OMA-ER-GotAPI-V1_0-20140714-D
Page 21 V(25)

	[image: image7.png]

	

	Generic Open Terminal API Framework (GotAPI)

	Draft Version 1.0 – 14 Jul 2014

	Open Mobile Alliance

	OMA-ER-GotAPI-V1_0-20140714-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents
51.
Scope

62.
References

62.1
Normative References

62.2
Informative References

73.
Terminology and Conventions

73.1
Conventions

73.2
Definitions

73.3
Abbreviations

94.
Introduction

104.1
Version 1.0

125.
GotAPI Enabler release description (Informative)

136.
Requirements (Normative)

136.1
High-Level Functional Requirements

136.1.1
Security and Privacy

157.
Architectural Model

157.1
Dependencies

157.2
Architectural Diagram

157.3
Functional Components and Interfaces/reference points definition

157.3.1
Functional Components

157.3.1.1
 GotAPI Server

167.3.1.2
 GotAPI Authorization Server

167.3.2
Interfaces

167.3.2.1
 GotAPI-1

167.3.2.2
 GotAPI-2

177.3.2.3
 GotAPI-3

177.4
Security Considerations

188.
Technical Specifications

199.
Sections As Needed

199.1
Example Level 2

199.1.1
Example Level 3

2010.
Release Information

2010.1
Supporting File Document Listing

2010.2
OMNA Considerations

2010.3
Additional Items

21Appendix A.
Change History (Informative)

21A.1
Approved Version History

21A.2
Draft/Candidate Version 1.0 History

22Appendix B.
Call Flows (Informative)

23Appendix C.
Static Conformance Requirements (Normative)

23C.1
ERDEF for GotAPI 1.0 - Client Requirements

23C.2
ERDEF for GotAPI 1.0 - Server Requirements

23C.3
SCR for GotAPI Client

23C.4
SCR for GotAPI Server

24Appendix D.
<Additional Information>

24D.1
App Headers

24D.1.1
More Headers

25Appendix E.
GotAPI Enabler Deployment Considerations

Figures
10Figure 1 Conceptual Implementation (Informative)

15Figure 2: GotAPI Architectural Diagram

19Figure 4: Example Figure

1. Scope

This Enabler Release (ER) document is a combined document that includes requirements, architecture and technical specification of the Generic Open Terminal API Framework (GotAPI) Enabler..

The scope of this enabler will include:

· Architecture and specifications for an API framework enabling web-based APIs to be exposed to apps running in web browsers and as native apps (including but not limited to hybrid native/web apps)
· Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common API functions (e.g. discovery, access, and session management)

· A registry of well-known API resources for OMA enablers, to be maintained as part of the OMNA
· Specification of API exposure patterns that are in general globally applicable to native device platforms
2. References
2.1 Normative References

	[EventSource]
	“Server-Sent Events”, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/eventsource/ (latest working draft)

	[HTTP/1.1]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/rfc2616

	[HTTP/2.0]
	“Hypertext Transfer Protocol version 2.0”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/search/draft-ietf-httpbis-http2-09 (latest working draft)

	[JSON-RPC]
	“JSON-RPC 2.0 Specification”, JSON-RPC Working Group, URL: http://www.jsonrpc.org/specification

	[OAuth2.0]
	“The OAuth 2.0 Authorization Framework”, Internet Engineering Task Force (IETF), URL: http://tools.ietf.org/html/rfc6749

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[WebRTC]
	“WebRTC 1.0: Real-time Communication Between Browsers”, Worldwide Web Consortium (W3C), URL:http://dev.w3.org/2011/webrtc/editor/webrtc.html (latest working draft)

	[WebSocket]
	“The WebSocket API, Worldwide Web Consortium (W3C), URL: http://dev.w3.org/html5/websockets/ (latest working draft)

	[XHR]
	“XMLHttpRequest”, Worldwide Web Consortium (W3C), URL: https://dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html (latest working draft)

2.2 Informative References

	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2.8, URL:http://www.openmobilealliance.org/

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(. URL:
http://www.openmobilealliance.org/tech/omna.aspx

	[CSEA]
	“Client Side Enabler API (CSEA)”, Version 1.0, Open Mobile Alliance™, OMA-RRP-CSEA-V1_0, URL:http://www.openmobilealliance.org/

	[WRAPI]
	“Web Runtime API (WRAPI”, Version 1.0, Open Mobile Alliance™, OMA-ERP-WRAPI-V1_0, URL:http://www.openmobilealliance.org/

	[MCAPI]
	“Mobile Codes API (MCAPI)”, Version 1.0, Open Mobile Alliance™, OMA-ER-MCAPI-V1_0, URL:http://www.openmobilealliance.org/

	[CMAPI]
	“Open Connection Management Web API”, Version 1.1, OMA-TS-OpenCMAPI_Web-V1_1, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	API Patterns
	Design guidelines and requirements for definition of APIs

	Browser Context
	Web applications executing under a Web browser as Web runtime environment.

	Datagram
	An API providing access to UDP protocol based networking.

	ECMAScript
	Use definition from [OMADICT].

	Hybrid Native/Web App
	An application designed to execute under the native OS / middleware environment of a device, and that use native APIs for the execution of web content in addition to native code.

	JavaScript
	Use definition from [OMADICT].

	Native App
	An application designed to execute under the native OS / middleware environment of a device.

	Socket
	An API providing access to TCP protocol based networking.

	User Agent
	Use definition from [OMADICT].

	Web
	The World Wide Web, a content and application framework based upon hypertext and related technologies, e.g. XML, JavaScript/ECMAScript, CSS, etc.

	Web Application
	An application designed using Web technologies (e.g. HTML, CSS, and Javascript).

	Web IDL
	An IDL language for Web application APIs

	Web Runtime Environment
	Client software that supports the execution of Web applications (e.g. browsers or widget engines).

	Web Runtime Application
	A client-side Web application that is executed in Web runtime environments.

	WebSocket
	An API providing networking services per the WebSocket standard [WebSocket].

	Widget Context
	Web applications installed and executing under a W3C Widget [W3C-Widgets] engine as Web runtime environment.

	Widget Engine
	Software which supports the execution of Web applications running outside a browser context, e.g. with the same functional capabilities as browsers but without the user interface functions provided by a browser, including window frames, menus, toolbars and scroll bars.

	Uniform Resource Identifier
	Use definition from [OMADICT].

3.3
Abbreviations

	API
	Application Programming Interface

	DM
	Data Matrix

	EventSource
	The EventSource API

	HTTP
	HyperText Transfer Protocol

	IDL
	Interface Definition Language

	JSON
	JavaScript Object Notation

	MIME
	Multipurpose Internet Mail Extensions

	OMA
	Open Mobile Alliance

	QR
	Quick Response

	REST
	REpresentational State Transfer

	RPC
	Remote Procedure Call

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	UA
	User Agent

	UE
	User Equipment

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	W3C
	World Wide Web Consortium

	WRAPI
	The OMA Web Runtime API enabler

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The concept of a common OMA device API framework, through which OMA enablers can be exposed to applications executing in various execution environments, has been a discussion thread in OMA for several years. For the web, the discussion started with Client Side Enabler API [CSEA] work item, and followed by the Web Runtime API [WRAPI] work item which established an initial pattern for OMA API exposure to web applications, focused on the requirements of the OMA Push enabler. The need for more broadly applicable API patterns was recognized during development of APIs for the Mobile Codes 2.0 [MCAPI] enabler and the Open Connection Management 1.1 API [CMAPI] enabler. Interest in incorporating the WRAPI local API server concept has further been expressed for the RCS-enabling enablers of COM, and the Device Management enablers, among others.
This specification defines a variety of API exposure patterns for use in development of OMA enablers, and the functions required by API servers that support those exposure patterns. APIs designed per these patterns are intended to be “web-based” (i.e. accessed via the use of web technologies) and exposed to apps running in the following contexts:

· Web Browser apps, i.e. web apps running in a window of a web browser
· Web Runtime apps, i.e. web apps running outside a browser, e.g. under a Widget Engine or other “chromeless” runtime for execution of web content as standalone apps
· Hybrid Native/Web apps, i.e. apps that run web content through native APIs for that purpose
· Native Apps that directly use native platform APIs (e.g. HTTP, Socket, and Datagram) enabling use of the web-related protocols described in this document. Though not leveraging a full web execution environment, such apps can use the same network-based APIs as web apps.
For simplicity, the web API client environment provided by each of these contexts is referred to here as the User Agent (UA). The OMA enabler clients that expose APIs via the GotAPI patterns are referred to here as the GotAPI Server. GotAPI Servers may also act as OAuth servers for other GotAPI Servers, and in that role are referred to here as GotAPI OAuth Servers.
The web-based methods defined by GotAPI are intended to offer a flexible set of options for OMA enablers to expose their services to apps via web-based APIs. Such APIs are primarily intended to be exposed to apps running in the device hosting the OMA enabler client, but in principle could also be exposed to apps in other devices that are networked with the OMA enabler client host device.
The exposure of OMA enabler-based services via such web-based APIs is intended to broaden the reach of OMA enabler deployments, by making it possible for web apps to access them, without explicit UA support of APIs specifically designed per the requirements of OMA enablers.
The figure below illustrates the relationships and conceptual interfaces between web apps, the UA, GotAPI-specified functions (shaded), and other OMA-specified functions.

Figure 1 Conceptual Implementation (Informative)

[image: image2]
In the figure above:
· The GotAPI functions include the GotAPI Server (including optionally acting as a distinct OAuth server) and a database of API access permissions.

· The device OS provides intra-device and inter-device communication via network protocols such as HTTP, Socket (TCP),and Datagram (UDP), via which the web-based APIs can be exposed.

· The access permissions database is logically specified per its supporting operations and policy structure, but interfaces to it are unspecified by GotAPI.

· Interfaces to other OMA enabler clients are also unspecified.

· GotAPI Servers may expose APIs for multiple OMA enablers, and either directly implement the related OMA enabler functions or as above use unspecified interfaces exposed by the specific OMA enabler clients.
· User interface functions can include a variety of means for assessing user consent for API access by apps, including basic means such as device display and keyboard, or more advanced means such as Trusted User Interfaces (TUI) or biometrics.

4.1 Version 1.0

GotAPI version 1.0 includes the functionality:
· Architecture and specifications for GotAPI Servers and GotAPI OAuth Servers in an API framework enabling web-based APIs to be exposed apps running in web browsers and as native apps (including but not limited to hybrid native/web apps)

· Supporting assets for the localhost API server framework, e.g. JavaScript libraries enabling abstractions of common API functions (e.g. discovery, access, and session management)

· A registry of well-known API resources for OMA enablers, to be maintained as part of the OMNA
· Specification of API exposure patterns that are in general globally applicable to native device platforms
5. GotAPI Enabler release description
(Informative)

This release focuses on the functions of GotAPI Servers and GotAPI OAuth Servers, through which OMA enabler based services can be exposed and access to the APIs managed.
6. Requirements
(Normative)

6.1 High-Level Functional Requirements

The following requirements outline the high-level set of options that GotAPI Servers may implement. The GotAPI technical specifications will address the necessary functions for support of these options.
	Label
	Description
	Release

	GotAPI-HLF-01
	GotAPI Servers SHALL support APIs exposed via HTTP/1.1 [HTTP/1.1].
	1.0

	GotAPI-HLF-nn
	GotAPI Servers SHALL support APIs exposed via custom URI scheme handlers.
	1.0

	GotAPI-HLF-02
	GotAPI Servers SHOULD support APIs exposed via the WebSocket API [WebSocket].
	1.0

	GotAPI-HLF-03
	GotAPI Servers SHOULD support APIs exposed via the EventSource API [EventSource].
	1.0

	GotAPI-HLF-04
	GotAPI Servers MAY support APIs exposed via the WebRTC API [WebRTC].
	1.0

	GotAPI-HLF-05
	GotAPI Servers MAY support APIs exposed via HTTP/2.0 [HTTP/2.0].
	1.0

	GotAPI-HLF-06
	GotAPI Servers SHALL support APIs exposed using the REST design pattern.
	1.0

	GotAPI-HLF-07
	GotAPI Servers SHALL support APIs exposed using the RPC design pattern, including APIs exposed using JSON-RPC 2.0 [JSON-RPC] as payload protocol.
	1.0

	GotAPI-HLF-08
	GotAPI Servers MAY support APIs that include transfer of any discrete media type.
	1.0

	GotAPI-HLF-09
	GotAPI Servers MAY support APIs that include transfer of any streamed media type.
	1.0

	GotAPI-HLF-10
	GotAPI Servers SHALL expose APIs to UAs in the GotAPI Server host device.
	1.0

	GotAPI-HLF-11
	GotAPI Servers MAY expose APIs to UAs in devices other than the GotAPI Server host device.
	1.0

	GotAPI-HLF-12
	Multiple GotAPI Servers SHALL be implementable and functional simultaneously on a device where possible.
	1.0

	GotAPI-HLF-13
	GotAPI SHALL support an API that provides applications with availability of GotAPI in the device in response to query requests from the application.
	1.0

	GotAPI-HLF-14
	GotAPI Servers SHALL support invocation via a custom URI scheme, to startup the server when it is not running.
	1.0

Table 1: High-Level Functional Requirements

6.1.1 Security and Privacy
The following requirements address the generic security and privacy enabling features of GotAPI Servers.
	Label
	Description
	Release

	GotAPI-SEC-01
	For clients in the host device, GotAPI Servers MAY support APIs exposed over TLS 1.2-secured connections.
	1.0

	GotAPI-SEC-02
	For clients in other devices, GotAPI Servers SHALL support APIs exposed over TLS 1.2-secured connections.
	1.0

	GotAPI-SEC-03
	GotAPI Servers SHALL support measures to minimize security risks including Intrusion and Denial-of-Service attacks.
	1.0

Table 2: High-Level Functional Requirements – Security and Privacy Items
6.1.1.1 Authentication and Authorization
The following requirements address the ability of GotAPI Servers to identify API client apps and manage access to APIs.
	Label
	Description
	Release

	GotAPI-AUTH-01
	GotAPI Servers SHALL support Cross-Origin Resource Sharing.
	1.0

	GotAPI-AUTH-02
	GotAPI Servers SHALL support management of API access permissions.
	1.0

	GotAPI-AUTH-03
	GotAPI Servers MAY support OAuth-based API access.
	1.0

	GotAPI-AUTH-04
	GotAPI Servers MAY act as an OAuth 2.0 [OAuth2.0] server for authorization of API access permissions.
	1.0

	GotAPI-AUTH-05
	GotAPI Servers MAY support user interfaces (UI) via which users authorize API access permissions.
	1.0

	GotAPI-AUTH-06
	GotAPI Servers MAY support pre-configured, fixed API access permissions.
	1.0

	GotAPI-AUTH-07
	GotAPI Servers MAY support dynamic, updatable API access permissions.
	1.0

	GotAPI-AUTH-08
	GotAPI Servers MAY support API access permissions managed through OMA Device Management.
	1.0

Table 4: High-Level Functional Requirements – Authentication and Authorization Items

6.1.1.2 Data Integrity

The following requirements address the ability of GotAPI Servers to protect the integrity of data transferred via APIs.
	Label
	Description
	Release

	GotAPI-DATI-01
	GotAPI Servers SHOULD support data integrity for all data exchanged with clients.
	1.0

	GotAPI-DATI-02
	GotAPI Servers SHOULD support data integrity verification via digitally signed API request/response payloads,
	1.0

Table 5: High-Level Functional Requirements – Data Integrity Items

6.1.1.3 Confidentiality

The following requirements address the ability of GotAPI Servers to protect the confidentiality of data transferred via APIs.
	Label
	Description
	Release

	GotAPI-CONF-01
	GotAPI Servers SHOULD support confidentiality for all data exchanged with clients.
	1.0

	GotAPI-CONF-02
	GotAPI Servers SHOULD support data confidentiality via encrypted API request/response payloads,
	1.0

Table 6: High-Level Functional Requirements – Confidentiality Items

7. Architectural Model

This section describes the architectural model and related aspects of the GotAPI Enabler.

The architecture definition and functionalities are based on the requirements defined in the Section 6.
7.1 Dependencies

TBD
7.2 Architectural Diagram

[image: image3]
Figure 2: GotAPI Architectural Diagram

7.3 Functional Components and Interfaces/reference points definition

7.3.1 Functional Components

7.3.1.1 GotAPI Server

The GotAPI Server provides the following functions:

· Exposure of the GotAPI-1 interface, via which Applications can issue API requests and receive responses

· Binding of the GotAPI-1 interface to various specific interface technologies and payload protocols / design patterns.
· Security and privacy protection for requests via the GotAPI-1 interface

· Protection of the GotAPI-1 interface from Intrusion and Denial of Service attacks

7.3.1.2 GotAPI Authorization Server

The GotAPI Authorization Server provides the following functions:

· Exposure of the GotAPI-2 interface, via which Applications can obtain authorization to make API requests

· User Interface functions as required to locally provide user information and consent for API access by applications

· Acting as a proxy for user consent obtained through host-device external functions (e.g. OAuth servers)

· Database of authorizations and user consent history
· Binding of the GotAPI-2 interface to various specific interface technologies and payload protocols / design patterns.
· Security and privacy protection for requests via the GotAPI-2 interface

· Protection of the GotAPI-2 interface from Intrusion and Denial of Service attacks

· Exposure of the GotAPI-3 interface via which GotAPI authorizations can be provisioned through OMA Device Management
7.3.2 Interfaces

7.3.2.1 GotAPI-1

The GotAPI-1 interface enables applications to make API requests and receive responses. This interface is generically specified by GotAPI, as GotAPI-based API specifications will define specific request/response transactions that can be utilized in host devices based upon the available interface technologies, payload protocols, and their applicable design patterns. These options include:

· The interface technologies TLS 1.2, HTTP/1.1, HTTP/2, WebSockets, EventSource, WebRTC, and URI scheme handling

· The design patterns REST and JSON-RPC

7.3.2.2 GotAPI-2

The GotAPI-2 interface enables applications to obtain authorization for access to GotAPI-based APIs. This interface is fully specified by GotAPI, being a common (though optionally used) support function for all GotAPI-based APIs. GotAPI-2 supports bindings and request/response transactions that can be utilized in host devices based upon the available interface technologies. These options include the interface technologies TLS 1.2, HTTP/1.1, HTTP/2, and URI scheme handling.

The GotAPI-2 interface is based upon the concepts of OAuth, though with different semantics as necessary for adaptation to the available interface technologies.

7.3.2.3 GotAPI-3

The GotAPI-3 interface enables the remote provisioning of API access authorizations through OMA Device Management, using a Managed Object (MO) defined by the GotAPI enabler.
7.4 Security Considerations

TBD
8. Technical Specifications

9. Sections As Needed

9.1 Example Level 2

<text>

9.1.1 Example Level 3

<text>

9.1.1.1 Example Level 4

<text>

 SHAPE * MERGEFORMAT

Figure 4: Example Figure

	
	Column 1
	Column 2

	Row 1
	Grid 1,1 data
	Grid 1,2 data

	Row 2
	Grid 2,1 data
	Grid 2,2 data

Table 1: Example Table

10. Release Information

10.1 Supporting File Document Listing

	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	
	
	

	
	
	

Table 2: Listing of Supporting Documents in FOO Release

10.2 OMNA Considerations

10.3 Additional Items

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions
OMA-ER-GotAPI-V1_0
	04 Feb 2014
	All
	Initial baseline document.

	
	03 June 2014
	
	Updates for agreed CRs:
OMA-CD-GotAPI-2014-0002R01-CR_GotAPI_ER_Updates
OMA-CD-GotAPI-2014-0003-CR_Architecture
OMA-CD-GotAPI-2014-0008-CR_GotAPI_URI_Scheme_and_Availability_API
OMA-CD-GotAPI-2014-0007-CR_Multiple_GotAPI_Server_Support

	
	14 Jul 2014
	2.1, 10, A.2
	Update document list prior to RD Informal Review
Editorial changes

Appendix B. Call Flows
 (Informative)

This is a placeholder to be populated, as required.
Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for GotAPI 1.0 - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-GotAPI 1.0-C-001-<<M/O>>
	GotAPI 1.0 Client
	

	
	
	

Table 3: ERDEF for GotAPI 1.0 Client-side Requirements

C.2 ERDEF for GotAPI 1.0 - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-GotAPI 1.0-S-001-<<M/O>>
	GotAPI 1.0 Server
	

	
	
	

Table 4: ERDEF for GotAPI 1.0 Server-side Requirements

C.3 SCR for GotAPI Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

C.4 SCR for GotAPI Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix D. <Additional Information>

D.1 App Headers

<More text>

D.1.1 More Headers

<More text>

D.1.1.1 Even More Headers

<More text>

Appendix E. GotAPI Enabler Deployment Considerations
This is a placeholder, to be populated as required.
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20140101-I]

[image: image1.jpg]«“+OMa

Open Mobile Alliance

[image: image5.png]GoOtAPI GotAPI GOtAPI-3 | OMA Device
Server Auth Server Management
GotAPI-1 GOtAPI-2
"""""" spplicatin |
Legend

Xyz-n

l:l Components specified by this enabler

L__! Components not specified by this enabler

Name of the interface exposed by Enabler/Component xyz
(following the interface naming convention)

» Indicates use of an interface exposed by an Enabler/Component. The
Enabler/Component exposing the interface is indicated by the arrowhead.

[image: image6.png]User Device (Terminal)

User Agents
Native App ‘Web Runtime Environment
Web | Webapp Webapp
Al
B Webapp Webapp
. Web APIs: XHR, WebSocket,
Native APIs: EventSource, WebRTC
s B / Widget Engine /
Socket, rowser / Widget Engine OMA DM
EONt"‘I\ Datagram, Hybrid App Client
gﬁenfr URI handler Web Layout Engine
Operating System / peo=aliosog
Middleware iteerinistiaces
Functions |
Other s Web protocol
Devices OS service API

Unspecified

