OMA-ER-UCD-V1_0-2013122620140208-D
Page 67 V(77)

	[image: image1.jpg]
	

	Unified Cloud Disk (UCD)

	Draft Version 1.0 – 08 Feb 2014

	Open Mobile Alliance

	OMA-ER-UCD-V1_0-20140208-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

41.
Scope

2.
References
5
2.1
Normative References
5
2.2
Informative References
5
3.
Terminology and Conventions
6
3.1
Conventions
6
3.2
Definitions
6
3.3
Abbreviations
6
4.
Introduction
7
4.1
Version 1.0
8
5.
Requirements (Normative)
9
5.1
High-Level Functional Requirements
9
5.2
Management Requirements
9
5.3
File Management Requirements
9
5.4
Network API Requirements
10
6.
Architectural Model
11
6.1
Dependencies
11
6.2
Architectural Diagram
11
6.3
Functional Components and Interfaces/reference points definition
12
7.
Technical Specification
13
7.1
Example Level 2
13
7.1.1
Example Level 3
13
8.
Release Information
14
8.1
Supporting File Document Listing
14
8.2
OMNA Considerations
14
8.3
Additional Items
14
Appendix A.
Change History (Informative)
15
A.1
Approved Version History
15
A.2
Draft/Candidate Version 1.0 History
15
Appendix B.
Use Cases (Informative)
16
B.1
<Use Case Title>
16
B.1.1
Short Description
16
B.1.2
Market benefits
16
B.2
<Use Case Title>
16
Appendix C.
Static Conformance Requirements (Normative)
17
C.1
ERDEF for <<ENABLER>> - Client Requirements
17
C.2
ERDEF for <<ENABLER>> - Server Requirements
17
C.3
SCR for XYZ Client
17
C.4
SCR for XYZ Server
17
Appendix D.
<Additional Information>
18
D.1
App Headers
18
D.1.1
More Headers
18

1. Scope

This Enabler Release (ER) document is a combined document of requirements, architecture and technical specification for Unified Cloud Disk (UCD) Enabler. The UCD Enabler attempts to optimize the current cloud storage service by providing a unified cloud storage system for Service Providers and new storage-as-a-service APIs. Mobile users or applications can use standard storage-as-a-service APIs to store files in the federated cloud storage of mobile operators.
The UCD Enabler is expected to provide functions of application/service management, storage resource pooling and management, account management, interfaces between UCD Client and UCD Server, interfaces between UCD Server and UCD Server, an interworking function (protocol translation is out of scope) with external cloud storage Service Providers.

To enable developer access the UCD service in consistent manner, this specification also defines uniform and easy to use API exposing UCD service to arbitrary applications.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ERP-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[OSE]
	“OMA Service Environment”, Open Mobile Alliance™,
URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC4234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. October 2005, URL:http://www.ietf.org/rfc/rfc4234.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[LibertyBindProf]
	Cantor, Scott, Kemp, John, Champagne, Darryl, eds. "Liberty ID-FF Bindings and Profiles Specification", Version 1.2-errata-v2.0, Liberty Alliance Project (12 September 2004). URL: http://www.projectliberty.org/specs/

	[LibertyProtSchema]
	Cantor, Scott, Kemp, John, eds. "Liberty ID-FF Protocols and Schema Specification", Version 1.2-errata-v3.0, Liberty Alliance Project (12 September 2004). URL: http://www.projectliberty.org/specs/

	
	

2.2 Informative References

	 [OMADICT]
	“Dictionary for OMA Specifications”, Version 2.9, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_9, URL:http://www.openmobilealliance.org/

	[LibertyGlossary]
	"Liberty Technical Glossary," Version 1.4, Liberty Alliance Project (14 Dec 2004).

http://www.projectliberty.org.

	[LibertyID-FF1.2SCR]
	“Liberty ID-FF 1.2 Static Conformance Requirements”, Version 1.0, Liberty Alliance Project (14 Dec 2004). http://www.projectliberty.org

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Network API
	See [OMADICT].

	Identity Federation
Identity Defederation

Identity Provider (IdP)
	Creating associations between a given system entity’s identifiers or accounts [LibertyGlossary].
Identity Federation termination [LibertyID-FF1.2SCR].

A system entity that manages identity information on behalf of users and provides assertions of users’
authentication to other service providers [LibertyGlossary].

	Master UCD Server
	A UCD server which has the functions of identity provider and is chosen by the end user to register a

Master UCD account.

	Slave UCD Server
	A UCD server which may has the functions of identity provider and is chosen by the end user to register

a Slave UCD account.

	
	

3.3
Abbreviations

	API
	Application Programming Interface

	OMA
	Open Mobile Alliance

	UCD
	Unified Cloud Disk

4. Introduction

Cloud storage is a model of networked online storage where data is stored in virtualized pools of storage. Service Providers operate large data centers, and users who require their data to be hosted buy or lease storage capacity from them. The Service Providers, in the background, virtualize the resources according to the requirements of the customer and expose them as storage pools, which the customers can themselves use to store files or data objects. Physically, the resource may span across multiple nodes. Cloud storage services may be accessed through a web service application programming interface (API), a cloud storage gateway or through a Web-based user interface.

Many Service Providers provide cloud storage service (storage as a service) including either enterprise-level cloud data storage or consumer-level file hosting services such as Amazon S3, Amazon Cloud Drive, Rackspace Cloud file, Dropbox, Google Drive, Microsoft SkyDrive, Apple iCloud etc. Every provider exposes its APIs, there are too many storage-as-a-service APIs to access those cloud storage services.
The existing cloud storage services on the Internet are based on centralised isolated private systems or built on special public system, work standalone or bundle tightly coupled, implementing a “walled garden” approach. Users on one Service Provider cannot (easily) access data or files on another Service Provider, and users will often have to sign up for accounts on multiple Service Providers to avoid lost data or files if the Service Provider is crashed.

And in mobile cloud computing environment, users also need to access cloud storage service through mobile devices. But now some cloud storage Service Providers don’t fit this requirement rapidly developed in mobile internet.

To solve these problems, the Unified Cloud Disk (UCD) enabler provides unified cloud storage system in mobile cloud computing environment for mobile operators. Furthermore, the UCD could optimize the current cloud storage service, mobile users or applications can use standard storage-as-a-service APIs to store files in the federated cloud storage of mobile operators.

The Figure 1 shows the overall ecosystem related to Unified Cloud Disk Enabler. In particular, the user (through the UCD client or UCD compliant application) accesses a specific OMA compliant cloud storage Service Provider (through UCD server), and interacts with another OMA compliant cloud storage Service Provider, or to an external non-OMA compliant cloud storage Service Provider through the gateway functionality. UCD server can also interact with other network enablers for more integrated services.

[image: image2.png]
 Figure 1: Unified Cloud Disk ecosystem
4.1 Version 1.0

The version 1.0 of the UCD Enabler covers at least:

· The interoperability between clients and servers and server-to-server of OMA compliant cloud storage Service Providers, supporting at least features such as:

· Elasticity data or files storage

· Service management

· Access data or files

· Sharing

· A set of Network APIs to allow external applications to access UCD cloud services , as well as the authorization framework defined in [Autho4API_10] to control access to information through these APIs

5. Requirements
(Normative)

This section captures the requirements for UCD v1.0.

5.1 High-Level Functional Requirements
This section contains the High Level requirements for UCD.
	Label
	Description
	Release

	UCD-HLF-001
	The UCD Enabler SHALL support different types of devices to access UCD services, such as PC, mobile phone, tablet.
	1.0

	UCD-HLF-002
	The UCD Enabler SHALL allow end users to use the UCD services using UCD client on the device or the Web browser.
	1.0

	UCD-HLF-003
	The UCD Enabler SHALL support interaction between cloud storage server to server interfaces that are compliant to this Enabler.
	1.0

	UCD-HLF-004
	The UCD Enabler MAY support interaction between a cloud storage server interface that is compliant to this Enabler and an external non-OMA compliant cloud storage server interface through a gateway function.

	1.0

	UCD-HLF-005
	The UCD Enabler SHOULD support single sign on between different cloud storage services, including OMA compliant 3rd party cloud storage service and non-OMA compliant 3rd party cloud storage service.
	1.0

	UCD-HLF-006
	The UCD Enabler SHALL support file management operations.
	1.0

	UCD-HLF-007
	The UCD Enabler SHOULD support charging modes (e.g. time, space)
	1.0

	UCD-HLF-008
	The UCD Enabler SHALL support files in any format.
	1.0

	UCD-HLF-009
	The UCD Enabler SHALL support log management.
	1.0

	UCD-HLF-010
	The UCD Enabler SHALL support policy management in different aspects (including system, application, user, etc.).
	1.0

	UCD-HLF-011
	The UCD Enabler SHALL support traffic management (e.g. frequency of access, transfer rate).
	1.0

	UCD-HLF-012
	The UCD Enabler SHALL support logical and physical data isolation for applications and users.
	1.0

5.2 Management Requirements

This section contains the Management requirements for UCD.
	Label
	Description
	Release

	UCD-MG-001
	The UCD Enabler SHALL support different types of accounts including: Service Provider admin account, enterprise user account, end user account.
	1.0

	UCD-MG-002
	The UCD Enabler SHALL support the differentiation of end user accounts (one master account and other slave accounts) including: home UCD account, 3rd party UCD compliant Service Provider account, 3rd party non-UCD compliant Service Provider account.
	1.0

	UCD-MG-003
	The UCD Enabler SHALL support differentiation of enterprise user accounts including: admin account, group & sub-group account, user account.
	1.0

	UCD-MG-004
	The UCD Enabler SHALL support the ability to manage different levels of enterprise user accounts and privileges.
	1.0

	UCD-MG-005
	The UCD Enabler SHALL support the system level policies which are applicable to all the applications and the users by default, including but not limited to:
- whether to support deletion duplicated files or not.
- whether to support compressing inactive files or not.

	1.0

	UCD-MG-006
	The UCD Enabler SHALL support to manage the profiles of the enterprise users and the end users during and after service subscription , the profile could include:

- user credentials (e.g. user name and password)

- quota
- policies information

	1.0

	UCD-MG-007
	The UCD Enabler SHALL support Service Provider admin account to manage enterprise user account and end user account, including but not limited to:
- create user account
- modify user account
- delete user account
- display user account information

- suspend and resume user account
- list user accounts
	1.0

	UCD-MG-008
	The UCD Enabler SHALL support enterprise admin account to manage enterprise group /sub-group/ user account, including but not limited to:
- create group/ sub-group/ user account
- modify group/ sub-group/ user account
- delete group/ sub-group/ user account
- display group/ sub-group/ user account information

- suspend and resume group/ sub-group/ user account
- list group/ sub-group/ user accounts
	1.0

	UCD-MG-009
	The UCD Enabler SHALL support to manage the user policies, including but not limited to:

- flow control (including upload and/or download flow)

- automatic revision generation for the updated file option
- retention option

- auto-deletion option
The user policy overwrites the application policy and the system policy when conflict.
	1.0

5.3 File Management Requirements

	Label
	Description
	Release

	UCD-FM-001
	The UCD Enabler SHALL support to manage files, including but not limited to:

- upload and download
- delete

- rename

- copy

- move
- list sharing
The maximum size of the file SHALL be configurable.
	1.0

	UCD-FM-002
	The UCD Enabler SHALL support to manage the file revisions, including but not limited to:

- create a revision of a file

- list all the revisions of a file

- delete specified revisions of a file
	1.0

	UCD-FM-003
	The UCD Enabler SHALL support to retrieve the file metadata, including but not limited to:

- size

- type

- create time

- modify time
	1.0

	UCD-FM-004
	The UCD Enabler SHALL support to search the files/folders (recursively) using key words.
	1.0

	UCD-FM-005
	The UCD Enabler SHALL support to manage file folders, including but not limited to:

- create

- delete

- list

- rename

- copy

- move

	1.0

	UCD-FM-006
	The UCD Enabler SHALL support to retrieve the file folder metadata, including but not limited to:

- size

- number of files

- number of sub folders

- create time

- modify time
	1.0

	UCD-FM-007
	The UCD Enabler SHOULD support the recycle bin functions:
- put the specified files/folders into recycle bins

- list the files in the recycle bin
- restore the specified files or folders from the recycle bin
- delete the specified files/folders in the recycle bin
- clean the recycle bin
	1.0

	UCD-FM-008
	The UCD Enabler SHALL support to set the metadata of the files or file folders, including but not limited to:

- access control information of files/file folders (e.g. the principals and the authorized operations)

- read only option
	1.0

	UCD-FM-009
	The UCD Enabler SHOULD support to upload/download/update files in segments.

	1.0

	UCD-FM-010
	The UCD Enabler SHOULD support to provide file thumbnails.
	1.0

	UCD-FM-011
	The UCD Enabler SHOULD support files/file folders retention function. During retention period, the files/file folders can not be deleted or modified. The retention start time and duration are configurable.
	1.0

	UCD-FM-012
	The UCD Enabler SHOULD support file/file folder auto-deletion function. The system automatically deletes files/file folders after the life time of the file/file folder expires. The life time is configurable.
	1.0

	UCD-FM-013
	The UCD Enabler SHOULD support file operations log information (e.g. upload filename, upload user, upload time).
	1.0

	UCD-FM-014
	The UCD Enabler SHOULD support file sharing operation to allow any user to access the shared file. The sharing operations include create sharing, list file sharing and delete file sharing.
	1.0

	UCD-FM-015
	The UCD Enabler SHALL support revision control function (e.g. automatic or manual).

	1.0

	UCD-FM-016
	The UCD Enabler SHALL support duplicated file deletion function. The UCD Enabler keeps one copy of the files of interest and deletes the other duplicated files.
	1.0

	UCD-FM-017
	The UCD Enabler SHOULD support automatic replication of files (created or modified) subject to policy management.
	1.0

	UCD-FM-018
	The UCD Enabler SHALL support compression of inactive files (i.e. files unused for certain period).
	1.0

5.4 Network API Requirements
This section defines the requirements on Network APIs for UCD Enabler.

	Label
	Description
	Release

	UCD-NAPI-001
	The UCD Enabler SHALL ensure the third-party applications are authorized before interacting through the UCD Network API.
	1.0

	UCD-NAPI-002
	The UCD Enabler SHALL support user or application using UCD Network API storing files in more than one cloud storage service without interacting with each Service Provider.
	1.0

	UCD-NAPI-003
	The UCD Enabler SHALL support authorization for network API based on [Autho4API_10].
	1.0

5.5 Application Management Requirements
This section defines the requirements on application management for UCD Enabler.

	Label
	Description
	Release

	UCD-AM-001
	The UCD Enabler SHALL support to manage UCD compliant 3rd party applications, including but not limited to:

- create the application with application name, quota requested etc.
- modify the application

- delete the application

- display the application information

- suspend and resume the application

- list the applications
	1.0

	UCD-AM-002
	The UCD Enabler SHALL support to manage the profiles of the applications, including but not limited to:

- application credentials (e.g. application name ,application id and secret)

- quota
- policies information
	1.0

	UCD-AM-003
	The UCD Enabler SHALL support to manage the application policies, including but not limited to:

- duplicated files deletion option
- compress inactive files option

- physically isolated storage option
- number of redundant copies of files and distribution on different storage node option

- flow control information (including upload and/or download flow)
The application policy overwrites the system policy when conflict.
	1.0

	UCD-AM-004
	The UCD Enabler SHOULD support retrieval of the operation logs for the specified application.
	1.0

5.6 Security Requirements

.

	Label
	Description
	Release

	UCD-SEC-001
	The UCD Enabler SHALL support mutual authentication between entities (e.g. UCD client and UCD server).
	1.0

	UCD-SEC-002
	The UCD Enabler SHALL prevent data (e.g. files and user profiles) from unauthorized access.
	1.0

	UCD-SEC-003
	The UCD Enabler SHOULD secure data transportation between entities (e.g UCD client and UCD server).
	1.0

	UCD-SEC-004
	The UCD Enabler SHALL support confidentiality and integrity for the transportation of system management data (e.g., metadata).
	1.0

	UCD-SEC-005
	The UCD Enabler SHALL support confidentiality and integrity for the transportation of general data (e.g., user data).
	1.0

	UCD-SEC-006
	The UCD Enabler SHOULD support confidentiality for data storage.
	1.0

6. Architectural Model

6.1 Dependencies

6.2 Architectural Diagram

The following diagram illustrates the Functional Components and Interfaces of the Unified Cloud Disk Enabler.

[image: image3.wmf]UCD

 Server

UCD Client

Component in scope of UCD

Component out of scope of UCD

Interface in scope of UCD

Interface out of scope of UCD

UCD

-

2

UCD SP

’

s

Portal

UCD

-

3

UCD

-

1

External Storage

Server

Storage Resource

Figure 2: Unified Cloud Disk Architectural Diagram
6.3 Functional Components and Interfaces/reference points definition
6.3.1 UCD Enabler Functional Components
6.3.1.1 UCD Server

The UCD Server is an UCD Enabler component resident in the network (outside the device) and is the entry point to the enabler for all the requests coming from an UCD Client. It represents the central node of an OMA Compliant cloud storage system that federates or interacts with other cloud storage systems (e.g. other UCD Servers or external storage servers).
The UCD Server exposes interfaces including UCD-1, UCD-2and UCD-3.
The UCD Server supports the following functions:

· Basic storage service: the UCD Server handles the service requests from the UCD Client through UCD-1 interface or external entities (e.g. third party applications) through UCD-2 interface and invokes the storage resource of its own to access user’s data/files. The UCD Server is responsible for managing files including uploading/downloading files on to appropriate storage services, updating and deleting files. The UCD Server is also maintains the metadata of the files being stored on its local storage, including (not limited to) name, size, owner, storage location etc.

· Federated cloud storage service: when the peer entity is an OMA compliant storage system (e.g. other UCD Server), the UCD Server interacts with other UCD Servers when requested by the user to exchange the data/files (e.g. copy/move files) between the UCD Servers through UCD-2 interface. The UCD Server also handles the request from other UCD Server to access it’s local data of the user. This enables the user to manipulate the files cross different UCD Servers.

· Gateway function: the gateway function is an optional functionality responsible for interacting with External Storage Servers. It enables users to interconnect with external storage servers on which they already have an account using the proprietary interfaces of such networks. The gateway function implements the required protocol & data format translation capabilities in relation with the supported cloud storage systems.
· Management function: the UCD Servers provides application/service management, user account management and profile management.

· Storage resource management and access: the UCD Server supports storage resource management and uses different APIs or proprietary interfaces to access storage resource.

· Functions to support Autho4API: UCD Server has logical functions which act as Autho4API Authorization Server and Autho4API Access Control Server [Autho4API_10] to enable authorized application to access storage resource.

· User identity federation and defederation: Identity federation enables users to manage multiple cloud storage servers by using one username/password End user chooses which UCD server is the master UCD server to manage identity federation/defederation for him/her. The master UCD server maintains the mapping of user accounts for slave UCD servers which are not responsible for identity federation/defederation for this end user.
· Log management: UCD server should provide the system log records, which at least including system error alarm information, etc. And user log function, also provide the log management functions and reporting features.
The prerequisites of identity federation/defedration are listed as following, but not limited to:

· The end user chooses which UCD server is the master UCD server to manage identity federation/defederation for him/her.

· The CSPs of master UCD server and slave UCD server should have service agreement including security policy, name and location of UCD servers, etc.

· The end user registers with the master UCD server and slave UCD servers.

NOTE: different end users may or may not choose the same master UCD server to manage identity federation/defedration.
6.3.1.2 UCD Client
The UCD Client is a UCD Enabler component resident on the device, which interacts with UCD Server using UCD-1.
The end users use the UCD services through UCD Client on the devices such as PC, smart phone, tablet, STB (Set Top Box) or clients with UCD Client embedded, such as UVE client, SNeW Client.
The UCD Client supports following functions:
· User information handling, such as user account registration and update

· Files/file folders management services on local device and request of file management services via UCD-1 including upload/download/copy/delete files, list file folders etc.

· Unified cloud storage service which enables the users, through UCD Server, to exchange data/files (e.g copy/move files) between the UCD Server and an OMA compliant storage system (e.g. other UCD Server)or External Storage Servers (if the gateway function is provided by the UCD Server). It also enables the user to access data on different UCD Servers through interaction between the UCD Client and the UCD Servers.
· User authentication and authorization

6.3.2 Entities External to the UCD Enabler (Informative)

6.3.2.1 UCD SP’s Portal
The UCD SP’s Portal is a portal provided by the SP to allow applications, users and SP itself to manage the settings of the UCD service, e.g. accounts and policy information.

6.3.2.2 External Storage Server
The External Storage Server is a peer entity that is not--OMA compliant and is made available through either proprietary or non-proprietary mechanism and/or interfaces .

6.3.2.3 Storage resource

Storage resources are the storage infrastructure (physical or virtualized) used by UCD Server to store the data. The storage resources can provide different mechanisms (APIs or proprietary interfaces) for other network entities to access it.
6.3.3 Interfaces Definitions
6.3.3.1 UCD-1
This interface is exposed by the UCD Server to handle requests from UCD Client. It is used by the UCD Client to interact with the OMA Compliant Cloud storage service provider for performing some core functionalities related to mobile cloud storage service, covering:
· user authentication, authorization
· user account management and service management
· access of data or files, sharing
6.3.3.2 UCD-2
This interface is exposed by the UCD Server through Network APIs. It can be used by either 3rd party applications or other UCD Servers.
When it is used by other UCD Servers, this interface is exposed, and used, by UCD Servers. This enables federation between OMA compliant cloud storage service providers.

It supports:

· user authentication, authorization using Autho4API.

· Application management such as policy management, application log retrieval

· access of data or files of users

6.3.3.3 UCD-3
This interface is exposed by the UCD Server to handle requests from UCD SP’s Portal to access and manage the settings of the UCD service, e.g. accounts and policy information.
7. Procedures

7.1 Client Procedures

7.2 Server Procedures

7.3 Flows (Informative)

7.3.1 identity federation request initiated from Master UCD Server

End user wants to do identity federation with one Slave UCD Server. Procedures of such identity federation are described as in figure 3.

[image: image4.emf]UCD ClientMaster UCD ServerSlave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

3: IdentityFederationRequest

4: 302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

6: 302; RegisterNameIdentifierResponse

8: IdentityFederationResponse (Successfull)

7: Record mapping of user accounts between

Master UCD Server and Slave UCD Server

5 Record Federation info

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.3: 200 OK

Figure 3: Flow of identity federation initiated from Master UCD server
Procedures of identity federation initiated from Master UCD Server are described as below:
Before making identity federation, SPs of UCD servers including IdP functions should make service agreement with other SPs providing UCD service.
1. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in the Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

2. Master UCD Server authenticates the user according to authentication information (e.g., user account in the Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse, containing a list of Slave UCD Server.
3. User chooses one of the Slave UCD Servers to be federated. UCD Client sends the message IdentityFederationRequest to Master UCD Server. This request message includes user account in the Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCD Server address).

4. Master UCD Server redirects UCD Client to Slave UCD Server. The message RegisterNameIdentifierRequest in [LibertyBindProf] [LibertyProtSchema] includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate. This message is signed by Master UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before recording federation information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Slave UCD Server MUST authenticate the user to guarantee that this user has the right to federate user account in Master UCD Server with user account in Slave UCD Server. There are several authentication mechanisms. One possible mechanism is available as below:

5.1 Slave UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

5.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of user credentials.

5.3 Slave UCD Server authenticates the user. Slave UCD Server replies to UCD Client with the message 200 OK.

5. Slave UCD Server records federation information (i.e., mapping of user accounts between Master UCD Server and Slave UCD Server).

6. Slave UCD Server redirects UCD Client to Master UCD Server. The message RegisterNameIdentifierResponse in [LibertyBindProf] [LibertyProtSchema] includes Slave UCD Server identity, user account in Slave UCD Server, user account in Master UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

7. Master UCD Server validates the signature of Slave UCD Server.

Maser UCD Server records mapping of user accounts between Master UCD Server and Slave UCD Server.

8. Master UCD Server responds UCD Client with the message IdentityFederationResponse.
It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
If necessary, users can request master UCD server to do identity federation with multiple slave UCD server at the same time.

7.3.2 identity federation request initiated from slave UCD server

End user wants to do identity federation with Master UCD server. Procedures of such identity federation are described as in figure 4.

[image: image5.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityFederationRequest

4:302; RegisterNameIdentifierRequest

6: 302; RegisterNameIdentifierResponse

8: IdentityFederationResponse (Successfull)

5: Record mapping of user accounts between

Master UCD Server and Slave UCD Server

7: Record Federation info

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 4: Flow of identity federation initiated from Slave UCD server
Procedures of identity federation initiated from Slave UCD Server are described as below:
Before making identity federation, SPs of UCD servers including IdP functions should make service agreement with other SPs providing UCD service.
1. User requests to log in Slave UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Slave UCD Server). If user is already authenticated by Slave UCD Server and keeping login status, then go to step 4.

1.1 Slave UCD Server requests to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of credentials.

2. Slave UCD Server authenticates the user according to authentication information (e.g., user account in Slave UCD Server, user credentials).

Slave UCD Server replies to UCD Client with the message UserLoginResponse including successful response and a list of UCD Server which have IdP functions.

3. User chooses one UCD Server as her/his Master UCD Server (which she/he already registered a master UCD account) to federate with. UCD Client send message IdentityFederationRequest to Slave UCD Server. This request message includes user account in Slave UCD Server, user account in Master UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

4. Slave UCD Server redirects UCD Client to Master UCD Server. The message RegisterNameIdentifierRequest in [LibertyBindProf] [LibertyProtSchema] includes address of Master UCD Server, address of Slave UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before recording federation information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Master UCD Server MUST authenticate the user to guarantee that this user has the right to federate user account in Master UCD Server with user account in Slave UCD Server. There are several authentication mechanisms. One possible mechanism is available as below:

5.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

5.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

5.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

5. Master UCD Server records federation information (i.e., mapping of user accounts between Master UCD Server and Slave UCD Server).

6. Master UCD Server redirects UCD Client to Slave UCD Server. The message RegisterNameIdentifierResponse in [LibertyBindProf] [LibertyProtSchema] includes Master UCD Server identity, user account in Slave UCD Server, user account in Master UCD Server, Master UCD Server Certificate. This message is signed by Master UCD Server.

7. Slave UCD Server validates the signature of Master UCD Server.

Slave UCD Server records mapping of user accounts between Master UCD Server and Slave UCD Server.

8. Slave UCD Server responds UCD Client with the message IdentityFederationResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
7.3.3 identity defederation request initiated from Master UCD Server

User wants to do identity defederation with one slave UCD server. Procedures of such identity defederation are described as in figure 5.

[image: image6.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

6: 302; Return URL at Master UCD Server

8: IdentityDefederationResponse (Successfull)

7: invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

5: invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 5 : Flow of identity defederation initiated from Master UCD server
Procedures of identity defederation initiated from Master UCD Server are described as below:
9. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

10. Master UCD Server authenticates the user according to authentication information (e.g., user account in Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse, containing a list of Slave UCD Server addresses.

11. User chooses a Slave UCD Server to be defederated. UCD Client send message IdentityDefederationRequest to Master UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCDServer address).

12. Master UCD Server redirects UCD Client to Slave UCD Server. The message FederationTerminationNotification in [LibertyBindProf] [LibertyProtSchema] includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate. The message is signed by Master UCD Server.

Slave UCD Server validates the signature of Master UCD Server.

Before invalidating the federated information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Slave UCD Server MUST authenticate the user to guarantee that this user has the right to do such defederation. There are several authentication mechanisms. One possible mechanism is available as below:

5.1 Slave UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

5.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of user credentials.

5.3 Slave UCD Server authenticates the user. Slave UCD Server replies to UCD Client with the message 200 OK.

13. Slave UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Slave UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

14. Slave UCD Server redirects UCD Client to Master UCD Server. The respond message includes URL at Master UCD Server.

15. Master UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Master UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

16. Master UCD Server responds UCD Client with the message IdentityDefederationResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
7.3.4 identity defederation request initiated from Slave UCD Server

User wants to do identity defederation with Master UCD Server. Procedures of such identity defederation are described as in figure 6.

[image: image7.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

6: 302; Return URL at Slave UCD Server

8: IdentityDefederationResponse (Successfull)

5: Invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

7: Invalidate mapping of user accounts between

Master UCD Server and Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

Figure 6: Flow of identity defederation initiated from Slave UCD server
Procedures of identity defederation initiated from Slave UCD Server are described as below:
9. User requests to log in Slave UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Slave UCD Server). If user is already authenticated by Slave UCD Server and keeping login status, then go to step 3.

1.1 Slave UCD Server requests to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client replies to Slave UCD Server. The message includes user authentication information e.g., digest of credentials.

10. Slave UCD Server authenticates the user according to authentication information (e.g., user account in Slave UCD Server, user credentials).

Slave UCD Server replies to UCD Client with the message UserLoginResponse including successful response and a list of Master UCD Server addresses.

11. User chooses a Master UCD Server to be defederated. UCD Client send message IdentityDefederationRequest to Slave UCD Server. This request message includes user account in Slave UCD Server, user account in Master UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

12. Slave UCD Server redirects UCD Client to Master UCD Server. The message FederationTerminationNotification in [LibertyBindProf] [LibertyProtSchema] includes address of Master UCD Server, address of Slave UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate. This message is signed by Slave UCD Server.

Master UCD Server validates the signature of Slave UCD Server.

Before invalidating the federated information (e.g., the mapping of user accounts between Master UCD Server and Slave UCD Server), Master UCD Server MUST authenticate the user to guarantee that this user has the right to do such defederation. There are several authentication mechanisms. One possible mechanism is available as below:

5.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

5.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

5.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

13. Master UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Master UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

14. Master UCD Server redirects UCD Client to Slave UCD Server. The respond message includes URL at Slave UCD Server.

15. Slave UCD Server validates the signature of Master UCD Server.

Slave UCD Server invalidates the mapping of user accounts between Master UCD Server and Slave UCD Server. Slave UCD Server may remove the mapping of user accounts between Master UCD Server and Slave UCD Server.

16. Slave UCD Server responds UCD Client with the message IdentityDefederationResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.

7.3.5 Single Sign-On (SSO)

[image: image8.emf]UCD ClientSlave UCD ServerMaster UCD Server

1: SSOLoginRequest

2: 302; HTTP Response with AuthnRequest()

3: 302; HTTP Response with AuthnResponse()

5: SSOLoginResponse

4: Process Assertion

2.1: 401; Unauthorized

2.2: HTTP Request ()

2.3: 200 OK

Figure 7: Flow of Single Sign-On
Flow of Single Sign-On(SSO) in Figure 7 is described as below:

1. UCD Client sends SSOLogin Request to Slave UCD Server to access services. This message includes user identifier in Slave UCD Server. This message may also include a valid SSOToken.
2. Slave UCD Server checks if this request includes a valid authentication assertion (i.e., SSOToken) generated by Master UCD Server. If yes, then go to step 6 directly. If no, slave UCD Server redirects UCD Client to Master UCD Server with the message HTTP Response with AuthnRequest defined in [LibertyBindProf] [LibertyProtSchema].

Before issuing authentication assertion, Master UCD Server MUST authenticate the user as below:

2.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

2.2 UCD Client replies to Master UCD Server. The message includes user authentication information e.g., digest of user credentials.

2.3 Master UCD Server authenticates the user. Master UCD Server replies to UCD Client with the message 200 OK.

3. Master UCD Server generates authentication assertion (i.e., SSOToken) for the user.

Master UCD Server redirects UCD Client to Slave UCD Server with the message HTTP Response with AuthnReponse (including authentication assertion) defined in [LibertyBindProf] [LibertyProtSchema].

4. Slave UCD Server validates authentication assertion as in [LibertyBindProf] [LibertyProtSchema].

5. Slave UCD Server responds UCD Client with the message SSOLogin Response that either allows or denies access to the originally requested resource.
It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
7.3.6 Single Logout Initiated at Master UCD Server

[image: image9.emf]UCD ClientMaster UCD ServerSlave UCD Server

3: SingleLogoutRequest

4: 302; LogoutRequest

5: Process Logout

Request

6: 302; LogoutResponse

7: SingleLogoutResponse (confirmation)

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

1: HTTP Request () <UserLoginRequest>

Figure 8: Flow of Single Logout Initiated at Master UCD Server
Procedures of Single Logout Initiated at Master UCD Server in Figure 8 are described as below:

1. User requests to log in Master UCD Server. UCD Client sends the message UserLoginRequest including user identity (e.g., user account in Master UCD Server). If user is already authenticated by Master UCD Server and keeping login status, then go to step 3.

1.1 Master UCD Server responds to UCD Client to authenticate the user. The message may include a challenge or random to be used for authenticating the user.

1.2 UCD Client sends request to Master UCD Server. The message includes user authentication information e.g., Digest of user credentials.

2. Master UCD Server authenticates the user according to authentication information (e.g., user account in Master UCD Server, user credentials).

Master UCD Server replies to UCD Client with the message UserLoginResponse.

3. UCD Client send message SingleLogoutRequest to Master UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Slave UCD Server (e.g. Slave UCD Server address).

4. Master UCD Server redirects UCD Client to Slave UCD Server. The message LogoutRequest in [LibertyBindProf] [LibertyProtSchema] should be signed by Master UCD Server. The message includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Master UCD Server Certificate.

5. Slave UCD Server validates Master UCD Server’s signature. If the signature is that of the Master UCD Server that provided the authentication for the Principal’s current session, the Slave UCD Server MUST invalidate the user’s session(s) referred to by the < NameIdentifier> element, and any SessionIndex elements supplied in the message. The Slave UCD Server MUST apply the logout request message to any assertion that meets the requirements (e.g., a) The SessionIndex of the assertion matches one specified in the logout request. b) The assertion would otherwise be valid) even if the assertion arrives after the logout request.

6. Slave UCD Server redirects UCD Client to Master UCD Server with the message LogoutResponse in [LibertyBindProf] [LibertyProtSchema]. This message is signed by Slave UCD Server.

7. Master UCD Server validates Slave UCD Server’s signature. Master UCD Server replies to UCD Client with the message SingleLogoutResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
7.3.7 Single Logout Initiated at Slave UCD Server

[image: image10.emf]UCD ClientMaster UCD ServerSlave UCD Server

1: SingleLogoutRequest

2: LogoutRequest

4: LogoutResponse

5:SingleLogoutResponse (Confirmation)

3: Process Logout Request

Figure 9: Flow of Single Logout Initiated at Slave UCD Server
Procedures of Single Logout Initiated at Slave UCD Server in Figure 9 are described as below:
1. UCD Client send message SingleLogoutRequest to Slave UCD Server. This request message includes user account in Master UCD Server, user account in Slave UCD Server, and information about Master UCD Server (e.g. Master UCD Server address).

2. Slave UCD Server redirects UCD Client to Master UCD Server. The message LogoutRequest in [LibertyBindProf] [LibertyProtSchema] should be signed by Slave UCD Server. The message includes address of Slave UCD Server, address of Master UCD Server, user account in Master UCD Server, user account in Slave UCD Server, Slave UCD Server Certificate.

3. Master UCD Server validates Slave UCD Server’s signature. If the signature is that of the Slave UCD Server that provided the authentication for the Principal’s current session, Master UCD Server’s current session with the user MUST be terminated, and no more authentication assertions for the user are to be given to Slave UCD Servers.

4. Master UCD Server redirects UCD Client to Slave UCD Server with the message LogoutResponse in [LibertyBindProf] [LibertyProtSchema]. This message is signed by Master UCD Server.

5. Slave UCD Server validates Master UCD Server’s signature.

The Slave UCD Server MUST invalidate the user’s session(s) referred to by the < NameIdentifier> element, and any SessionIndex elements supplied in the message. The Slave UCD Server MUST apply the logout request message to any assertion that meets the requirements (e.g., a) The SessionIndex of the assertion matches one specified in the logout request. b) The assertion would otherwise be valid) even if the assertion arrives after the logout request.

Slave UCD Server replies to UCD Client with the message SingleLogoutResponse.

It is RECOMMENDED that the HTTP be made over TLS to maintain confidentiality and message integrity.
8. Protocol Binding
8.1 HTTP Binding
8.1.1 General
The UCD Client and the UCD Server SHALL support Hypertext Transfer Protocol version 1.1 (HTTP1.1 [RFC2616]) for UCD-1 interface.
The UCD Server SHALL support XML and JSON content types. The UCD Client SHALL support at least one of XML and JSON content types.
8.1.1.1 Media Type
The UCD Client SHALL support messages formatted as entity-bodies with the following media types:

· application/json or application/xml media type on UCD-1 interface when sending the HTTP requests.

UCD Server SHALL support messages formatted as entity-bodies with the following media types:

· application/json or application/xml media type on UCD-1 interface when sending the HTTP responses.
The UCD Server SHALL return either JSON or XML content type in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common].
8.1.1.2 HTTP Method
All the request messages SHALL be send as HTTP POST method requests.
The following optional Headers may be included in the request messages.

· the UCD Server address in the request line

· the Host request-header set to the hostname or IP address of the UCD Server
· the User-Agent request-header set to identify the host device (e.g. “vendor-model/version”), and the name and version of the sender as user agent initiating the request.

· the Accept request-header with value “application/xml” or “application/json” as applicable

· the Accept-Encoding request-header with value per the supported HTTP compression encodings, i.e. deflate and / or gzip

· the Accept-Language request-header with value per the supported HTTP supported languages (e.g. en, *)
· the Accept-MsgSize is the maximum message size that terminal can handle.
· the Content-Length entity-header set to the length of the entity-body

· the Content-Type entity-header with value “application/xml”, or “application/json”

· the UCD-1 message(s) as message-body
If any of these headers are not present in the response to the request, the receiver SHALL assume their default values.

All the response messages SHALL be sending as response to the corresponding request as specified by the HTTP 1.1 including:

· Status-Line header reflects the outcome of the HTTP POST request

· the ETag entity-header set to a unique value within the scope of the UCD Server.

· the Content-Encoding entity-header set to the type of HTTP compression applied, if any

· the Content-Length entity-header set to the length of the entity-body

· the Content-Type entity-header with value “application/xml or “application/json”, as applicable
· the UCD-1 message(s) as message-body, if the transaction is successful
8.1.1.3 HTTP Authentication
The UCD Client and UCD Server SHALL support HTTP Digest Authentication mechanisms (HTTP1.1 [RFC2617]) on UCD-1 interface.
9. Interface Definitions
9.1 UCD-1

9.1.1 Common Structures
The following table describes the elements of a Result structure.
	Element
	Type
	Cardinality
	Description

	msgId
	String
	1
	Message identifier

	text
	String
	1
	Description of the result , with replacement variables marked with %n, where n is an index into the list of <variables> elements, starting at 1

	variables
	String
	0…N
	Variables to substitute into text string

Table 1: Result structure
The following table describes the elements of an Attribute structure.
	Element
	Type
	Cardinality
	Description

	name
	String
	1
	Attribute name

	value
	String
	0…1
	Attribute value

Table 2: Attribute structure
The following table describes the elements of a File structure.
	Element
	Type
	Cardinality
	Description

	filePath
	String
	1
	The file path.

Example: http://example.com/root/folderA/folderB/

	fileName
	String
	1
	The file name

	fileAttribute
	Attribute
	0…N
	Attributes associated with the file

	revisionID
	String
	0…1
	The file revision identification.

Table 3: File structure
The following table describes the elements of a FileList structure.
	Element
	Type
	Cardinality
	Description

	file
	File
	0…N
	List of files. Number of objects MAY be limited by the server.

	cursor
	String
	0…1
	If the list of files is complete, this element is omitted.

If there are more available files not included in the list, then a cursor value is returned, which encapsulates information on these files. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of files which had not been returned in a previous request.

The cursor encapsulates server state information which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of file lists returned in subsequent requests. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

Table 4: FileList structure
The following table describes the elements of a FileReference structure.
	Element
	Type
	Cardinality
	Description

	filePath
	String
	1
	The file path.

	fileName
	String
	1
	The file name

Table 5: FileReference structure
The following table describes the elements of a FileReferenceList structure.
	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	0…N
	List of file references.

Table 6: FileReferenceList structure
The following table describes the elements of a Folder structure.

	Element
	Type
	Cardinality
	Description

	folderPath
	String
	1
	The folder path which is parent folder.

	folderName
	String
	1
	The folder name

	folderAttribute
	Attribute
	0…N
	Attributes associated with the folder

	subFolders
	FolderReferenceList
	0…1
	List of sub-folders under this folder.

	files
	FileReferenceList
	0…1
	List of files under this folder.

Table 7: Folder structure
The following table describes the elements of a FolderList structure.
	Element
	Type
	Cardinality
	Description

	folder
	Folder
	1…N
	List of folders. Number of objects MAY be limited by the server.

	cursor
	String
	0…1
	If the list of folders is complete, this element is omitted.

If there are more available folders not included in the list, then a cursor value is returned, which encapsulates information on these folders. The client can use the cursor in a subsequent request, to hint to the server that it is asking for the rest of folders which had not been returned in a previous request.

The cursor encapsulates server state information which might be volatile, especially in a multi-device environment. Therefore the cursor mechanism makes no guarantee on the integral continuity of file lists returned in subsequent requests. The value and format of the string are implementation specific. Clients SHOULD NOT attempt to interpret or alter the cursor value.

Table 8: FolderList structure
The following table describes the elements of a FolderReference structure.
	Element
	Type
	Cardinality
	Description

	folderPath
	String
	1
	The folder path which is parent folder.

	folderName
	String
	1
	The folder name

Table 9: FolderReference structure
The following table describes the elements of a FolderReferenceList structure.
	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	0…N
	List of folder references.

Table 10: FolderReferenceList structure
The following table describes the elements of a RecycleBinItem structure.
	Element
	Type
	Cardinality
	Description

	type
	String
	1
	The Recycle Bin item type, value=0 meanings folder, value=1 meanings file

	name
	String
	1
	The folder or file name in Recycle Bin.

	originalPath
	String
	0…1
	The original path of folder or file before in Recycle Bin.

	attribute
	Attribute
	0…N
	Attributes associated with the folder or file in Recycle Bin.

Table 11: RecycleBinItem structure
9.1.2 Registration Request and Response
The UCD Client send User Registration request to the UCD Server to create a user account.

A root element named userRegistrationRequest of type UserRegistrationRequest is allowed in the request body.

 A root element named userRegistrationResponse of type UserRegistrationResponse is allowed in the response body.

[image: image11]
The following table describes the elements of the UserRegistrationRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user

	Passwd
	String
	1
	The password of the user

	status
	String
	1
	The status of the user,e.g. “normal”,”suspended”

	quota
	Integer
	1
	The capacity of the user, in MByte

	contactInfo
	String
	0…1
	The contact info of the user, for example, the mobile phone number and the email address of the user

Table 12: UserRegistrationRequest structure
The following table describes the elements of the RegistrationResponse structure

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing

Table 13: UserRegistrationResponse structure
9.1.3 User Login Request and Response
The UCD Client send User Login request to UCD Server before using UCD services.

A root element named userLoginRequest of type UserLoginRequest is allowed in the request body.

 A root element named userLoginResponse of type UserLoginResponse is allowed in the response body.

[image: image12]
The following table describes the elements of a UserLoginRequest structure.
	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The identity of the user

Table 14: UserLoginRequest structure
The following table describes the elements of a UserLoginResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	serverId
	anyURI
	0…N
	The list of UCD Server address

Table 15: UserLoginResponse structure
9.1.4 SSO Login Request and Response
The UCD Client send SSO login request to UCD Server to log in to the slave UCD Server by using the SSO mechanism.

A root element named SSOLoginRequest of type SSOLoginRequest is allowed in the request body.

 A root element named SSOLoginResponse of type SSOLoginResponse is allowed in the response body.

[image: image13]
The following table describes the elements of a SSOLoginRequest structure.

	Element
	Type
	Cardinality
	Description

	userId
	String
	1
	The user identifier in the Slave UCD Server

	ssoToken
	String
	0…1
	If SSO token is empty or invalid, the UCD Sever MUST redirect UCD Client to get a valid SSO token before allowing to access services.

Table 16: SSOLoginRequest structure
The following table describes the elements of a SSOLoginResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 17: SSOLoginResponse structure

9.1.5 Single Logout Request and Response
The UCD Client send single logout request to UCD Server to logout from all the UCD Servers.

A root element named SingleLogoutRequest of type SingleLogoutRequest is allowed in the request body.

 A root element named SingleLogoutResponse of type SingleLogoutResponse is allowed in the response body.

[image: image14]
The following table describes the elements of a SingleLogoutRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdM
	String
	1
	The user identifier in the Master UCD Server

	userIdS
	String
	1
	The user identifier in the Slave UCD Server

Editor’s Note: to check whether to have multiple userIdS when logout from UCD Master Server

	serverId
	anyURI
	1
	The address of the Master UCD Server (when SingleLogoutRequest initiated at the Slave UCD Server) or the address of the Slave UCD Server (when SingleLogoutRequest initiated at the Master UCD Server) associated with userIdM or userIdS

Editor’s Note: to check whether to have multiple serverId when logout from UCD Master Server

	messageSignature
	String
	0…1
	This field is optional and is used for message integrity protection.

If secure transportation layer is created before exchanging message between UCD Client and UCD Server, this field is void.

Table 18: SingleLogoutRequest structure

The following table describes the elements of a SingleLogoutResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 19: SingleLogoutResponse structureIdentity
9.1.6 Federation Request and Response

The UCD Client send identity federation request to UCD Server to federate the slave user account with master user account.

A root element named IdentityFederationRequest of type IdentityFederationRequest is allowed in the request body.

 A root element named IdentityFederationResponse of typeIdentityFederationResponse is allowed in the response body.

[image: image15]
The following table describes the elements of an IdentityFederationRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdM
	String
	1
	The user identifier in the Master UCD Server

	userIdS
	String
	1
	The user identifier in the slave UCD Server

	serverIdM
	anyURI
	Choice
	The address of the Master UCD Server hwhen requesting federation to Slave UCD Server

	serverIdS
	anyURI
	Choice
	The address of the Slave UCD Server when requesting federation to Master UCD Server

Table 20: IdentityFederationRequest structure
The following table describes the elements of an IdentityFederationResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 21: IdentityFederationResponse structure
9.1.7 Identity Defederation Request and Response
The UCD Client send identity defederation request to UCD Server (Master UCD Server or Slave UCD Server) to defederate the slave user account with master user account.

A root element named IdentityDefederationRequest of type IdentityDefederationRequest is allowed in the request body.

 A root element named IdentityDefederationResponse of typeIdentityDefederationResponse is allowed in the response body.

[image: image16]
The following table describes the elements of an IdentityDefederationRequest structure.

	Element
	Type
	Cardinality
	Description

	userIdM
	String
	1
	The user identifier in the Master UCD Server

	userIdS
	String
	1
	The user identifier in the Slave UCD Server

	serverIdM
	anyURI
	Choice
	The address of the Master UCD Server when requesting defederation to the Slave UCD Server userIdS

	serverIdS
	anyURI
	Choice
	The address of the Slave UCD Server when requesting federation to Master UCD Server

Table 22: IdentityDefederationRequest structure
The following table describes the elements of an IdentityDefederationResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 23: IdentityDefederationResponse structure
9.1.8 Folder Operation
9.1.8.1 List Folder Request and Response

The UCD Client send list folder request to UCD Server to to list the file folder.

A root element named ListFolderRequest of type ListFolderRequest is allowed in the request body.

 A root element named ListFolderResponse of type ListFolderResponse is allowed in the response body.

[image: image17]
The following table describes the elements of a ListFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The folder reference

	
	
	
	

Table 24: ListFolderRequest structure
The following table describes the elements of a ListFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	folder
	Folder
	1
	The folder information

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table 25: ListFolderResponse structure
9.1.8.2 Create Folder Request and Response
The UCD Client send create folder request to UCD Server to to create the file folder.

A root element named CreateFolderRequest of type CreateFolderRequest is allowed in the request body.

 A root element named CreateFolderResponse of type CreateFolderResponse is allowed in the response body.

[image: image18]
The following table describes the elements of a CreateFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The folder reference

	
	
	
	

	folderAttribute
	Attribute
	0…N
	The attributes of the folder

Table 26: CreateFolderRequest structure
The following table describes the elements of a CreateFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folderReference
	FolderReference
	0..1
	The folder reference

	
	
	
	

	folderAttribute
	Attribute
	0…N
	The attributes of the folder

Table 27: CreateFolderResponse structure
Editor’s Note: it is FFS to add the userId in the request and response and also in other related CRs.

9.1.8.3 Delete Folder Request and Response
The UCD Client send delete folder request to UCD Server to delete the file folder.

A root element named DeleteFolderRequest of type DeleteFolderRequest is allowed in the request body.

 A root element named DeleteFolderResponse of type DeleteFolderResponse is allowed in the response body.

[image: image19]
The following table describes the elements of a DeleteFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The folder reference

	deleteMode
	String
	1
	The delete mode, value=0 meanings remove from server storage and no revoke, value=1 meanings temporarily move to Recycle Bin and can revoke. When the size of deleted folder is over the limitation of Recycle Bin (which is according to storage provider’s policy or storage server’s mechanism), it will be removed directly.

	
	
	
	

Table 28: DeleteFolderRequest structure
The following table describes the elements of a DeleteFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 29: DeleteFolderResponse structure
9.1.8.4 Rename Folder Request and Response
The UCD Client send rename folder request to UCD Server to to rename the file folder.

A root element named RenameFolderRequest of type RenameFolderRequest is allowed in the request body.

 A root element named RenameFolderResponse of type RenameFolderResponse is allowed in the response body.

[image: image20]
The following table describes the elements of a RenameFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The source folder.

	
	
	
	

	newFolderName
	String
	1
	The new folder name

Table 30: RenameFolderRequest structure
The following table describes the elements of a RenameFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table 31: RenameFolderResponse structure
9.1.8.5 Copy Folder Request and Response
The UCD Client send copy folder request to UCD Server to copy the file folder.

A root element named CopyFolderRequest of type CopyFolderRequest is allowed in the request body.

 A root element named CopyFolderResponse of type CopyFolderResponse is allowed in the response body.

[image: image21]
The following table describes the elements of a CopyFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The source folder.

	
	
	
	

	targetFolderPath
	String
	1
	The target folder path.

Table 32: CopyFolderRequest structure
The following table describes the elements of a CopyFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table 33: CopyFolderResponse structure
9.1.8.6 Move Folder Request and Response
The UCD Client send move folder request to UCD Server to move the file folder.

A root element named MoveFolderRequest of type MoveFolderRequest is allowed in the request body.

 A root element named MoveFolderResponse of type MoveFolderResponse is allowed in the response body.

[image: image22]
The following table describes the elements of a MoveFolderRequest structure.

	Element
	Type
	Cardinality
	Description

	folderReference
	FolderReference
	1
	The source folder.

	
	
	
	

	targetFolderPath
	String
	1
	The target folder path.

Table 34: MoveFolderRequest structure
The following table describes the elements of a MoveFolderResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	folder
	Folder
	0..1
	The folder information.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table 35: MoveFolderResponse structure
9.1.9 File Operation
9.1.9.1 InitiateSegmentUpload Request and Response
The UCD Client send initiate segment upload request to UCD Server to initiate file segment upload.

A root element named InitiateSegmentUploadRequest of type InitiateSegmentUploadRequest is allowed in the request body.

A root element named InitiateSegmentUploadResponse of type InitiateSegmentUploadResponse is allowed in the response body.

[image: image23]
The following table describes the elements of a InitiateSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	1
	The file information.

	
	
	
	

	
	
	
	

Table 36: InitiateSegmentUploadRequest structure
The following table describes the elements of a InitiateSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	uploadID
	String
	1
	The file segments upload identification.

Table 37: InitiateSegmentUploadResponse structure
9.1.9.2 UploadFile Request and Response
The UCD Client send upload file request to UCD Server to upload file.

A root element named UploadFileRequest of type UploadFileRequest is allowed in the request body.

A root element named UploadFileResponse of type UploadFileResponse is allowed in the response body.

[image: image24]
The following table describes the elements of a UploadFileRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	1
	The file information.

	
	
	
	

	
	
	
	

	share
	Boolean
	0…1
	Default is not to share the file.

Table 38: UploadFileRequest structure
The following table describes the elements of a UploadFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0…1
	The file information.

	
	
	
	

	
	
	
	

	link
	String
	0..1
	The link to the shared file

Table 39: UploadFileResponse structure
9.1.9.3 UploadSegment Request and Response
The UCD Client send upload segment request to UCD Server to upload segment.

A root element named UploadSegmentRequest of type UploadSegmentRequest is allowed in the request body.

A root element named UploadSegmentResponse of type I UploadSegmentResponse is allowed in the response body.

[image: image25]
The following table describes the elements of a UploadSegmentRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

	uploadID
	String
	1
	The file segments upload identification.

	segmentD
	String
	1
	The file segments identification.

Table 40: UploadSegmentRequest structure
The following table describes the elements of a UploadSegmentResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 41: UploadSegmentResponse structure
9.1.9.4 FinishSegmentUpload Request and Response
The UCD Client send finish segment upload request to UCD Server to finish file segment upload.

A root element named FinishSegmentUploadRequest of type FinishSegmentUploadRequest is allowed in the request body.

A root element named FinishSegmentUploadResponse of type FinishSegmentUploadResponse is allowed in the response body.

[image: image26]
The following table describes the elements of a FinishSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

	uploadID
	String
	1
	The file segments upload identification.

	segmentID
	String
	1…N
	The list of complete file segments identification.

Table 42: FinishSegmentUploadRequest structure
The following table describes the elements of a FinishSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of processing the request

	file
	File
	0..1
	The file information.

	
	
	
	

	
	
	
	

Table 43: FinishSegmentUploadResponse structure
9.1.9.5 GetSegmentList Request and Response
The UCD Client send GetSegmentList request to UCD Server to get segment list.

A root element named GetSegmentListRequest of type GetSegmentListRequest is allowed in the request body.

A root element named GetSegmentListResponse of type GetSegmentListResponse is allowed in the response body.

[image: image27]
The following table describes the elements of a GetSegmentListRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

	uploadID
	String
	1
	The file segments upload identification.

Table 44: GetSegmentListRequest structure
The following table describes the elements of a GetSegmentListResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing

	fileReference
	FileReference
	0..1
	The file reference.

	
	
	
	

	segmentID
	String
	0…N
	The file segments identification.

Table 45: GetSegmentListResponse structure
9.1.9.6 CancelSegmentUpload Request and Response
The UCD Client send CancelSegmentUpload request to UCD Server to cancel segment upload.

A root element named CancelSegmentUploadRequest of type CancelSegmentUploadRequest is allowed in the request body.

A root element named CancelSegmentUploadResponse of type CancelSegmentUploadResponse is allowed in the response body.

[image: image28]
The following table describes the elements of a CancelSegmentUploadRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

	uploadID
	String
	1
	The file segments upload identification.

Table 46: CancelSegmentUploadRequest structure
The following table describes the elements of a CancelSegmentUploadResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 47: CancelSegmentUploadResponse structure
9.1.9.7 FileUpdateInRange Request and Response
The UCD Client send FileUpdateInRange request to UCD Server to update file in range.

A root element named FileUpdateInRangeRequest of type FileUpdateInRangeRequest is allowed in the request body.

A root element named FileUpdateInRangeResponse of type FileUpdateInRangeResponse is allowed in the response body.

[image: image29]
The following table describes the elements of a FileUpdateInRangeRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

	startByte
	Int
	1
	The start of file range to be updated

	endByte
	Int
	1
	The end of file range to be updated

Table 48: FileUpdateInRangeRequest structure
The following table describes the elements of a FileUpdateInRangeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 49: FileUpdateInRangeResponse structure
9.1.9.8 DownloadFile Request and Response
The UCD Client send DownloadFile request to UCD Server to download file, file revision, file segment or file range.

A root element named DownloadFileRequest of type DownloadFileRequest is allowed in the request body.

A root element named DownloadFileResponse of type DownloadFileResponse is allowed in the response body.

[image: image30]
The following table describes the elements of a DownloadFileRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	1
	The file information.

	
	
	
	

	
	
	
	

Table 50: DownloadFileRequest structure
The following table describes the elements of a DownloadFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 51: DownloadFileResponse structure
9.1.9.9 DeleteFile Request and Response
The UCD Client send DeleteFile request to UCD Server to delete file, file revision.

A root element named DeleteFileRequest of type DeleteFileRequest is allowed in the request body.

A root element named DeleteFileResponse of type DeleteFileResponse is allowed in the response body.

[image: image31]
The following table describes the elements of a DeleteFileRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	1
	The file information.

	deleteMode
	String
	1
	The delete mode, value=0 meanings remove from server storage and no revoke, value=1 meanings temporarily move to Recycle Bin and can revoke. When the size of deleted file is over the limitation of Recycle Bin (which is according to storage provider’s policy or storage server’s mechanism), it will be removed directly.

	
	
	
	

	
	
	
	

Table 52: DeleteFileRequest structure
The following table describes the elements of a DeleteFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 53: DeleteFileResponse structure
9.1.9.10 MoveFile Request and Response
The UCD Client send MoveFile request to UCD Server to move file.

A root element named MoveFileRequest of type MoveFileRequest is allowed in the request body.

A root element named MoveFileResponse of type MoveFileResponse is allowed in the response body.

[image: image32]
The following table describes the elements of a MoveFileRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The source file.

	
	
	
	

	targetFilePath
	String
	1
	The target file path.

Table 54: MoveFileRequest structure
The following table describes the elements of a MoveFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0..1
	The file information.

	
	
	
	

	
	
	
	

Table 55: MoveFileResponse structure
9.1.9.11 CreateFileRevision Request and Response
The UCD Client send CreateFileRevision request to UCD Server to create file revision.

A root element named CreateFileRevisionRequest of type CreateFileRevisionRequest is allowed in the request body.

A root element named CreateFileRevisionResponse of type CreateFileRevisionResponse is allowed in the response body.

[image: image33]
The following table describes the elements of a CreateFileRevisionRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

Table 56: CreateFileRevisionRequest structure
The following table describes the elements of a CreateFileRevisionResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	revisionID
	String
	0..1
	The file revision identification.

Table 57: CreateFileRevisionResponse structure
9.1.9.12 ListFileRevision Request and Response
The UCD Client send ListFileRevision request to UCD Server to list file revision.

A root element named ListFileRevisionRequest of type ListFileRevisionRequest is allowed in the request body.

A root element named ListFileRevisionResponse of type ListFileRevisionResponse is allowed in the response body.

[image: image34]
The following table describes the elements of a ListFileRevisionRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The file reference.

	
	
	
	

Table 58: ListFileRevisionRequest structure
The following table describes the elements of a ListFileRevisionResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	revision
	FileList
	0…1
	The file revision.

Table 59: ListFileRevisionResponse structure

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

9.1.9.13 CopyFile Request and Response
The UCD Client send CopyFile request to UCD Server to copy file.

A root element named CopyFileRequest of type CopyFileRequest is allowed in the request body.

A root element named CopyFileResponse of type CopyFileResponse is allowed in the response body.

[image: image35]
The following table describes the elements of a CopyFileRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The source file.

	
	
	
	

	targetFilePath
	String
	1
	The target file path.

Table 60: CopyFileRequest structure
The following table describes the elements of a CopyFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	0..1
	The file information.

	
	
	
	

	
	
	
	

Table 61: CopyFileResponse structure
9.1.9.14 RenameFile Request and Response

The UCD Client send RenameFile request to UCD Server to rename file.

A root element named RenameFileRequest of type RenameFileRequest is allowed in the request body.

A root element named RenameFileResponse of type RenameFileResponse is allowed in the response body.

[image: image36]
The following table describes the elements of a RenameFileRequest structure.

	Element
	Type
	Cardinality
	Description

	fileReference
	FileReference
	1
	The source file.

	
	
	
	

	newFileName
	String
	1
	The new file name

Table 62T: RenameFileRequest structure
The following table describes the elements of a RenameFileResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 63: RenameFileResponse structure
9.1.9.15 SharingFile Request and Response
The UCD Client send SharingFile request to UCD Server to sharing file.

A root element named SharingFileRequest of type ShargingFileRequest is allowed in the request body.

A root element named SharingFileResponse of type SharingFileResponse is allowed in the response body.

 SHAPE * MERGEFORMAT

The following table describes the elements of a SharingFileRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	1
	The file information.

	
	
	
	

	
	
	
	

Table 64: SharingFileRequest structure
The following table describes the elements of a SharingFileResponse structure.

	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	link
	String
	0…1
	Link to the shared file.

Table 65: SharingFileResponse structure
9.1.10 Folder/File Common Operation
9.1.10.1 Set Attribute Request and Response

The UCD Client send Set Folder/File’s Attribute request to UCD Server to set folder/file’s attributes.

A root element named SetAttributeRequest of type SetAttributeRequest is allowed in the request body.

 A root element named SetAttributeResponse of type SetAttributeResponse is allowed in the response body.

[image: image38]
The following table describes the elements of a SetAttributeRequest structure.

	Element
	Type
	Cardinality
	Description

	file
	File
	choice
	file information

	folder
	Folder
	choice
	Folder information

Table 66: SetAttributeRequest structure
The following table describes the elements of a SetAttributeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 67: SetAttributeResponse structure
9.1.10.2 Get Attribute Request and Response
The UCD Client send Get Folder/File’s Attribute request to UCD Server to get folder/file’s attributes.

A root element named GetAttributeRequest of type GetAttributeRequest is allowed in the request body.

A root element named GetAttributeResponse of type GetAttributeResponse is allowed in the response body.

[image: image39]
The following table describes the elements of a GetAttributeRequest structure.
	Element
	Type
	Cardinality
	Description

	file
	File
	choice
	File information

	folder
	Folder
	choice
	Folder information

Table 68: GetAttributeRequest structure
The following table describes the elements of a GetAttributeResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	file
	File
	choice
	File information

	folder
	Folder
	choice
	Folder information

Table 69: GetAttributeResponse structure
Search Request and Response
The UCD Client send Search request to UCD Server to search folder or file.

A root element named SearchRequest of type SearchRequest is allowed in the request body.

 A root element named SearchResponse of type SearchResponse is allowed in the response body.

[image: image40]
The following table describes the elements of a SearchRequest structure.

	Element
	Type
	Cardinality
	Description

	fromCursor
	xsd:string
	0…1
	 The beginning position of the retrieve response. Omitting this value denotes the first position.

The fromCursor is a cursor value provided by the server in a previous response to a request with the same search selection criteria.

	maxEntries
	xsd:int
	0…1
	Specifies maximum number of entries to be returned in the response.

Note: A server pre-defined (i.e., implementation specific) maximum number of entries MAY be returned in case the requested maximum exceeds server’s pre-defined maximum entries.

	searchKey
	String
	0…1
	Search key

If there is no search key, the server will retrieval all available elements.
Editor notes: need future study

	searchScope
	FolderReference
	0…1
	Reference to folder at which point the search would start.

If searchScope is provided, the scope of the search is limited to the subtree starting at this folder.

If searchScope is not provided, the search is applied to the root folder.

	sortCriterion
	String
	0…1
	The sort criterion for the retrieval of elements.

Default is random or server preferred sort.

Table 70: SearchRequest structure
The following table describes the elements of a SearchResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	files
	FileList
	0…1
	The retrieval of file elements

	folders
	FolderList
	0…1
	The retrieval of folder elements

Table 71: SearchResponse structure
List RecycleBin Request and Response
The UCD Client send ListRecycleBin request to UCD Server to list RecycleBin.

There is no request body.

A root element named ListRecycleBinResponse of type ListRecycleBinResponse is allowed in the response body.

[image: image41]
The following table describes the elements of a ListRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

	recycleBinItem
	RecycleBinItem
	0…N
	The Recycle Bin items.

Table 72: ListRecycleBinResponse structure
Clean RecycleBin Request and Response
The UCD Client send Clean RecycleBin request to UCD Server to clean the RecycleBin.
A root element named CleanRecycleBinRequest of type CleanRecycleBinRequest is allowed in the request body.

 A root element named CleanRecycleBinResponse of type CleanRecycleBinResponse is allowed in the response body.

[image: image42]
The following table describes the elements of a CleanRecycleBinRequest structure.

	Element
	Type
	Cardinality
	Description

	recycleBinItem
	RecycleBinItem
	0…N
	The Recycle Bin items. If no value, meanings clean all items in Recycle Bin.

Table 73: CleanRecycleBinRequest structure
The following table describes the elements of a CleanRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 74: CleanRecycleBinResponse structure
Revoke RecycleBin Request and Response
The UCD Client send revoke RecycleBin request to UCD Server to revoke the RecycleBin.
A root element named RevokeRecycleBinRequest of type RevokeRecycleBinRequest is allowed in the request body.

 A root element named RevokeRecycleBinResponse of type RevokeRecycleBinResponse is allowed in the response body.

[image: image43]
The following table describes the elements of a RevokeRecycleBinRequest structure.

	Element
	Type
	Cardinality
	Description

	recycleBinItem
	RecycleBinItem
	0…N
	The Recycle Bin items. If no value, meanings revoke all items in Recycle Bin.

Table 75: RevokeRecycleBinRequest structure
The following table describes the elements of a RevokeRecycleBinResponse structure.
	Element
	Type
	Cardinality
	Description

	result
	Result
	1
	The result of the request processing.

Table 76: RevokeRecycleBinResponse structure
9.2 UCD-2
This section is organized to support a comprehensive understanding design of the UCD-2 RESTful API using HTTP protocol bindings. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 9.2 starts with a diagram representing the resources hierarchy, followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (subsection 9.2.1). What follows are the data structures (subsection 9.2.2). A sample of typical use cases is included in subsection 9.2.3, described as high level flow diagrams.

Subsection 9.2.4 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 9.2.4 use XML as the format for the message body. JSON examples are provided in Appendix D. Appendix C provides the Static Conformance Requirements (SCR).
Appendix G defines authorization aspects to control access to the resources defined in this specification.
10. Release Information

10.1 Supporting File Document Listing

	Doc Ref
	Permanent Document Reference
	Description

	Supporting Files

	
	
	

	
	
	

Table 70: Listing of Supporting Documents in UCD V1.0 Release

10.2 OMNA Considerations

10.3 Additional Items

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-ER-UCD-V1_0

	10 Sep 2012
	all
	First draft baseline as agreed in “OMA-REQ-UCD-2012-0002R01-INP_UCD_1.0_baseline”

	
	11 Sep 2012
	all
	Incorporates inputs to committee:
OMA-REQ-UCD-2012-0003R01-CR_scope
OMA-REQ-UCD-2012-0004R01-CR_introduction

OMA-REQ-UCD-2012-0005R01-CR_HLF_MultiDevice_MultiAccess

OMA-REQ-UCD-2012-0006R01-CR_API_requirements

	
	12 Oct 2012
	all
	OMA-REQ-UCD-2012-0007R01-CR_HLF_3rdSP_3rdEnabler

OMA-REQ-UCD-2012-0008R01-CR_account

OMA-REQ-UCD-2012-0009R01-CR_sso_dynamic_integrating

OMA-REQ-UCD-2012-0010R01-CR_network_api_

	
	15 Oct 2012
	all
	General editorial clean-up by Document Support Officer:

Sorting of references and abbreviations in alphabetical order

Update of history box

Language set to English UK

Renumbering of figures

	
	12 Dec 2012
	all
	OMA-REQ-UCD-2012-0011R01-CR_File_Management_Requirements
OMA-REQ-UCD-2012-0012-CR_File_Folder_Management_Requirements
OMA-REQ-UCD-2012-0013-CR_Recycle_Bin_Management
OMA-REQ-UCD-2012-0015-CR_Enterprise_management

	
	14 Jan 2013
	all
	OMA-REQ-UCD-2012-0016R02-CR_policy_management
OMA-REQ-UCD-2012-0017R01-CR_sharing
OMA-REQ-UCD-2012-0018-CR_Application_management

	
	12 Mar 2013
	all
	OMA-REQ-UCD-2013-0001-CR_File_Update_Requirement
OMA-REQ-UCD-2013-0002R01-CR_Metadata_Management_Requirement
OMA-REQ-UCD-2013-0003R01-CR_File_Segment_Requirement
OMA-REQ-UCD-2013-0004R01-CR_Application_Profile_Management
OMA-REQ-UCD-2013-0005-CR_Application_Log_Management
OMA-REQ-UCD-2013-0006R01-CR_User_Profile_Management
OMA-REQ-UCD-2013-0007R01-CR_policy_management
OMA-REQ-UCD-2013-0008R01-CR_oauth
OMA-REQ-UCD-2013-0009-CR_thumbnails
OMA-REQ-UCD-2013-0010R01-CR_user_management
OMA-REQ-UCD-2013-0022R01-CR_High_Level_Functional_Requirements
OMA-REQ-UCD-2013-0025R01-CR_file_management
OMA-REQ-UCD-2013-0026R01-CR_File_Retention
OMA-REQ-UCD-2013-0027R01-CR_Auto_deletion
OMA-REQ-UCD-2013-0028R02-CR_Any_format_of_files
OMA-REQ-UCD-2013-0029R02-CR_Security_requirements
OMA-REQ-UCD-2013-0030R03-CR_File_log_management
OMA-REQ-UCD-2013-0031-CR_log_management

	
	20 Mar 2013
	5
	OMA-REQ-UCD-2013-0032R02-ER_Requirements_Section_Informal_Review_comments_from_ZTE
OMA-REQ-UCD-2013-0033R01-CR_file_management_resolution
OMA-REQ-UCD-2013-0035R01-INP_UCD_RD_Informal_Review_SEC

	
	03 Apr 2013
	all
	OMA-REQ-UCD-2013-0034R02-INP_ER_Requirements_Section_Informal_Review_comments_from_ChinaTelecom
OMA-REQ-UCD-2013-0036-CR_editorial_comment_resolution
OMA-REQ-UCD-2013-0037R01-CR_User_Policy_Requirement
OMA-REQ-UCD-2013-0038R01-CR_Duplicate_File_Deletion
OMA-REQ-UCD-2013-0039R02-CR_File_Replicaiton_Requirement
OMA-REQ-UCD-2013-0040R01-CR_File_Compress_Requirement
OMA-REQ-UCD-2013-0041R01-CR_Data_Isolation
OMA-REQ-UCD-2013-0042-CR_Application_Policy
OMA-REQ-UCD-2013-0043R01-CR_Automatic_Versioning

	
	08 Apr 2013
	all
	Final check of the informal Review for editorial quality-control of the Requirements Section as a whole.

OMA-REQ-UCD-2013-0044-CR_ER_result_of_the_REQ_Informal_Review

	
	16 May 2013
	6
	OMA-CD-UCD-2013-0001R01-CR_Architecture_Baseline

	
	14 Jun 2013
	all
	OMA-CD-UCD-2013-0006R01-CR_UCD_Architecture_deployments
OMA-CD-UCD-2013-0007R01-CR_Upload_Flow
OMA-CD-UCD-2013-0008R01-CR_UCD_storage_resource
OMA-CD-UCD-2013-0009R01-CR_UCD_client
OMA-CD-UCD-2013-0010R01-CR_UCD_application
OMA-CD-UCD-2013-0012R01-CR_UCD_server
OMA-CD-UCD-2013-0014R01-CR_UCD_interfaces
OMA-CD-UCD-2013-0015-CR_Architecture_modification
OMA-CD-UCD-2013-0021R01-CR_File_Upload

	
	17 Jul 2013
	all
	OMA-CD-UCD-2013-0003R04-CR_Identity_Federation
OMA-CD-UCD-2013-0022R02-CR_UCD_Client_Functions
OMA-CD-UCD-2013-0023-CR_UCD_Architecture_update

	
	13 Aug 2013
	all
	OMA-CD-UCD-2013-0024-CR_Architecture_Improvement
OMA-CD-UCD-2013-0025R01-CR_Autho4API_Functions

	
	08 Oct 2013
	all
	OMA-CD-UCD-2013-0027R01-CR_UCD_2_definition
OMA-CD-UCD-2013-0030R03-CR_UCDv1.0_TS_Identity_Federation_Flow_from_Master
OMA-CD-UCD-2013-0031R03-CR_UCDv1.0_TS_Identity_Federation_Flow_from_Slave
OMA-CD-UCD-2013-0032R04-CR_UCDv1.0_TS_Identity_Defederation_Flow_from_Master
OMA-CD-UCD-2013-0033R04-CR_UCDv1.0_TS_Identity_Defederation_Flow_from_Slave
OMA-CD-UCD-2013-0034R01-CR_UCDv1.0_TS_Single_Sign_On
OMA-CD-UCD-2013-0035R03-CR_UCDv1.0_TS_Single_Logout_Initiated_at_Master
OMA-CD-UCD-2013-0036R03-CR_UCDv1.0_TS_Single_Logout_Initiated_at_Slave
OMA-CD-UCD-2013-0038R02-CR_Registration_Message_Definition
OMA-CD-UCD-2013-0039R01-CR_Login_message_Definition
OMA-CD-UCD-2013-0040R01-CR_Protocol_Binding
OMA-CD-UCD-2013-0043R01-CR_UCD_Server_Function

	
	02 Dec 2013
	all
	OMA-CD-UCD-2013-0046-CR_SSOLogin_message_Definition
OMA-CD-UCD-2013-0047R01-CR_SingleLogout_message_definition
OMA-CD-UCD-2013-0048R02-CR_ListFolder_message_Definition
OMA-CD-UCD-2013-0049R02-CR_CreateFolder_message_Definition
OMA-CD-UCD-2013-0050R02-CR_DeleteFolder_message_Definition
OMA-CD-UCD-2013-0051R01-CR_RenameFolder_message_Definition
OMA-CD-UCD-2013-0052R01-CR_CopyFolder_message_Definition
OMA-CD-UCD-2013-0053R01-CR_MoveFolder_message_Definition
OMA-CD-UCD-2013-0054R01-CR_InitiateSegmentUpload_message_Definition
OMA-CD-UCD-2013-0055R01-CR_UploadFile_message_Definition
OMA-CD-UCD-2013-0056R01-CR_IdentityFederation_message_definition
OMA-CD-UCD-2013-0057R01-CR_IdentityDefederation_message_definition
OMA-CD-UCD-2013-0058R03-CR_Identity_Federation_Flow_from_Master
OMA-CD-UCD-2013-0059R01-CR_Single_Sign_On_flow_update
OMA-CD-UCD-2013-0060R02-CR_Identity_Federation_Flow_from_Slave
OMA-CD-UCD-2013-0061R01-CR_Identity_Defederation_Flow_update
OMA-CD-UCD-2013-0062-CR_Single_Logout_flow_update
OMA-CD-UCD-2013-0063-CR_UploadSegment_message_Definition
OMA-CD-UCD-2013-0064R01-CR_FinishSegmentUpload
OMA-CD-UCD-2013-0065R02-CR_GetSegmentList_message_Definition
OMA-CD-UCD-2013-0066-CR_CancelSegmentUpload_message_Definition
OMA-CD-UCD-2013-0067R01-CR_FileUpdateInRange_message_Definition
OMA-CD-UCD-2013-0068R01-CR_DownloadFile_message_Definition
OMA-CD-UCD-2013-0069-CR_DeleteFile_message_Definition
OMA-CD-UCD-2013-0070R02-CR_MoveFile_message_Definition
OMA-CD-UCD-2013-0071R01-CR_CreateFileRevision_message_Definition
OMA-CD-UCD-2013-0072R01-CR_ListFileRevision_message_Definition
OMA-CD-UCD-2013-0073R01-CR_CopyFile_message_Definition
OMA-CD-UCD-2013-0074-CR_RenameFile_message_Definition
OMA-CD-UCD-2013-0078R01-CR_Login_message_Definition_update
OMA-CD-UCD-2013-0080R01-CR_Sharing_File_message_definition

	
	26 Dec 2013
	Section 9
	OMA-CD-UCD-2013-0083R02-CR_SetAttribute_message_Definition
OMA-CD-UCD-2013-0084R02-CR_GetAttribute_message_Definition
OMA-CD-UCD-2013-0085R01-CR_Common_file_floder_structure

	
	08 Feb 2014
	all
	OMA-CD-UCD-2013-0086-CR_Definition_Master_UCD_Server
OMA-CD-UCD-2013-0087-CR_Identity_Federation_Flows_Correction
OMA-CD-UCD-2013-0088R01-CR_file_folder_operation_update_with_CR0085
OMA-CD-UCD-2014-0001R01-CR_Search_message_Definition
OMA-CD-UCD-2014-0002R01-CR_RecycleBin_message_Definition

Appendix B. Use Cases
(Informative)

<text here>

B.1 <Use Case Title>

<text here>

B.1.1 ASK * MERGEFORMAT Short Description

<text here>

B.1.2 Market benefits

<text here>

B.2 <Use Case Title>

Appendix C. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

C.1 ERDEF for <<ENABLER>> - Client Requirements

This section is normative.
	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-C-001-<<M/O>>
	<<ENABLER>> Client
	

	
	
	

Table 71: ERDEF for <<ENABLER>> Client-side Requirements

C.2 ERDEF for <<ENABLER>> - Server Requirements

This section is normative.

	Item
	Feature / Application
	Requirement

	OMA-ERDEF-<<ENABLER>>-S-001-<<M/O>>
	<<ENABLER>> Server
	

	
	
	

Table 72: ERDEF for <<ENABLER>> Server-side Requirements

C.3 SCR for XYZ Client

	Item
	Function
	Reference
	Requirement

	XYZ-C-001-M
	Something mandatory
	Section x.y
	(XYZ-C-004-O OR XYZ-C-003-M) AND
 XYZ-C-002-O

	XYZ-C-002-O
	Something optional
	Section x.y
	

	XYZ-C-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MCF

	XYZ-C-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OCF

C.4 SCR for XYZ Server

	Item
	Function
	Reference
	Requirement

	XYZ-S-001-M
	Something mandatory
	Section x.y
	XYZ-S-004-O OR XYZ-S-002-O OR XYZ-S-003-M

	XYZ-S-002-O
	Something optional
	Section x.y
	

	XYZ-S-003-M
	Dependencies on ZYX
	Section x.y
	ZYX:MSF

	XYZ-S-004-O
	Dependencies on ZYX
	Section x.y
	ZYX:OSF

Appendix D. <Additional Information>

D.1 App Headers

<More text>

D.1.1 More Headers

<More text>

D.1.1.1 Even More Headers

<More text>

Appendix E. Architectural deployments (Informative)

In this section are described possible architectural realizations of the UCD Enabler according to the architecture defined in section 6.

This section is informative and illustrates interactions and flows between instances of UCD functional components as well as with external entities, using both UCD interfaces and external interfaces.

[image: image44.emf]S1

(UCDServer)

C1

(UCDClient)

UCDEnabled

Applications

Instance of a component defined byUCD

Instance(s) of a component external toUCD

Interaction using interfacesdefined byUCD

Interaction(s) using interfacesexternal toUCD

UCD-2

UCD-2

UCD-1

S3 (External

Storage

Server)

Storage Resource

UCD-3

UCD-2

UCD SP

Portal

Device

S2(other UCD

Server)

UCD-2

Figure 10: architecture deployment of UCD Enabler
The UCD-2 interface is used to handle requests from other peer UCD Servers which can be in remote site of same service provider or other different service provider. The UCD Server also uses UCD-2 interface exposed by other peer UCD Servers to access data/files of users. It enables the exchange of data or files between different UCD Servers.
Depending on the nature of External Storage Servers, they may rely on UCD-2 interface(s) to interact with UCD Enabler. It is up to Service Providers to define policies to control access to such interfaces from External storage servers. The UCD Server interacts with External Storage Server to access the data/files of users on it.
The UCD-2 interface is also used to handle requests from 3rd party applications enabling them to access storage services provided. Examples of UCD enabled applications are consumer applications, enterprise applications (such as OA (Office Automation), CRM (Customer Relationship Management)), OMA Enables (such as SNew, MobAR) etc. Those applications can run within user agent or server.
Appendix F. Architectural Flows(Informative)
F.1 File Upload (Option A)

[image: image45]
1. User sends a request to show his/her intent to upload a file. This request may include some information about the file e.g total size, type. It may also include the target storage location for the files.
2. If the user hasn’t selected the storage location, UCD Server A selects the appropriate CSP. While selecting total file size of the file and available storage space will be considered.
3. UCD Server A authenticates and authorize user.
4. UCD Server sends a confirmation indicating that the intended upload can start.
5. User sends a request to UCD Server A with files to upload.
6. UCD Sever A generates metadata about the file being uploaded which may include filename, user identification, storage location etc.
7. UCD Server A sends the file to the targeted UCD Server (UCD Server B) for further processing and storage. UCD Server A also provides user’s slave account details belonging to targeted UCD Server. This is to ensure visibility between user and UCD Server B.
8. UCD Server B stores files as per its policy
9. Upload confirmation is sent to UCD Server A.
10. UCD Server A confirms the successful execution of upload request to user.
Editor’s Note: to Check the flow in TS stage.
userRegistrationRequest uesuestAppInfoNotify

UCD Server A

UCD Server B

UCD Client

5: Upload Request

7: Upload Forward Request

3: Authentication & Authorization

UCD Server C

9: Upload Confirmation

10: UploadOK

1: Upload Request (size)

2: CSP Selection

4: Upload Response

6: Generate Metadata

8:Store files

userRegistrationResponse

UCD Client

UCD

Server

userLoginRequest

userLoginResponse

UCD Client

UCD

Server

SSOLoginRequest

SSOLoginResponse

UCD Client

UCD

Server

SingleLogoutRequest

SingleLogoutResponse

UCD Client

UCD

Server

ListFolderRequest

ListFolderResponse

UCD Client

UCD

Server

CreateFolderRequest

CreateFolderResponse

UCD Client

UCD

Server

UCD

Server

UCD Client

RenameFolderResponse

RenameFolderRequest

DeleteFolderRequest

DeleteFolderResponse

UCD Client

UCD

Server

CopyFolderRequest

CopyFolderResponse

UCD Client

UCD

Server

MoveFolderRequest

MoveFolderResponse

UCD Client

UCD

Server

InitiateSegmentUploadRequest

InitiateSegmentUploadResponse

UCD Client

UCD

Server

UploadFileRequest

UploadFileResponse

UCD Client

UCD

Server

UCD

Server

UCD Client

IdentityFederationResponse

IdentityFederationRequest

IdentityDefederationRequest

IdentityDefederationResponse

UCD Client

UCD

Server

UploadSegmentRequest

UploadSegmentResponse

UCD Client

UCD

Server

FinishSegmentUploadRequest

FinishSegmentUploadResponse

UCD Client

UCD

Server

GetSegmentListRequest

GetSegmentListResponse

UCD Client

UCD

Server

CancelSegmentUploadRequest

CancelSegmentUploadResponse

UCD Client

UCD

Server

FileUpdateInRangeRequest

FileUpdateInRangeResponse

UCD Client

UCD

Server

DownloadFileRequest

DownloadFileResponse

UCD Client

UCD

Server

DeleteFileRequest

DeleteFileResponse

UCD Client

UCD

Server

MoveFileRequest

MoveFileResponse

UCD Client

UCD

Server

CreateFileRevisionRequest

CreateFileRevisionResponse

UCD Client

UCD

Server

ListFileRevisionRequest

ListFileRevisionResponse

UCD Client

UCD

Server

CopyFileRequest

CopyFileResponse

UCD Client

UCD

Server

RenameFileRequest

RenameFileResponse

UCD Client

UCD

Server

SharingFileRequest

SharingFileResponse

UCD Client

UCD

Server

SetAttributeRequest

SetAttributeResponse

UCD Client

UCD

Server

GetAttributeRequest

GetAttributeResponse

UCD Client

UCD

Server

SearchRequest

SearchResponse

UCD Client

UCD

Server

ListRecycleBinRequest

ListRecycleBinResponse

UCD Client

UCD

Server

CleanRecycleBinRequest

CleanRecycleBinResponse

UCD Client

UCD

Server

RevokeRecycleBinRequest

RevokeRecycleBinResponse

UCD Client

UCD

Server

(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20120101-I]
(2014 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-CombinedRelease-20120101-I]

_1445927061.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

3: IdentityDefederationRequest

4.1: 401; Unauthorized

4: 302; FederationTerminationNotification

4.2: HTTP Request ()

4.3: 200 OK

_1445970498.vsd
UCD Client

Slave UCD Server

Master UCD Server

1: SSOLoginRequest

2: 302; HTTP Response with AuthnRequest()

2.1: 401; Unauthorized

2.2: HTTP Request ()

_1445970862.vsd
UCD Client

Master UCD Server

Slave UCD Server

3: IdentityDefederationRequest

4: 302; FederationTerminationNotification

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

_1445927224.vsd
UCD Client

Master UCD Server

Slave UCD Server

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

3: SingleLogoutRequest

4: 302; LogoutRequest

1.2: HTTP Request ()

1: HTTP Request () <UserLoginRequest>

5: Process Logout Request

_1445927334.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: SingleLogoutRequest

2: LogoutRequest

_1445926653.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

4.3: 200 OK

2: 200 OK <UserLoginResponse>

3: IdentityFederationRequest

4: 302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

_1445926869.vsd
UCD Client

Master UCD Server

Slave UCD Server

1: HTTP Request () <UserLoginRequest>

2: 200 OK <UserLoginResponse>

1.1: 401; Unauthorized

1.2: HTTP Request ()

3: IdentityFederationRequest

4:302; RegisterNameIdentifierRequest

4.1: 401; Unauthorized

4.2: HTTP Request ()

4.3: 200 OK

_1434365270.vsd
External Storage Server

UCD Server

UCD Client

Component in scope of UCD

Component out of scope of UCD

Interface in scope of UCD

Interface out of scope of UCD

UCD-2

UCD-1

UCD SP’s Portal

UCD-3

Storage Resource

_1434792202.vsd
Storage Resource

S2(other UCD Server)

S1
(UCD Server)

C1
(UCD Client)

UCD Enabled Applications

S3 (External Storage Server)

Instance of a component defined by UCD

Instance(s) of a component external to UCD

Interaction using interfaces defined by UCD

Interaction(s) using interfaces external to UCD

UCD-2

UCD-2

UCD-1

UCD-3

UCD-2

UCD-2

UCD SP Portal

Device

