
GSM Association Non-confidential

Official Document RCC.13 - Rich Communication Suite RCS API Detailed Requirements

V3.0 Page 1 of 89

Rich Communication Suite RCS API Detailed Requirements

Version 3.0

19 October 2017

This is a Non-binding Permanent Reference Document of the GSMA

Security Classification: Non-confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the

Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and

information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted

under the security classification without the prior written approval of the Association.

Copyright Notice

Copyright © 2017 GSM Association

Disclaimer

The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept

any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document.

The information contained in this document may be subject to change without prior notice.

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 1 of 89

Table of Contents

1 Introduction 4

1.1 Overview 4

1.1.1 Differences with previous version of this specification 5

1.2 Scope 5

1.3 Architecture 6

1.4 Definition of Terms 6

1.5 Document Cross-References 7

2 RCS high-level requirements for UNI API 9

3 Authorisation framework for UNI API 11

3.1 General requirements 11

3.2 Authorisation using OAuth 13

4 UNI API requirements 16

4.1 General requirements 16

4.1.1 Common notification channel 16

4.1.2 Examples (informative) 18

4.1.3 Service Tags 19

4.2 Anonymous Customer Reference (ACR) API Requirements 21

4.3 Network Address Book API requirements 21

4.3.1 General considerations (informative) 22

4.3.2 RCS NAB basic operations 22

4.4 Capability Management API Requirements 24

4.4.1 Capability Discovery 24

4.4.2 User Discovery 26

4.5 Presence UNI API requirements 26

4.5.1 Publish Presence information and content 26

4.5.2 Retrieval of presence information, subscriptions, notifications, and

presence relationship management 27

4.5.3 Services capabilities 30

4.6 Messaging UNI API requirements 31

4.7 Chat UNI API requirements 32

4.7.1 Confirmed One to One Chat 32

4.7.2 Adhoc One to One Chat 35

4.7.3 Group chat 35

4.7.4 Long Lived Group Chat 36

4.7.5 Media 39

4.7.6 Notifications 42

4.8 File Transfer UNI API requirements 43

4.8.1 Introduction (informative) 43

4.8.2 Originating side 44

4.8.3 Terminating side 46

4.9 Call Control and Notification UNI API requirements 48

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 2 of 89

4.9.1 Call Functionality available to originating side 48

4.9.2 Call functionality available to originating side and terminating side 49

4.9.3 Media Information 50

4.10 WebRTC Signaling API requirements 51

4.10.1 Call Functionality available to originating side 51

4.10.2 Call Functionality available to terminating side 53

4.10.3 Call Functionality available to originating side and terminating side 54

4.10.4 Media 55

4.11 Video Share UNI API requirements 55

4.11.1 Video Share use cases (informative) 55

4.11.2 Video Share functionalities available to originating side 58

4.11.3 Video Share functionality available to terminating side 60

4.12 Image Share UNI API requirements 61

4.12.1 Image Share use cases (informative) 61

4.12.2 Image Share functionality available to originating side 62

4.12.3 Image Share functionality available to terminating side 63

4.12.4 Capability Query UNI API requirements 64

4.13 Location Pull 64

4.14 RCS Personal Network Blacklists basic operations 65

4.15 RCS Network Message Storage UNI API requirements 66

4.16 RCS Extension to Extension API requirements 67

4.16.1 Extension to Extension functionality available to originating side 68

4.16.2 Extension to Extension functionality available to terminating side 69

4.16.3 Extension to Extension functionality available to originating and

terminating side 70

4.16.4 Media 70

5 Service Provider / Chatbot Platform (SPCP) API requirements 71

5.1 General 71

5.2 Authorization Framework 72

5.2.1 Introduction (informative) 72

5.2.2 General requirements 72

5.3 Capability Management SPCP API Requirements 72

5.3.1 Capability Discovery 72

5.4 Service Provider / Chatbot Platform API requirements 74

5.4.1 Introduction (informative) 74

5.4.2 One-to-One Chatbot Session API Requirements, including Revoke 74

5.5 Privacy Management (Alias Function) API requirements 75

5.5.1 Introduction (informative) 75

5.5.2 Service Provider network to Chatbot Platform 76

5.6 Privacy Management (Alias Function) Link Report API requirements 76

5.6.1 Introduction (informative) 76

5.6.2 Service Provider network to Chatbot Platform 76

5.7 Spam Report Function API requirements 76

5.7.1 Introduction (informative) 76

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 3 of 89

5.7.2 Service Provider network to Chatbot Platform 77

 RCS API Authentication and Authorisation – Use Cases 78

 Document Management 88

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 4 of 89

1 Introduction

1.1 Overview

The GSMA Rich Communication Suite (RCS) initiatives main objective is to bring a suite of

services (using enablers from Open Mobile Alliance [OMA] and other Standards

Development Organisations) to market.

RCS is entering a new phase in its evolution; the introduction of Application Programming

Interfaces (APIs) to bring RCS to the market has been identified in GSMA RCS as a key

priority.

GSMA RCS is looking for defined APIs to reference, which includes exposing of RCS

capabilities to Web and Internet based developers, offering a set of commonly supported,

lightweight, Web-friendly APIs to allow mobile operators and other Service Providers to

expose useful information and capabilities to application developers. It aims to reduce the

effort and time needed to create applications and content that is portable across Service

Providers.

This document details the functional requirements for the RCS APIs.

Each individual deployment can consist of all the APIs or a subset of them (i.e., each

individual API is optional).

The requirements realisation is a subset of the latest OMA technical specifications for:

 REST_NetAPI_FileTransfer

 REST_NetAPI_NotificationChannel

 REST_NetAPI_Chat

 REST_NetAPI_ThirdPartyCall

 REST_NetAPI_CallNotification

 REST_NetAPI_ImageShare

 REST_NetAPI_VideoShare

 REST_NetAPI_ACR

 REST_NetAPI_CapabilityDiscovery

 REST_NetAPI_TerminalLocation

 REST_NetAPI_AddressBook

 REST_NetAPI_Presence

 REST_NetAPI_Messaging

 REST_NetAPI_Common

 Autho4API (mandatory OMA supporting enabler for enabling delegated

authorisation)

 REST_NetAPI_WebRTCSignaling

 REST_NetAPI_NMS

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 5 of 89

1.1.1 Differences with previous version of this specification

This version of the specification introduces the following changes:

 Service Provider / Chatbot Platform (SPCP) API requirements are added as a new

subject (section 5)

 Necessary changes related to the new section are reflected into the scope (section

1.2), architecture diagram (section 1.3), definition of terms table (section 1.4) and

document cross-reference table (section 1.5)

 “UNI API” added to the section 2 and section 3 titles for clarification

1.2 Scope

GSMA RCS has divided the APIs into three categories based on the target application

developers, business model and location of the APIs. This classification is not completely

precise but has been very instrumental in the discussions:

1. Device APIs

2. Wholesale/Business-to-Business (B2B) APIs, including Service Provider / Chatbot

Platform (SPCP) APIs

3. UNI/Long Tail APIs

The first category (Device APIs) characterizes APIs residing in a device meant for an

application executing in that very same device. The other two latter categories access the

service through an interface within the network and where the service could be executing in

many different locations including the end-user devices.

When it comes to the second category, these APIs are more in line with the traditional

approach taken by the industry. It is possible that many B2B scenarios are covered by

current requirements, with appropriate policy and security mechanisms. Section 5 contains

requirements for SPCP APIs.

The intention with the UNI/Long Tail API is to put the threshold at the lowest possible level:

1. for “anyone” or any application developer to develop a service/application that

embeds one or several RCS enablers;

2. allowing the embedding of RCS enablers in very lightweight environments (such as

pure web browser applications).

In this document the term RCS APIs in section 1.3 refers to both B2B and UNI/Long Tail
APIs accessed through the network, whereas in sections 2, 3 and 4 the term RCS APIs only
refers to UNI/Long Tail APIs.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 6 of 89

1.3 Architecture

Figure 1: RCS API Architecture

The figure “RCS API Architecture" shows a sample RCS API Architecture supporting:

1. Application authorisation to access the RCS methods/functions on behalf of the RCS

user.

2. End-user management of applications user has granted access to, which resource that

is granted, and the possibility to revoke the access for a given application.

3. Operation of the RCS user’s services via the existing RCS UNI using the defined API

primitives.

4. Developer security mechanisms and engagement/registration processes aimed to

individual or SME developers (out of scope of this document). Mechanisms and policies

shall be defined by the Service Provider. In many cases the existing developer portals

and communities could accommodate RCS.

5. Application and user authentication (out of scope of this document). In an RCS

deployment, authentication mechanisms will be defined by the Service Provider, and

they could reuse the same authentication used for “regular” clients.

1.4 Definition of Terms

Term Description

ACR Anonymous Customer Reference

API Application Programming Interface

CPM Converged IP Messaging

IP Internet Protocol

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 7 of 89

IS Image Share

MMS Multimedia Messaging Service

MSRP Message Session Relay Protocol

NAB Network Address Book

NNI Network-to-Network Interface

OMA Open Mobile Alliance

PNB Personal Network Blacklist

RCS Rich Communication Suite

REST Representational State Transfer

SME Small and Medium Enterprises

SMS Short Message Service

SPCP Service Provider / Chatbot Platform

UNI User-to-Network Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VoIP Voice over IP

WebRTC Web Real-Time Communication

1.5 Document Cross-References

Ref Title

[RFC6202] Known issues and best practices for the Use of Long Polling and

Streaming in Bidirectional HTTP

http://tools.ietf.org/html/rfc6202

[RFC6455] The WebSocket Protocol

http://tools.ietf.org/html/rfc6455

[OAUTH20] The OAuth 2.0 Protocol Framework

http://tools.ietf.org/html/rfc6749

[RCS5.3] GSMA PRD RCC.07 RCS 5.3 Advanced Communications Services and
Client Specification
http://www.gsma.com/rcs/specifications

[RCC07] GSMA PRD RCC.07 RCS 7.0 v8.0 Advanced Communications
Services and Client Specification
http://www.gsma.com/rcs/specifications

[RCSR5OMAIMEND] GSMA PRD RCC.12 RCS 5.2 Endorsement of OMA SIP Simple IM
http://www.gsma.com/rcs/specifications

[IR74] GSMA IR.74 - Video Share Interoperability Specification

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

[IR79] GSMA [IR79] Image Share Interoperability Specification

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

http://tools.ietf.org/html/rfc6202
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6749
http://www.gsma.com/rcs/specifications
http://www.gsma.com/rcs/specifications
http://www.gsma.com/rcs/specifications
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 8 of 89

[IR84] GSMA IR.84 - Video Share Phase 2 Interoperability Specification

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

[IR58] GSMA IR.58 – IMS Profile for Voice over HSPA

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

[IR92] GSMA IR.92 – IMS Profile for Voice and SMS

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

[IR94] GSMA IR.94 – IMS Profile for Conversational Video Service

http://www.gsma.com/newsroom/technical-documents/technical-

documents/

[Autho4API_10] “Authorization Framework for Network APIs”, Open Mobile Alliance™,

OMA-ER-Autho4API-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_3PC] “RESTful Network API for Third Party Call”, Open Mobile Alliance™, OMA-

TS-REST_NetAPI_ThirdPartyCall-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Addres

sBook]

“RESTful Network API for Address Book”, Open Mobile Alliance™, OMA-

TS-REST_NetAPI_AddressBook-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_ACR] RESTful Network API for Anonymous Customer Reference Management”,

Open Mobile Alliance™, OMA-TS-REST_NetAPI_ACR-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_CallNot

if]

“RESTful Network API for Call Notification”, Open Mobile Alliance™, OMA-

TS-REST_NetAPI_CallNotification-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_

CapabilityDiscovery]

“RESTful Network API for Capability Discovery”, Version 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_ CapabilityDiscovery -V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Chat] “RESTful Network API for Chat”, Open Mobile Alliance™, OMA-TS-

REST_NetAPI_Chat-V1_0

http://www.openmobilealliance.org/

[REST_TS_Common] “Common definitions for RESTful Network APIs”, Open Mobile Alliance™,

OMA-TS-REST_NetAPI_Common-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_FileTra

nsfer]

“RESTful Network API for File Transfer”, Open Mobile Alliance™, OMA-

TS-REST_NetAPI_FileTransfer-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Image

Share]

“RESTful Network API for Image Share”, Open Mobile Alliance™, OMA-

TS-REST_NetAPI_ImageShare-V1_0

http://www.openmobilealliance.org/

http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.gsma.com/newsroom/technical-documents/technical-documents/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 9 of 89

[REST_NetAPI_NotifC

hnl]

“RESTful Network API for Notification Channel”, Version 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_VideoS

hare]

“RESTful Network API for Video Share”, Version 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_VideoShare-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Locatio

n]

“RESTful Network API for Terminal Location”, Version 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_TerminalLocation-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Messa

ging]

“RESTful Network API for Messaging”, Version 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_Messaging-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_Presen

ce]

“RESTful Network API for Presence”, Version 1.0, Open Mobile Alliance™,

OMA-TS-REST_NetAPI_Presence-V1_0

http://www.openmobilealliance.org/

[OMACPM-MS] CPM Message Storage, Version 2.0, Open Mobile Alliance™, OMA-TS-

CPM_MessageStorage-V2_0-20150113-C

http://www.openmobilealliance.org/

[REST_NetAPI_WRTC

S]

RESTful Network API for WebRTC Signaling 1.0, Open Mobile Alliance™,

OMA-TS-REST_NetAPI_WebRTCSignaling-V1_0

http://www.openmobilealliance.org/

[REST_NetAPI_NMS] RESTful Network API for Network Message Storage 1.0, Open Mobile

Alliance™, OMA-TS-REST_NetAPI_NMS-V1_0

http://www.openmobilealliance.org/

[W3C_WebRTC] WebRTC 1.0: Real-time Communication Between Browsers, W3C

http://www.w3.org/TR/webrtc/

[RFC3264] J. Rosenberg and H. Schulzrinne, RFC3264: An Offer/Answer Model with

the Session Description Protocol, June 2002

http://www.ietf.org/rfc/rfc3264.txt

[IETF-DRAFT-JSEP] Javascript Session Establishment Protocol, Version 8, October 27, 2014

https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-08

2 RCS high-level requirements for UNI API

Label Description Comment

UNI-HLF-001 The RCS API SHALL be HTTP/REST

based.

UNI-HLF-002 Resource URLs and primitive names

SHALL have an intuitive relationship with

the functions and resources they are

intended to represent.

UNI-HLF-003 It SHOULD be possible to reuse the Data

definitions of the RCS APIs for future

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.w3.org/TR/webrtc/
http://www.ietf.org/rfc/rfc3264.txt

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 10 of 89

bindings.

UNI-HLF-004 The RCS APIs SHALL allow including the

API version in the resource URLs

UNI-HLF-004b The RCS APIs SHALL allow an application

and a server to negotiate the version of a

particular resource

This requirement might use the API

version in the URL or not.

UNI-HLF-005 The RCS API SHALL expose a functional

abstraction at the user level rather than at

the level of underlying protocols.

UNI-HLF-006 The RCS API SHALL support ”server”-

based application clients and ”device”-

based application clients. Instantiation

examples include applications running on a

Web server (where the user interacts with

the application via a web browser), or

running on a mobile or fixed device as a

”widget” or as a native application.

UNI-HLF-007 The RCS APIs SHALL support application

authorisation based on OAuth2.0.

Cf. requirement [UNI-OAU-001]

Ref: [OAUTH2.0]

Users are expected to be

authenticated by their Service

Providers, however the

authentication mechanisms for the

user and application are out of

scope of this document and are

therefore out of scope for RCS

APIs.

UNI-HLF-008 Subject to the underlying resource

capabilities, the RCS APIs SHALL NOT

expose the real identities of the user and

her/his contacts. In particular, mobile

telephone numbers (i.e., MSISDNs) or

identities SHALL NOT be exposed either for

users or for their contacts. Subject to

Service Provider policies, only trusted

applications will be authorized to know that

information.

UNI-HLF-009 The RCS APIs SHALL be restricted to the

operations and procedures of the RCS UNI

as defined by GSMA RCS.

Applications using the RCS APIs

should not be able to perform

operations not possible to a regular

RCS client.

Ref: [RCS5.3]

Call UNI API Requirements (see

section 4.10) exposes RCS UNI for

IP Voice and Video Call

functionality.

Ref: [RCS5.3] ch 3.8 IP Voice Call

(IR.92 and IR.58), ch 3.9 IP Video

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 11 of 89

Call (IR.94).

UNI-HLF-010 RCS APIs shall be extensible in a backward

compatible way

Informative note: It is expected to be possible for a Service Provider to deploy developer
security mechanisms and engagement/registration processes aimed at individual
developers. Developer security mechanisms are out of the scope of this document, and
therefore out-of-scope for RCS APIs.

3 Authorisation framework for UNI API

Note: Authentication (of user, application, or developer) is out of the scope of this document,
because in an RCS deployment authentication mechanisms will be defined by the Service
Provider, typically re-using the authentication used for “regular” RCS clients. Application
authorisation is under scope as per OAuth flow (see UNI-OAU-002 and ff).

Note: In the context of this section, “widget” should be understood in a general way as to
denote a range of device software ranging from web applets to small non-native
applications.

3.1 General requirements

Label Description Comment

UNI-AUT-001 The Authorisation framework SHALL enable a

user owning network resources exposed by a

RESTful API to authorize third-party

applications to access these resources via

this RESTful API on that user’s behalf.

UNI-AUT-002 The Authorisation framework SHALL support

network-side Web applications, accessed

from the user’s Web browser.

UNI-AUT-003 The Authorisation framework SHOULD

support client-side stand-alone widget

applications installed on the user’s terminal

and running outside of a Web browser.

UNI-AUT-004 The Authorisation framework SHOULD

support client-side native code applications

installed on the user’s terminal.

UNI-AUT-005 The Authorisation framework SHALL NOT

require a user to reveal to third-party

applications the credentials he/she uses to

authenticate to the Service Provider.

Note: This is an RCS user privacy

requirement.

UNI-AUT-006 The Authorisation framework SHALL allow a

third-party application to obtain from a

Service Provider (e.g., by provisioning or

dynamic discovery) the parameters required

to request a user’s authorisation and to

access the user’s network resources.

UNI-AUT-007 The Authorisation framework SHALL support

a third-party application to initiate the

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 12 of 89

authorisation request by directing the user to

the Service Provider’s portal.

UNI-AUT-008 The Authorisation framework SHALL support

presenting the third-party application’s

authorisation request to the resource owner in

the form of an explicit authorisation dialog or

a user consent request.

It is assumed that the user has

authenticated to the Service

Provider before granting

authorisation (user authentication

is out of scope of the Authorisation

framework).

Note: Design and handling of this

dialog are out of scope for the RCS

API. However, the API needs to

communicate the parameters

needed for the dialog, and/or

specified by the user in the dialog

UNI-AUT-009 The Authorisation framework SHOULD

facilitate presenting to the resource owner at

least the third-party application identity, the

resources and the operations on these

resources for which authorisation is

requested.

Note: Design and handling of the

dialog presenting this are out of

scope for the RCS API. However,

the API needs to communicate the

parameters needed for the dialog,

and/or specified by the user in the

dialog.

UNI-AUT-010 The Authorisation framework SHALL enable

the resource owner to authorize or deny

access to each of the requested resources

and operations.

UNI-AUT-011 The Authorisation framework MAY enable the

resource owner to specify the duration for

which his/her access authorisation is granted.

UNI-AUT-012 The Authorisation framework SHOULD

facilitate communicating the resource owner’s

preferred language and terminal capabilities.

UNI-AUT-013 In case the user authorizes the third-party

application to access the user’s resources,

the Authorisation framework SHALL be able

to provide to the third-party application an

access token representing this user’s

authorisation subject to obtaining it from the

issuer.

UNI-AUT-014 The access token SHALL be usable only by

the third-party application for the restricted

scope (operations on resources) authorized

by the user at the time of authorisation

request.

UNI-AUT-015 VOID VOID

UNI-AUT-016 The Authorisation framework SHALL support

the inclusion of an access token (e.g.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 13 of 89

obtained by the third-party application from

the Service Provider for the scope of this

request) in requests to resources exposed by

the RESTful API.

UNI-AUT-017 The Authorisation framework SHOULD

facilitate the possibility to retrieve the list of

the third-party applications that have been

authorized before and which resources have

been authorized per third-party application by

the user.

UNI-AUT-018 The Authorisation framework SHOULD

facilitate the possibility for the user to remove

the authorisation for any third-party

application that has previously been

authorized.

UNI-AUT-019 Notifications sent to the third-party application

SHALL be filtered based on authorisation

granted to the third-party application. As

such, the server SHALL NOT send

notifications regarding a resource for which

the application has no authorisation.

Cf. requirement [UNI-NTF-005]

For an informative example, see Annex A.

3.2 Authorisation using OAuth

Label Description Comment

UNI-OAU-001 The Authorisation framework SHALL be based on OAuth

2.0 as specified in [OAUTH20].

Cf. requirement [UNI-

HLF-007]

Ref: [OAUTH20]

UNI-OAU-002 The Authorisation framework SHALL support the OAuth

2.0 “Authorisation Code flow”, where the third-party

application is a server-side web application.

UNI-OAU-003 The Authorisation framework SHALL support OAuth 2.0,

where the types of third-party applications can either be

client-side installed widget applications or client-side

native code applications.

UNI-OAU-004 For the delivery of authorisation code (“Authorisation

Code Flow”) / access token (“Implicit Grant Flow”) to a

client-side installed application (widget or native code

application), the Authorisation framework SHALL support

at least one OS-agnostic and application-type agnostic

delivery mechanism, which does not require end-user

interaction such as manual input of authorisation code.

Annex 1 provides an

informative example of

such a mechanism,

based on binary-SMS.

An alternative option

would be to use the

notification channel as

the delivery

mechanism.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 14 of 89

UNI-OAU-005 The Authorisation framework MAY support OAuth 2.0

flows other than the “Authorisation Code Flow”.

UNI-OAU-006 The Authorisation framework SHALL support the OAuth

2.0 “Authorisation Server” and “Resource Server” roles.

UNI-OAU-007 The Authorisation framework SHALL regard the user’s

resources accessed via the RESTful API as the OAuth

2.0 “Protected Resource”.

UNI-OAU-008 When following the Authorisation Code Flow the

Authorisation framework SHALL generate an OAuth 2.0

authorisation code as a result of the user authorisation.

If other flows are used,

a similar functionality

should be provided.

UNI-OAU-009 The Authorisation framework SHALL support the

exchange of an authorisation code for an access token

according to OAuth 2.0.

UNI-OAU-010 The Authorisation framework SHALL bind the

authenticated user identity to the generated authorisation

code and access token.

Note: The actual

authentication

mechanism used is out

of the scope of this

document because it is

foreseen that in an

RCS deployment

authentication

mechanisms will be

defined by the Service

Provider, typically re-

using the

authentication used for

“regular” RCS clients.

UNI-OAU-011 The Authorisation framework SHALL be able to determine

the user identity (e.g. MSISDN) from the access token

received from the application.

UNI-OAU-012 The Authorisation framework SHALL validate the access

token received from the application according to OAuth

2.0.

UNI-OAU-013 The values of the OAuth 2.0 “scope” parameter SHALL

reflect selected granularity in the usage of RCS

enablers/resources via the REST API.

UNI-OAU-014 The values of OAuth 2.0 “scope” parameter SHALL have

a direct mapping (1-to-1 or 1-to-many or many-to-many)

to the available RCS APIs primitives.

UNI-OAU-015 The following minimum set of "scope" values targeted

granularity SHALL be supported:

a. presence_publish_spi

b. presence_publish_servicecapabilities

c. presence_subscriptions

d. chat

e. filetransfer

f. videoshare

API design should

assign one of these

scope values to each

operation defined in

the APIs.

Note that the

mandatory requirement

applies only to the

targeted granularity of

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 15 of 89

g. imageshare

h. voice_call

i. multimedia_call

j. call_notification

k. pnb_management

the “scope values” and

not necessarily to the

listed identifiers

themselves. The way

the identifiers are

specified is left to the

technical specification.

UNI-OAU-016 In addition to the values defined in requirement [UNI-

AUT-015], it SHOULD be possible to define per-Service

Provider values of “scope” parameter to accommodate

different granularity levels.

Note: All figures are informative.

Figure 2: Example of Application Authorisation of OAuth 2.0 in RCS Using OAuth

Authorisation Code Flow

Social
NW

Social
NW App

(Server)

OAuth : Client

Select “ Set Tagline”App

OAUTH: Found, Location = /Authorize (App ID, scope =”publish_spi”, Redirect URI)
OAUTH: HTTP GET /Authorize (App ID, scope =”publish_spi”, Redirect URI)

OAUTH: Found, Location = Redirect URI (authorization code)

User A login to home operator portal

User A grants access to app to
Set Tagline on User A’s account

OAUTH:OK, (Access-Token)

OAuth Resource
Owner

User A

User A
Home OP3

Enabler

OAuth Protected
Resource

OAUTH: HTTP GET /Redirect URI (authorization code)

Ok

OAuth : Authorization/
Resource Server

redirecting to home operator by

constructing a URL based on the

end-user authorization endpoint

URL provided to the web app

following registration

Store Access - token for next time service
is used (No need to grant access again)

Token can be time limited -

authorization code valid

New in v0.3: GW needs to bind
request to RCS user identity

(MSISDN) at logon via
authorization/access token

GW needs to bind request to
RCS user identity at logon via

authorization code/access token

HTTP POST /Token (App credentials, authorization code, Redirect URI)

RCS API GW
(REST)

User
agent

Auth.

RCS API GW
(REST)

RCS Client
Function

Auth.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 16 of 89

Figure 3: Example of Application Usage of OAuth 2.0 in RCS

4 UNI API requirements

4.1 General requirements

4.1.1 Common notification channel

Label Description Comment

UNI-NTF-001 The RCS APIs SHALL support a common

notification mechanism that allows delivery of

notifications for multiple different subscriptions to

the same endpoint at the application.

Different RCS services need to

alert a user of events (incoming

chat invite, presence update from

buddy, etc.). If each RCS service

has its own notification channel, a

multi-service application would

need to manage multiple such

notification channels. This would

result in increased complexity and

would be impossible to manage in

some environments (for example,

web browsers have a limitation in

the number of open HTTP

connections). Similar requirements

from disparate domains have

driven the development of so

called bidirectional HTTP

technologies (Comet, Reverse

AJAX, long polling), see

[RFC6202].

UNI-NTF-002 The RCS APIs SHALL support the delivery of

notifications directly to an application-defined

The application establishes a

subscription to notifications by

Social

NW

Social

NW App
(Server)

OAuth : Client OAuth : Resource
Owner

User A

User A
Home OP3

Enabler

Ok
Ok

Ok

Access Token stored

Access token valid

OAuth : Protected
Resource

OAuth : Authorization /
Resource Server

Ok

“Set Tagline” (text=”Enjoying weekend”)

HTTP REST URL: Set Tagline (text=”Enjoying weekend”, Acess-Token)

NOTIFY

RCS API GW
(REST)

User
agent

Auth.

RCS API GW
(REST)

RCS Client
Function

Auth.

GW finds RCS user identity
(MSISDN) via access token

XCAP PUT permanent presence <note> element for MSISDN-A

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 17 of 89

endpoint (i.e., a callback URL), using HTTP. providing a call-back URL where

the notifications are to be received.

This method follows the well-

known subscription/notification

pattern using REST primitives. It is

to be used mainly for server-to-

server notifications.

Emerging industry standards for

such notifications like

pubsubhubbub

(http://code.google.com/p/pubsubh

ubbub/) could be taken into

consideration.

UNI-NTF-003 The RCS APIs SHALL support the delivery of

notifications to the application in an HTTP-based

notification channel using the long-polling

mechanism (see [RFC6202]).

This method is to be used mainly in

environments that cannot receive

requests from the network or

cannot support server

environments, such as browsers,

devices, set top boxes, and so on.

The application issues a “long”

polling request to establish a

notification channel for receiving

notifications.

UNI-NTF-004 The notification mechanisms according to

requirement [UNI-NTF-002] and [UNI-NTF-003]

SHALL use the same data format and schemes

for notifications.

UNI-NTF-005 Notifications sent SHALL be filtered based on

authorisation granted to the application, so the

server SHALL NOT send notifications regarding a

resource for which the application has no

authorisation.

Cf. requirement [UNI-AUT-019]

UNI-NTF-006 The RCS APIs SHALL support selective

subscriptions of the application to notifications

about specific events.

As an example, an application that

only reads / sets the free text field

would not be interested in Video

Share-related notifications, or

contact list update notifications.

UNI-NTF-007 The RCS APIs SHALL be able to deliver multiple

events in one single (long polling) notification.

This mechanism is to be used for

long-polling but might be adopted

in other cases (e.g., delivering

notifications with a callback URL).

UNI-NTF-008 The RCS APIs SHALL support the inclusion of a

reference to the relevant resource in the

notification.

The application can use the

received resource reference to

perform relevant actions on the

resource (e.g. accept invite or get

presence data from buddies).

Notification events are expected to

be able to include details where

applicable (e.g. session progress

http://code.google.com/p/pubsubhubbub/
http://code.google.com/p/pubsubhubbub/

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 18 of 89

information such as “Chat

answered”).

Note: Some events will be self-

contained, meaning they contain all

information the application requires

for further processing. Others

notifications might require querying

a resource, which requires the URL

to be included in the event

notification.

UNI-NTF-009 RCS APIs SHOULD include an informative

description or reference model for the “long

polling” notification channel.

Since there are no telco-related

standards using these techniques,

this would facilitate interworking

and guide implementations,

including aspects such as when

connections should be closed,

open or retried. Recommendations

and best practices in [RFC6202]

for “long polling” to be considered.

UNI-NTF-010 The RCS APIs SHOULD support the delivery of

notifications to the application via a Websocket

based notification channel (see [RFC6455]).

4.1.2 Examples (informative)

Figure 4: Notification Channel Using “subscription” Method, Example

200 OK with Resource

Functional
(Data)

session

GET https://URL/Resource/ o bject Id

RCS Enablers
RCS Enablers

200 OK

RCS API GW

User
agent

Auth.

RCS API GW

RCS Client

Function

Auth. Social
NW

Social
NW App
(Server)

“ UNI ”

POST https:// Appserver/RCSApp/AppInstance/notifications
with URL identifying the resource to be retrieved,
e.g. https://URL/Resource/objectId

Operate on
Object

To perform
Required
actions

Establish
notification

Channel

201 Created SIP Register
sip:alice@opDomain.com

POST https://url/Notifications/subscription/

Notification url = https://Appserver/RCSApp/AppInstance/notifications

200 OK

RCS GW sends
notificatio n to
application on

registered URL

POST https:// Appserver/RCSApp/AppInstance/notifications
with URL identifying the resource to be retrieved,
e.g. https://URL/Resource/objectId

Notification

(Control)

session

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 19 of 89

Figure 5: Notification Channel Using “long polling” Method, Example

NOTE: In the following sections, the parameters mentioned in the “Required parameters
(not complete list)” column should not be construed to be complete and final; the intention is
to include only the parameters required by the semantics of each operation. In particular,
elements such as a “tag” (to identify and correlate operations and notifications), and so on,
are not included as they are understood to be part of the technical design.

4.1.3 Service Tags

Label Description Required parameters Comment

UNI-ServTags-

001

The Messaging UNI

API, Chat UNI API,

File Transfer UNI API,

Call Control and

Notification UNI API,

WebRTC Signaling

UNI API, Video Share

UNI API shall each

allow:

 On sending,

an IARI value

identifying a

third party

application to

be included in

the API

towards the

IMS

oauth_token={access-

token}

Optional:

IARI value

Explicit_require tag set to

yes or no (default is no)

A third party application can

decide whether it requires

that

 only traffic identified

with the IARI shall

be accepted

between two or

more applications

using the same IARI

(i.e., an application

initiating an IARI

requires the

recipient application

to also support the

same IARI value) by

setting

explicit_require to

yes, and

 200 OK with URL iden tifying the
resource to be retrieved,
e.g. https://URL/Resource/objectId

200 OK with Resource

GET https://URL/Resource/objectId

RCS Enablers RCS Enablers

200 OK

200 OK with URL identifying the

resource to be retrieved,

e.g. https://URL/Resource/objectId

RCS API GW

User
agent

Auth.

RCS API GW

RCS Client

Function

Auth. Social
NW

Social
NW App
(Server)

“ UNI ”

GET https://url/Notifications
Poll

notification
Channel

Operate on
Object

To perform
Required
actions

GET https://url/Notifications

POST https://url/Notifications
Establish

notification
Channel

200 OK
SIP Register
sip:alice@opDomain.com

Notification

(Control)

session

Functional

(Data)

session

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 20 of 89

framework

below

 On receiving,

an IARI value

identifying the

target third

party

application to

be carried

from the IMS

framework

towards the

application

level

 On sending,

include an

indication

whether the

recipient is

required to be

the application

corresponding

to the IARI

value (i.e., the

IARI value has

to be

registered by

the receiving

application via

the Presence

or Capability

Discovery

API)

 traffic identified with

the IARI can be

accepted between

two or more

applications where

not all applications

support the same

IARI (i.e., an

application initiating

an IARI does not

require the recipient

application to also

support the same

IARI value). by

setting

explicit_require to no

NOTE 1: in protocol

terms mandating that the

IARI is registered is

accomplished by adding

both the "explicit" and

"require" parameters to

the Accept-Contact

header carrying the IARI

of the corresponding SIP

request as per RFC

3841.

NOTE 2: It is out of the

scope of each particular

API what IARI values

are allowed.

NOTE 3: If the IARI

feature is used, the

same IARI value must

be used in all messages

belonging to the same

session.

See [RCS5.3] section

3.12.4 Extensions –

Technical Realisation.

UNI-ServTags-

002

The Presence UNI

API, and Capability

Discovery UNI API

shall allow:

 declaring the

IARI capability

 Retrieving

IARI

supported by

remote

oauth_token={access-

token}

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 21 of 89

contacts

4.2 Anonymous Customer Reference (ACR) API Requirements

The API gateway providing the RCS APIs SHALL NOT expose the real identities of the user
and their contacts (see UNI-HLF-008). This means that the API will need to use Anonymous
Customer References (ACRs).

Nevertheless, some applications do hold the real identities of their users as they get contact
data from other sources (e.g., terminal address books, direct user input, Service Provider
address books). Therefore, a mechanism to translate real identities (e.g., MSISDNs) into
ACRs is needed and shall be provided by gateway.

Label Description Required parameters Comment

UNI-ACR-001 The ACR API SHALL

support requesting an

Anonymous Customer

Reference (ACR)

associated to an

MSISDN.

oauth_token={access-

token}

msisdn: {msisdn}

return value:

acr;{Anonymous Customer

Reference}

The ACR needs to be stable

for a given MSISDN and

application ID if applicable.

This means that the

anonymized ID returned by

the API shall not change

over the time for a given

MSISDN and application.

For security and end user

privacy reasons, it is

recommended that the ACRs

for a given MSISDN vary

with the application ID. That

is, it is recommended that

two different applications get

different anomymized IDs for

the same MSISDN.

For MSISDN, the tel: URI

scheme [RFC3966]

SHOULD be used in the

interface for an MSISDN;

and the acr: URI scheme as

defined in Appendix H of

[REST_NetAPI_ACR]

SHOULD be used for the

Anonymous Customer

Reference.

4.3 Network Address Book API requirements

This section has an informative character. It captures the discussion of the working group
about contact data and Network Address Books (NABs).

Contact data is essential for RCS communication. An RCS application can get contact data
from different sources:

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 22 of 89

1. Direct user input

2. Terminal address book

3. An RCS API provider’s NAB

4. NAB of a Service Provider that does not offer the RCS API

The interfaces through which the address book is accessed by the application are
implementation-specific. However, a MSISDN or an anonymized identifier is needed to link
to an RCS user.

For RCS API Service Providers that also run a NAB as specified below, it is recommended
that the NAB works with the ACRs as specified in this document.

4.3.1 General considerations (informative)

NAB API’s main use case is to allow applications to fetch contact information and to receive

updates regarding contact information (i.e., new contact added, contact information

modified, etc). Additional operations are defined to allow applications to update the address

book.

Depending on a Service Provider’s policies, in general, retrieve operations return a list of

contacts, but not the complete information for each one of the contacts. The contact identity

returned is the one that should be used by the rest of APIs.

Two different identities can be returned:

1. a human readable identity that the application can show to the user; and

2. an identity for use by the rest of APIs (e.g. a tokenized identifier which is not

intended to be human readable).

An ACR for a user/contact is usually assigned by the Service Provider and may be common

for all applications that may subsequently use it or may be assigned per each application

basis, subject to Service Provider’s policies. How a given ACR is generated and how it

populates the resource representing the contact in the NAB is out of scope for the NAB API.

Depending on a Service Provider’s policies, trusted applications can get complete

information (potentially including an MSISDN or URI). OAuth 2.0 mechanisms can be

leveraged to that end.

Retrieve address book allows optionally filtering. Only contacts or fields matching specified

conditions will be returned.

Note: It is recommended that filtering re-uses existing OMA filtering syntax as much as

possible.

4.3.2 RCS NAB basic operations

Label Description

Required

parameters (not

complete list)

Comment

UNI-NAB-001 The Network Address Book

API SHALL support

oauth_token={access-

token}

The answer amounts to

retrieval of the list of contacts

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 23 of 89

retrieving a filtered list of

contacts in the NAB and its

associated information

subject to Service Provider

policies.

Optional:

filtering parameters

in the address book, possibly

based on some filtering

conditions.

If filtering is requested then

only matching contacts are

returned.

Subject to Service Provider

policies, the retrieved list may

not include the contact

identity as underlying

identifiers (i.e., MSISDN or

URI) but instead may include

the contact identity as

tokenized strings that hide

that information (ACRs).

The contact identity (i.e.,

MSISDN, URI, or ACR)

returned is the only one that

can be used by the rest of

APIs (e.g., chat, file transfer,

etc.).

The contact name, which is

the display name, is

envisaged as the way for a

human user to identify the

contacts and it cannot be

used as the contact identity to

be used by the rest of APIs

(e.g. chat, file transfer, etc).

The name of the REST

resource representing the

contact is envisaged as a

mechanism to uniquely

identify the resource in the

context of the NAB API and it

cannot be used by the rest of

APIs (e.g., chat, file transfer,

etc)..

UNI-NAB-002 The Network Address Book

API SHALL support

retrieving all information for

a specified contact in the

vCard format.

oauth_token={access-

token}

contact={contactid}

Retrieve information about an

individual contact from the

NAB.

The API should transparently

return the vCard as stored by

the NAB, with the requirement

to support both 2.1 and 3.0

vCard formats at least.

UNI-NAB-003 The Network Address Book

API SHALL support delivery

of notifications regarding

updates to contacts in the

 See “Common notification

channel” for establishment of

notification channel.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 24 of 89

NAB.

UNI-NAB-004 The Network Address Book

API SHALL support deleting

temporary resources which

were created by the

instance of an application

(e.g., subscription for

notifications).

oauth_token={access-

token}

UNI-NAB-005 The Network Address Book

API SHOULD support

creating a new contact in

the NAB.

oauth_token={access-

token}

contact={contactid},

contact data

Add a contact in the NAB.

The answer will contain the

contact identity assigned by

the server for the new

contact. This contact identity

should be used by the rest of

APIs (e.g., chat, file transfer,

etc).

If the contact already exists,

then the operation will be

rejected.

UNI-NAB-006 The Network Address Book

API SHOULD support

updating a new contact in

the NAB.

oauth_token={access-

token}

contact={contactid},

contact data

Update a contact in the NAB.

4.4 Capability Management API Requirements

4.4.1 Capability Discovery

Capability discovery is one of the key functionalities and shall be exposed by the RCS API
gateway.

Subject to a Service Provider policy, applications created using the APIs shall be able to
register and exchange new capabilities to ascertain whether the other user supports that
application.

This API can be mapped to different Capability Management mechanisms in the underlying
network, such as SIP OPTIONS or Presence.

The following table describes the UNI API requirements for the capability discovery:

Label Description Required parameters Comment

UNI-CPD-001 The Capability

Discovery API SHALL

be able to register a

new service capability

feature tag related to

the application. This

capability shall be

enabled by UNI-CPD-

003 before being

exposed by the

oauth_token={access-

token}

capability: {capability_id}

Use case: Game application

using RCS to discover which

contacts are also available

for gaming.

Note: Registering new

application feature tags is

subject to operator policies.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 25 of 89

application on behalf

the user.

UNI-CPD-001b The Capability

Discovery API SHALL

be able to unregister a

previously registered

capability feature tag

related to the

application.

oauth_token={access-

token}

capability: {capability_id}

Return value can consist of a

list of capabilities.

UNI-CPD-002 The Capability

Discovery API SHALL

be able to enable or

disable any standard

RCS capability or a

custom application

registered capability

per application

instance.

oauth_token={access-

token}

enabled:{true/false}

capability: {capability_id}

UNI-CPD-003 The Capability

Discovery API SHALL

allow an application to

query the service

capabilities of a

certain contact or list

of contacts.

oauth_token={access-

token}

contact:{ }

Return value can consist of a

(possibly empty) list of

capabilities (per contact).

When the query is for a list

of contacts, the return value

should be a list of contacts

(and their capabilities).

Optionally the API Gateway

may return remaining results

in subsequent responses

(e.g. as Server to Client

Notifications)

The network element

providing this API should

answer any incoming user

capability user request (e.g.

OPTIONS received from

remote user) returning only

the feature tags related to

the enabled capabilities (see

UNI-CPD-002).

The refreshing of the

capabilities exposed by the

gateway is subject to

operator policy, for example,

to avoid abuse or impact in

network load.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 26 of 89

UNI-CPD-003a The Capability

Discovery API SHALL

support retrieval of its

own service

capabilities

oauth_token={access-

token}

Return value can consist of a

list of capabilities.

UNI-CPD-004 The Capability

Discovery API SHALL

support receiving real

time capability

requests from the

network and

forwarding them to the

application

oauth_token={access-

token}

See “Common notification

channel” for establishment of

notification channel.

Mechanism to be supported

up to Service Provider

policy.

Applies to Capability

Discover based in SIP

OPTIONS

UNI-CPD-005 The Capability

Discovery API SHALL

allow an application to

reply to real time

capability requests

with current

capabilities

oauth_token={access-

token}

Mechanism to be supported

up to Service Provider

policy.

Applies to Capability

Discover based in SIP

OPTIONS

4.4.2 User Discovery

User discovery supports an application to find out which of a user’s contacts are RCS
enabled. This API is typically called when an application initializes its address book.

Label Description Required parameters Comment

UNI-CPD-004 The Capability Discovery

API SHALL allow an

application to query if a

certain contact or list of

contacts is RCS capable

or not.

oauth_token={access-

token}

contact: { }

Return value:

{userType}

Return value:

{userType=RCS or empty}

(per contact).

When the query is for a list

of contacts, the return value

should be a list of contacts

(and the associated flag per

contact).

Optionally the API Gateway

may return remaining

responses in subsequent

responses (e.g. as Server to

Client Notifications).

4.5 Presence UNI API requirements

4.5.1 Publish Presence information and content

Label Description
Required parameters (not

complete list)
Comment

UNI-PRS-001 The Presence API oauth_token={access-token} Ref: [RCS5.3] ch 3.7.1.3

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 27 of 89

SHALL support

management of “free-

text” presence

attribute.

text={text} (e.g. “My picture is

updated!”)

Social Presence Attributes,

ch 3.7.4.2.2 Person

UNI-PRS-002 The Presence API

SHALL support

management of

“portrait icon” which

includes upload of the

icon.

oauth_token={access-token}

image={image} (jpeg/png

etc.)

RCS specific requirements

regarding size, aspect ratio,

file type, etc., should be

verified by the RCS API

GW.

Ref: [RCS5.3] ch 3.7.1.3

Social Presence Attributes,

ch 3.7.4.2.2 Person, ch

3.7.4.3.2.2 Status Icon

UNI-PRS-003 The Presence API

SHALL support

management of

“favourite link”

presence attribute.

oauth_token={access-token}

url={url} (e.g.

“http://myblog.blogspot.com”)

label={text} (e.g. “My blog”)

Ref: [RCS5.3] ch 3.7.1.3

Social Presence Attributes,

ch 3.7.4.2.2 Person

UNI-PRS-004 The Presence API

SHALL support

management of

“location” presence

attribute.

oauth_token={access-token}

text={text} (e.g. “Herentals,

Belgium”)

map_coordinate={coordinate}

(format following RCS e.g.

“51.1644 4.7880”)

map_radius={radius} (e.g.

“10”)

timezone={offset} (e.g.

“+120”)

Ref: [RCS5.3] ch 3.7.4.3.3

Geolocation Information, ch

3.7.4.2.2 Person

UNI-PRS-005 The Presence API

SHALL support

management of

“availability status”

presence attribute.

oauth_token={access-token}

status=”Available” / “Not

Available”

Ref: [RCS5.3] ch 3.7.1.3

Social Presence Attributes,

ch 3.7.2.2 Person

UNI-PRS-

005a

The Presence API

SHALL support

management of

multiple Social

Presence Information

attributes as a set.

oauth_token={access-token}

list of attributes (with value)

to be modified

This would support

updating of multiple

attributes out of the set of

SPI attributes, in a single

request.

4.5.2 Retrieval of presence information, subscriptions, notifications, and

presence relationship management

Label Description
Required parameters (not

complete list)
Comment

UNI-PRS-006 The Presence API

SHALL support

oauth_token={access-token}

contact={contactId}

Adding an additional user to

the “rcs” list will trigger a

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 28 of 89

invitation of a member

to share presence

information.

allow_location=true (or false) presence invitation toward

the other party.

Contact can be any URI

(MSISDN, SIP URI or

reference/object to a contact

received via the NAB API)

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.5.4

Client Procedures, Initiation

of Presence Sharing

UNI-PRS-007 The Presence API

SHALL support

cancellation of

invitation for sharing

presence information.

oauth_token={access-token}

contact={contactId}

An presence sharing

invitation can be cancelled

only before the invitation has

been accepted by the

presentity (TBD if needed)

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.5.4

Client Procedures, Initiation

of Presence Sharing

UNI-PRS-008 The Presence API

SHALL support

retrieval of presence

information for a given

contact or list of

contacts.

oauth_token={access-token}

contact={}

The returned presence

information structure is to be

defined, but must be on

higher abstraction level than

the existing protocol

(possibly JSON)

Note that the “contact”

parameter is a placeholder

for a parameter construct

that allows addressing a

contact as well as a contact

list.

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.3.3

Multidevice Handling, ch

3.7.4.5 Subscriptions and

Authorisation

Note: Requirement placed

here to avoid renumbering

after editorial changes.

UNI-PRS-009 The Presence API

SHALL support

subscriptions and

notifications for

presence sharing

invitation.

 See “Common notification

channel” for establishment of

notification channel.

UNI-PRS-010 The Presence API oauth_token={access-token} Accepting a presence

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 29 of 89

SHALL support

management (i.e.,

accept, block, ignore,

revoke) of presence

sharing invitations.

contact={contactId}

allow_location=true (or false)

invitation is done by adding

the user to the “rcs” list or

“basic spi only” list

[RCS5.3] ch 3.7.1.4 Social

Presence Authorisation, ch

3.7.4.5.4 Client Procedures,

Initiation of Presence

Sharing

Adding a contact to blocked

list should automatically

result in removing the same

contact from the “rcs” or

“basic spi only“ list

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.5.4

Client Procedures, Initiation

of Presence Sharing

Adding a contact to revoke a

list should automatically

result in removing the same

contact from “rcs” or “basic

spi only“ list

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.5.5

Client Procedures, Removal

of Presence Sharing

UNI-PRS-011 The Presence API

SHALL support

retrieval of presence

information for the own

presentity.

oauth_token={access-token} The returned presence

information structure is to be

defined, but must be on

higher abstraction level than

the existing protocol

(possibly JSON)

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.3.3

Multidevice Handling, ch

3.7.4.5 Subscriptions and

Authorisation

UNI-PRS-012 The Presence API

SHALL support

subscriptions and

notifications for

presence information

changes both for its

own presentity or a list

oauth_token={access-token}

contact={}

“Structured presence

information from presentities

that the user shares

presence information with”

Receive notifications about

presence information

changes from the

presentities.

See “Common notification

channel” for establishment of

notification channel.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 30 of 89

of contacts. The returned presence

information structure to be

defined but must be on

higher abstraction level than

the existing protocol

(possibly JSON).

Note that the “contact”

parameter is a placeholder

for a parameter construct

that allows addressing a

contact as well as a contact

list.

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 3.7.4.5.1

Subscriptions and

Authorisation Overview

UNI-PRS-013 The Presence API

SHALL support

querying for pending

presence invitations.

oauth_token={access-token} Application gets all pending

presence invitations

(including those possibly

received while application is

offline).

4.5.3 Services capabilities

The requirements below shall allow a user to read their own Service Capabilities and to
request service capabilities for a presentity (“who can I invite”).

Label Description
Required parameters (not

complete list)
Comment

UNI-PRS-014 The Presence API

SHALL support

retrieval of its own

service capabilities

oauth_token={access-token} Ref: [RCS5.3] ch 2.6.1.2.5.1

Service-descriptions for the

Selected RCS Services, ch

3.7.4.3.3 Multidevice

Handling, ch 3.7.4.5

Subscriptions and

Authorisation

UNI-PRS-015 The Presence API

SHALL support

retrieval of service

capabilities for a

contact (“who can I

invite”) or a list of

contacts.

oauth_token={access-token}

contact={ }

Contact can be any URI

(MSISDN, SIP URI or

reference/object to a contact

received via the NAB API).

Aggregation via different

notifications is possible for

the response.

Ref: [RCS5.3] ch 3.7.1.4

Social Presence

Authorisation, ch 2.6.3.7

Social presence, 2.6.1.2.3

Service Capabilities

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 31 of 89

Retrieval, ch.2.13.2 Privacy

4.6 Messaging UNI API requirements

This operation allows sending and receiving text and multimedia messages, and being
notified about the message delivery status.
For CPM Standalone Messages, three message disposition notifications are specified in

RCS, using the same message dispositions that are defined for chat in Section 4.7.5:

1. sent

2. delivered

3. displayed

Label Description
Required parameters (not

complete list)
Comment

UNI-MSG-001 The Messaging API

SHALL support

sending messages.

oauth_token={access-

token}

recipient = {contact(s)}

deliveryNotification =

“yes”/”no”

{content}

Content can be text or

multimedia.

Bearer service selection

(SMS, MMS, CPM

Standalone Messaging or

other) should not be a

mandatory parameter,

allowing for bearer selection

by API GW or Service

Provider policies.

A Message send request

resource is created which

will exist until the delivery

confirmation is provided to

the application.

This resource will be

automatically deleted by the

messaging server once the

delivery confirmation has

been provided to the

application (regardless of

mechanism used – see

receive message).

Ref: [RCS5.3] ch 3.2

Standalone messaging

UNI-MSG-002 The Messaging API

SHALL support

receiving messages.

oauth_token={access-

token}

See “Common notification

channel” for establishment of

notification channel.

UNI-MSG-003 The Messaging API

SHALL support

receiving of the

message disposition

(“sent”, “delivered”,

“displayed”) .

oauth_token={access-

token}

result_code={“sent”, error

condition}

The message delivery and

display notification are

requested according to

Service Provider policies,

when a message is sent on

API GW.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 32 of 89

The “sent” disposition is

received synchronously as

response to the request that

sends the message.

The “delivered” and

“displayed” dispositions are

returned asynchronously via

the notification channel.

See “Common notification

channel” for establishment of

notification channel.

Ref: [RCS5.3] ch 3.2

Standalone messaging

UNI-MSG-004 The Messaging API

SHALL support

sending “displayed”

notifications of

message received

oauth_token={access-

token}

message id={message-id}

The message-id parameter

value shall be the one

received in the incoming

message.

This operation will be

allowed only if the original

message included a

“displayed” notification

request.

Ref:[RCS5.3] ch 3.2

Standalone messaging

4.7 Chat UNI API requirements

4.7.1 Confirmed One to One Chat

The application is in full control of the session management, requiring an explicit
acceptance before the chat session is established. Several parallel sessions between two
users inside the application are possible using this model.

Note: Requirements in this section have been rearranged for better understanding and
clarity. To avoid impact on external references, requirement numbers have not been
changed. As a result, numbering is not consecutive in some cases.

4.7.1.1 Session Management originating side

The operations listed below allow the originating side of a chat to manage the chat session.

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-001 The Chat API SHALL

support starting a 1-to-

1 chat.

oauth_token={access-

token}

recipient={contactid}

subject={text} (e.g. “Dinner

tonight”)

Use case: Start a chat.

Contact can be any URI

(MSISDN, SIP URI or

reference/object to a contact

received via the Address

Book API).

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 33 of 89

Subject parameter is

optional and is the topic of

the chat; included when it is

provided.

Ref: [RCS5.3] ch 3.3 1-to-1

Chat, [RCSR5OMAIMEND]

ch 7.1.1 Originating Client

Procedures

UNI-CHT-001a The Chat API SHALL

support starting a 1-to-

1 chat with initial

message

oauth_token={access-

token}

recipient={contactid}

subject= {text} (e.g. “Dinner

tonight”)

message={text|multimedia

content} (e.g. “Hi”)

Use case: Start a chat.

Contact can be any URI

(MSISDN, SIP URI or

reference/object to a contact

received via the Address

Book API).

This requirement extends

the requirement UNI-CHT-

001.

Subject parameter is

optional and is the topic of

the chat; it is included when

provided.

Message parameter is

optional and is the first

message of the chat; it is

included when provided,

according to Service

Provider policies.

Ref: [RCS5.3] ch 3.3 1-to-1

Chat, [RCSR5OMAIMEND]

ch 7.1.1 Originating Client

Procedures

UNI-CHT-003a The Chat API SHALL

support cancelling a 1-

to-1 chat invitation

oauth_token={access-

token}

Use case: User cancels a

chat invitation. Cancellation

is only possible as long as

the invitation has not been

accepted.

Ref: [RCSR5OMAIMEND] ch

7.1.1 Originating Client

Procedures

UNI-CHT-004a The Chat API SHALL

support notifications

about chat (accepted,

cancelled; declined,

ended)

oauth_token={access-

token}

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 34 of 89

UNI-CHT-005 The Chat API SHALL

support ending a 1-to-

1 chat session by the

originating side

oauth_token={access-

token}

Use case: User ends 1-to-1

chat.

Ref: [RCSR5OMAIMEND] ch

7.1.1 Originating Client

Procedures

UNI-CHT-006 VOID VOID VOID

4.7.1.2 Session Management terminating side

The operations listed below allow the terminating side of a chat to manage its participation
in a chat session.

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-007a The Chat API SHALL

support notifications

about incoming chat

invite.

Information about inviting

user; subject if provided;

and/or first message if

provided

Use case: The user is invited

to a chat session.

It might be possible that the

inviting user is not in the

contact list.

See “Common notification

channel” for establishment of

notification channel.

Ref: [RCS5.3] ch 3.3 1-to-1

chat, [RCSR5OMAIMEND]

ch 7.1.2 Terminating Client

Procedures

UNI-CHT-008a The Chat API SHALL

support accepting a

chat invitation.

oauth_token={access-

token}

Use Case: User accepts

chat invitation.

Ref: [RCS5.3] ch 3.3 1-to-1

Chat, [RCSR5OMAIMEND]

ch 7.1.2 Terminating Client

Procedures

UNI-CHT-009a The Chat API SHALL

support declining a

chat invitation.

oauth_token={access-

token}

Use Case: User declines

chat invitation.

Ref: [RCS5.3] ch 3.3 1-to-1

Chat, [RCSR5OMAIMEND]

ch 7.1.2 Terminating Client

Procedures

UNI-CHT-010 The Chat API SHALL

support ending a 1-

to.1 chat by the

terminating side.

oauth_token={access-

token}

Use case: User ends chat.

Ref: [RCS5.3] ch 3.3 1-to-1

Chat, [RCSR5OMAIMEND]

ch 7.1.2 Terminating Client

Procedures

UNI-CHT-012a The Chat API SHALL

support notifications

about “chat ended”.

 Use case: Remote user ends

chat. Application of the

terminating user receives a

notification about that event.

See “Common notification

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 35 of 89

channel” for establishment of

notification channel.

[RCSR5OMAIMEND] ch

7.1.2 Terminating Client

Procedures

4.7.2 Adhoc One to One Chat

In this chat model there is no explicit chat invitation associated to the 1-to-1 chat. From the
functional point of view the user sends a message to another user and it is responsibility of
the client implementation to open any underlying SIP/MSRP sessions to deliver that
message. This complexity is hidden to the user.

Also from the receiver point of view, the user does not accept or decline a 1-to-1 chat
invitation; they simply receive a new message from a user. Therefore, it is not possible for a
user to be able to accept or reject an SIP/MSRP session from the client application and the
establishment mechanism is controlled by the client application according to the MNO rules.

Thus, no functional requirements associated with 1-to-1 chat establishment (for either the
originating or terminating side) are required by this model.

However, information regarding the technical establishment or ending of the underlying IM
session (i.e., SIP and MSRP session) are out of scope of this API specification.

The only requirements applicable then to the 1-to-1 chat in this model are the ones related
to the media and the notifications.

4.7.3 Group chat

The operations listed below allow managing a group chat. In this release only long-lived
group chats are supported. Hence requirements in this section superseded by requirements
in section 4.7.4 are removed.

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-002b VOID VOID VOID

Note: Covered by UNI-CHT-

030

UNI-CHT-003b The Chat API SHALL

support cancelling a

group chat invitation.

oauth_token={access-

token}

Use case: User cancels a

chat invitation. Cancellation

is possible only as long as

the invitation has not been

accepted.

Ref: [RCSR5OMAIMEND] ch

7.1 IM Client Procedures for

IM Sessions

UNI-CHT-004b The Chat API SHALL

support notifications

about group chat

(accepted, cancelled;

declined, ended) as

well as all services

supported within group

If the group chat session is

accepted the notification

shall also carry the list of

supported services within

the group chat.

The list of services

supported by the RCS

enabler within the group chat

shall be considered during

related API calls, e.g. UNI-

FLT-001.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 36 of 89

chat.

UNI-CHT-007b VOID VOID VOID

Note: Covered by UNI-CHT-

032

UNI-CHT-008b VOID VOID VOID

UNI-CHT-009b VOID VOID VOID

UNI-CHT-011 VOID VOID VOID

Note: Covered by UNI-CHT-

033

UNI-CHT-012b VOID VOID VOID

Note: Covered by UNI-CHT-

038

UNI-CHT-013 VOID VOID

VOID

Note: Covered by UNI-CHT-

039

UNI-CHT-014 VOID VOID

VOID

Note: Covered by UNI-CHT-

031

UNI-CHT-015 VOID VOID VOID

Note: Covered by UNI-CHT-

040

UNI-CHT-016 VOID VOID VOID

Note: Already covered by the

initial subscription of the

client to chat related

notifications.

UNI-CHT-017 VOID VOID VOID

Note: Covered by UNI-CHT-

036

4.7.4 Long Lived Group Chat

In the Long Lived Group, the session management complexity is handled internally by the
gateway and only the high level functionality related to the Long Lived Group chat user
experience is exposed in the API.

Apart from the media and notification requirements in chapters 4.7.5 and 4.7.6 which are
shared with the session aware group chat requirements in chapter 4.7.3, the following
requirements shall be fulfilled:

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-030 The Long Lived

Group Chat API

SHALL support a

user to create a new

Long Lived Group

oauth_token={access-token}

recipient={contact1},

{contact2}, …

subject={text} (e.g. “Hi”)

The group chat ID will be

generated internally by the

API GW and used according

to the RCS 5.1 spec chapter

3.4.4.1.1 Initiating a Group

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 37 of 89

indicating the list of

participants and the

subject of the group.

closed={true, false}

gc_services={ft, geopushft}

returns {group_chat_id}

Chat.

The group chat is regular by

default if closed parameter

is not specified (consistent

with UNI-CHT-002b and

UNI-CHT-013).

A list of all RCS services

supported by the application

within the group chat shall

be provided during group

chat setup in related API

calls and notifications.

Currently, with [RCS5.3] the

list may include File

Transfer and Geolocation

Push. It may be extended

later. Without parameter

gc_services it is assumed

that no further service is

supported within group chat.

UNI-CHT-031 The Long Lived

Group Chat API

SHALL allow a user

to add a user or a list

of users to a Long

Lived Group Chat.

oauth_token={access-token}

group_chat_id={group_chat_id}

recipient={contact1},

{contact2}, …

UNI-CHT-032 The Long Lived

Group Chat API

SHALL notify the user

when it has been

added to Long Lived

Group Chat.

The notification SHALL contain

information regarding the Long

Lived Group Chat.

The list of services

supported by the RCS

enabler within the group

chat shall be provided and

considered during related

API calls, e.g. UNI-FLT-001.

UNI-CHT-033 The Long Lived

Group Chat API

SHALL allow an user

to leave a Long Lived

Group Chat.

oauth_token={access-token}

group_chat_id={group_chat_id}

When the user leaves a

Long Lived Group Chat it

SHALL not be allowed to

post any new messages to

it.

The time to keep storing the

information regarding a

Long Live group chat in the

API GW after the user has

left it, is up to service

provider polices.

UNI-CHT-034 The Long Lived

Group Chat API

SHALL allow a user

to query the Long

Lived Group Chats

oauth_token={access-token}

return {list of group chat ids +

subjects}

Based on service provider

policies the list of group

chats returned for a user

may be restricted to just the

ones that the calling

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 38 of 89

and their subjects for

the user.

 application created for the

user.

UNI-CHT-035 The Long Lived

Group Chat API

SHALL allow

querying the detailed

information about a

Long Lived Group

Chat

oauth_token={access-token}

group_chat_id={group_chat_id}

return {subject, participant list,

open/close,...}

The information SHALL

contain at least the

participant list and the

subject of the group chat

and the supported services.

UNI-CHT-036 The Long Lived

Group Chat API

SHALL notify the

application when the

participant list of a

Long Lived Group

chat has changed.

The notification SHALL contain

the list of new participants

and/or participants leaving it.

UNI-CHT-037 The Long Lived

Group Chat API

SHALL notify the

application when the

list of supported

services of a Long

Lived Group chat

have changed.

The notification SHALL contain

the new list of services

supported during group chat.

The list of services

supported by the RCS

enabler within the group

chat shall be provided and

considered during related

API calls (e.g., UNI-FLT-

001).

UNI-CHT-038 The Long Lived

Group Chat API

SHALL notify the

application when a

Long Lived Group

Chat is no longer

available.

 A long lived group chat is no

longer available when it is

removed from the list of

group chats stored by the

API GW.

The decision when to

disable a long lived group

chat is based on service

provider policies.

UNI-CHT-039 The Long Lived

Group Chat API

SHALL allow to

extend a 1-to-1

confirmed to a Long

Lived Group chat

oauth_token={access-token}

chat_id={chat_id}

contact={contactId1,contactId}

closed={true, false}

gc_services={ft, geopushft}

return {group_chat_id}

Based on service provider

policies this operation may

not be allowed.

The group chat is regular by

default if closed parameter

is not specified (consistent

with UNI-CHT-002b and

UNI-CHT-013).

A list of all RCS services

supported by the application

within the group chat shall

be provided during group

chat setup in related API

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 39 of 89

calls and notifications.

Currently, with [RCS5.3] the

list may include File

Transfer and Geolocation

Push. It may be extended

later. Without parameter

gc_services it is assumed

that no further service is

supported within group chat.

UNI-CHT-040 The Long Lived

Group Chat API

SHALL allow a user

to re-join a long lived

group chat after the

user has left it.

oauth_token={access-token}

group_chat_id={group_chat_id}

Based on service provider

policies this operation may

not be allowed.

4.7.5 Media

The operations listed below allow handling the media in a chat.

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-018 The Chat API SHALL

support sending text

messages

oauth_token={access-

token}

message_content={content}

chat_id={contactid|

sessionid|group chat id}

return:

status: {success, pending,

failure}

Use case: The application

sends a chat message.

Content can be text or

multimedia according to

RCS specifications. This API

is for text message support.

The multimedia content

support is covered by UNI-

CHT-026.

The chat_id parameter can

be contactid for ad-hoc 1-to-

1 chat, or sessionid for

confirmed 1-1 chat and

group chat, or group chat id

for Long Lived group chat.

The status of the request for

sending message is

returned:success,

pending,failure.

One example for the failure

case is the chat id is invalid.

In case the transaction is to

take too much time to be

completed it shall be

possible to return a

“pending” response and

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 40 of 89

return the final delivery

status asynchronously via

the notification channel.

Ref: [RCSR5OMAIMEND] ch

7.1 IM Client Procedures for

IM Sessions

UNI-CHT-019 The Chat API SHALL

support sending of

“isComposing”.

oauth_token={access-

token}

isComposing=“active”/”idle”

“timeout=xx”” …

chat_id={contactid|

sessionid|group chat id}

Use case: The application

sends “isComposing” which

indicates that a user is

currently composing a

message.

The chat_id parameter can

be contactid for ad-hoc 1-to-

1 chat, or sessionid for

confirmed 1-1 chat and

group chat, or group chat id

for Long Lived group chat.

Same as [UNI-CHT-018]

with “isComposing” as a

special kind of content,

parameters according to

RFC 3994.

If the message delivery was

successful a “success”

response is returned.

Ref: [RCSR5OMAIMEND] ch

7.1 IM Client Procedures for

IM Sessions

UNI-CHT-020 The Chat API SHALL

support receiving

messages.

oauth_token={access-

token}

Use case: The application

receives a chat message via

the notification mechanism.

Timestamp value shall be

also notified to the

application if it was included

in the message.

Information regarding

“display” notification request

for the message shall be

also included if present in

the original message.

The chat_id (sessionid,

contactid, or group chat id)

information is included in

the notification for

application to identify the

chat session.

See “Common notification

channel” for establishment of

notification channel.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 41 of 89

Ref: [RCSR5OMAIMEND] ch

7.1 IM Client Procedures for

IM Sessions

UNI-CHT-021 The Chat API SHALL

support receiving the

“isComposing”

message.

oauth_token={access-

token}

Use case: the application

receives via the notification

mechanism an indication

that a user is currently

composing a message.

The chat_id (sessionid,

contactid, or group chat id)

information is included in

the notification for

application to identify the

chat session.

Same as [UNI-CHT-020]

with “isComposing” as a

special kind of content.

Ref: [RCSR5OMAIMEND] ch

7.1 IM Client Procedures for

IM Sessions

UNI-CHT-026 The Chat API SHALL

support sending

multimedia chat

messages.

oauth_token={access-

token}

message_content =

Body{multimedia content}

content type={content type}

chat_id={contactid|

sessionid|group chat id}

return:

status: {success, pending,

failure}

Use case: The application

sends a multimedia chat

message (e.g., image, video

clip, audio clip, etc).

The chat_id parameter can

be contactid for ad-hoc 1-to-

1 chat, or sessionid for

confirmed 1-1 chat and

group chat, or group chat id

for Long Lived group chat.

The status of the request

for sending message is

returned:success, pending,

failure.

One example for the failure

case is the chat id is invalid.

In case the transaction is to

take too much time to be

completed it shall be

possible to return a

“pending” response and

return the final delivery

status asynchronously via

the notification channel.

Ref: [RCS5.3] ch 3.2.1.1

Standalone messaging and

ch 3.3.1 1to-1 Chat Feature

description,

[RCSR5OMAIMEND] ch 7.1

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 42 of 89

IM Client Procedures for IM

Sessions

UNI-CHT-027 The Chat API SHALL

support

notifications indicating

that a multimedia chat

message has been

received and is

available for download

content-type={type}

url={file url}

The API gateway will send

this notification to the client

with an URL to download the

content.

The chat_id (sessionid,

contactid, or group chat id)

information is included in

the notification for

application to identify the

chat session.

The server which the URL is

pointed to SHALL be ready

to receive download

requests when the

notification is sent.

4.7.6 Notifications

In the RCS specification, three notifications associated to messages have been specified:

1. “Sent” notification: generated when the RCS client has successfully sent the

message. In the case of the APIs it should be generated by the API gateway and the

application should be notified when it has successfully sent the message.

2. “Delivery” notification: generated when the message arrives at the final destination.

In the case of the APIs, the API gateway will receive the notification from the IM

Server about a previously sent message and it will notify the application accordingly.

The API gateway is also responsible for sending back the delivery notifications of

incoming messages as they are received by the application. To avoid sending

delivery notifications for messages that are not correctly received (i.e., the

application fails to fetch the message while it is in the notification channel), it is highly

recommended that the API gateway sends the “delivery” notification for incoming

messages only after the message has been successfully delivered to the application

in the notification channel.

3. “Displayed” notification: generated by the RCS client when a message is displayed

on the RCS device. For privacy issues, an RCS user is able to enable or disable the

sending of “displayed” notifications. In the case of APIs, the application is

responsible for generating these “displayed” notifications accordingly. The API

gateway shall also be able to receive them and notify the application.

References: [RCS5.3] Section 3.3 and 3.4.

The operations listed below allow handling of the message related notifications.

Label Description
Required parameters (not

complete list)
Comment

UNI-CHT-022 The Chat API SHALL

support receiving

 Message notifications

SHALL be returned

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 43 of 89

messages notifications

[“sent”, “delivered” and

“displayed”] for

messages sent in a 1

to 1 session.

asynchronously via the

notification channel except

the “sent” notification. As

stated in UNI-CHT-018 when

“success” response is

returned it SHALL be

considered as the sent

notification.

UNI-CHT-023 The Chat API SHALL

support sending

“displayed”

notifications of 1 to 1

message received.

oauth_token={access-

token}

message id={message-id}

The message-id shall be the

one received in the incoming

message.

This operation will be

allowed only if the original

message included a

“displayed” notification

request.

If the confirmed (session

aware) model is used it shall

be possible to send the

“displayed” notifications even

if the chat session has been

terminated

UNI-CHT-024 The Chat API SHALL

support receiving

messages notifications

[“sent”, “delivered” and

“displayed”] for

messages sent in

group chat.

 Message notifications

SHALL be returned

asynchronously via the

notification channel except

the “sent” notification. As

stated in UNI-CHT-018 when

“success” response is

returned it SHALL be

considered as the sent

notification.

UNI-CHT-025 The Chat API SHALL

support sending

“displayed”

notifications of group

message received.

oauth_token={access-

token}

message id={message-id}

The message-id shall be the

one received in the incoming

message.

This operation will be

allowed only if the original

message included a

“displayed” notification

request.

4.8 File Transfer UNI API requirements

4.8.1 Introduction (informative)

The following tables show the functional requirements for the file transfer API. A file could
be sent to a single recipient or to multiple recipients within an active group chat if supported

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 44 of 89

by the related RCS enabler. The file transfer API can also be used for RCS 5.1 location and
VCard features by sending and receiving the location or VCard data as file content.

4.8.2 Originating side

Label Description
Required parameters (not

complete list)
Comment

UNI-FLT-001 The File Transfer API

SHALL support

initiating a file transfer

to a single recipient or

to a group of recipients

within a group chat.

oauth_token={access-token}

recipient={contactid}

or

chat_id={session_id|group_chat_id}

file-icon={reduced image}

file-name={file name}

file-size={size}

file-type={type}

file={file}

url={url to the file}

or

BODY{image file}

Initiate a file transfer

session with the selected

recipient or re-use an

active group chat session

for file transfer to all

group chat members. In

case a group chat does

not exist it is to be

initiated by using UNI-

CHT-002b or UNI-CHT-

30.File transfer within a

group chat is supported

only if notified by the

RCS enabler.

A SIP INVITE request is

sent to the remote party

(i.e., the contact).

A file transfer instance is

created at the reception

of indication that invite

and initial message were

delivered (SIP 180).

The file could be sent

either in the body of the

request or via an URL to

the actual file.

Ref: [RCS5.3] ch 3.5 File

Transfer, ch 3.5.4.2 File

Transfer in Group Chat,

[RCSR5OMAIMEND] ch

10.1 File Transfer

UNI-FLT-002 The File Transfer API

SHALL support

cancelling a file transfer

invitation by the

originating side.

oauth_token={access-token} Use case: An ongoing file

transfer session is to be

cancelled.

Only the user who

created the invitation can

cancel it, and it is offered

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 45 of 89

only before the file

transfer is accepted or

rejected.

Ref:

[RCSR5OMAIMEND] ch

10.1 File Transfer

UNI-FLT-003 The File Transfer API

SHALL support ending

a file transfer session

by the originating side.

oauth_token={access-token} The selected resource

(i.e., the file transfer

session, is to be closed.

A SIP BYE request for

the selected session is

sent to the remote party.

Ref:

[RCSR5OMAIMEND] ch

10.2 File Transfer

Session Release

UNI-FLT-004 The File Transfer API

SHALL support

notifications about “File

Transfer” (accepted,

declined, cancelled,

ended) to the

originating side.

 The final set of applicable

notification types will be

determined in the

technical work phase.

See “Common

notification channel” for

establishment of

notification channel.

UNI-FLT-004b The File Transfer API

SHALL support

indication of file transfer

progress status,

including indication of

resumption

 Use Case: Support of a

progress bar in the

Application UI. In case of

file transfer resumption,

the application informs

the user of the

resumption (i.e.,

anticipating longer

transferring time).

The gateway sends the

application the progress

status to the application

at a specified interval.

(i.e., every xx second or

xx% of the file size).

As the API gateway

supports the file transfer

resume operation

(initiated by either

sending or receiving

client), the API gateway

will notify the application

of the resumption using a

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 46 of 89

unique status code . The

final set of applicable

notification codes/types

will be determined by

OMA in its technical API

work.

Ref: [RCS5.3] ch 3.5 File

Transfer, ch 3.5.3 High

Level Requirements

4.8.3 Terminating side

Label Description

Required

parameters (not

complete list)

Comment

UNI-FLT-005 The File Transfer API

SHALL support notifications

about file transfer invitation

for 1-to-1 file transfer and

file transfer within a group

chat.

Information about the

file transfer originator

and

in case of file transfer

within group chat

about the group chat.

Use case: The user is invited

to a file transfer session. The

file may be sent during a

group chat to all chat users. In

that case, a reference to the

related group chat shall be

provided.

See “Common notification

channel” for establishment of

notification channel.

Ref: [RCS5.3] ch 3.5 File

Transfer, ch 3.5.4.2 File

Transfer in Group Chat,

[RCSR5OMAIMEND] ch 10.3

Client Receiving File Transfer

Request Session Release

UNI-FLT-006 The File Transfer API

SHALL support accepting a

file transfer invitation by the

terminating side.

oauth_token={access-

token}

Use case: File transfer

session is to be accepted.

Ref: [RCSR5OMAIMEND] ch

10.3 Client Receiving File

Transfer Request

UNI-FLT-007 The File Transfer API

SHALL support declining a

file transfer invitation by the

terminating side.

oauth_token={access-

token}

Use case: File transfer

session is to be rejected.

The SIP INVITE request is

then rejected with a SIP 603

response.

Ref: [RCSR5OMAIMEND] ch

10.3 Client Receiving File

Transfer Request

UNI-FLT-008 The File Transfer API

SHALL support ending a file

transfer by the terminating

oauth_token={access-

token}

Use case: File transfer

session is to be closed.

A SIP BYE request for the

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 47 of 89

side. selected session is sent to the

remote party.

Ongoing file transfer can be

cancelled only after the

session is established.

Ref: [RCSR5OMAIMEND] ch

10.1 File Transfer

UNI-FLT-009 The File Transfer API

SHALL final state

notifications about the

MSRP transfer session

(“success”, “abort” and

“error”)to the terminating

side.

 The final set of applicable

notification types will be

determined in the technical

work phase.

See “Common notification

channel” for establishment of

notification channel.

UNI- FLT-010 The File Transfer API

SHALL support

notifications indicating that

the file transfer content is

available for download.

url={file url} The gateway will send this

notification to the client with

an URL to download the

image.

The URL SHALL be ready to

start downloading when the

notification is sent. It is up to

the implementation to decide

whether this is sent when the

first chunks of MSRP data are

received and allow it to

simultaneously receive data

from the MSRP session and

HTTP download or if it waits

for the MSRP session to be

completed and only allows the

download to be started when

the whole file has been

received.

In any case the notification

SHALL be sent before the

final state notification is sent.

UNI- FLT-011 The File Transfer API

SHALL support indication of

file transfer progress status,

including indication of

resumption.

 Use Case: Support of a

progress bar in the application

UI. In case of file transfer

resumption, the application

informs the user of the

resumption (i.e., anticipating

longer transferring time).

The gateway sends the

application the progress

status to the application at a

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 48 of 89

specified interval (i.e., every

xx second or xx% of the file

size).

As the gateway supports the

file transfer resume operation

(initiated by either sending or

receiving client), it will notify

the application of the

resumption with a unique

status code. The final set of

applicable notification

codes/types will be

determined by OMA in its

technical API work.

Ref: [RCS5.3] ch 3.5 File

Transfer; ch 3.5.3 High Level

Requirements

4.9 Call Control and Notification UNI API requirements

The Call Control and Notification UNI API requirements are based on OMA Parlay REST
Third-Party Call Control and Call Notification APIs.

4.9.1 Call Functionality available to originating side

The operations listed below allow an application to manage a call session and to receive
call progress notifications on behalf of the originating side (i.e., “calling participant”, “A-
Party”).

Label Description
Required parameters (not

complete list)
Comment

UNI-CLL-001 The Call API(s) SHALL

support initiating a call

session with a called

party.

oauth_token={access-

token}

recipient={contactid}

Use case: The user initiates

a call between its own

terminal and another user.

Initiating a session results in

all of the user’s terminals

being rung. The user

answers on one of his

terminals. After this, the call

is set up to the intended

recipient.

UNI-CLL-002 The Call API(s) SHALL

support the

cancellation of the call

session initiation.

oauth_token={access-

token}

Use case: The user

interrupts call attempt.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 49 of 89

4.9.2 Call functionality available to originating side and terminating side

The operations listed below allow an application to receive call progress notifications and to
terminate a call session on behalf of the call participants [“calling participant” (“A-Party”) as
well as “called participant” (“B-Party”)). The term “user” listed below therefore subsumes
both “A-party” as well as “B-party”.

Label Description
Required parameters (not

complete list)
Comment

UNI-CLL-003 The Call API(s) SHALL

support notifications

about “call attempt”.

 Use case: Application

receives call invitation

notification that a call session

is being set up to the user’s

phone.

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-004 The Call API(s) SHALL

support notifications

about “call accepted”.

 Use case: Application

receives notification that the

user’s phone accepted the

call.

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-005 The Call API(s) SHALL

support notifications

about “busy”.

 Use case: Application

receives notification that the

user’s phone is busy.

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-006 The Call API(s) SHALL

support notifications

about “not reachable”.

 Use case: Application

receives notification that the

user’s phone is

disconnected.

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-007 The Call API(s) SHALL

support notifications

about “no answer”.

 Use case: Application

receives notification that the

user’s phone did not react to

the call.

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-008 The Call API(s) SHALL

support notifications

about “disconnected”.

 Use case: Application

receives notification that the

user’s phone has ended the

call.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 50 of 89

See “Common notification

channel” for establishment of

notification channel.

UNI-CLL-009 The Call API(s) SHALL

support terminating a

call session.

oauth_token={access-

token}

Use case: The call session is

terminated by the application

rather than by one of the call

participants on-hooking the

phone.

UNI-CLL-010 VOID VOID VOID

4.9.3 Media Information

The operations listed below indicate how media is handled in a multimedia call.

Label Description
Required parameters (not

complete list)
Comment

UNI-CLL-011 The Call API SHALL

allow indication of

multiple media types;

in particular, both

audio and video.

 Use case: The application

may request media other

than voice (e.g. video, text)

in starting a multimedia

telephony call.

Ref: [IR94] ch 2.2.2 Call

Establishment and

Termination

[IR.92] Annex B.2 Global

Text Telephony

UNI-CLL-012 The Call API SHALL

allow getting of current

media status of a

single call participant,

or all the participants.

 Use case: The application

may request the current

status of media other than

voice (e.g. video, text) during

an active multimedia

telephony call either for a

specific participant or all

participants.

The status includes

information about the list of

media types in the session,

plus their direction.

UNI-CLL-013 VOID VOID VOID

UNI-CLL-014 VOID VOID VOID

UNI-CLL-015 VOID VOID VOID

UNI-CLL-016 VOID VOID VOID

UNI-CLL-017 The Call API SHALL

allow control the media

stream direction (i.e.,

unidirectional, bi-

directional) for each

 Use Case: To comply with

privacy requirements in

certain regions, the

application may request at

call setup that the video

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 51 of 89

media type at call

setup.

stream in a video call be in

either simplex or duplex

mode.

Ref: [IR94] ch 2.2.2 Call

Establishment and

Termination

4.10 WebRTC Signaling API requirements

This section defines the requirements for a WebRTC Signaling API.

The main intent of this API is to support web applications running in a web browser that
make use of the WebRTC API [W3C_WebRTC], but it should also work with other media
engines that are based on [RFC3264]. The WebRTC Signaling API provides a signalling
mechanism for these applications to access a Voice or Video over IP service in the network,
e.g. based on the IMS.

This API shall also support requirements for the RCS Extension to Extension service in the
context of WebRTC architecture.

RCS Extension to Extension service is described in section 3.12.4.2.2 of [RCS5.3]. There
are two types of media types supported on the RCS UNI for this Extension to Extension
service:

 based on MSRP (see section 3.12.4.2.2.1 of [RCS5.3]), or

 based on RTP (see section 3.12.4.2.2.2 of [RCS5.3]).

4.10.1 Call Functionality available to originating side

Label Description Required parameters Comment

UNI-WRTCS-

001

The WebRTC

Signaling API

SHALL support

initiating a VoIP call

to a called party.

oauth_token={access-

token}

recipient={contactId | E.164

number}

optional:

service={“rcsipcall”}

allow_video_upgrade={“yes

”|”no”}

return {callId}

Depending on the operator

policies and if it has deployed

CS breakout, the destination

may need to be a VoIP user.

In case the rcsipcall service is

set, a capability exchange may

be needed in order to ensure

that the remote peer also

supports the rcsipcall service if

break out is not allowed by the

service provider or the service

is not interworked with other IP

services. (VoLTE for example)

See [RCS5.3] ch 3.8 for more

information.

If no service is indicated, the

generated INVITE to establish

the VoIP call will not include

the bevoicetag (just

mmtel+audio).

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 52 of 89

The API GW will return an error

if the operation is not allowed

by the service provider policies.

UNI-WRTCS-

002

The WebRTC

Signaling API

SHALL support

initiating a Video

over IP call to a

called party.

oauth_token={access-

token}

recipient={contacted |

E.164}

optional:

service={“rcsipcall”}

return {callId}

In case the service is not

interconnected with other IP

services (e.g., VoLTE), a

capability exchange may be

needed in order to ensure that

the remote peer also supports

the rcsipcall service.

See [RCS5.3] ch 3.9 for more

information.

If no service is indicated, the

generated INVITE to establish

the VoIP call will not include

the bevoicetag (just

mmtel+audio+video).

The API GW will return an error

if the operation is not allowed

by the service provider policies.

UNI-WRTCS-

003

The WebRTC

Signaling API

SHALL support the

cancellation of

Voice or Video over

IP call setup.

oauth_token={access-

token}

callId={callId}

return {success/failed}

The cancellation of call setup is

only possible while the call is

not successfully established.

UNI-WRTCS-

004

The WebRTC

Signaling API

SHALL support

notification about

the VoIP call setup

state.

The notifications supported

may at least be “busy”, “not

reachable”, “no answer”,

”declined” and “accepted”.

If a VoIP call is accepted,

the notification shall carry

also the information

regarding if it is possible to

upgrade the VoIP call to a

Video Call as specified by

the termination side.

UNI-WRTCS-

005

The WebRTC

Signaling API

SHALL support

notification about

the Video over IP

call setup state.

The notifications supported

may at least be “busy”, “not

reachable”, “no answer”,

”declined” and “accepted”.

The terminating user may have

accepted the Video over IP call

but decided to not send back

video. This information will be

available by the media

negotiation supported by the

media requirements in the

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 53 of 89

section 4.10.4 “Media”.

4.10.2 Call Functionality available to terminating side

Label Description
Required parameters (not

complete list)
Comment

UNI-WRTCS-006 The WebRTC

Signaling API

SHALL support

notification about a

new incoming

VoIP call.

Information about the VoIP

originator, service if present (i.e.,

“rcsipcall”) and callId.

The notification shall also carry

the information regarding whether

it is possible to upgrade the VoIP

call to a Video over IP call once it

is set up.

UNI-WRTCS-007 The WebRTC

Signaling API

SHALL support

notification about a

new Video over IP

call.

Information about the VoIP

originator, service if present (i.e.

“rcsipcall”) and callId.

UNI-WRTCS-008 The WebRTC

Signaling API

SHALL support

accepting a VoIP

call by the

terminating side.

oauth_token={access-token}

callId={callId}

allow_video_upgrade={“yes”|”no”}

The terminating side will

inform whether it

supports the upgrade to

video. This is done via

notifying to the

originating side.

UNI-WRTCS-009 The WebRTC

Signaling API

SHALL support

rejecting a VoIP

call by the

terminating side.

oauth_token={access-token}

callId={callId}

UNI-WRTCS-010 The WebRTC

Signaling API

SHALL support

accepting a Video

over IP call by the

terminating side.

oauth_token={access-token}

callId={callId}

When accepting a Video

over IP call, the user

may accept it but decide

to not send video back.

This requirement will be

supported by the media

requirements in the

section 4.10.4 “Media”.

UNI-WRTCS-011 The WebRTC

Signaling API

SHALL support

rejecting a Video

over IP call by the

terminating side.

oauth_token={access-token}

callId={callId}

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 54 of 89

4.10.3 Call Functionality available to originating side and terminating side

Label Description
Required parameters (not

complete list)
Comment

UNI-WRTCS-

012

The WebRTC

Signaling API

SHALL support

terminating a VoIP

or Video over IP

call.

oauth_token={access-

token}

callId={callId}

UNI-WRTCS-

013

The WebRTC

Signaling API

SHALL allow the

application to

request a VoIP call

to be upgraded to a

Video over IP call.

oauth_token={access-

token}

callId={callId}

Only for VoIP calls which

have been signalled to

support upgrade to a video

call in the new call or

accepted notification.

If the upgrade is not allowed

by the service provider or

fails to be requested, an

error will be returned to the

application.

UNI-WRTCS-

014

The WebRTC

Signaling API

SHALL support

notification of a

request to upgrade

a VoIP call to a

Video over IP call.

UNI-WRTCS-

015

The WebRTC

Signaling API

SHALL allow to

accept or reject the

upgrade of a VoIP

call to a Video over

IP call.

oauth_token={access-

token}

callId={callId}

action={accept/reject}

send_video = {true/false}

If the user accepts the

upgrade, it will also be

allowed to specify whether it

wants to send back video or

not.

This requirement will be

supported by the media

requirements in the in the

section 4.10.4 “Media”.

UNI-WRTCS-

016

The WebRTC

Signaling API

SHALL support

notification of the

result of upgrading

a VoIP call to a

Video over IP call.

The notification shall carry

also the information

whether if the remote side

accepting the video

upgrade is sending video

back or not.

The receiver user may have

accepted the upgrade to a

Video over IP call but

decided to not send back

video. This information will

be available by the media

negotiation supported by the

media requirements in the in

the section 4.10.4 “Media”.

UNI-WRTCS- The WebRTC oauth_token={access- The API GW will return an

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 55 of 89

017 Signaling API

SHALL allow to

downgrade a Video

over IP call to a

VoIP call

token}

callId={callId}

error if the operation is not

allowed by the service

provider policies.

UNI-WRTCS-

018

The WebRTC

Signaling API

SHALL support

notification about a

downgrade of a

Video over IP call

to a VoIP call.

4.10.4 Media

Label Description
Required parameters (not

complete list)
Comment

UNI-WRTCS-

019

The WebRTC

Signaling API

SHALL support

exchanging SDPs in

a way that allows to

be used by a media

stack compatible

with [RFC3264]

and/or WebRTC

[W3C_WebRTC].

 When referring to WebRTC

[W3C_WebRTC] enabled

implementations, it is

required to use

extensions/additions to the

mechanisms in [RFC 3264]

as defined in [IETF-DRAFT-

JSEP]

UNI-WRTCS-

020

The WebRTC

Signaling API

SHALL provide an

optional way to

exchange data with

the Extension for

MSRP based

sessions.

 MSRP is terminated at the

client with a protocol stack

based on webRTC

datachannel in agreement

with the architecture

specified in appendix D of

[RCS5.3] and related 3GPP

specifications.

4.11 Video Share UNI API requirements

References for Video Share: GSMA IR.74 [IR74] as endorsed by RCS.

4.11.1 Video Share use cases (informative)

To clarify the requirements in the next sections, the intended basic use cases of the Video
Share API are:
1. API Originated: Sharing a recorded or stored video file from application to client.

The application acts as an originating client in a Video Share session. For instance, a
music television station offers its customers to browse a catalogue of music videos, and
stream them to clients using a “click to play” interaction. The application uses a video file
as the source of the video stream of the Video Share.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 56 of 89

Figure 6 illustrates a schematic flow. For option 1, the file is included as the body of the
API request to create the Video Share session. This ensures that the video file is
available when the video share session is accepted. The method to upload the media
file to the repository in option 2 is out of the scope.

Figure 6: Schematic flow for Video Share Use Case 1

2. API Originated: Sharing real time video from application to client.

The application acts as an originating client in a Video Share session. For instance, the
application streams video from a live video feed to clients.

The application creates a new Video Share session and announces to the API gateway
which formats (i.e., transport protocol, codecs, etc.) it supports. The API gateway
processes the list and selects one of the offered formats (i.e., transport protocol, codecs,
etc.). The API gateway then makes a Video Share invitation to the IR.74 compliant
client. When the client accepts the Video Share session, the API gateway sends a
notification to the application using the notification channel indicating the chosen format
and the media URL and/or access parameters, to which the application shall
subsequently send the media.

The API will provide an open and extensible mechanism to signal the media formats
(i.e., transport protocol, codecs, etc.), but the specification of the media protocols and
connection/play mechanisms are out of the scope of this API specification (marked in
green in Figure 7).

External

Repository

RTP video stream

API request + file

SIP ACK SIP ACK

SIP 200 OK
SIP 200 OK

SIP INVITE
SIP INVITE

SIP ACK SIP ACK

SIP 200 OK
SIP 200 OK

Option 2

Option 1

IR.74

Fetch file

API request + url to file

RTP video stream

 SIP INVITE
SIP INVITE

RCS
UA

IMS

Core
RCS API

GW APP

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 57 of 89

Figure 7: Schematic Flow for Video Share Use Case 2

3. API terminated: Sharing video from client to application

The application acts as a terminating client in a Video Share session. For instance, it
could allow a user to watch in real time, from a web browser, the video that was shared.
Another example would be an application that records the shared video for later use.

A summarized interaction would be as follows: The Video Share session is started by an
IR.74 compliant handset. The API gateway receives the IR.74 invitation and notifies the
application about it indicating a list of formats (i.e., transport protocol, codecs, etc...) in
which the media can be made available.

The application searches the list for the most suitable format according to the
platform/software it is running and then accepts the Video Share session indicating the
chosen format. In the response to this acceptance request, the gateway will return the
URL and/or any other access parameters which the client needs to access the media.

The API will provide an open and extensible signalling mechanism for codecs, formats,
transports, etc., however, the specification of the media protocols and connection/play
mechanisms are out of the scope of this API specification (marked in green in Figure 8).

APP
RCS API

GW

API VS notification

+ chosen format
+ media url

RTP video stream

CONNECT/PUBLISH
media url

video stream

API request

+ list of media formats SIP INVITE
SIP INVITE

SIP 200 OK
SIP 200 OK

SIP ACK
SIP ACK

IR.74

IMS
Core

RCS UA

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 58 of 89

Figure 8: Schematic Flow for Video Share Use Case 3

More complicated use cases can be built based on these basic scenarios. Also note that
IR.74 compliant clients can support these three use cases with no changes.

4.11.2 Video Share functionalities available to originating side

Label Description Required parameters Comment

UNI-VSH-001 The Video Share API

SHALL support

initiating a Video

Share session using

a video file.

oauth_token={access-

token}

recipient={contactid}

or

call={callObjectID}

formats={list of media

formats}

See use case 2 for more details

about this requirement.

Arguments need to contain at

least either a reference to an

existing call or a recipient.

When the Video Share is

established with the call ID, the

API gateway will link the “initiate

Video Share” request to the

ongoing call.

Video Share object instance is

created and returned

immediately to accommodate

cancelling before alerting.

The video file could be sent

either in the body of the request

(option 1) or via an URL to the

media file (option 2). The

application shall send the list of

formats (i.e., transport protocol,

codecs, etc.) that it supports.

IR.74

APP RCS API
GW

IMS
Core RCS UA

API VS notification

+ list of media formats

RTP video stream

API VS accept

+ chosen format

returns: media url

SIP 200 OK
SIP 200 OK

CONNECT/PLAY
media url

video stream

SIP INVITE
SIP INVITE

SIP ACK
SIP ACK

IR.74

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 59 of 89

UNI-VSH-001b The Video Share API

SHALL support

initiating a Video

Share session using

real time video feed.

oauth_token={access-

token}

recipient={contactid}

or

call={callObjectID}

formats={list of media

formats}

See use case 2 for more details

about this requirement.

Arguments need to contain at

least either a reference to an

existing call or a recipient.

When the Video Share is

established with the call ID, the

API gateway will link the “initiate

Video Share” request to the

ongoing call.

Video Share object instance is

created and returned

immediately to accommodate

cancelling before alerting.

The application shall send the

list of formats (i.e., transport

protocol, codecs, etc.) that it

supports.

UNI-VSH-002 VOID VOID VOID

UNI-VSH-003 VOID VOID VOID

UNI-VSH-004 The Video Share API

SHALL support

cancelling a Video

Share by the

originating side.

oauth_token={access-

token}

Use case: Application on

originating side interrupts Video

Share attempt.

Only the user who created the

invitation can cancel it, and it is

offered only before the file

transfer is accepted or rejected.

UNI-VSH-005 The Video Share API

SHALL support

notifications about

Video Share

(“alerting”,

“accepted”, “ended”,

“declined”, “failed”)

If “accepted” the

notification can include

the following information:

Choosen media format

Media Url.

The final set of applicable

notification types will be

determined in the technical work

phase.

See “Common notification

channel” for establishment of

notification channel.

If the video share session was

initiated using a live video feed

as indicated in the UNI-VSH-002

requirement, the APIs shall

include the chosen format and

media URL to which the

application shall send the media

in the “accepted” notification.

See use case 2 for more details.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 60 of 89

UNI-VSH-006 The Video Share API

SHALL support

ending Video Share

by the originating

side.

oauth_token={access-

token}

Use case: Application on

originating side stops Video

Share.

A SIP BYE is sent to the remote

end.

4.11.3 Video Share functionality available to terminating side

Label Description Required parameters Comment

UNI-VSH-007 The Video Share API

SHALL support

receiving a Video

Share invitation.

Inviting contact

or

Reference to an ongoing

call

List of media formats

See use case 3 for more

details on this requirement.

The API gateway receives the

Video Share session invitation,

and notifies the application

about it indicating a list of

formats (i.e., transport protocol,

codecs, etc.) in which the

media can be made available.

UNI-VSH-008 VOID VOID VOID

UNI-VSH-009 The Video Share API

SHALL support

accepting a Video

Share by the

terminating side.

oauth_token={access-

token}

format={format}

returns:

media_url={media_url}

parameters={param1,..}

When the user accepts the

Video Share session invitation,

the application will search the

list for the most suitable format

according to the

platform/software it is running

and indicate the chosen format

in the acceptance request.

In the response to this

acceptance request, the

gateway will return the URL

and/or any other access

parameters which the client

needs to access the media.

UNI-VSH-009b The Video Share API

SHALL support

rejecting a Video

Share by the

terminating side.

oauth_token={access-
token}

UNI-VSH-010 The Video Share API

SHALL support

ending a Video

Share by the

terminating side.

oauth_token={access-

token}

Use case: Application on

terminating side ends Video

Share.

Triggers sending a BYE to the

originating side.

UNI-VSH-011 The Video Share API

SHALL support

 The final set of applicable

notification types will be

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 61 of 89

notifications about

“Video Share”

(“ended”, “cancelled”,

“failed”) to the

terminating side.

determined in the technical

work phase.

See “Common notification

channel” for establishment of a

notification channel.

4.12 Image Share UNI API requirements

References for Image Share: GSMA IR.79 [IR79] as endorsed by RCS.

4.12.1 Image Share use cases (informative)

To clarify the requirements in the next sections, the intended basic use cases of the Image
Share API are:

1. API Originated: Sharing a file from application to client.

The Image Share session is started by the application using the API. The application
uses an image file as the source of the Image Share transfer. The image file can be
either included in the initial API call or retrieved from an external repository. Method to
upload the image file to the repository is outside of the scope of this document.

Figure 9: Schematic flow for Image Share Use Case 1

2. API Terminated: Sharing a file from application to client.

The Image Share session is started by an IR.79 compliant client. The API gateway
receives the IR.79 invitation, and notifies the application. If the application accepts the
invitation, the IS will be established between the API gateway and the UA. When the
Image Share session is correctly established, the application will be notified and given a
URL in which the file can be downloaded.

Error Success or

Error Success or

Option 2

IR.79

final state notification
API IS transfer

final state notification
API IS transfer

SIP ACK SIP ACK

SIP 200 OK
SIP 200 OK

MSRP SEND

SIP INVITE
SIP INVITE

SIP ACK SIP ACK

SIP 200 OK
SIP 200 OK

Option 1

Fetch file
API request+url to file

MSRP SEND

SIP INVITE
SIP INVITE API request+file

 UA RCS
Core
IMS

GW
 API RCS

APP
Repository

External

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 62 of 89

Figure 10: Schematic flow for Image Share use case 2

4.12.2 Image Share functionality available to originating side

Label Description
Required parameters

(not complete list)
Comment

UNI-ISH-001 The Image Share API

SHALL support initiating

a Image Share to a user.

oauth_token={access-

token}

recipient={contactid}

call={callObjectID}

url={url to the image file}

or

BODY{image file}

Use case: Application on

originating side initiates

Image Share.

Arguments need to contain

at least either a reference to

an existing call (callObjectId)

for [IR79] Image Share or a

Recipient for Image Share

without call (i.e., using OMA

IM File Transfer).

The image file could be sent

either in the body of the

request (option 1) or sent via

an URL to the image file

(option 2)

UNI-ISH-002 VOID VOID VOID

UNI-ISH-003 VOID VOID VOID

UNI-ISH-004 The Image Share API

SHALL support

cancelling an Image

Share by the originating

side.

oauth_token={access-

token}

Use case: Application on

originating side interrupts

Image Share attempt. It is

offered only before the

session is accepted.

 APP RCS API
GW

IMS
Core RCS UA

Fetch File using URL

API IS Invitation notification

+ file information

API IS accepted

IR.79

MSRP SEND established

SIP 200 OK
SIP 200 OK

SIP INVITE
SIP INVITE

SIP ACK
SIP ACK

API IS file notification

+ file URL

API IS transfer
final state notification

Success or Error

MSRP transfer completed
OR MSRP ERROR

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 63 of 89

UNI-ISH-005 The Image Share API

SHALL support

notifications about Image

Share (“alerting”,

“accepted”, “ended”,

“declined”, “failed”)

 The final set of applicable

notification types will be

determined in the technical

work phase.

See “Common notification

channel” for establishment of

notification channel.

UNI-ISH-006 The Image Share API

SHALL support ending

Image Share by the

originating side.

oauth_token={access-

token}

Use case: The application on

originating side stops Image

Share.

A SIP BYE is sent to the

remote end.

4.12.3 Image Share functionality available to terminating side

Label Description Required

parameters (not

complete list)

Comment

UNI-ISH-007 The Image Share API

SHALL support receiving an

Image Share invitation.

Inviting contact

Reference to an

ongoing call (for

IR.79)

Use case: The application on

the terminating side receives

an Image Share invitation.

See “Common notification

channel” for establishment of

notification channel.

UNI-ISH-008 VOID VOID VOID

UNI-ISH-009 The Image Share API

SHALL support accepting or

rejecting an Image Share by

the terminating side.

oauth_token={access-

token}

Use case: The application on

the terminating side accepts

an Image Share session.

This triggers sending a SIP

200 (if accepted) or a suitable

rejection cause (if declined) to

the originating side.

UNI-ISH-010 The Image Share API

SHALL support ending an

Image Share by the

terminating side.

oauth_token={access-

token}

Use case: The application on

terminating side ends an

Image Share session.

This triggers sending BYE to

the originating side.

UNI-ISH-011 The Image Share API

SHALL support final state

notifications about the

Image Share MSRP transfer

session (“success”, “abort”

and “error”).

 The final set of applicable

notification types will be

determined in the technical

work phase.

See “Common notification

channel” for establishment of

notification channel.

UNI-ISH-012 The Image Share API

SHALL support

notifications indicating that

url={img url} The gateway will send this

notification to the client with

URL to download the image.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 64 of 89

the image share content is

available for download

The server which the URL is

pointed to SHALL be ready to

start downloading when the

notification is sent. It is up to

the implementation to decide

if this is sent when the first

chunks of MSRP data are

received and allow to

simultaneously receiving of

data from the MSRP session

and HTTP downloading; or if

it waits for the MSRP session

to be completed and only

allow the download to be

started only when the whole

file has been received.

In any case the notification

SHALL be sent before the

final state notification is sent.

4.12.4 Capability Query UNI API requirements

Refer to section 4.5.3 (Services capabilities).

4.13 Location Pull

The Location PULL API provides a RESTful interface allowing an RCS application to query
the location of an RCS user’s mobile devices, which are connected to a mobile operator
network, using network based positioning method.

The Location PULL API requirement herein is based on the UNI specification of RCS 5.3;
therefore, additional parameters or information available from the OMA Terminal Location
API are outside the scope of this specification.

References: [RCS5.3] Section 3.10.4.2 Geolocation pull

Label Description Required parameters (not

complete list)

Comment

UNI-LPU-001 The location PULL

API SHALL support

the request to pull the

geolocation

coordinate (x,y) of a

target mobile device

registered in cellular

network.

The Location PULL

API

oauth_token={access-token}
contact={contactId}
requested_accuracy={requested-
accuracy}

If the positioning attempt

is successful, Longitude

and Latitude will be

provided as the (x,y)

coordinate of the

geographic position. The

application may optionally

use other available

contactID attribute (ACR)

to request pulling the

location of a given contact

in the address book.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 65 of 89

SHALL support the

request of positioning

accuracy in meters.

The requested accuracy of

the positioning result is

expressed in meters.

Typically, a request for

higher positioning

accuracy may take longer

to retrieve than a request

for coarse accuracy.

4.14 RCS Personal Network Blacklists basic operations

Personal Network Blacklists (PNB) are used to block incoming/outgoing service flow
received/initiated by specified senders or recipients. Three RCS services are concerned:
Messaging, 1-to-1 Chat and File transfer. PNB functionality (incl lists) are defined in
[RCS5.3] chapter 2.15 -- “Personal Network Blacklists (PNB)”.

It should be noted that this API is reserved for “Trusted” Applications as it exposes user
identities and their management.

The trusted status of applications is managed by the service provider

Label Description Required parameters

(not complete list)

Comment

UNI-PNB-001 The Network

PNB API SHALL

support retrieval

of PNB contacts.

oauth_token={access-
token}
list={}

The target list of the request is

empty or one or more of the six

PNB lists:

rcs_pnb_chat_blockedusers,

rcs_pnb_ft_blockedusers,

rcs_pnb_standalone_blockedusers,

rcs_pnb_outchat_blockedusers,

rcs_pnb_outft_blockedusers,

rcs_pnb_outstandalone_blockedus

ers

If no PNB list is provided, it means
all six PNB lists are requested.

The answer amounts to retrieval of

the set of contacts in the list. A

contact identity can be a MSISDN

or a SIP URL.

UNI-PNB-002 The Network

PNB API SHALL

support update of

PNB list (i.e.,

addition of a new

contact as well

as deletion of an

existing contact

from a particular

oauth_token={access-
token}
action={add,delete}
list={}
contact={}

Add new contact(s) (i.e., MSISDN

or SIP URL) to a PNB list(s) or

delete existing contact(s) (i.e.,

MSISDN or SIP URL) from PNB

list(s)

The target list of the request is

empty or one or more of the six

PNB lists:

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 66 of 89

PNB list (s)) rcs_pnb_chat_blockedusers,

rcs_pnb_ft_blockedusers,

rcs_pnb_standalone_blockedusers,

rcs_pnb_outchat_blockedusers,

rcs_pnb_outft_blockedusers,

rcs_pnb_outstandalone_blockedus

ers

If no PNB list is provided, it means
all six PNB lists.

UNI-PNB-003 The Network

PNB API SHALL

support delivery

of notifications

when updates to

the PNB lists are

done

list={listid}
contact={contactid}

4.15 RCS Network Message Storage UNI API requirements

The Network Message Storage (NMS) is a repository for all message/files exchanges for a
RCS user. It is also used to synchronize the conversation history to all devices of a RCS
user. The RCS Network Message Storage is based on OMA CPM Message Storage
[OMACPM-MS] specification.

The NMS APIs provide the ability for an application to retrieve a RCS user’s conversation
histories stored in the network and only exposed to “Trusted” applications.

The trusted status of applications is managed by the service provider. It is understood that
the {access-token} in the oauth_token parameter uniquely identifies the RCS user for whom
these operations are invoked.

Note that in the requirements below, in those cases when folders and messages are
modelled as REST resources, their ID will be a complete URL which will contain the
information stated in the requirements below.

Label Description Required parameters

(not complete list)

Comment

UNI-NMS-001 The NMS API

SHALL support

retrieval of

folders contained

in the root folder

oauth_token={access-
token}

returns:
folders={foldernames,…}

Returns all folder names under the

root folder, or “empty” if no folder

exists.

UNI-NMS-002 The NMS API

SHALL support

retrieval of

information

(including all sub-

folders,

messages,

transferred files,

oauth_token={access-
token}

folder={foldername}

optional search criteria in
request:
start_datetime={UTC
datetime}

Returns all information (including

sub-folders, messages, transferred

files and objects) stored under this

specific folder, or “empty” if no

information exists.

Folders are returned as folder

names, while messages,

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 67 of 89

objects etc.).

Search criteria

may be

combined and

applied based

on: a specific

folder; date/time

window; sender;

recipient; or key

word.

end_datetime={UTC
datetime}
sender_address={parame
ter}
recipient_address={para
meter}
key_word={parameter}

returns:
info={foldernames|object
UIDs …}

transferred files, and other objects

are returned as objectUID values,

with the format:

“<foldername>/<UID>”.

The end_datetime must be greater

or equal to the start_datetime UTC

time value.

The key_word parameter could be

free-text or a “regular expression”

that allows more accurate control of

how the search is applied.

UNI-NMS-003 The NMS API

SHALL support

retrieval of a

specific

message(s) with

message UID(s)

oauth_token={access-
token}

Message_UID={UID,…}

If there is metadata associated with

the retrieved message, it should be

returned with the message.

UNI-NMS-004 The NMS API

SHALL support

changing

message status

(flags) of a

specific

message(s) with

message UID(s)

oauth_token={access-
token}

Message_UID={UID,…}
Message_status={UID|fla
gs,…) ….

The returned information is a list of

tuples consisting of the message

UID and corresponding flags.

The flags are defined in IETF RFC

3501

4.16 RCS Extension to Extension API requirements

This section defines the requirements for the RCS Extension to Extension service.

RCS Extension to Extension service is described in section 3.12.4.2.2 of [RCS5.3]. There
are two types of media types supported on the RCS UNI for this Extension to Extension
service:

 based on MSRP (see section 3.12.4.2.2.1 of [RCS5.2]), or

 based on RTP (see section 3.12.4.2.2.2 of [RCS5.3]).

As initiating media (MSRP or RTP) sessions is always similar, the Extensions can use an
Extension API Gateway to make their development easier:

 For MSRP media, the API gateway should terminate the MSRP itself and just give

some easy API calls manage sessions and exchange data. This way, the Extension

doesn’t have to worry about implementing anything about the MSRP protocol. See

Figure 1.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 68 of 89

Figure 1: Schematic view for an extension using MSRP

 For RTP media, the API gateway should behave as a UNI Extension towards the

IMS Core, so it should implement the Extension UNI specification. This means it

should use SIP and RTP towards the IMS and then provide a way (or many ways) to

exchange real time media with the Extension. Note: the media flow does not

necessarily go through the gateway. See Figure 2 for an schematic view of a

possible implementation.

Figure 2: Schematic view for an extension using RTP

4.16.1 Extension to Extension functionality available to originating side

Label Description Required parameters (not

complete list)

Comment

UNI-E2E-001 The Extension to

Extension API

shall support

initiating an

Extension to

Extension

session. The

API shall allow

indicating the

IARI value

Mandatory:

 oauth_token={access-

token}

 recipient={contactId |

E.164 number}

 IARI value

Optional :

 Media transport to be

The recipient is required to be the

application corresponding to the

IARI.

NOTE 1: in protocol terms

mandating that the IARI is

registered is accomplished by

adding both the "explicit" and

"require" parameters to the

Accept-Contact header carrying

SIP Extension

API
Gateway

Extension

IMS Core

RCS API

MSRP

SIP

Real Time Media
exchange
(WebRTC)

 Real Time Media
exchange (RTP)

Extension
API

Gateway

Extension

IMS Core

RCS API

RTP

RTP

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 69 of 89

identifying the

application using

the API. The API

shall support

specifying if

MSRP or RTP

shall be used in

the IMS RCS

infrastructure.

used (MSRP or RTP).

Default = MSRP

return {callId}

the IARI of the corresponding SIP

request as per RFC 3841.

NOTE2: Only one to one session

is supported.

See [RCS5.3] section 3.12.4.2.2

Extensions – Technical

Realisation.

UNI-E2E-002 The Extension

API shall

support

cancellation of

an Extension to

Extension

session setup.

oauth_token={accesstoken}

callId={callId}

return {success/failed}

The cancellation of call setup is

only possible while the call is

not successfully established.

UNI-E2E-003 The Extension

API shall

support

notification

about the

Extension to

Extension setup

phase.

The notification supported

may be at least

“ringing”

“accepted”,

“declined”, “no_answer”

“not_reachable”

4.16.2 Extension to Extension functionality available to terminating side

Label Description Required parameters (not

complete list)

Comment

UNI-E2E-005 The Extension to

Extension API

shall support

notification

about new

incoming

Extension to

Extension

session

invitation. This

notification shall

contain an IARI

value identifying

the target third

party.

Information about the

originator, callID, and IARI

UNI-E2E-006 The Extension to oauth_token={accesstoken}

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 70 of 89

Extension API

shall support

accepting the

Extension to

Extension

session by the

terminating side.

callId={callId}

UNI-E2E-007 The Extension to

Extension API

shall support

rejecting the

Extension to

Extension

session by the

terminating side.

oauth_token={accesstoken}

callId={callId}

4.16.3 Extension to Extension functionality available to originating and

terminating side

Label Description Required parameters (not

complete list)

Comment

UNI-E2E-008 The Extension to

Extension API

shall support

terminating the

Extension to

Extension

session.

oauth_token={accesstoken}

callId={callId}

4.16.4 Media

Label Description Required parameters

(not complete list)

Comment

UNI-E2E-009 The Extension to

Extension API

SHALL support

sending and

receiving real

time media

towards the IMS

via the NetAPI

gateway.

 The API Gateway must behave as

a client in the UNI side. It must

send RTP as a normal Extension

would do without API.

UNI-E2E-010 The Extension to

Extension API for

real time media

SHALL support

the configuration

of different

 The API Gateway must have a way

to configure the RTP profiles that

are sent in the SDP to the UNI.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 71 of 89

profiles for RTP

transmission

towards the IMS.

UNI-E2E-011 The Extension to

Extension API for

real time media

SHALL support

media link at

least based on

RTP or WebRTC

to exchange real

time media

exchange with

the Extension.

 The API Gateway may or may not

be the endpoint communication

with the Extension.

UNI-E2E-012 For the

Extension to

Extension API,

the netAPI

gateway shall

support sending

and receiving

MSRP media

towards the IMS.

UNI-E2E-013 The Extension to

Extension API

shall support a

way to exchange

data with the

Extension for

MSRP based

sessions.

 MSRP is terminated at the gateway

level. The client using NetAPI is not

required to embed an MSRP stack.

The client could receive the data

received in MSRP through the

common notification channel (e.g.

websocket or long polling). The

client could send data through a

dedicated REST API.

5 Service Provider / Chatbot Platform (SPCP) API requirements

5.1 General

There are no requirements for API functionality involving group conversations at this time.

The APIs for Chatbot Platform / Aggregator interaction with a Service Provider API GW shall

extend existing OMA APIs as far as possible (where the base functionality exists).

It shall be possible for the Chatbot Platform to send requests (API calls) to the Service

Provider API GW.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 72 of 89

It shall be possible for the Chatbot Platform to receive asynchronous events from the

Service Provider API GW.

It is Service Provider policy on how to configure the URL for the Chatbot Platform in the API

GW and how to expose the URL for the API GW to the Chatbot Platform.

All callback (HTTP POST) requests will contain the callback URL as the Request-URI.

5.2 Authorization Framework

5.2.1 Introduction (informative)

The following tables show the functional requirements for authorization of the Chatbot
Platform to the Service Provider network.

5.2.2 General requirements

Label Description

Required
parameters

(not complete list)

Comment

SPCP-

AUT-

001

For all APIs consider

whether a Server2Server

model is used, and how

the Auth token is

obtained by the Chatbot

Platform from the issuing

authority

oauth_token =

{access-token}

resultofcommand:

{on, off, failure, etc}

Could be one key used between the

Chatbot Platform and Service Provider

for all chatbot traffic, leaving individual

authorization per chatbot to the chatbot /

Chatbot Platform API.

5.3 Capability Management SPCP API Requirements

5.3.1 Capability Discovery

This API can be mapped to different capability management mechanisms in the underlying
network, such as SIP OPTIONS or Presence.

The following table describes the Service Provider / Chatbot Platform API requirements for
the capability discovery:

Label Description
Required

parameters (not
complete list)

Comment

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 73 of 89

SPCP-

CPD-

001

The Capability Discovery

API SHALL allow a

Chatbot Platform to

query the service

capabilities of a certain

user.

oauth_token =

{access-token}

chatbot querying =

{SIP URI}

chatbot capabilities =

{ }

target user={token or

MSISDN}

Return value shall consist of a (possibly

empty) list of capabilities for the target

user.

The chatbot app version capability with

its list of app versions supported needs

to be included as part of the chatbot

capabilities. See section 3.6.2.2 of

[RCC07] for more information on the

chatbot application version which groups

together a set of chatbot rich cards.

NOTE: The refreshing of the capabilities

exposed by the gateway is subject to

Service Provider policy, for example, to

avoid abuse or impact in network load.

The Chatbot Platform is responsible for

avoiding to send too many capability

requests.

SPCP-

CPD-

002

The Capability Discovery

API SHALL support

receiving real time

capability requests from

the network and

forwarding them to the

Chatbot Platform.

oauth_token =

{access-token}

user querying =

{token or MSISDN}

user capabilities = { }

target chatbot = {SIP

URI}

The Chatbot Platform should answer any

incoming user capability request (e.g.

OPTIONS received from remote user)

returning only the feature tags related to

the enabled capabilities.

The chatbot app version capability with

its list of app versions supported needs

to be included as part of the chatbot

capabilities. See section 3.6.2.2 of

[RCC07] for more information on the

chatbot application version which groups

together a set of chatbot rich cards.

See section 3.6.5 of [RCC07] on privacy

protection for more information on the

token used to hide a user’s MSISDN

from a chatbot.

SPCP-

CPD-

003

The Capability Discovery

API SHALL allow a

Chatbot Platform to reply

to real time capability

requests with current

capabilities.

oauth_token =

{access-token}

chatbot answering =

{SIP URI}

chatbot capabilities =

{ }

target user = {token

or MSISDN}

Mechanism to be supported is up to

Service Provider policy.

Applies to Capability Discovery based in

SIP OPTIONS.

The chatbot app version capability with

its list of app versions supported needs

to be included as part of the chatbot

capabilities.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 74 of 89

5.4 Service Provider / Chatbot Platform API requirements

5.4.1 Introduction (informative)

The following tables show the functional requirements for the one-to-one chat API between
a Service Provider network and a Chatbot Platform / Aggregator.

5.4.2 One-to-One Chatbot Session API Requirements, including Revoke

Label Description
Required parameters

(not complete list)
Comment

SPCP-

MSG-

001

The Messaging API

SHALL support sending

messages from Chatbot

Platform to the API GW.

oauth_token =

{access-token}

sending chatbot =

{MSISDN or SIP URI}

recipient = {target

user(s) SIP URI or

MSISDN}

chatbot app version =

{list of app versions}

traffic type = { }

message-id =

{message-id}

requested disposition

notification =

{“delivered”,

“displayed”}

{content}

Message content can be text, XML or

JSON defined content types as per

section 3.2 and section 3.6.10 of

[RCC07].

Bearer service selection SHALL be

Chat. (SMS/MMS/Standalone

Messaging shall not be supported)

Messages from the Chatbot Platform

shall include:

- the chatbot application version

as per section 3.6.2.2 of

[RCC07]

- the traffic type identifier, which

may be empty or one of

"advertisement", "payment",

"premium", "subscription",

"plugin", or any other value to

be defined, as per section 3.6.7

of [RCC07].

SPCP-

MSG-

002

The Messaging API

SHALL support receiving

messages from API GW

to Chatbot Platform.

oauth_token =

{access-token}

sending user = {token

or MSISDN}

recipient chatbot =

{SIP URI}

chatbot app version =

{list of app versions }

traffic type = { }

message-id =

{message-id}

requested disposition

notification =

{“delivered”,

“displayed”}

{content}

Same as for SPCP-MSG-001

SPCP-

MSG-

The Messaging API

SHALL support receiving

oauth_token = The message delivery and display

notification are requested according to

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 75 of 89

003 of the message

disposition notifications

(“delivered”, “displayed”)

from API GW to Chatbot

Platform.

{access-token}

message-id =

{message-id}

disposition notification

= {“delivered”,

“displayed”}

Service Provider policies, when a

message is sent on API GW.

The message-id parameter value shall

be the one sent in the message from the

Chatbot Platform to the API GW.

SPCP-

MSG-

004

The Messaging API

SHALL support sending

of the message

disposition notifications

(“delivered”, “displayed”)

from Chatbot Platform to

API GW.

oauth_token =

{access-token}

message id =

{message-id}

disposition notification

= {“delivered”,

“displayed”}

The message-id parameter value shall

be the one received in the incoming

message from the API GW to the

Chatbot Platform.

This operation will be allowed only if the

original message included the

requested notification request (e.g.,

“delivered” or “displayed”).

SPCP-

MSG-

005

The Messaging API

SHALL support sending

of “isComposing” from

Chatbot Platform to the

API GW.

oauth_token =

{access-token}

isComposing =

“active”/”idle”,

“timeout=xx”” …

Use case: The chatbot sends

“isComposing” which indicates that a

chatbot is currently composing a

message.

NOTE: this shall only apply when a chat

session has been established by the

API GW.

SPCP-

MSG-

006

The Messaging API

SHALL support sending

the “isComposing”

message from API GW

to the Chatbot Platform.

oauth_token =

{access-token}

isComposing =

“active”/”idle”,

“timeout=xx”” …

Use case: the chatbot is provided with

an indication that a user is currently

composing a message.

NOTE: this shall only apply when a chat

session has been established by the

API GW.

SPCP-

MSG-

007

The Messaging API

SHALL support the ability

of a Chatbot Platform to

REVOKE a message that

is currently in an

undelivered state on the

Service Provider network

equipment.

oauth_token =

{access-token}

message id =

{message-id}

Sending a message from the chatbot

shall specify that revoke may be

needed. See section 3.2.3.8.2 of

[RCC07]. The message-id parameter

shall be used to identify the message to

be REVOKED as per section 3.2.3.8.2.4

of [RCC07].

The status of the REVOKE action shall

be received by the sending chatbot

platform as per section 3.2.3.8.2.4 of

[RCC07].

5.5 Privacy Management (Alias Function) API requirements

5.5.1 Introduction (informative)

The following tables show the functional requirements for the Privacy Management (Alias
Function) API.

Used when the alias function is deployed in the Chatbot Platform.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 76 of 89

5.5.2 Service Provider network to Chatbot Platform

Label Description Required parameters Comment

SPCP-

PRI-

001

ability for the API GW

to change aliasing

settings in the

Chatbot Platform,

request new alias,

share user’s

MSISDN, provide

alias link to chatbot.

This is a control API

to the Chatbot

Platform from the

Service Provider API

GW

target chatbot: {SIP URI}

Fetchsettings: User

identity (MSISDN or SIP

URI)

Aliason: User identity

(MSISDN or SIP URI)

Aliasoff: User identity

(MSISDN or SIP URI)

Aliaslink: User identity

(MSISDN or SIP URI)

The fetchsettings, aliason, aliasoff and

aliaslink commands to be mapped to

an API are defined in section 3.6.5 of

[RCC07].

The status of the command action shall

be received by the sending API GW.

Used when the Alias Function is

deployed in the Chatbot Platform

5.6 Privacy Management (Alias Function) Link Report API requirements

5.6.1 Introduction (informative)

The following table shows the functional requirements for the Privacy Management Link
Report API.

Used when the alias function is deployed in the Service Provider network.

5.6.2 Service Provider network to Chatbot Platform

Label Description Required parameters Comment

SPCP-

PRI-

001

Ability for the API GW

to report to the

Chatbot Platform the

link between an alias

and a user.

This is a control API

to the Chatbot

Platform from the

Service Provider API

GW

target chatbot: {SIP URI}

User identity (MSISDN or

SIP URI) and alias

linkreport command to be mapped to

an API is defined in section 3.6.5 of

[RCC07].

Used when the Alias Function is

deployed in the Service Provider

network

5.7 Spam Report Function API requirements

5.7.1 Introduction (informative)

The following table shows the functional requirements for the Spam Report Function API.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

 Page 77 of 89

Used when the spam report function is deployed in the Service Provider network.

5.7.2 Service Provider network to Chatbot Platform

Label Description Required parameters Comment

SPCP-

SPR-

001

 spam report

message from API

GW to the Chatbot

Platform

User identity (MSISDN or

SIP URI)

Target chatbot = {SIP URI

(only one, not a list)},

List of Message-ID values

(zero up to 10) of

messages being reported

as spam received by the

user from the chatbot

The send spam report message
command to be mapped to an API is
defined in section 3.6.6 of [RCC07].

The spam report message is

addressed to the chatbot.

It is up to Chatbot Platform provider

whether to report it to the chatbot

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 78 of 89

 RCS API Authentication and Authorisation – Use Cases

A.1 Overview

Use case examples and flows for detailing requirements regarding:

 Application Registration (Developer)

 Application Usage (End-User)

 Application Authentication

 User Authorisation

 Application Authentication control

Using MSISDN for user authentication and OAuth for application authorisation

Type of application: network-side web application, illustrated with two variant, both of them
following the OAuth Authorisation Code flow.

(A) Generic Web App, aggregating RCS (and other) resources

 The developer creates and deploys an RCS Set Tagline web app on e.g. his web site

(in practice, the Web App would offer more RCS primitives than just “Set Tagline”)

 The end-user has an account on an RCS Set Tagline web app

 The end-user accesses to the RCS Set Tagline web app from any browser

(B) “App on Facebook”

 The developer creates and hosts an RCS Set Tagline App on e.g. his web site

 Facebook imports and publishes the RCS Set Tagline App as a “Facebook App”

 The end-user has an account on Facebook

 The end-user accesses (the App on) Facebook from any browser

A.1.1 Application registration – Developer view

A.1.1.1 (A) General

 The developer has developed an RCS Set Tagline Web App, offering to RCS users

the ability to set their RCS tagline from a Web browser,

 The developer has established a developer-account with operator-x (as in example).

 The developer may also have a RCS subscription at the operator that may be linked

to the developer account (optional).

 The developer registers the application in the operator’s portal.

 Provided information: Application Name, Description.

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 79 of 89

Figure 3: Generic Web App – Developer application registration panel

 The portal generates unique Application credentials (Client Identifier, Shared Secret)

to be used to identify and authenticate the application when used.

 The portal also provides the endpoint URLs specific to the operator’s Authorisation

Server (end-user authorisation endpoint and token endpoint).

 The application is then deployed in the target environment (e.g., developer’s website

or Facebook).

 Application credentials and endpoint URLs are stored as per operator with whom the

developer has registered the application.

 The developer has to undergo the above registration procedure with all operators with

whom the developer wants to engage the application.

http://developer.operator-x.com

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration

App Name:

Description:

Icon file:

ok

RCS Set Tagline

Sets the RCS tagline…

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 80 of 89

Figure 4: Generic Web App – Application registration by developer completed

A.1.1.2 (B) Additional step in case of Facebook variant

 The developer wants to publish their ”RCS Set Tag Line” web app as an ”App on

Facebook”.

 The developer logs in to their Facebook account.

 The developer provides in the Facebook registration form information such as the

“Canvas Callback URL”, pointing the “start” resource of his web app that is hosted on

his web site.

Note: Facebook will assign to this app some OAuth 2.0 credentials; however they are used

only when the web app calls Facebook APIs (i.e., access to photos, wall, etc.). Not to be

confused with the OAuth credentials used by the web app to call RCS APIs).

See http://developers.facebook.com/docs/guides/canvas/

http://developer.operator-x.com

You are logged in as: ”Mats Persson”

RCS operator-x developer zone

Application Registration ok

App Name: RCS Set Tagline

Description: Sets the RCS tagline…

Icon:

Client Id: 2401234588586zjkdSEDAs

Shared Secret: zc340fe19UdNreriGTEmcvI

End-user authorization endpoint:
http://portal.operator-x.com/oauth/authorize

Token endpoint:
http://portal.operator-x.com/oauth/access_token

http://developers.facebook.com/docs/guides/canvas/

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 81 of 89

Figure 5: Facebook App – Developer application registration panel

A.1.2 Application authorisation – User view

A.1.2.1 Application discovery - (A): Generic Web App variant

 An RCS user has discovered the “RCS Set Tagline” web app on the web.

 The process of discovery is out of scope. For example, it could be accomplished

through an “RCS Application Store” portal setup by the Service Provider.

 The user may have to create an account on this app portal to use the application (not

in scope of RCS).

 The user must authorize the application to access to his RCS resources on his

account and indicate his/her (RCS) Service Provider

 The latter for the application to select the right operator portal to connect to (if

supporting multiple operators)

 When pressing the “send” button, the user’s browser is re-directed to the user’s

operator portal.

 The endpoint URL to the operator portal was obtained from app registration.

 In the authorisation request, the application provides Application ID, target RCS

resources (scope), and Redirect URI.

http://www.facebook.com

Application registration

App Name:

Description:

Canvas

Page

URL:

…

You are logged in as: Mats Persson

RCS Set Tagline

Sets the RCS Tagline

http://apps.facebook.com

/rcssettagline/

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 82 of 89

Figure 6: Generic Web App – End user application management panel

A.1.2.2 Application discovery - (B): Facebook variant

 A (Facebook) user has discovered the “RCS Set Tagline” application.

 Following app selection in Facebook, the user must authorize the application to Set

Tag Line on his account, and indicate his/her (RCS) Service Provider.

 The latter for the application to select the right operator portal to connect to (if

supporting multiple operators).

 When pressing “send” button, the user’s browser is re-directed to the user’s operator

portal.

 Endpoint URL to the operator portal was obtained from app registration.

 In the authorisation request, the application provides Application ID, target RCS

resources (scope), and Redirect URI.

Figure 7: Facebook App – End user application management panel

http://www.rcswebapp.com

Use RCS Set Tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

http://www.facebook.com

Use RCS Set tagline App

Select Your

RCS Service

Provider:

Send

You are logged in as: Daniel Glifberg

Orange...

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 83 of 89

A.1.2.3 User Authentication (informative)

 User authentication is out of the scope of RCS API requirements. The following

information is an example included for completeness.

 At the user’s home operator portal, the user has to log in providing their user

credentials.

 If the user has no password, the portal can offer the possibility to create one.

 If the user has no RCS/operator account, the portal can offer the possibility to create

one.

Figure 8: Generic Web App – End user application management entry panel

A.1.2.4 Application authorisation - (B): Facebook variant

 When logged in, the user is requested to grant the application access (i.e., authorize

the application to access) the requested resource (e.g. my Location, SMS or

Presence).

 This Authorisation Dialog is constructed from client_id and scope values supplied in

the Authorisation Request previously sent to operator portal.

 The client_id, which identifies the application, was obtained from this operator in the

previous application registration.

 The scope value(s), which identify a set of access permissions on resource(s), are

typically found by the developer in API documentation and coded in the app.

 The Authorisation Dialog may be tailored according to the end-user’s preferred

language and device/browser type.

 After granting access, the user is redirected back to the original page, passing an

authorisation code to the app.

 The portal/GW stores the binding between user identity, scope, authorisation code

and application credentials.

 The web app can authenticate to the portal/GW to obtain an access token from the

authorisation code.

 The application authorisation can also be for example time-limited or [to be

standardized] based on usage (number of requests), etc.

http://portal.operator-x.com

RCS operator

Please log in!

Username

Mobile number:

Password:

46 705191170

ok

No password? Click here

Not a subscriber yet? Click here
Daniel’s

credentials

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 84 of 89

 When expired, the user must again authorize the application to use the requested

resource.

Figure 9: Generic Web App – End user application authorisation

 The application is now authorized to access to the resource of the user’s RCS

account.

 The RCS presence tagline can now be published from this app via the Presence

enabler of the user’s RCS Service Provider.

 The user can be charged for the request according to his Service Provider's policy

(e.g. status updates through the API are included in his RCS subscription).

Figure 10: Facebook App – End user application authorisation completed

http://portal.operator-x.com

I allow ”RCS Set Tagline” App

to Update my RCS Tagline on

my account

I allow ”RCS Set Tagline” App

to Update my RCS Tagline on

my account

You are logged in as: Daniel Glifberg

RCS operator

Please confirm application

access to your Presence service

App Name: RCS Set Tagline

Description: Sets the RCS presence

tagline…

ok

Authorization Dialog

http://www.facebook.com

You are logged in as: Daniel Glifberg

Use RCS Set tagline App

App Authorized!

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 85 of 89

Note: Generic Web App variant is similar.

A.1.2.5 Application Authorisation - (C): Native Application on SMS-capable Device

In the case of Native application, the return of the Authorisation Code from the user agent
(browser) to the application may not be possible depending on the characteristics of the
application and device OS. To overcome this issue it is possible to deliver the Authorisation
Code directly to the application via a binary SMS, provided that the device is SMS-capable.
Alternatively other Push technologies can also be used (e.g., OMA connectionless Push
over SMS, SIP Push).

The mechanism to be used in this case only differs only from the OAuth “Authorisation Code
flow” used in the Facebook App and Generic Web App cases at the Authorisation Response
step. In this case, the Authorisation Server does not redirect the User Agent to the OAuth
Client in order to provide the Authorisation Code but instead it provides the code directly to
the OAuth Client by sending it in a binary-SMS to the device aimed at a previously agreed-
upon port.

It is for further study at the technical specification phase the means by which the application
and the Authorisation Server agree on the delivery of the Authorisation Code via binary-SMS
and the specific port where the binary SMS is to be delivered. This can be done at the
application registration phase or otherwise indicated at the Authorisation Request.

This mechanism is valid for applications residing in non-RCS devices as well as in RCS
devices. However, in the latter case it is valid only for applications installed in the RCS
primary device.

The following figure depicts the Authorisation mechanism for Native applications described
above.

Figure 11 Application Authorisation – Native Application on SMS Capable Device

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 86 of 89

A.1.3 Application usage – User view

 The (Facebook) user can now use the “RCS Set Tagline” application.

 As the application now has a valid authorisation (connected to the user’s RCS

Service Provider), the user will no longer be asked to authorize the application to Set

Tagline on his account.

 The user is not required to select his Service Provider again.

 The application has been authorised access to the user’s RCS tagline resource.

 The new RCS presence tagline is now published via the Presence enabler of the

user’s RCS Service Provider.

 The user can be charged for the request according to his Service Provider's policy

(e.g. status updates through the API are included in his RCS subscription).

Figure 12: Facebook App – End user application flow

A.1.4 Application authorisation control – User view

 The user is managing which applications they have been granted access to.

 The user can log on to their operator portal and get a list of applications they have

been granted access to, which resource is granted for each app, and the possibility to

revoke the access for an application.

http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

Tagline:

Your Service

Provider:

Send

Enjoying workday

Orange...

http://www.facebook.com

You are logged in as: Daniel Glifberg

Set your RCS presence tagline

RCS Set Tagline

Tagline:

Send

Enjoying workday
Tagline updated!

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 87 of 89

Figure 13: End user application authorisation panel

http://portal.operator.com

You are logged in as: Daniel Glifberg

My apps at RCS operator

You have granted the following application

access to your RCS services

Submit

RCS Set Tagline

Description: Sends SMS…

RCS Get Social Presence

Description: Retrieve

RCS SPI..…
Get Location

Description: Retrieve

mobile position

Location

RCS

Presence

SMS

Authorized applications Resource Revoke

access?

GSM Association Non-confidential

Official Document RCC.13 - RCS API Detailed Requirements

v3.0 Page 88 of 89

 Document Management

B.1 Document History

Version Date Brief Description of
Change

Approval
Authority

Editor /
Company

1.0 29 April 2014 PRD edition prepared from

RCS API requirements

document version 2.4,

incorporating the changes

approved in GSG#12 and

subsequent reviews, and

GSMA quality review

comments

RCC TF Jose M Recio

Solaiemes

2.0 28 February

2015

Update for RCS 5.3, see

section 1.1.1 for a detailed list

of changes

PSMC Jose M Recio

Comverse

3.0 19 October

2017

API updates and additions to

support RCS Messaging as a

Platform requirements

TG Erdem Ersoz /

GSMA

B.1.1 Other Information

Type Description

Document owner Future Networks Programme

Editor/company Erdem Ersoz / GSMA

It is our intention to provide a quality product for your use. If you find any errors or omissions,

please contact us with your comments. You may notify us at prd@gsma.com

 Your comments or suggestions & questions are always welcome.

mailto:prd@gsma.com

