Doc# OMA-ARC-2005-0298R02-PEEM_Fundamentals[image: image5.jpg]
Input Contribution

Doc# OMA-ARC-2005-0298R02-PEEM_Fundamentals
Input Contribution

Input Contribution

	Title:
	PEEM Fundamentals
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA ARC (PEEM Activity)

	Submission Date:
	8 October 2005

	Source:
	Stéphane H. Maes, Oracle Corporation
P: +1-203-300-7786
stephane.maes@oracle.com

Mark Pozefsky, IBM

P: +1-919-929-9051

poz@us.ibm.com
Peeter Pruuden, Nokia

peeter.pruuden@nokia.com

Richard Stretch, BT

richard.stretch@bt.com

Jorgen Dyst, Appium

Jorgen.Dyst@appium.com

Matthieu Lachance, Openwave

matthieu.lachance@openwave.com

	Attachments:
	N/A
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	OMA-ARC-2005-0298-PEEM_Fundamentals

1 Reason for Contribution

In Montreal, it was indicated that there might be significant differences between different members on PEEM fundamentals.
In Montreal, we described our model and it seemed that it was able to subsume the other alternatives. No significant variation was asserted against it and we believe that we had agreement.

Discussions to formalize the agreement have led us to believe that agreement has been rescinded.
R01 track changes with respect to R00. We added flows details and clarification of the execution model and notion of BLOB.
R02 updates some details (IETF PDP-PEP) and adds supporters.
2 Summary of Contribution

This contribution provides the fundamentals of our model.
3 Detailed Proposal

3.1 What is PEEM and what needs to be specified?

PEEM is an OMA enabler that can be used in proxy mode or callable mode (see definitions in PEEM RD) to enforce policies.

Policy enforcement amounts to executing policy rules (i.e. conditions and actions) as expressed in the policy expression language. So policy enforcement amounts to running the code expressed in the policy expression language understood by PEEM (i.e. walk the policy tree defined in OMA-ARC-2005-0227R05-PEEM_policy_Expression_Language).
PEEM is therefore specified by its policy expression language and its interfaces.
3.2 Policy expression language

Our view on the policy expression language is expressed in the agreed contribution OMA-ARC-2005-0227R05-PEEM_policy_Expression_Language. It is consistent with the IETF information model described in RFC 3060.
We believe that the PEEM RD is very clear in the need to standardize one and only one Policy expression language. We also believe that having multiple policy expression languages can only lead to fragmentation, silos and a failure of the PEEM activity. Such an approach would not be adequately interoperable.

There exist some policy-related specifications today in OMA; there are various implementations deployed in service providers also. The selected policy expression language needs to be general and powerful enough to express any of the policy rules found in those specifications or implementations. As new policy rules are defined (either inside or outside OMA), the PEEM engine must be able to process them without change to the engine.
An alternative view that we do not support is that we do not need a full (Turing complete) language for PEEM. Rather, this approach would survey the set of policy rules required by the existing OMA enablers, and this finite set would be the extent of the “language” that PEEM must support. This approach, however, would not handle policy rules that could be defined by applications or any resources not defined by OMA. In fact, each time an OMA enabler added more policy rules, we might need to define another version of the Policy expression language. And, of course, deployments would have to upgrade their PEEM implementations to keep up with these changes.
In addition, note that there is no special distinction between a policy rule used for evaluation or for evaluation and execution. In the case of evaluation, the policy rule must return a value that the requestor can use to perform the policy execution phase. In the case of evaluation and execution, PEEM will handle the policy execution phase before returning control to the requestor. Note that a policy rule (whether being used for evaluation, or evaluation and execution) can perform operations that might be thought of as executing a script expressed in the policy expression language.
3.3 Execution
Policies are enforced by PEEM. They express how PEEM acts on an input and generates an output.
PEEM enforces a policy by walking the policy tree as described in section 3.2. Policy conditions are evaluated when met. The evaluation result of the condition determines what path to follow and therefore what actions are then to be executed and/or what next steps are to be taken. This process is repeated until the policy reaches a point where either:

· a message is to be passed to the target resource. The appropriate message is generated as described in the policy and passed along (or transferred or routed) to the destination resource and/or

· a message is to be returned to the resource requestor possibly with an error code. The appropriate message is generated as described in the policy.

In both cases, the policy enforcement terminates.

Throughout policy enforcement a condition or action may involve delegation. In that case, an appropriate message is generated based on the policy and passed to the delegated resource in order to perform the delegated task.
From a logical model point of view, it is sufficient to model one single policy. Indeed, a policy is defined as a combination of policy rules. So, even implementations with multiple policies can amount to a single policy model with multiple top-level branches.

Policies can be loaded in advance via PEM-2 or be provided as part of a request to perform policy enforcement through PEM-1 (in callable mode).
3.4 Interfaces

PEEM can expose or delegate to any resource (defined in OMA or not) to enforce any policy. Therefore, the PEEM interfaces cannot rely on an assumption of a finite set of messages types to exchange.
As a result, the interfaces have the following properties. Note also that all interfaces may be bound to any technology and transport.
BLOB stands for Binary Large OBject. It is used in the following sections to denote that parameter that cannot be specified further than stating that anything can be exchanged. Each requestor invoking PEEM will generate a parameter composed of certain data values and types based on the policies that it expects PEEM to enforce; similarly each target invoked by PEEM will receive a parameter composed of certain data values and types based on the policies that PEEM enforced. Policies can expect and handle any input data and generate any output data. The policies dictate what is expected or generated. Therefore it can only be characterized as BLOBs. When PEEM has a policy to enforce, the expected input (types and orders) are specified by the policy. Similarly the responses and other output messages are also fully specified in types and order. Therefore,
· Policy determines input and output

requester must know expected input and output

the requestor knows the input and output parameters either because it supplied the policy (using PEM-2 or the policy-supplied PEM-1 mode) or using one of the methods as described in the “Using the exposed resources OSE” section of the OSE
3.4.3 PEM-1
PEM-1 has two input parameters and one output parameter:

· A BLOB input parameter that can carry any binary data.

· An optional input parameter specifying the policy to enforce.

· A BLOB output parameter that can carry any binary data, its contents and format defined by the policy rules. To respect its contract with authorized requestors, policies should return the expected data types

Note that the same interface is used for both evaluation or evaluation and execution.
3.4.4 PEM-2

PEM-2 must support the capability to add, delete, update, and retrieve policies and policy rules.
Note that it is not clear if partial inline edits of policy rules (e.g., some subpart of a “condition” of the rule) are to be supported nor if mechanisms designed for declarative / XML language can be applied. Analyses of programming practices lead us to believe that inline edits of policy rules is very tricky and most probably to be discouraged.
3.4.5 PEM-3

PEM-3 has one input BLOB parameter and one output BLOB parameter. PEEM’s behaviour is dictated by the policy rule(s) whose conditions are evaluated as “true”.
3.4.6 PEM-4

PEM-4 can exchange any BLOB data with any enabler/resource. PEEM’s behaviour is dictated by the policy rule(s) whose conditions are evaluated as “true but should follow the interface specification of the target enabler/resource.

PEM-3 and PEM-4 have similar properties and behaviour.

3.5 Notes
Interfaces are able to handle any message consistent with the policy loaded in PEEM (via PEM-2 ahead of time or via PEM-1). These messages can therefore be anything.
The language is able to express any calculation. It is not limited to any particular topology or approach.

As mentioned in OMA-ARC-2005-0227R05-PEEM_policy_Expression_Language, implementation or deployment specific optimization can be achieved with multiple algorithms to re-organize the topology of the tree. This is purely an implementation or deployment exercise.

Passing an identifier of what sets of rules to apply or if the policies are evaluation or evaluation and executions are just particular ways to perform some optimizations. They are covered by allowing input BLOBs that can contain such data and the policies can be written to handle these. This will interoperate across all PEEM implementations. It is unnecessary for PEEM to specify the use of any particular data items to distinguish one set of policies from another – this distinction is the purpose of the “condition” part of each policy rule and should be relied on when writing policies.

Priorities can be similarly passed to help optimization. They are to be treated as previous case.

BLOB specifications are essential both as input and output parameters because PEEM cannot constrain the form of input message or contexts – it must support proxy mode handling any message format and callable mode handling any decision-making process. This situation is completely analogous to a programming language where the syntax and semantics of the language constructs are defined, but programmers can generate any combination of those constructs. Nobody normatively explains how to combine the constructs or use data values – programmers have complete flexibility to generate any program which is analogous to the use of the BLOB to pass arbitrary data to and from PEEM. Tagging of the BLOBs is supported as implementation / deployment choices.
6. Flows
The following sections illustrate use cases and resulting flows involving PEEM and the defined interfaces.
6.1 PEM-2 Use Case
The following use case shows how policies/policy rules are developed and communicated to PEEM

1. SP starts using a PEEM implementation

2. SP person decides business policies such as "we want to charge every requestor some amount of money for every interaction with our platform" or "we want to charge premium prices to the great unwashed, but reduced prices to special partners, both based on time of day" or "we want to know who is making requests so we can track their history and offer them xyz"

3. SP "employee" converts these business policies into policy rules understood by the SP's PEEM implementation. Note that this conversion may involve delegating parts of conditions and actions to various enabler implementations..

4. SP authorized administrator submits policy rules to PEEM. This authorization may be also checked through PEEM.
5. A PEEM implementation may rearrange (and possibly re-state) the updated policy (repository of all policy rules accumulated by the PEEM implementation) in order to optimize how PEEM will evaluation or enforce the policy. The PEEM implementation may maintain a separate repository containing the modified policy/policy rules, different from the repository manipulated by the PEM-2 interface. This optimization might be to minimize overall CPU usage by PEEM, minimize delays introduced by PEEM processing, minimize storage space for the policy rules, etc. The optimization might use frequency and other information provided by the SP, or based on actual historical usage that PEEM has captured. (B) Optimization may also be performed by authoring tools when the policy rules are developed, or at the time a policy is being evaluated or enforced, or at some time in between. In all cases, such optimization is hidden from any component outside PEEM.
6. Success of the policy management operations can be checked.

[image: image1.wmf]PEEM Requestor

PEEM

4: PEM

-

2 (add/delete/update/retrieve, policy)

6:

Result

5:possible

Optimization

Of policy rules

Figure 1 Flow for PEEM PEM-2 interface
6.2 PEM-3 Use Case

The following use case shows how PEEM operates in proxy mode for policy enforcement:

1. A message is received by the PEEM implementation from a resource requestor.
2. The PEEM implementation starts processing the policy that it has been given through the PEM-2 interface.
3. The appropriate policy rules are enforced by evaluating the condition and executing the associated actions (when the condition is true).
4. When processing of the policy reaches a point where the message is to be passed to the target resource, then the appropriate message is generated as described in the policy and passed along (or transferred or routed) to the destination resource; otherwise, as described in the policy, a message may be returned to the resource requestor possibly with an error code.

[image: image2.wmf]Resource Requestor

PEEM

1: PEM

-

3 (BLOB)

4: if PEEM rejects

Return request

2: retrieve policy

Target Resource

4: if PEEM accepts,

forward request to resource

3:policy evaluation

And execution

Figure 2 Flow for PEEM PEM-3 interface

The message received in step 1 is generated by the resource requestor. To be allowed through by PEEM, the resource requestor must exchange a message that matches the type and orders of parameters prescribed by the policy.
6.3 PEM-1 Use Case (with policy)
The following use case shows how PEEM operates in callable mode when policy is provided as a parameter:

1. A resource (applications, enabler implementations, other software of any type/category) – the PEEM requestor - sends PEEM a context composed of the input data expected by the policy and a policy (set of policy rules).

2. The PEEM implementation gets the policy that has been passed.

3. The appropriate policy rules are enforced by evaluating the condition and executing the associated actions (when the condition is true). The evaluation results determine what actions are then to be executed and/or what next steps are to be taken.
4. At some point, the next steps involve generating a result message to the requestor as prescribed by the policy and terminating processing of the policy. PEEM returns the result of the policy evaluation or enforcement.

[image: image3.wmf]PEEM Requestor

PEEM

1: PEM

-

1 (BLOB, policy)

4: Result

2:

get

policy

3: evaluate and

Execute policy

Figure 3: Flow for PEEM PEM-1 interface with policy provided
In this use case, with respect to the IETF PEP-PDP model [RFC2753], the PEEM requestor can be considered as playing the role of PEP and PEEM called via PEM-1 is the PDP.

6.4 PEM-1 Use Case (no policy supplied)
The following use case shows how PEEM operates in callable mode when the policy is provided via PEM-2:

1. SP authorized principal submits policy rules to PEEM – authorization may be also checked through PEEM

2. Success of the policy management operation can be checked

3. A resource (applications, enabler implementations, other software of any type/category) – the PEEM requestor - sends PEEM a context composed of the input data expected by the policy

4. PEEM will use the policy that it has constructed as a result PEM-2 usage

5. The appropriate policy rules are enforced by evaluating the condition and executing the associated actions (when the condition is true). The evaluation results determine what actions are then to be executed and/or what next steps are to be taken.
6. 4.
At some point, the next steps involve generating a result message to the requestor as prescribed by the policy and terminating processing of the policy. PEEM returns the result of the policy evaluation or enforcement

[image: image4.wmf]PEEM Requestor

PEEM

1: PEM

-

2 (add/delete/update/retrieve, policy)

6: Result

4: retrieve Policy

Previously Provided

via PEM

-

2

5: evaluate and

Execute policy

3: PEM

-

1 (BLOB)

2: Result

Figure 4: Flow for PEEM PEM-1 interface without policy provided
In this use case, with respect to the IETF PEP-PDP model [RFC2753], the PEEM requestor can be considered as playing the role of PEP and PEEM called via PEM-1 is the PDP.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend that ARCH collects alternate views on this, if there are any, and documents in details the differences.
We would like to then have an analysis of the pros and cons of each alternative on each of these points followed by a binding decision on how to move forward.

If no alternative is provided, we recommend that ARCH agrees on the PEEM fundamentals presented in this contribution and incorporate the material presented in section 3 into the AD.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 10)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20040917]
Doc# OMA-ARC-2005-0298R01-PEEM_Fundamentals
Input Contribution

_1187438514.ppt

Resource Requestor

PEEM

1: PEM-3 (BLOB)

4: if PEEM rejects

Return request

2: retrieve policy

Target Resource

4: if PEEM accepts,

forward request to resource

 3:policy evaluation

And execution

_1187439367.ppt

PEEM Requestor

PEEM

1: PEM-1 (BLOB, policy)

4: Result

2: get policy

3: evaluate and

Execute policy

_1187437801.ppt

PEEM Requestor

PEEM

4: PEM-2 (add/delete/update/retrieve, policy)

6: Result

5:possible

Optimization

Of policy rules

_1187170812.ppt

PEEM Requestor

PEEM

1: PEM-2 (add/delete/update/retrieve, policy)

6: Result

4: retrieve Policy

Previously Provided

via PEM-2

5: evaluate and

Execute policy

3: PEM-1 (BLOB)

2: Result

