Doc# OMA-ARC-2006-0105-PEL_constructs_and_progress_proposal[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2006-0105-PEL_constructs_and_progress_proposal
Input Contribution



Input Contribution

	Title:
	PEL constructs and proposal for progression towards a PEEM Policy Expression Language
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	To:
	ARC

	Submission Date:
	26 Mar 2006

	Source:
	Stéphane H. Maes, Oracle
+1-203-300-7786
stephane.maes@oracle.com

	Attachments:
	N/A
	 FORMCHECKBOX 
 Public       FORMCHECKBOX 
 OMA Confidential

	Replaces:
	N/A


1 Reason for Contribution

At the Paris face To face it was decide to start compiling a set / set of PEL constructs.
2 Summary of Contribution

This contribution proposes an approach for the PEEM policy expression language and context/model for compiling PEL constructs. It also provides a set of PEL constructs to be added to the compiled list.
We recommend an approach for PEL design that allows to use it a common modelling language tool that can rationalize tools, policy management and interoperability.

3 Detailed Proposal

3.1 Analysis of the current status of PEL discussions
The on-going discussions around PEL have illustrated the pros and cons of both “flow / business process modelling” languages and “rule set” languages. Furthermore discussions have already revealed that other options may also exist including plain and simple generic programming languages and scripts.
After numerous discussions and iterations, it seems clear that there is value for the different approaches. In general, we believe that the following arguments have been made:

· Rule set languages are optimized and extremely efficient for the evaluation phase in a PEP-PDP model. This can be efficiently used in callable PEP-PDP mode as well as for certain cases of implementations of the proxy mode with a PEP interceptor and policy evaluation performed by a PDP.

· While efficient, rule set models are relatively simple to implement, manage and optimize.

· Flow / business process modelling language are well suited to model delegation

· Flow / business process modelling languages are well suited to model complex combinations of policy rules

· While suited to support PDP-PEP cases, flow / business process modelling languages can also model non PDP-PEP usages (both in proxy and callable mode)

· Any programming language may be very well suited to the expression of any combination of condition and action and its optimization
At the same time, it is clear that arguments have been raised against each of these approaches including (without trying to associate each criteria to a particular set of language approaches):

· Limitations of the combination of conditions of actions that can be achieved

· Limitation of the scope to too narrow domain

· Limitations of the extensibility (e.g. what kind of condition or action can be expressed)

· Concerns with the expected performances

· Portability issues

· Interoperability / interworking issues

· Management issues

· Issues with not being declarative

· Issues with modelling and support of delegation

· Implementation complexities

· Impact on legacy systems and deployed solutions

· Implications for policies already specified by OMA enablers

· Impact of implementation reuse

· Impact on policy enforcement performed at other level, e.g.:

· Within/as part of the OSE execution environment (see JSR94 (JCP), jBPM (JBoss), Aspect proxy in the Spring Framework (open source project))
· Within enabler implementations

· At the level of I2 interfaces

· Within the network (e.g. among network or other underlying resources in the SP domain or terminal domain).

· Challenges to use on terminal device or in operator’s domain

It seems clear that in a particular context, for a particular deployment or usage, some or all these argument may hold and may actually lead to optimal decision of what type of policy approach to use.

As a result, it does not seem plausible, or desirable, that one approach might win over the others. Note also that this conclusion is not to be understood as a recognition that consensus can’t be achieved but rather the admission that indeed there is no single silver bullet to this problem.
As a result several approaches have been proposed ranging from not specifying anything about PEL to allowing multiple PELs. In particular variations on the analysis above may lead to assume that multiple PELs and PEEM realizations (e.g. rule set realizations, Flow / Business process modelling realizations and generic programming language realizations) are the best way forward and that a Service provider should use and deploy the most appropriate realization for a particular task or context.

While feasible, these views seem to fall short of the goals behind PEEM:
· To provide a single enabler and set of interfaces to manage all service provider policies (at least service level) and move away from silos

· Provide formalism to author / manage policies throughout a OSE domain
· Assure interoperability across vendors

· Assure interoperability across actors (e.g. letting an enterprise or third party content or service provider delegate some policy evaluation and enforcement steps to the service provider, letting an authorized principal load / send / configure policies on a terminal) 
· To stabilize/rationalize (i.e. allow evolutionary approaches, migration, …) the policy management, evaluation and enforcement and the policy modelling across any evolution of the SP domain (e.g. evolving/ changing vendors, evolving/ changing network / resource technologies, evolving/ changing policy needs, evolving/ changing or new services with different policy implications, etc). 

· To facilitate the development of policy authoring tools and development, deployment and management environment

· To facilitate the reuse of a common policy formalism:
· When specifying OMA enablers (e.g. presence, XDM, IM, DM, GM, CBCS, …)
· By other standard bodies (e.g. on might expect lots of value in standardizing linkages between TMF eTOM, Policies within an OSE domain and TMF SID data model; similarly for other OSS and BSS functions, …)
· Provide a generic model / formalism for policy evaluation and enforcement

In our view, without a PEL language specification or at least detailed enough models, only the latter item is satisfied. 
We also do not believe that the fact that certain methods of policy evaluation and enforcement are more suited at in certain context, would imply that the options are for multiple PELs (or no PEL at all). In fact such these statements are could rather be viewed as implementation, optimization or deployment considerations rather than language specification or model issues.

Furthermore, we contend that if indeed many approaches and many engines / technologies will be used in multiple context, there is a real need to offer a common management and tool formalism to avoid silos. We can not believe that the urge tof reduce silos and facilitate reuse, so clearly identified by the Industry and a major justification for the creation of OMA would suddenly not be a critical issue when it comes to policies. In our view, policies are a central feature for service providers and essential to any Service Oriented Architecture (SOA), of which the OSE is a particular case. Reuse, absence of silos, interoperability and interworking and common management and tools as well as integration with orchestration, OSS and BSS will be essential to adoption and success of the OSE vision and the Industry. Without a clear and common standard formalism that rationalize policies, they are just an additional layer of complexity with much less tangible immediate advantages. If this turns out to be the case, PEEM may not have that much value (other than its OMA specific statement that risk to be duplicate inconsistently across the language options) and PE has no rationalized and standard realization. And as PE is a key aspect of the OSE, …
Therefore we propose a PEL modelling approach aimed at supporting a common formalism across these different concept and addressing the concerns above while supporting context specific optimizations.

3.2 Proposal for an approach to design and use PEL

3.2.3 PEL proposal

We propose to study and design an abstract policy expression language that can be used to:

· Model and author policies
· Can be converted at authoring, upload or execution into an executable policy.

This language may reuse existing concepts or specifications when / where appropriate.
The PEL would consist of a mix of:

· Rules set constructs:

· Programmatic functions to support the expression of conditions and actions (i.e. rules)

· Pre-set or programmable rule combination algorithms (e.g. evaluate only first rule with a true condition, evaluate all the rules with a true condition etc…. See XACML for such examples)
· Programmatic functions and constructs to support:

· Expression of any flows

· Expression of any conditions and any action

· Expression of pre-set or programmable rule and rule set combination algorithms

· Ways to express OMA specific rules (conditions or actions)

3.2.4 Usage models
As the study and design proceeds, one may clarify the PEL usage model. It could be:

· A management and modelling tool by analogy to UML or TMF eTOM flows that tools can use to generate optimized policies expressed in a (set of) target policy expression language(s).

· A language that can actually be appropriately executed by PEEM implementations or compiled and/or interpreted into specialized languages executed by dedicated engines. The latter case being cases where the PEEM enabler is implemented via I2 interfaces by tehse specialized engines. The former case directly processes the PEL language.

A policy expressed as described in section 3.2.1 can be supported as follows:

· By a rule set engine by being converted into a ruleset or a combination of rulesets with an appropriate ruleset language (e.g. COMMONPOL / geopriv, XACML).

· By a workflow / business process engine by being converted into a flow language (e.g. BPEL or JBoss jBPM).
· A hybrid engine using PEL as a hybrid language (e.g. a base language with escape mechanisms (with context sharing) from one mode to the other mode (See OMA-ARC-2005-0410-Way_forward_PEEM_Policy_Language for particular examples of possible directions)).

· A PEL engine that directly processes the PEL language without a priori assumptions that some aspects are rule set based or workflow based.

· By tools to design and manage the policies

Developers, service providers or vendors that want to solely support rule sets can provide tools or engines that either limit the policy expressability to rule sets. The same holds for workflows. At the same time, they can use a same set of interface and tools to manage and author their policies and reuse appropriate parts of the policies as well as engine.
As we explore the options that exist for the usage model of the proposed PEL formalism, we will better understand normative statements that will be made relatively what a compliant PEEM implementation must support as full support of the language may be provided by a single implementation or by an appropriate implementation that appropriately combines tools and implementation capabilities. This may be modelled by sets of modules (e.g. corresponding to the main bullet identified in section 3.3) that may or may not be supported. This approach is not that different from internet protocol or XML specification practices.
3.2.5 Advantages

This approach allows for (non-exhaustive):

· A common policy expression language for interoperability and tools

· Reuse of existing engines

· Preferred policy approaches and models

· Preferred optimizations as needed / where needed
· Use each mode for what it does best

· A common way to manage policies and rationalization of the policies.
· A common way to exchange policies

· A common way to delegate policy evaluation or enforcement

· Common policy expression tools

· A single way to express OMA specific rules

In other words, it is now possible to have a common interface and modle to rationalize, author and manage policies in a SP domain.

In addition, this does not force for example WGs currently using policies (e.g. COMMONPOL inspired from geopriv for presence) to significantly change their model as their current policies would be directly expressible in PEL (considering the supported constructs). Later releases can also extend expression power as needed without departing from the initial policy formalism and language.

Vendors with preferred approaches or expertise would be able to continue to offer compliant products or solutions. Service providers can author and develop policies with a common set of tools

Indeed a PEL as proposed in section 3.2.1, allows for tools and engines that can for example:

· Limit the expression power or encourage design (via guidelines, patterns or examples) towards a preferred engine technology / language mode
· Compile / interpret (via tools, at configuration or at run time) a PEL policy into the suitable language, possibly with some restriction on the supported expression power (e.g. based on expected performances, or target implementations). Whenever there is a need to extend PEL expression power beyond a set of imposed limitation, the additional execution steps can be delegated with context sharing to another specialized engine.

· Optimization may be based on the usage context.
· Segregate different modes (e.g rule set and flow specific parts) and link them via delegation and context sharing  
At the same time, this approach would not stifle innovation and allow approaches that optimally combine the policy approaches (i.e. flows + rule sets + programming language).

We believe that this approach addresses the issues we raised and that it is increases the chances of wide adoption of a SOA like the OSE by the Industry.
3.3 Base set of PEL constructs
According to the discussion in section 3.2, we recommend the following set of constructs:
· A base programming language with a way to express the following:

Editor’s note: This bullet and the list is to be expanded in details

· Data types and data structures / objects and ways to define operations that can be applied to them

· Constants, variable data types and ways to define operations that can be applied to them
· I/O objects and functions

· Particular cases of above dedicated to I/O support

· Logical, mathematical functions:
· Particular case of oparations that can be applied on data structures

· Program flows (e.g. if then else, case of, goto, for loop etc…)
· A pre-built rule set construct with:

· Rules that consist of:

· Conditions expressed with the language above

· Actions expressed with the language above that are executed if the conditions are satisfied

· A (few) pre-set or a programmable rule combination algorithm(s) that can then be expressed with the language above 
Editor’s note: The pre-set rule combination algorithm(s) are to be detailed as are the way to program it. Examples of such aspects are provided by XACML (without the programmability).

· A set of flow constructs that includes

· A pre-set or a programmable rule set combination algorithm (s) that can then be expressed with the language above

Editor’s note: The pre-set rule set combination algorithm(s) are to be detailed as are the way to program it. Examples of such aspects are provided by XACML (without the programmability).

· Explicit flow constructs, e.g:

Editor’s note: The constructs under this bullet are to be explained in details, with a detailed abstract model / framework. Any conflict / overlap with three categories (especially between flow constructs and the base programming language constructs) above are to be addressed. The list is inspired from BPEL, but this does not mean using BPEL syntax or semantics. Nomenclature of the constructs may be updated as suitable for the work.
1. <receive>: Do a blocking wait for a matching message to arrive
2.  <reply>: send a message in reply to a message that was received through a <receive>.

3. <invoke> : initiate a one-way or request-response operation offered by another resource
4. <assign>: update the values of variables with new data

5. <throw>: generates a fault from inside the policy evaluation or evaluation and enforcement
6. <terminate>: exit the policy evaluation or evaluation and enforcement
7. <wait>: allows you to wait for a given time period or until a certain time has passed

8. <empty>: insert a "no-op" instruction into a the policy evaluation or evaluation and enforcement
9. <sequence>: define a collection of activities to be performed sequentially in lexical order

10. <switch>: select exactly one branch of activity from a set of choices

11. <while>: indicate that an activity is to be repeated until a certain success criteria has been met

12. <pick>: block and wait for a suitable message to arrive or for a time-out alarm to go off, perform the associated activity 

13. <flow>: specify one or more activities to be performed concurrently

14. <scope>: define a nested activity with its own associated variables, fault handlers, and compensation handler

15. <compensate>: used to invoke functions to reverse previous operations (on all completed child scopes in default order)
16. <compensatescope>: used to invoke functions to reverse previous operations (on one completed child).
17. <rethrow>: Forward a fault from inside a fault handler

18. <validate>: Validate format for input or output data 

19. <extend>: Wrapper to extensions that would be introduced in the language by introducing a  new name space. Extensions are defined within the <extend> </extend> boundaries and not understood by a normal PEEM engine.
20. <while>: Contained activity is repeated while a predicate holds

21. <repeatuntil>: Contained activity is repeated until a predicate holds

22. <foreach>: Contained activity is performed sequentially or in parallel, controlled by a specified counter variable

23. <if-else>: Select exactly one branch of activity from a set of choices

· A formalism to express OMA specific rules, e.g.(non exhaustive):

· Security statements (e.g. Authentication, authorization, GPM, confidentiality (selective), integrity, …)

· Charging statements

· Logging statements

· Privacy statements

· Preference statements

· Content screening statements 

· Content categorization statement

· …

3.4 Additional considerations

Following the constructs proposed in section 3.3, it should be clear that many PEL constructs may be based one existing language constructs, therefore ensuring reuse, reducing the ambition of the task and facilitating compilation into these languages. The main challenge is probably to define a syntax acceptable to all while maximizing reuse.
We also believe that the present PEL proposal is not overlapping with other standard activities. To the contrary, it should induce interest and collaboration with the groups involved in other policy aspects and domain / task specific policy languages.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification.  This obligation does not imply an obligation on Members to conduct IPR searches.  This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn.  Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration.  These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendations
We recommend that the ARC WG considers the approach and proposal for PEL as described in section 3.2.
We recommend that ARC agrees to the set of PEL constructs as described in section 3.3 (with editor’s notes calling for more details to be provided in TS when created) as part of the list of construct compiled in preparation to the TS. 

As the TS has not yet been started, we did not provide a CR to the TS. Based on the Paris outcome, we believe that at this stage the work consists into compiling the input before trying to rationalize the resulting list. So this list should be added to the list.
Further processing of the list should take place later and consider the proposal made in this contribution. ARC should therefore at the minimum undertake a propos and cons analysis of the proposal as well as its implications.
Of course, we recommend that ARC WG agrees to the approach and proposal for PEL as described in section 3.2.







NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

© 2006 Open Mobile Alliance Ltd.  All Rights Reserved.
Page 6 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20050101-I]

