Type: AreaList

Contains an array of links to all areas defined by the application.
	Element
	Type
	Optional
	Description

	link
	common:Link [0…unbounded]
	Yes
	Links to area resources. Attribute “rel” must be set to “Area”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named areaList of type AreaList is allowed in request and/or response bodies.

5.2.2.9 Type: Area

Description of single area.

	Element
	Type
	Optional
	Description

	areaDesc
	Location_Point
	No
	Location Point structure as defined in tpeg-locML [TTI LOC].

	startValidityTime
	xsd:dateTime
	No
	Starting time of the interval for which events and performance are requested.

	endValidityTime
	xsd:dateTime
	No
	Ending time of the interval for which events and performance are requested.

	events
	CategorizedEventListReference [0..unbounded]
	Yes
	Reference to events related to the area. The information provided relates to event on the road network and associated infrastructure.

	resourceURL

	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named area of type Area is allowed in request and/or response bodies.

5.2.2.10 Type: EventList

Contains a list of all events available

	Element
	Type
	Optional
	Description

	event
	Event [0…unbounded]
	Yes
	Contains a list of events

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named eventList of type EventList is allowed in request and/or response bodies.

5.2.2.11 Type: CategorizedEventListReference

Contains an array of links to a specific category.

	Element
	Type
	Optional
	Description

	category
	xsd:string
	No
	The shall use entity references of the form rtm00_x table contained in tpeg-rtmML definition [TTI RTM]. If the category of events is unknown the element is not present.

	link
	common:Link [1..unbounded]
	No
	Contains a list of references to events belonging to category. Attribute “rel” must be set to “Event”.

5.2.2.12 Type: Event

Description of single traffic event. All the possible traffic events are described in tpeg-rtmML [TTI RTM].

	Element
	Type
	Optional
	Description

	rtMessage
	Road_Traffic_Message
	No
	It includes one or more traffic events related to a location (a point, a segment or an area)

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named event of type Event is allowed in request and/or response bodies.
5.2.2.13 Type: POIListsSet

Description of single POIs list. Each list includes the set of POI proposed for defined parameters.

	Element
	Type
	Optional
	Description

	link
	common:Link [0..unbounded]
	Yes
	It includes one or more link to a POIs list. Attribute “rel” must be set to “POIList”.

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named poiListsSet of type POIListsSet is allowed in request and/or response bodies.

5.2.2.14 Type: POIList

Contains a list of Points of interest as defined by W3C POI
	Element
	Type
	Optional
	Description

	category
	xsd:string [1..unbounded]
	No
	List of categories for which POIs are requested as defined in [IETF Draft Forte].

	routeRange
	xsd:integer
	Yes
	POIs maximum distance from the route. This field is present if the POIs list is related to a route.

	area
	Location_Container
	Yes
	Describes the area where POIs are requested. This field is not present if the POIs list is related to a route. Location Container structure is defined in tpeg-locML [TTI LOC].

	pois
	Pois
	Yes
	Pois structure is defined in [W3C POI]

	resourceURL
	xsd:anyURI
	Yes
	Self-referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named poiList of type POIList is allowed in request and/or response bodies.
5.2.2.15

	
	
	
	

	
	
	
	

	

5.2.2.16

	
	
	
	
	

	
	
	
	
	

	

5.2.3 Enumerations

<<Naming conventions for enumerations
Names will start with a letter and be mixed case, with the leading letter of each but the first word capitalized. The conventions for the leading letter of the first differ depending on the context:

· Enumeration type names start with an uppercase letter

· Enumeration value names in types start with an uppercase letter

Words will not be separated by white space, underscore, hyphen or other non-letter character. For names consisting of concatenated words, all subsequent words start with a capital. For example, “ConcatenatedWord”. If an uppercase name includes an abbreviation, all characters of the abbreviation are capitalized, e.g. “SMSService”, “VoiceXML”.

Note that deviations from this the naming convention SHOULD be the exception and thoroughly justified, e.g. in case of re-use of existing data types.>>

The subsections of this section define the enumerations used in the [Functional Area] API.
5.2.3.1 Enumeration: [Enumeration Name]
	Enumeration
	Description

	[Enumeration Value Name]
	[Description of the enumeration value]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· Trip

· Route

· EventOne

· Area

· POIList

·
·

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
5.3.1 Lightweight application requesting routing information and related traffic data from the DynNav server]
This figure below shows a scenario for a lightweight application that requests routing information from the DynNav server. In this case the user sets the journey starting point, destination and other preferences that are immediately sent by the ND to the DynNav server. The DynNav server will reply with a set of routes that match journey parameters taking into account real time traffic information and forecast.

The user then selects one of the proposed routes, and the ND subscribes to traffic info updates and new routes proposals. Afterwards, due to a traffic jam on the selected route, the DynNav server notifies the application of updated traffic information for a subscribed route and a proposal of an alternative route. The application reads the new traffic parameters of the subscribed route and reads the new route. Then the application will update the DynNav server subscription resource adding the newly proposed route. The DynNav server will then update its settings with respect to that user..

The resources:

· To define the parameters of a trip, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips
· To read the identifiers of the proposed routes related to the defined trip, read resource under http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}

· To access to information related to one of the proposed routes, read resource under http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes/{routeId}

· To access to traffic events related to the route, read resource under http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}

· To subscribe to notification service for a trip and a subset of proposed routes, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)

· To subscribe to notification service for the new routes, update resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions/{subscriptionId}
·
·

[image: image8]
Figure 2 Lightweight ND asking assistance from the DynNav server
Outline of the flows:

1. The client send the journey parameters defined by the user to the server: the server calculates a set of proposed route for the journey with related traffic information and replies with the identifier of the created “trip” resource to the client The server reply with a representation of created “trip” resource, which contains resources identifiers of the proposed routes. In this case, message 2 is no longer required.

2. The client uses the Route Identifier to access to information describing each single proposed route with performance parameters for each segment of the route and links to traffic events. The step 2 is repeated for all the routes
3. The client accesses then to traffic events related to the route, using links to traffic events resources provided in route structure.
4. The client requests from the server to create a subscription to the trip and routes notification service. The client is notified by the server of the following events:

· New performance parameters and traffic events updates for the route selected by the user, in this case subscription will include links to routes resources

· Proposal of alternative routes due to traffic problems along the proposed routes, the subscription will include the link to trip resource.

5. Traffic event occurs in one of the selected routes and an alternative route is proposed by the server, the notification resource is delivered to the client with links to modified resources:

· trip with the newly proposed route

· the route with updated performance parameters and traffic event information

6. The client access to the modified resources. The resources that should be read are: the trip with the list of proposed routes including the new one, the old routes with updated information on performance parameters and traffic events, the newly proposed alternative route with related traffic information.
7. The client requests to modify the subscription setting adding subscription to the new route
8.
a)
b)
9.
10.
5.3.2 Request of traffic information related to routes estimated by a Navigation Device
This figure below shows a scenario for a smart ND that calculates the routes exploiting real-time traffic information. In this scenario the user’s ND calculates the route from starting point to destination, then the client requests from the DynNav server real-time performances parameters and forecast related to this route,.

At a given moment, an accident occurs along the route: a notification message is triggered by the DynNav server toward the ND. As a consequence of degraded performances, the ND estimates an alternative route and asks for related traffic information to the DynNav server. Since the new route appears to be rather congested, the ND selects a third route and asks again traffic information to the DynNav server. This time the answer satisfies the user, which allows the ND to update the traffic info subscription onto the DynNav server with the new selected route.

The resources:

· To define the parameters of a trip, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips

· To add a route to a trip under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes

· To access to information related to one of the proposed routes, read resource under http://{serverRoot}/{apiVersion}/dynnav/{appId}/trips/{tripId}/routes/{routeId}

· To access to traffic events related to the route, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}

· To subscribe to notification service for a trip and a subset of proposed routes, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions
(the server will send notifications to the URL specified in the subscription resource; the notification will contain the URLs of the updated resources)

· To subscribe to notification service for the new routes, update resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/subscriptions/{subscriptionId}

[image: image9]
Figure 3 Traffic information request

Outline of the flows:

1. The user defines journey parameters and the client sends it to the server specifying that no routing information is requested. The server replies with the location of the created “trip” resource to the client

a) The server may reply with a representation of created “trip” resource. Both implementations are equivalent.

2. The client sends the calculated route to the server requesting related performance parameters. The server replies with a representation of the “route” resource, that includes performance data and links to events.

a) The server may reply with the location of the posted route. In this case an additional get operation on the location is needed to retrieve content of resource.

3. The client subscribes to the notification service. The client will be notified by the server of new performance parameters and traffic events related to the route.
4. Traffic events occur on the selected route, The server delivers the notification to the client with the link to the modified route resource
5. The client accesses to the route resources with updated information on performance parameters and traffic events.

6. The client calculates a new route and posts the new route under the resource /{tripId}/routes. The server replies with a representation of the “route” with performance parameters and links to events. (This step may be repeated many times until a route that satisfies performance constraints is found).

5.3.3 the client requests to modify the subscription setting adding notification for the new route.

·
·

11.
a)
b)
12.
13.
5.3.4 Smart ND requesting traffic and Points Of Interest information
The figure below shows a scenario for a smart ND that calculates the routes and interacts with the DynNav server to retreive information such as traffic information and point of interests. In this scenario the application requests to DynNav server traffic information related to an area in order to estimate a route for given origin and destination. No further interactions with the DynNav server will be required, as the user does not want to subscribe to real time traffic updates.

Further down the journey, while still travelling, the user can see what it appears a big historical site. It then sends a new request to the DynNav server asking for more info; the DynNav server will reply with a message that contains the name of the site (it is an ancient roman ruins park) and a pointer to a web site containing more specific information (e.g., entrance hours, cost, etc.).
The resources:

· To define a new area for which traffic events are requested, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/areas
· To read parameters and events related to a previously defined area, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/areas/{areaId}

· To access to a specific traffic event related to the area, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/events/{eventId}
· To define a set of points of interest in an area, create resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/poiAreas
· To read a list of points of interest in an area, read resource under
http://{serverRoot}/{apiVersion}/dynnav/{appId}/poiAreas/{poiAreaId}

[image: image12]
Figure 4 Smart ND requesting traffic and Point Of Interest information
Outline of the flows:
1. Navigation Client determines an area where it requests traffic information. Application sends the description of the area to server, that replies with a resource containing all links to events (parted in categories) available for the selected area.

a) Server may reply with the location of the created resource. In this case an additional get operation on the location is needed to retrieve content of resource.
2. Application reads all events of categories that considers interesting. Considering all information available at this point, application (or user) may decide to change the route calculated at point 1, and repeat points 1 and 2.

3. To request a list of points of interest, application has to define an area of interest and one or more categories of requested POIs. Application sends parameters to the DynNav server, and it will reply with a resource containing all points that satisfies user’s request.

Server may reply with the location of the created resource. In this case an additional get operation on the location is needed to retrieve content of resource.
6. Detailed specification of the resources
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without light-weight resources usually http://{serverRoot}/{apiVersion}/funcarea/...]
[with light-weight resources usually http://{serverRoot}/{apiVersion}/funcarea/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].

6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	[ResourceRelPath]
	Relative resource path for a light-weight resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see [section number entitled “Light-weight relative resource paths” applicable for the current resource]. [This row is only present in case the resource has light-weight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 5 for a statement on the escaping of reserved characters in URL variables.
<< Light-weight resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the light-weight resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight relative resource paths

The following table describes the types of light-weight resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This Row>>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.2.4 for possible values for the light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to [Functional Area], see [BASELINE_REF].
<< Note that the second sentence is applicable if there is Parlay X legacy, but may be adopted if there are exceptions coming from other underlying systems. In case there are no error handling mechanisms / exceptions from underlying systems, the second sentence can be omitted..>>

6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is 1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].

6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Version:

REST_NetAPI _DynNav-V1_0
	07 Nov 2011
	n/a
	First Draft

	
	Dec 22, 2011
	5.3.1, 5.3.2, 5.3.3
	
OMA-LOC-2011-0338

OMA-LOC-2011-0339R02
OMA-LOC-2011-0340R01
OMA-LOC-2011-0347R02

	
	[dd mmm yyyy]
	[sections]
	[List of all implemented CRs]

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.FUNCAREA Server

	Item
	Function
	Reference
	Requirement

	REST-FUNCAREA-SUPPORT-S-001-M
	Support for the RESTful [FuncArea] API
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	REST- FUNCAREA-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST.FUNCAREA.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the RESTful [FuncArea] API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following [FuncArea] REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used to create an outgoing message request.

The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a light-weight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. [Baseline specification] operations mapping
(Informative)
<< This appendix is only needed for specifications which define REST bindings for an existing interface / API, such as Parlay X.
For ParlayREST specifications, substitute [Baseline specification] with “Parlay X”. For other baselines, reword accordingly.
In case there is no baseline, the headline is “Operations mapping to a pre-existing baseline specification
(Informative)”

Delete this comment.>>

<<If there is no baseline, use the following wording. Delete this comment. >>

As this specification does not have a baseline specification, this appendix is empty.
<<If there is a baseline, use the following wording. Delete this comment. >>
The table below illustrates the mapping between REST resources/methods defined in this specification and [Baseline specification] [[BASELINE_REF]] equivalent operations.

	REST Resource
	REST
Method
	REST
Section reference
	[Baseline specification] equivalent operation

	[Resource description from first column in one of the tables in section 5.1]
	[GET/PUT/POST/DELETE]
	[section cross-reference]
	[Operation name from
Baseline specification]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

Table 1 [Baseline specification] operations mapping
Appendix F. Light-weight resources for [FuncArea]
(Informative)

<< This appendix lists light-weight resources defined in this specification. Delete this comment>>

<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

As this version of the specification does not define any light-weight resources, this Appendix is empty.
<<If there are no light-weight resource in the spec, the following wording is used. Delete this comment.>>

The following table lists all [FuncArea] data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

<<If [ResourceRelPath] strings in the above table include variables in curly brackets “{}” then the following paragraph shall be included also; otherwise it should be deleted. Delete this comment >>

Note: When appending [ResourceRelPath] string to its heavy-weight resource URL, all variables within curly brackets “{}” such as: [list of variable names from ResourceRelPath strings] have to be replaced by their real values
Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

Application

3. POST Subscription under Subscriptions resour ..

Server

1. POST Trip Description

Response with created trip

2. POST Route under TripID resource

Create a trip

4. POST Notification under CallBackNotifURL..

Submit a notification

Response

Response with created route

Create a route

Create a subscription

Response

5. GET Route at the URL spec. in the Notification

Response

Read the route param.

6. POST Route new route under TripID resource

Response with created route

Create a new route

7. PUT SubscriptionID with new route resource

Response

Modifiy the subscription

3. GET EventId, included in the route resource.

Server

1. POST Trip Description

Response with created trip and routes Ids

2. GET RouteId resource

Create a trip

Subscribe to notification

Response with event information

Response with the selected route

Read a route

Read a subscription

4. POST Subscription under Subscriptions resour ce

Response

Submit a notification

Create a new route

7. PUT Subscription e

Response

Modifiy the subscription

5. POST Notification under CallBackNotifURL

Response

6. GET RouteId spec. in the notification

Response with the selected route

3. POST POIsLIst under poiArea ,with categories

Server

1. POST Area Description

Response with Area det. and Events List

2. GET EventIds resources with traff. info

Create a n Area

Response with POIs information

Response with the selected events

Read a list of events

Create a list of POIs

Application

�Routes Id are already available in

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1359836515/example-structure-with-LW.zip

example-structure-with-LW.ppt

/callSessions

//{serverRoot}/{apiVersion}

/ thirdPartyCall

/{callSessionId}

/participants

/{participantId}

/terminate

/[ResourceRelPath]

Heavy-weight resource

Relative path to light-weight resource

Legend

_1382876175.ppt

/trips

//{serverRoot}/{apiVersion}

/ dynnav/{appId}

/{tripId}

/routes

/{routeId}

/areas

/{areaId}

/events

/{eventId}

/subscriptions

/{subscriptionId}

/pois

/{poiListId}

/poiAreas

/{poiAreaId}

*

_1357635463/example-structure.zip

example-structure.ppt

/callSessions

//{serverRoot}/{apiVersion}

/ thirdPartyCall

/{callSessionId}

/participants

/{participantId}

/terminate

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

