Doc# [image: image1.jpg]"sOMaQa

Open Mobile Alliance

OMA-ARC-2005-0330- What is a BLOB and why do we care
Input Contribution

Doc# OMA-ARC-2005-0330- What is a BLOB and why do we care
Input Contribution

Input Contribution

	Title:
	What is a BLOB and why do we care
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	8 Oct 2005

	Source:
	Mark Pozefsky, IBM poz@us.ibm.com
Stephane Maes, Oracle stephane.maes@oracle.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

During the ARC discussions about PEEM, there have been many questions about what “BLOB” is and why it is needed.
2 Summary of Contribution

This contribution describes what a BLOB represents and why it is an important concept for the PEEM enabler.
3 Detailed Proposal

The term “BLOB” was chosen because it is used in the IT software industry. We would be happy to change “BLOB” to a different term, such as “undefined string” or “undifferentiated string” or “unstructured string” or others. Send your cards and letters with proposals.
There is a difference in views about whether PEEM’s input parameter is a BLOB or not. The difference centers around when PEEM “knows” about the format of its input parameters -- is it at spec time (or actually at code implementation/development time, often called "compile time" because that is when you generate the software program to do the job) vs at run-time (when the software actually executes). This problem is similar to the I0+P for the PE. In that case, the actual I0 and P interface information can be acquired in 3 ways as described in the OSE document. In 2 of those (static) ways, the requesting application can have explicit code to know what information to send so that the receiving enabler will get the right I0 parameters and the PE will get the right P parameters. This works just fine if the SP does not change either the I0 or the P information. It also only works for those SPs who have the same I0 and P requirements. If the requesting application must invoke the enabler at a different SP, the I0 and P might be different. Or if the SP’s policy changes, different P might need to be sent by the application. In the third (dynamic) way described in the OSE, the required I0 and P information is retrieved by the application and used to generate messages containing the correct I0 and P information. The requesting application has a well-defined interface to the enabler in all 3 cases, but the "definition" is learned at different times. Note that in the dynamic case, the requesting application cannot define at implementation/development time the format of the message destined for the enabler -- the application will generate the message based on what it learns the policy requires.

We have already agreed that PEEM in proxy mode takes a BLOB as input parameter. This is because PEEM is acting as an interpreter of the policy expression language – PEEM has no inherent knowledge about what input it will receive nor how it will process that input – the policies provided at execution time (via PEM-2) completely determine what the input will look like and how it will be processed. The same holds true for the discussion about PEM-1. From PEEM's point of view, the incoming context information is not known at the time PEEM is implemented/developed. The format of that incoming information is dependent on the policy rules that are defined and specified through the PEM-2 interface (or the optional PEM-1 parameter) -- the policy rules are not known until execution time (rather than at the time that the PEEM code is developed/written). Therefore, the PEEM code is not able to define the format of the context information. The PEEM code can only say that it will receive some structured form of data, but it will not know that structure -- in fact, the data will be examined by the policy rules to determine the structure. Note that this is analogous to the PE case -- PE does not know beforehand what P parameters it will receive from requesting applications. The SP will somehow tell the applications what P parameters are needed, the applications will send those P parameters, and then PE will have to accept and process them. The SP's policy rules will enforce the policies applied to the incoming request including these P parameters.

So, a PEEM requestor will have a completely defined interface for sending context information to PEEM. That interface will be determined by the policy rules (either supplied across PEM-2 interface, or as the optional parameter of PEM-1). The PEEM requestor knows what information to put together in what format so that the policy rules can be applied by PEEM. Again, note that the PEEM requestor can be more or less dynamic in how it generates this context information it sends to PEEM -- it might be “hard coded” to always generate exactly the same information in the same format regardless of what environment in which it is deployed (all SPs would have to have the same policy rules which is possible if this behaviour is dictated by a standard's specification, such as "Presence information is only divulged to a 3rd party if the user has given proper permission"). Another case is that the requestor sets up the policy rule (using PEM-2 or the optional PEM-1 parameter) and therefore again knows exactly what context information to send to PEEM. Note that even in these cases, PEEM does not know what it will be receiving as formatted context information because it is receiving requests for policy enforcement from lots of different requestors who are having very different policy rules being applied (and therefore the context information each will provide is quite different). So though each of the PEEM requestors may know what they are sending to PEEM, PEEM does not know in advance at the time that PEEM code is being written/developed – therefore PEEM can only describe its incoming context information as a BLOB.

Note that there cannot really be a difference between how we define the proxy and the callable interfaces. When a 3rd party application sends a request to an enabler, it does not know if the deployment of PEEM (to do the PE function) is as a proxy or as a callable model. The PEEM function is the same, only distinguished by how it got invoked. The 3rd party application certainly can't be expected to change if the SP moves from one PEEM deployment model to another -- this must be transparent. Therefore the knowledge that PEEM has about the incoming information has to be the same -- in both cases, it receives unstructured information and the policy rules analyze that information to determine what to do. The 3rd party application knows what information it will send to the enabler (the I0 and the P parameters), though that information may not be known when the application is written, but rather, could be dynamically learned via a "discovery enabler" (e.g., UDDI).
Note that this same line-of-thought explains why from PEEM’s point of view, the returned (output) parameters are also a BLOB. Again, the PEEM developers do not know what the returned parameters will be or look like – the policy rules will dictate what is returned. We might find it useful to specify a return code to distinguish the main types of results such as “success” or “failure” or “expect more later” or others (similar to existing HTTP or SIP codes). This question does not really differentiate the different approaches.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

This contribution is intended to help level set ARC members about the use of BLOB. If ARC decides to incorporate some material from section 3 into the PEEM AD, then we will produce a revision showing that material and recommending its inclusion in the PEEM AD.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 3)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

