[image: image1.jpg]
OMA-RD_OSPE-V1_0 –20040225121-D
Page 21 V(1)

OMA Service Provider Environment Requirements

Draft Version 1.0 – 25 Feb 2004

Open Mobile Alliance

OMA-RD_OSPE-V1_0 –20040225-D

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope (Informative)

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction (Informative)
7
4.1
End-User
7
4.2
Service Provider
7
4.3
Application Developer
8
5.
Use Cases (Informative)
9
5.1
Use Case A: Deployment of a New Application
9
5.1.1
Short Description
9
5.1.2
Actors
9
5.1.3
Pre-conditions
9
5.1.4
Post-conditions
9
5.1.5
Normal Flow
10
5.1.6
Alternative Flow
12
5.1.7
Operational and Quality of Experience Requirements
12
5.2
Use Case B: Fault detection and Repair
13
5.2.1
Short Description
13
5.2.2
Actor
13
5.2.3
Pre-conditions
14
5.2.4
Post-conditions
14
5.2.5
Normal Flow
14
5.2.6
Alternative Flow
16
5.2.7
Operational and Quality of Experience Requirements
16
5.3
Open Issues
16
6.
Requirements
17
6.1
High-Level Functional Requirements
17
6.1.1
Security
17
6.1.2
Charging
17
6.1.3
Administration and configuration
17
6.1.4
Usability
17
6.1.5
Interoperability
17
6.1.6
Privacy
17
6.2
Overall System Requirements
17
6.3
System Elements
17
6.3.1
System Element A
17
6.3.2
Network interfaces
18
Appendix A.
Change History (Informative)
19
A.1
Approved Version History
19
A.2
Draft/Candidate Version 1.0 History
19
Appendix B.
Candidate Requirements
20

1. Scope
(Informative)

This specification defines the use cases and requirements for the OMA Service Provider Environment (OSPE). The OSPE addresses the need for a standardized environment/infrastructure for developing and deploying services
.

As service providers try to expand their offerings and deploy more and more services they need to improve new services' time-to-market and associated development, integration and maintenance costs (i.e. life-cycle costs) to stay competitive.
Lower service life-cycle costs can be achieved by reducing administration (provisioning, O&M, etc.) and integration costs of the components used to build up services. Implementation and deployment of new services and enablers in the current non-standardized environment commonly results in considerable incremental cost, delays in service availability, interoperability issues, and service management complexity. Standardization of at least some reusable components would allow their sharing across multiple services, reducing development, integration, and maintenance costs.

This OSPE intends to achieve the following specific goals in this area:

· Reduce deployment and lifecycle costs and improve service/component time-to-market:
·
By defining standard interfaces to components it will be possible for service provider to more quickly and cost effectively build new services by re-using rather than duplicating infrastructure-provided components and common data. Components for which interfaces will be defined may include data stores, subscription management, user profile storage, authentication tables, privacy repository, device profile storage, etc.
· The component standard interfaces will not only cover the functional usage of the components but also the required lifecycle management functionality of these components. That may include interfaces to facilitate integrating, deploying, managing, monitoring, upgrading and removing a component in/from the service provider environment.
· The modularization of the environment will let enabler developers focus their energies on developing enabler implementations, concentrating on the specific technology, rather than infrastructure functions. Since these enablers will use standard interfaces, service providers will require less time and expense to add (integrate) these enablers and their components into the environment because the standard interfaces will eliminate much of the custom systems integration work currently required.
In addition to the specific OSPE goals, the key objective is for the OSPE, in its design, to fulfil the following design principles:
· Allow component interchangeability;
· Allow the multi-vendor mixing-and-matching of components by defining their interfaces and having consistent semantics of shared data/schema across these components. To achieve such replaceability/reusability of components, we must provide mechanisms to support the full life cycle of components. This can be achieved by specifying standard component interfaces to handle aspects such as installation, configuration, administration, versioning, etc.
Section 5 of this document contains use cases describing the issues related with enabler development, deployment, integration, administration, maintenance, etc. Section 6 contains requirements extracted from the use cases presented in section 5.
2. References

2.1 Normative References

[RFC2119]
“Key words for use in RFCs to Indicate Requirement Levels”. S. Bradner. March 1997.
URL:http://www.ietf.org/rfc/rfc2119.txt

<<Remove unused reference rows! >>

2.2 Informative References

[Dictionary]
“OMA Dictionary”, version 0.1, Open Mobile Alliance(, http//www.openmobilealliance,org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

<<OR

This is an informative document, which is not intended to provide testable requirements to implementations.>>

<<If needed, describe or declare using appropriate normative references the additional conventions that are used.>>

3.2 Definitions

Definitions contained in [Dictionnary] are not repeated here.

Component
A replaceable/reusable unit in the service provider system that is responsible for a particular set of functionality and associated information

3.3 Abbreviations

AoC
Advice of Charge

DRM
Digital Right Management

GMLC
Gateway Mobile Location Center

MMS
Multimedia Messaging Service

MMSC
Multimedia Messaging Service Center

O&M
Operation and Maintenance

OSPE
OMA Service Provider Enviroment

OTA
Over-The-Air

PPG
Push Proxy Gateway

SMS
Short Message Service

SMSC
Short Message Service Center

SP
Service Provider

WAP
Wireless Application Protocol

4. Introduction
(Informative)

The motivation behind the OSPE may be described from the perspective of the main actors involved with application development, application deployment and application consumption. These actors can be identified as:

· End-User

· Service Provider

· Application Developer

4.1 End-User

Currently, end user experience tends not to be consistent across services offered by their Service Provider, e.g. there tends to be limited focus on user centric and service centric capabilities. Therefore, from the End-user perspective, the benefits of OSPE and component re-use will primarily be driven from an improved service experience, i.e. improved services consistency and coherency. This may simply be in the form of a consistent way in which the end-user if charged for consuming services, or the way in which end-users are informed of error situations across multiple services. The OSPE will help drive a consistent and easier means in which end-users subscribe and consume services offered by their Service Provider. The end-user would also benefit from a wider choice of richer and affordable services.
By standardizing the environment/infrastructure for developing and deploying services, OSPE will additionally promote the modularity and re-use of components. By re-using and leveraging components such as message store, notification, user-profile, charging and billing it is possible that individual services offered by the Service Provider will avoid, for example, the need for an end-user to repeatedly supply their personal service preferences and settings for each individual service that is offered by the Service Provider. Similarly, by leveraging common payment components it would be possible for the end-user to avoid having to specify their credit card details for each individual service that each offers the ability to purchase items.

Another example would involve leveraging a common user-profile, which, when used across several individual services, each service offering the ability to provide personal information such as weather, rail or road information, would avoid the need for the end-user repeatedly having to submit, configure and request information specifically targeted towards the end-user's home area.

4.2 Service Provider

From the Service Provider's perspective, the motivation for the OSPE is two-fold:

· The integration and deployment of services is complicated and expensive, and in many instances the costs involved make some services commercially unfeasible; and

· It is difficult and expensive to provide different services to the end-user in a uniform and coherent manner
The OSPE and component re-use addresses the desire to reduce (for the reasons mentioned above) the duplication and inconsistent use of data in different storage systems as well as the redundant functionality between each new service developed and deployed. For example, each service implementation tends to have its own subscriber database, or its own way of authenticating subscribers or accounting service usage. At present it is very difficult to deploy services that shares or leverages common data stores or the same functionality, e.g. the inconsistency in which messaging services (email, MMS, SMS, voice mail) are developed and deployed.

The benefits of the OSPE and component re-use are:
· A means to provide different services to the end-user in a uniform and coherent manner, i.e. improved end user experience;

· Improved service offerings, including time-to-market;
· Reduction in integration efforts for new services;

· Ease the development and deployment of services by reusing components, such as user- profile, which historically are developed repeatedly for each service and cannot be re-used by the other services (resulting in non-satisfying time-to-market as well as high costs and inconsistent user interfaces across multiple services);

· Facilitate integrating, deploying, managing, monitoring, upgrading, adding and removing components by standardising the components and their management interfaces. This will also encourage multivendor and hence component plug and play and component reusability.

·
·
4.3 Application Developer

By defining interfaces into functions like subscriber management, user profile storage, authentication, privacy, etc, Application Developers can invoke such functions in a standard way and therefore reduce the need for services integration efforts when adding a new service enabler into an existing environment.
By standardizing the environment/infrastructure for developing and deploying services, OSPE will eliminate the need for the Application Developer to develop proprietary and operator specific mechanisms for the deployment of new services thus increasing the time-to-market for application creation.
By promoting the modularity and re-use of components, the OSPE will in addition allow the Application Developer to speed their time-to-market because they will not need to re-develop those components that are already in use for existing services, but can depend on reusing these functions when necessary. This will inadvertently allow Application Developers to focus their expertise on developing a larger number of richer applications rather than concentrating on infrastructure issues.

5. Use Cases
(Informative)

<This clause provides a high level description of the requirements identified in this requirements specification. It does not contain any normative requirements. This description shall describe the user experience of the requirements subsequently identified>

5.1 Use Case A: Deployment of a New Application
5.1.1 ASK * MERGEFORMAT Short Description

Editor Note: I have spread David’s use case into the template section breakdown. This is preliminary and will need further re-alignment.

The following use case describes the implication for the deployment of a new Service Provider's application called "Restaurant finder" in an environment where an existing application called Games is already deployed. Both of these applications are to be offered to the end-user through the Service Provider's service offering called Entertainment.

The description of the Service Providers' applications is not intended to provide a complete use-case analysis; they are only intended to illustrate the possible components that are used to build and support application. In addition, the list of components described is only for illustration purpose. This is not intended to define the characteristics of any specific component. In addition, it is not intended as a description of a comprehensive list of components (further analysis will be required to derive this).

Finally, in the context of the following section the Service Provider shall mean both Service Provider and Application Developer. However, for subsequent contributions, these two roles could be separated.

5.1.2 Actors

<A list of involved actors and a description of their specific role in this use case. Actors are people, organisations or applications that interact during the course of events in the use case. It might be useful to have a list of standard actors for mobile services such as User, Network Operator, Service Provider, Content Provider etc., but we will also need freedom to introduce further actors in order to capture our requirements (mandatory).>

5.1.2.1 Actor Specific Issues

<A list of specific issues for each actor in the defined use-case. Listed issues shall highlight the important issues seen by each actor in the interaction with the service (mandatory)>

5.1.2.2 Actor Specific Benefits

<A list of specific benefits for each actor in the defined use-case. Shall be used in the valuation of the defined use-case (mandatory)>

5.1.3 Pre-conditions

<Pre-conditions are things that must be in place before the interaction can occur. They are part of the contract between this use case and the outside world (mandatory).>

5.1.4 Post-conditions

<Like pre-conditions, post-conditions are part of the contract between this use case and the outside world. After this use case has been completed successfully, the post-conditions are satisfied. Post-conditions should be independent of the alternative (successful) paths taken inside the use case (mandatory).>

5.1.5 Normal Flow

5.1.5.1 Relationship between existing Service Provider's application and the new application

5.1.5.1.1 Existing Service Provider's application "Game”

When new games are added to the "Games" catalogue, the "Games" application sends a new_games_available notification to the mobile end-user. Using their mobile device, the mobile end-user browses either the Web or the Service Provider's Games portal for a list of games to choose from. When the end-user has found and selected the game of his choice the mobile end-user accepts the advice of charge for the game price and purchases the game for a set price of £2. The mobile end-user downloads the game and starts to play the game, i.e. consumes the service.

The "Games" application is divided into several operations. Each of the operations illustrates a potentially reusable functionality that is logically separate.

1. Messaging: provides the capability for the application to deliver the offered or requested information, e.g. "new_games_available notification" to the end-user. The offered or requested information may be in the form of, for example, email, MMS or SMS. Components that support the Messaging functions may include:
· SMSC;

· MMSC;

· Email Server;
· PPG;

· Message Store.
2. Browsing and download: allows an end-user to browse available content and to make a content selection. Browsing and download may include the following functions:

· Discover contents: allows an end-user to view resources that are relevant to the user’s profile and device;
· Consume content: allows a portal user to consume a selected resource through the relevant delivery channel;

· Fetch content: allows various types of content to be retrieved from the relevant content provider
· Download: enables a content provider to reliably deliver content to an end-user terminal.

Components that support the Browsing and download functions may include:

· Device capabilities recognition and storage;

· Presentation and Rendering;

· Content management;

· WAP Browsing;
· OTA Server;
3. Payment: payment provides the capabilities to support Advice of Charge (AoC) and enables the mobile end-user to choose a preferred payment method for purchasing the game. The Payment service needs to fulfil the following functions:

· Rating and charging for the usage of applications

· Rating and payment services to applications for charging end users

· Rating and payment services for charging third party Service Providers for using Network Services

· Charging end users for mobile originated messages, e.g. MMS or SMS

In addition it may contain the accounting component for handling reservation of resources (monetary and non-monetary) and maintains temporary monetary and non-monetary service balances inside the accounting component

Components that may support the payment functions may include:

· Billing;

· AoC;

· Charging;
· Rating.
Editor Note: Still awaiting resolution of the rating/charging versus payment issue highlighted in Singapore.

4. Content Verification: enables the end-user terminal to check the integrity and security of the content to be downloaded. Content verification provides a way for the terminal to verify that the origin of the content (e.g. game application) is from a trusted source. Components that may support the Content Verification functions may include:

· DRM

· Service certification

· Client certification

· Non-repudiation via e.g. digital signature

5.1.5.1.2 New Service Provider's application "Restaurant Finder"

The Service Provider wishes to offer a new service to their mobile end-users. This service will enable a mobile end-user to find the nearest restaurant of their choice.

The mobile end-user invokes the service by clicking on the "Restaurant Finder" icon, where they will be directed to the Service Provider's Restaurant Finder Web site. When at the Restaurant Finder site, the mobile end-user browses the list of Restaurant categories, e.g. English, German etc, and when decided either makes a selection or exits the service. When the mobile end-user makes his/her selection, an advice of charge may be provided before the mobile subscriber is allowed to continue. On selection of their choice of restaurant, and acceptance of any AoC, the mobile end-user is directed to the next Web page that presents the mobile end-user with a list of favorite restaurants, ordered by distance to their current location. The mobile end-user selects a restaurant and the Restaurant location information (e.g. map and telephone number) is sent to the mobile end-user.

For an application such as the "Restaurant finder" service to be supported, there are several operations that must interact. These include:

1. Messaging (as described above);

2. Browsing and download (as described above);

3. Payment (as described above);

4. Content Verification (as described above);
5. Location: the application provides the capability to trigger the location enabler and determine the mobile end-user's location, for when the selected Restaurant street map and address is sent to the mobile end-user. Components that may support the Location functions may include:
· Location Server
· GMLC
5.1.5.1.3 Processes required by Service Provider to add new "Restaurant Finder" application

At this stage, the Service Provider has an existing Service called "Games" that is being consumed by the Service Provider's end-users. If the Service Provider now wishes to develop and deploy the "Restaurant Finder" service, it would be beneficial if the Service Provider could utilise the existing components that are used to support the existing "Games" application. If there are components that are not already in existence but are required to support the new "Restaurant Finder" application then it must be possible for the Service Provider to easily integrate the new components with the existing components. It may also be necessary for the Service Provider to manage existing components in order to, for example, register the new "Restaurant Finder" application.

To enable the Service Provider to develop and deploy the new "Restaurant Finder" application the Service Provider must:

1. Integrate the location components with the existing components. This may consist of:

· The physical connectivity of the component to existing components (and O&M components);

· Validate component and allocate unique component identification;
· The registration of the component with the existing components (and O&M components);
· Registration of the new application identification with the component.

2. Update the existing components. This may consist of:

· Registration of the new application identification;

· The uploading of the application software code;

Editor Note: Not sure if the bullet above pertain there since we are just talking about the component upgrade part.

· The upgrading of the messaging (MMS and Message Store) and payment (rating, charging, payment) service functions.

5.1.6 Alternative Flow

<Alternative flows are needed to make the description complete, if a single flow of events does not cover the use case completely. However, avoid going into detail and do not describe all the exception handling as alternative flows. Exception handling shall be described only, if it leads to specific requirements for the overall system. (optional)>

5.1.7 Operational and Quality of Experience Requirements

<Operational and Quality of Expererience (QoE) requirements apply to the use case from the perspective of involved actors. Unlike pre- or post-conditions, operational requirements are relevant for the use case as whole (not just particularly before or after it). These may be along some or all of the following dimensions depending on the application: ease of use, performance, reliability and security. Please refer to the OMA Technical Report on Applications Performance Issues for more information and guidance on Quality of Experience Requirements. [REFERENCE TO BE INSERTED].

Examples for such requirements are

· 'The customer contact is always with a sales person'

· 'The system shall allow for at least 1,000 concurrent transactions'

· 'The order confirmation shall be sent not later than 1 hour after purchase'

· 'If 5 items are purchased, there is a special discount on the sixth'

· 'The user shall have full control over his personal data'

· 'The response time for receiving an acknowledgement of the on-line e-commerce transaction shall be no longer than 4 seconds.'>

5.2 Use Case B: Fault detection and Repair
5.2.1 ASK * MERGEFORMAT Short Description

This use case describes some of the steps involved in monitoring the components in a service provider environment and predicting, detecting or repairing a fault at the component level.
5.2.2 Actor

The involved actors are all within the same service provider:

· The administrator of the services and components within the service provider environment
5.2.2.1 Actor Specific Issues

The issues for the actors are:

· Administrator:

· Maintain every existing services in good working condition

· Manage and administer components at any stage of their life cycle. In particular, while in production (i.e. deployed):

· Monitor usage, load and behaviour of the components

· Detecting problematic behaviours

· Predicting problems

· Detecting Faults

· Replacing a component (when faulty or when at risk)
5.2.2.2 Actor Specific Benefits

The benefits for the actors are:

· Administrator:

· Being able to manage throughout their life cycle and administer each component

· Being able to avoid or reduce down time

· Being able to predict trouble for internal purpose as well as possibly to offer a service of early warning of premium customers
5.2.3 Pre-conditions

The required pre-conditions are:

· A service provider environment exists it consists of several components

· Services are deployed, supported by these components

· The overall system is managed by the administrator through an extensible application that relies on the life cycle management (including monitoring) interfaces of each component

· The overall system is periodically backed up
5.2.4 Post-conditions

The required post-conditions are:

· Problems have been forecasted or detected and the associated issues have been fixed

· The overall service provider environment is operational for the current and foreseen usage levels
5.2.5 Normal Flow

The normal flow for this use case is:

1. The administrator monitors the different components (including services) in its environment

2. The administration application interrogates (polling) the different components in the system to query about:

· Error log:

· Application level (e.g. exception thrown in answer to a request)

· Internal error message (i.e. not exposed to the requestor)

· Load:

· amount of transactions or processed requests

· number of instances created for the component

· Time per request:

· time for a component to process a request

· delay experiences by other components that made requests

· Self diagnosis results:

· performed on request

· or last results

· …

3. The administrator inspects the results of the request (e.g. visually or better, it is automated via the monitoring application)

4. The Administrator detects that one component has a problematic behaviour. Simple examples of this could come from:

· Detecting that requestor experience an ever increasing delay with that component while no noticeable network congestion is observed

· Detecting that a component is overloaded (many requests, many instances, increased delays)

· Increased amount of exceptions and internal error message that could denote for example corruption of a data file or upgrade failure / integration problem with respect to another component (or a new service)

· Problematic self diagnosis messages

· Internal error messages

· Requests always fail (e.g. mis-configured component that does not know the correct address for the target to its request)

5. The administrator may decide to broadcast a warning message to appropriate parties (internal or customers)

6. The administrator decides to take corrective / pre-emptive actions by:

· Replacing the component

· Component settings are transferred (assumed correct)

· All requests from other components are re-directed:

· Via address redirection:
· If the service environment uses such an addressing scheme a la DNS or allows request routing; or
· By updating all the settings of all the other components that rely on it:
· The administrator must be able to visualize / track all the dependencies between components and update the settings on the fly

· Duplicating the component (e.g. in case of overload)

· Component settings are mirrored (assumed correct)

· Request are balanced between the components

· Allocating more underlying resources to the component:

· The administrator configures the component to take advantage of the additional underlying resources (e.g. HW, CPU, memory etc…). For example the maximum amount of instances that can be created is increased

· Upgrading a component or performing a change of settings (e.g. if there are some incompatibilities that lead to errors when some services call the component)

· The administrator determines the impact of these changes on all the other components and services that will call this component (based on a dependency tool)

· If all are compatible with the changes, the administrator performs the changes, otherwise the administrator must decide between upgrading the incompatible components or maintaining within the environment an older version of the component before upgrade. In the latter case, calls to the component must be appropriately re-directed to the appropriate version.

7. Operation and administration can continue
5.2.6 Alternative Flow

It is possible that the detection phase does not lead to early diagnosis of a problem.

Instead, the following case could be met.
5.2.6.1 Fault detection event

The administration / monitoring application is registered as listener to some of the error message thrown by the different components.

A particular fault in the system (component error event) may trigger such an event.

The monitoring application catches the event and launches the polling step 2 in section 5.2.5 and the flow follows as in that section. As there may be a system failure (e.g. component not responding, fatal error message), immediate action must be taken and the application may send appropriate alerts to the administrator.
5.2.7 Operational and Quality of Experience Requirements

5.3 Open Issues

<Anything that the author(s) want to mention and which needs further clarification. (optional)>

6. Requirements

6.1 High-Level Functional Requirements

<This clause identifies the high level requirements to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.1 Security

<This clause identifies the high level security needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.2 Charging

<This clause identifies the high level charging needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.3 Administration and configuration

<This clause identifies the high level administration and configuration needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.4 Usability

<This clause identifies the usability needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.5 Interoperability

<This clause identifies the high level interoperability needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

6.1.6 Privacy

<This clause identifies the high level privacy needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>
6.2 Overall System Requirements

<text>

6.3 System Elements

<This section identifies the high level requirements, on each system element in the use cases, identified in this specification, including the user’s device(s) if relevant. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements. Each subsection should have a sub-section(s) covering the requirements on interfaces>

6.3.1 System Element A

<This section contains numbered high level requirements on System Element A>

6.3.1.1 Interfaces to System Element X

<This subsection and the following subsections describe the high level requirements on the interfaces from System Element A to the other Elements in the System.>

6.3.1.2 Interfaces to System Element Y

<etc>

6.3.2 Network interfaces

<This clause identifies the high level network interface (bearers/protocols) needs to support the requirements identified in this specification. Requirements shall be presented at a high level, and not assume or imply the technology or implementation of the requirements>

Appendix A. Change History
(Informative)

A.1 Approved Version History

Reference
Date
Description

n/a
n/a
No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

Document Identifier
Date
Sections
Description

Draft Versions

OMA-RD-OSPE-V1_0
25 Feb 2004
Section 1, 4, 5 & Appendix B
Incorporated approved contributions from the Beverley Hills meeting

Draft Versions

OMA-RD-OSPE-V1_0
21 Jan 2004
Section 4 & 5
Incorporated approved contributions from the Singapore meeting

Draft Versions

OMA-RD-OSPE-V1_0
12 Dec 2003
All
Initial release.

Appendix B. Candidate Requirements
Editor Note: this is a temporary appendix to collect what appears as requirements from the use cases. To be cleaned-up when we build section 6.
From OMA-REQ-2003-0871

· Components should present interfaces that allows query to their log files

· Components should maintain logs about error messages and operational parameters (delays before they receive answers to their queries, time of processing, amount of queries processed, ….)

· It is good practice to develop components with self diagnostic capabilities and to expose these through an administration interface

· For a deployed component, it should be possible to track down all the target and type of requests that may be issued to other components

· In a service provider environment, it should be possible to compile all the components that have dependencies on a component

· There should be ways to track version incompatibilities (what version is needed at the minimum, is there a version after which a feature is no more supported etc…)

· Components should be backward compatible from version to version

· Components should provide interfaces that allow their configuration. These should preferably support dynamic configuration.

· Component should provide interfaces that allow monitoring of usage and complete life cycle management.

· When developing a service, it is good practice to expose similar interfaces (versioning, configuration and monitoring) to components in general.

· Components interface should allow backup and restore of components and data settings

· In a service provider environment, there should exist mechanisms to direct request to the appropriate component based on rules set by the administrator

· In a service provider environment, there should be ways to monitor usage of a component
· In a service provider environment it should be possible to re-direct request as needed (e.g. address re-direct or load balancing-based re-direct).

�I think this should be "enablers and applications". Delete rest of sentence.

�How is this bullet different from bullet. I would limit first bullet to reducing time to market for developers by not having to write common functions. Second bullet is time to market for SP by eliminating need for integrating functions the same function that is in new enabler and that is already in the environment.

�Maybe describe categories of use cases/reqts: identifying components, identifying types of APIs, ...

(2004
 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]

(2004
 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ReqDoc-20030912]

