Doc# OMA-ARC-2006-0355R01-PEEM_PEM-1_TS_XML_datatypes_for_consideration.doc[image: image1.jpg]
Input Contribution

Doc# OMA-ARC-2006-0355R01-PEEM_PEM-1_TS_XML_datatypes_for_consideration.doc
Input Contribution

Input Contribution

	Title:
	PEEM PEM-1 TS XML datatypes for consideration
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	ARC

	Submission Date:
	17 Oct 2006

	Source:
	Michael Brenner, Lucent Technologies

mrbrenner@lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution proposes content for PEEM PEM-1 TS.

2 Summary of Contribution

Background

ARC has agreed and documented in the PEM-1 TS that PEM-1 will support bindings to SOAP/XML. This contribution provides an analysis of XML supported datatypes and a comparison of those data types against data types supported by typical programming languages. This will support ARC in making a decision on supported parameter data types for PEM-1, and it may also influence the decision on parameters data types that are supported by PEL...

3 Detailed Proposal
Reference

[XML Datatypes]
XML Schema Part 2: Datatypes Second Edition - http://www.w3.org/TR/xmlschema-2/
Appendix Y: Analysis of data types supported in XML.

This is an analysis of data types supported in XML [XML Datatypes].

Y.1 Background

SOAP protocol does not introduce any new data types. It relies on data types supported by XML

Y.1 XML data types

This contains an analysis of the XML supported data types, as per [XML Datatypes]. In XML there are documented several data types dychotomies:

1. Atomic vs. list vs. union data types
· Atomic datatypes are those having values which are regarded by [XML Datatypes] as being indivisible.
· Atomic data types can be either primitive or derived
· List data types are those having values each of which consists of a finite-length (possibly empty) sequence of values of an atomic datatype.

· List data types are always derived
· Union data types are those whose value spaces and lexical spaces are the union of the value spaces and lexical spaces of one or more other datatypes.

· Union data types are always derived
2. Primitive vs. derived data types
· Primitive data types are those that are not defined in terms of other data types.
· Derived data types are those that are defined in terms of other data types.
3. Built-in vs. user-derived data types
· Built-in data types are those which are defined in [XML Datatypes], and can be either primitive or derived.
· Built-in data types can be derived:
· By restriction (ur types)

· By extension

· By extension or restriction

· there are also derived Complex Types (not derived from anySimpleType, but directly from anyType – which is the root for all data types)
· User-derived data types are those derived data types that are defined by individual schema designers.

There are indeed different ways to analyze XML data types, the one chosen in this analysis is to analyze the XML primitive and derived types, which would ensure coverage of all data types, except user-derived types and complex types, which are not further specified as part of the [XML Datatypes] specification, but can be created and documented as needed later on.

XML Primitive types are presented in the table below:

	XML Primitive Data Types
	Description

	string
	The string datatype represents character strings in XML.

	boolean
	boolean has the value space required to support the mathematical concept of binary-valued logic: {true, false}.

	decimal
	decimal represents a subset of the real numbers, which can be represented by decimal numerals.

	float
	float is patterned after the single-precision 32-bit floating point type

	double
	double is patterned after the double-precision 64-bit floating point type

	duration
	duration represents a duration of time. The value space of duration is a six-dimensional space where the coordinates designate the Gregorian year, month, day, hour, minute, and second components. All but the “seconds” components are arbitrary assigned integers; the “seconds” component is a decimal.

	dateTime
	dateTime values may be viewed as objects with integer-valued year, month, day, hour and minute properties, a decimal-valued second property, and a boolean timezoned property. Each such object also has one decimal-valued method or computed property, timeOnTimeline, whose value is always a decimal number; the values are dimensioned in seconds, the integer 0 is 0001-01-01T00:00:00 and the value of timeOnTimeline for other dateTime values is computed using the Gregorian algorithm as modified for leap-seconds. The timeOnTimeline values form two related "timelines", one for timezoned values and one for non-timezoned values. Each timeline is a copy of the value space of decimal, with integers given units of seconds.

	time
	time represents an instant of time that recurs every day. The value space of time is the space of time of day values. Specifically, it is a set of zero-duration daily time instances.

	date
	The value space of date consists of top-open intervals of exactly one day in length on the timelines of dateTime, beginning on the beginning moment of each day (in each timezone), i.e. '00:00:00', up to but not including '24:00:00' (which is identical with '00:00:00' of the next day). For nontimezoned values, the top-open intervals disjointly cover the nontimezoned timeline, one per day. For timezoned values, the intervals begin at every minute and therefore overlap.

	gYearMonth
	gYearMonth represents a specific gregorian month in a specific gregorian year. The value space of gYearMonth is the set of Gregorian calendar months. Specifically, it is a set of one-month long, non-periodic instances e.g. 1999-10 to represent the whole month of 1999-10, independent of how many days this month has.

	gYear
	gYear represents a gregorian calendar year. The value space of gYear is the set of Gregorian calendar years. Specifically, it is a set of one-year long, non-periodic instances e.g. lexical 1999 to represent the whole year 1999, independent of how many months and days this year has.

	gMonthDay
	gMonthDay is a gregorian date that recurs, specifically a day of the year such as the third of May. Arbitrary recurring dates are not supported by this datatype. The value space of gMonthDay is the set of calendar dates. Specifically, it is a set of one-day long, annually periodic instances.

	gDay
	gDay is a gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary recurring days are not supported by this datatype. The value space of gDay is the space of a set of calendar dates. Specifically, it is a set of one-day long, monthly periodic instances.

	gMonth
	gMonth is a gregorian month that recurs every year. The value space of gMonth is the space of a set of calendar months. Specifically, it is a set of one-month long, yearly periodic instances.

	hexBinary
	hexBinary represents arbitrary hex-encoded binary data. The value space of hexBinary is the set of finite-length sequences of binary octets.

	base64Binary
	base64Binary represents Base64-encoded arbitrary binary data. The value space of base64Binary is the set of finite-length sequences of binary octets. For base64Binary data the entire binary stream is encoded using the Base64 Alphabet.

	anyURI
	anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e., it may be a URI Reference). This type should be used to specify the intention that the value fulfills the role of a URI as defined by [RFC 2396], as amended by [RFC 2732].

	QName
	QName represents XML qualified names. The value space of QName is the set of tuples {namespace name, local part}, where namespace name is an anyURI and local part is an NCName. The lexical space of QName is the set of strings that match the QName production of [Namespaces in XML].

	NOTATION
	NOTATION represents the NOTATION attribute type from [XML 1.0 (Second Edition)]. The value space of NOTATION is the set of QNames of notations declared in the current schema. The lexical of NOTATION is the set of all names of notations declared in the current schema (in the form of QNames).

Table 1: XML primitive types

XML derived types are presented in the table below:

	XML Primitive Data Types
	Description

	normalizedString

	normalizedString represents white space normalized strings. The value space of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The ·lexical space· of normalizedString is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.

	token

	token represents tokenized strings. The value space of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The lexical space of token is the set of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. The base type of token is normalizedString.

	language

	language represents natural language identifiers as defined by by [RFC 3066] . The value space of language is the set of all strings that are valid language identifiers as defined [RFC 3066] . The lexical space of language is the set of all strings that conform to the pattern [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})* . The base type of language is token.

	NMTOKEN
	NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second Edition)]. The value space of NMTOKEN is the set of tokens that match the Nmtoken production in [XML 1.0 (Second Edition)]. The lexical space of NMTOKEN is the set of strings that match the Nmtoken production in [XML 1.0 (Second Edition)]. The base type of NMTOKEN is token.

	NMTOKENS
	NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second Edition)]. The value space of NMTOKENS is the set of finite, non-zero-length sequences of NMTOKENs. The lexical space of NMTOKENS is the set of space-separated lists of tokens, of which each token is in the lexical space of NMTOKEN. The item type of NMTOKENS is NMTOKEN.

	Name
	Name represents XML Names. The value space of Name is the set of all strings which match the Name production of [XML 1.0 (Second Edition)]. The lexical space of Name is the set of all strings which match the Name production of [XML 1.0 (Second Edition)]. The value space of Name is token.

	NCName
	NCName represents XML "non-colonized" Names. The value space of NCName is the set of all strings which match the NCName production of [Namespaces in XML]. The lexical space of NCName is the set of all strings which match the NCName production of [Namespaces in XML]. The base type of NCName is Name.

	ID
	ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The value space of ID is the set of all strings that match the NCName production in [Namespaces in XML]. The lexical space of ID is the set of all strings that match the NCName production in [Namespaces in XML]. The base type of ID is NCName.

	IDREF
	IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)]. The value space of IDREF is the set of all strings that match the NCName production in [Namespaces in XML]. The lexical space of IDREF is the set of strings that match the NCName production in [Namespaces in XML]. The base type of IDREF is NCName.

	IDREFS
	IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)]. The value space of IDREFS is the set of finite, non-zero-length sequences of IDREFs. The lexical space of IDREFS is the set of space-separated lists of tokens, of which each token is in the lexical space of IDREF. The itemType of IDREFS is IDREF.

	ENTITY
	ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)]. The value space of ENTITY is the set of all strings that match the NCName production in [Namespaces in XML] and have been declared as an unparsed entity in a document type definition. The lexical space of ENTITY is the set of all strings that match the NCName production in [Namespaces in XML]. The base type of ENTITY is NCName.

	ENTITIES
	ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second Edition)]. The value space of ENTITIES is the set of finite, non-zero-length sequences of ·ENTITY·s that have been declared as unparsed entities in a document type definition. The lexical of ENTITIES is the set of space-separated lists of tokens, of which each token is in the lexical space of ENTITY. The itemType of ENTITIES is ENTITY.

	integer
	integer is derived from decimal by fixing the value of fractionDigits to be 0and disallowing the trailing decimal point. This results in the standard mathematical concept of the integer numbers. The value space of integer is the infinite set {...,-2,-1,0,1,2,...}. The base type of integer is decimal.

	nonPositiveInteger
	nonPositiveInteger is derived from integer by setting the value of maxInclusive to be 0. This results in the standard mathematical concept of the non-positive integers. The value space of nonPositiveInteger is the infinite set {...,-2,-1,0}. The base type of nonPositiveInteger is integer.

	negativeInteger
	negativeInteger is derived from nonPositiveInteger by setting the value of maxInclusive to be -1. This results in the standard mathematical concept of the negative integers. The value space of negativeInteger is the infinite set {...,-2,-1}. The base type of negativeInteger is nonPositiveInteger.

	long
	long is derived from integer by setting the value of maxInclusive to be 9223372036854775807 and minInclusive to be -9223372036854775808. The base type of long is integer.

	int
	int is derived from long by setting the value of maxInclusive to be 2147483647 and minInclusive to be -2147483648. The base type of int is long.

	short
	short is derived from int by setting the value of maxInclusive to be 32767 and minInclusive to be –32768.

	byte
	byte is derived from short by setting the value of maxInclusive to be 127 and minInclusive to be -128. The base type of byte is short.

	nonNegativeInteger
	nonNegativeInteger is derived from integer by setting the value of minInclusive to be 0. This results in the standard mathematical concept of the non-negative integers. The value space of nonNegativeInteger is the infinite set {0,1,2,...}. The base type of nonNegativeInteger is integer.

	unsignedLong
	unsignedLong is derived from nonNegativeInteger by setting the value of maxInclusive to be 18446744073709551615. The base type of unsignedLong is nonNegativeInteger.

	unsignedInt
	unsignedInt is derived from unsignedLong by setting the value of maxInclusive to be 4294967295. The base type of unsignedInt is unsignedLong.

	unsignedShort
	unsignedShort is derived from unsignedInt by setting the value of maxInclusive to be 65535. The base type of unsignedShort is unsignedInt.

	unsignedByte
	unsignedByte is derived from unsignedShort by setting the value of maxInclsuive to be 255. The base type of unsignedByte is unsignedShort.

	positiveInteger
	positiveInteger is derived from nonNegativeInteger by setting the value of minInclusive to be 1. This results in the standard mathematical concept of the positive integer numbers. The value space of positiveInteger is the infinite set {1,2,...}. The base type of positiveInteger is nonNegativeInteger.

Table 2: XML derived types
Y.2 XML data types versus common programming languages supported data types

This section presents a comparison between common programming languages supported data types (from an analysis in a separate contribution) and the data types documented in [XML Datatypes] in order identify the differences and draw appropriate conclusions.

	C/C++/Java “Supported” Data Types
	XML primitive or derived data types
	Comments/conclusion

	void
	No equivalent
	Not a problem; there is no need to support void in XML for the purpose of PEEM, since void is only use as a convenience to be consistent for a function that does not return a value – so it will be data type internal to the policy only (if needed)

	int
	int
	Match

	unsigned int
	unsignedInt
	Match

	signed int
	int
	Match

	short int
	short
	Match

	unsigned short int
	unsignedShort
	Match

	signed short int
	short
	Match

	long int
	long
	Match

	unsigned long int
	unsignedLong
	Match

	signed long int
	long
	Match

	float
	float
	Match

	double
	double
	Match

	long double
	double
	Match

	char
	byte
	Match

	unsigned char
	unsignedByte
	Match

	signed char
	byte
	Match

	enum
	No equivalent
	Not a problem to support, if needed. There are several derivation methods possible (e.g. it could be defined as an XML complex type, and using Integer or int to derive from).

	array
	No equivalent (except for “strings” – which are arrays of bytes only)

	Not a problem to support, it may have to be added as a user-derived XML complex type.

	function
	No equivalent
	Not a problem; there is no need to support functions in XML as data types.

	struct
	No equivalent
	Not a problem to support, it may have to be added as a a user-derived XML complex type.

	union
	No equivalent.
	Unlikely to be needed when passing a parameter. If needed, may need more investigation.

	string
	string
	Match

	wchar_t
	No equivalent
	Not a problem to support, may be derived from string or from byte.

	bool
	boolean
	Match

Table 3: XML derived types
The comparison shows that practically all supported data types used in programming languages either have a direct match in a specified XML data type (basic or derived), or they can be derived using the specified XML data types.

The reverse is no trivial task to assess since there is an enormous amount of XML derived data types, that may not have an immediate equivalent in a basic data type in a programming language. Such work (deriving data types in PEL to support additional XML data types) may only be needed however if the policy needs such data types – since it is the policy that dictates the data types needed, and not the protocol that may be able to carry them; therefore it is not something requiring immediate attention.

Y.2 Conclusion on XML data types
As with any binding, what is of interest is that the data types that the PEL needs to support can be supported by the protocol. The analysis is showing that is indeed the case with XML data types, albeit some additional work on deriving some user-derived XML data types will likely be needed. However, to minimize unnecessary work in PEL and PEM-1 specifications and their later implementations, in reality only a subset of the data types supported in programming languages is needed initially, rather then supporting the entire super-set of data types available in programming languages.

Other types can be derived and added to PEL on a need-basis later on.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

We recommend to take this analysis in consideration when deciding on the data types to be supported by PEM-1 and PEL, and to include this analysis as informative intro in Appendix D.2 in PEM-1 TS.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

© 2006 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20060101-I]

