 STYLEREF ZDID * MERGEFORMAT
Page 3 V(38)

	[image: image1.jpg]«“+OMa

Open Mobile Alliance

	

	RESTful Network API for
Video Share

	Draft Version 1.0 – 08 Oct 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_VideoShare-V1_0-20111008-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

2.
References
6
2.1
Normative References
6
2.2
Informative References
6
3.
Terminology and Conventions
7
3.1
Conventions
7
3.2
Definitions
7
3.3
Abbreviations
7
4.
Introduction
9
4.1
Version 1.0
9
5.
Video Share API definition
10
5.1
Resources Summary
10
5.2
Data Types
14
5.2.1
XML Namespaces
14
5.2.2
Structures
14
5.2.2.1
Type: VideoShareSessionInformation
14
5.2.2.2
Type: SessionInvitationNotificaiton
16
5.2.2.3
Type: ReceiverSessionStatus
17
5.2.2.4
Type: MediaInformation
18
5.2.2.5
Type: VideoShareEventNotification
18
5.2.2.6
Type: InvitationAcceptanceNotification
19
5.2.2.7
Type: VideoShareSubscriptionList
19
5.2.2.8
Type: VideoShareSubscription
20
5.2.3
Enumerations
20
5.2.3.1
Enumeration: EventTypes
20
5.2.3.2
Enumeration: ReceiverStatus
20
5.2.4
Values of the Link “rel” attribute
21
5.3
Sequence Diagrams
21
5.3.1
[Title of flow scenario]
21
6.
Detailed specification of the resources
23
6.1
Resource: [Description of the resource]
23
6.1.1
Request URL variables
24
6.1.1.1
Light-weight relative resource paths
24
6.1.2
Response Codes and Error Handling
24
6.1.3
GET
25
6.1.3.1
Example 1: [Example title] (Informative)
25
6.1.3.1.1
Request
26
6.1.3.1.2
Response
26
6.1.3.2
Example 2: [Example title] (Informative)
27
6.1.3.2.1
Request
27
6.1.3.2.2
Response
27
6.1.4
PUT
27
6.1.4.1
Example 1: [Example title] (Informative)
27
6.1.4.1.1
Request
27
6.1.4.1.2
Response
27
6.1.4.2
Example 2: [Example title] (Informative)
28
6.1.4.2.1
Request
28
6.1.4.2.2
Response
28
6.1.5
POST
28
6.1.5.1
Example 1: [Example title] (Informative)
28
6.1.5.1.1
Request
28
6.1.5.1.2
Response
28
6.1.5.2
Example 2: [Example title] (Informative)
29
6.1.5.2.1
Request
29
6.1.5.2.2
Response
29
6.1.6
DELETE
29
6.1.6.1
Example 1: [Example title] (Informative)
29
6.1.6.1.1
Request
29
6.1.6.1.2
Response
30
6.1.6.2
Example 2: [Example title] (Informative)
30
6.1.6.2.1
Request
30
6.1.6.2.2
Response
30
Appendix A.
Change History (Informative)
31
A.1
Approved Version History
31
A.2
Draft/Candidate Version 1.0 History
31
Appendix B.
Static Conformance Requirements (Normative)
32
B.1
SCR for REST.VIDEOSHARE Server
32
B.1.1
SCR for REST. VIDEOSHARE.FUNCTION Server
32
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
33
C.1
[Operation]
33
C.1.1
Example (Informative)
34
C.1.1.1
Request
34
C.1.1.2
Response
34
Appendix D.
JSON examples (Informative)
35
D.1
[Example Title] (section [section number cross reference])
35
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
36
Appendix F.
Light-weight resources for VideoShare (Informative)
37
Appendix G.
Authorization aspects (Normative)
38

Figures

14Figure 1 Resource structure defined by this specification

34Figure 2 [Caption of this flow]

Tables

1. Scope

This specification defines a RESTful API for Video Share using HTTP protocol bindings.
2. References

2.1 Normative References

	[IR.84]
	“Video Share Phase 2 Interoperability Specification”, URL:
http://gsmworld.com/documents

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_VideoShare]
	“XML schema for the RESTful Network API for Video Share”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_VideoShare-V1.0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C-URLENC]
	W3C HTML 2.0 Specification, form-urlencoded Media Type, URL: http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1 [only needed if www-form-urlencoding (Appendix C) is supported]

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

Ed Note: do we need to reference the VS specification here?
2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a video share session.

	Participant
	A party that participates in a video share session, including the Originator and the Receiver.

	Receiver
	The party that is invited to a video share session to receive video content.

	
	

	
	

	
	

	
	

	
	

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].
3.3
Abbreviations
	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Video Share contains HTTP protocol bindings for sharing the videos, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· One

· Two

5. Video Share API definition
This section is organized to support a comprehensive understanding of the Video Share API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all lightweight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Video Share.
The "apiVersion" URL variable SHALL have the value "1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image2]
Figure 1 Resource structure defined by this specification

Ed. Note: As the video share use cases in the RD are rather fuzzy, a LS has been sent to RCE to clarify these. Depending on the response and the better understanding of the use cases, the resource design above may be updated.

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Ed. Note: Remove the “OPTIONAL” in the method columns once this information has been reflected in SCRs.

Purpose: Handling of 1-1 video share sessions
	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/videoshare/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Video Share Sessions
	/sessions

	VideoShareSessionInformation (used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no

	Create a new video share session
	no

	Individual Video Share Session
	/sessions/{sessionId}
	VideoShareSessionInformation

	Retrieve a information about a video share session

(OPTIONAL)
	no

	no

	Cancel a video share session (Originator)

Decline a video share session (Receiver)

Terminate a video share session

	Video Share Session Status
	/sessions/{sessionId}/status
	ReceiverSessionStatus
	no

	no

	Accept a video share session invitation
	no

Purpose: Handling of video share subscriptions

	Resource
	URL
Base URL: http://{serverRoot}/{apiVersion}/videoshare/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Subscriptions to Video Share Event Notifications

	/subscriptions
	VideoShareSubscriptionList (used for GET)

VideoShareSubscription (used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Read all active video share notification subscriptions (OPTIONAL)
	no

	Create a new subscription for video share notifications
	no

	Individual Subscription to Video Share Event Notifications

	/subscriptions/{subsctiptionId}

	VideoShareSubscription

	Read an active video share notification subscription (OPTIONAL)
	no

	no

	Cancel subscription and stop corresponding notifications

Purpose: Handling of video share notifications
	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client Notification about Video Share Session Invitations
	Specified by client when subscription is created or provisioned
	SessionInvitationNotification
	no
	no

	Notify client about the incoming video share invitation
	no

	Client Notification about Video Share Events
	Specified by client when subscription is created or provisioned
	VideoShareEventNotification
	no

	no

	Notify client about the video share events
	no

	Client notification about video share session acceptance
	Specified by client when subscription is created or provisioned
	InvitationAcceptanceNotification
	no

	no

	Notify client that the Receiver has accepted the video share invitation
	no

We may be able to merge VideoShareEventNotification and VideoUploadEventNotification. To be seen once the data model is there.
The following table gives an overview of the different types of notifications. It is also outlined which video share session party receive notifications of a particular type, whether a response is needed, and which resources a notification links to via the <link> element.

In the “Notification sent to” column, the following values can occur:

· Originator: the Originator of the video share session

· Receiver: one individual Receiver in the video share session at a time

· all: Receiver and Originator of the video share session at once

Table 1: 1-1 video share notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/{apiVersion}/video share/{userId}/sessions

	n/a
	SessionInvitationNotification
	Receiver
	decline
accept
	VideoShareSessionInformation

ReceiverSessionStatus
	/{sessionId}

/{sessionId}/status

	n/a
	InvitationAcceptanceNotification
	Originator
	n/a
	VideoShareSessionInformation
	/{sessionId}

	Declined
	VideoShareEventNotification
	Originator
	n/a
	VideoShareSessionInformation
	/{sessionId}

	SessionCancelled
	VideoShareEventNotification
	Receiver
	n/a
	VideoShareSessionInformation
	/{sessionId}

	SessionEnded
	VideoShareEventNotification
	All
	n/a
	VideoShareSessionInformation
	/{sessionId}

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Video Share data types is:

urn:oma:xml:rest:netapi:videoshare:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_VideoShare].
5.2.2 Structures

The subsections of this section define the data structures used in the Video Share API.
Some of the structures can be instantiated as so-called root elements.

5.2.2.1 Type: VideoShareSessionInformation
This type defines a set of parameters of a video share session.
	Element
	Type
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	Address of the Originator of this video share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this video share session.

	receiverAddress

	xsd:anyURI
	Yes
	Address of the Receiver of this video share session.

If SHALL be present in request bodies during resource creation in case of vide sharing without CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing with CS voice call. The server SHALL get the receiverAddress using the callObjectRef received in the request bodies during resource creation in case of video sharing with CS voice call.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked) in case of video sharing with CS voice call.

If SHALL be present in request bodies during resource creation in case of image sharing with CS voice call.

If SHALL not be present in request bodies during resource creation in case of image sharing without CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.
SHALL NOT be present when callObjectRef is used, and MAY be present when receiverAddress is used.

	mediaURL
	xsd:anyURI
	Yes
	The video media URL from where the video content can be retrieved.

It SHALL not be present in the POST request during resource creation if liveVideo is set to true.

If it is present in the POST operation during resource creation, the server could fetch the video content using this URL.

If it is not present in the POST request during resource creation and the liveVideo is not set to true (not live video), the video content is included in the HTTP body. File content can be represented as multipart/form-data entity bodies, where the first entry of the form is the root element and the second entry of the form is the video content.

	supportedVideo
	xsd:string

[1..unbounded]
	Yes
	The video codecs (e.g. H.263-2000 profile 0 level 45) in order of preference.

It represents the media offer in the POST request during resource creation.

It SHALL be present if the video is live (liveVideo is set to true).

It SHALL not be present if the video is not live (the liveVideo is not set to true).

	supportedAudio
	xsd:string

[0..unbounded]
	Yes
	The audio codecs (e.g. AMR-WB) in order of preference.

It represents the media offer in the POST request during resource creation.

It MAY be present if the video is live (liveVideo is set to true).

It SHALL not be present if the video is not live (the liveVideo is not set to true).

	liveVideo
	xsd:boolean
	Yes
	Indicates whether the video is live video (true) or video clip (false).
This element MUST be present and set to “true” if the video is live.

Default value is ‘false.’

	status
	ReceiverStatus
	Yes
	Connection status of the Receiver. Set by the server. SHALL NOT be present in request bodies during resource creation.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named videoShareSessionInformation of type VideoShareSessionInformation is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
XSD modeling uses a “choice” to select either receiverAddress or callObjectRef.
5.2.2.2 Type: SessionInvitationNotificaiton
This describes the set of parameters in a video share session invitation notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	originatorAddress
	xsd:anyURI
	No
	Address of the Originator of this video share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this video share session.

	receiverAddress

	xsd:anyURI
	No
	Address of the Receiver of this video share session

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked) in case of video sharing with CS voice call.
The server SHALL get the callObjectRef using receiverAddress in case of image sharing with CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.

	mediaInformation
	MeidaInformation

[1..unbounded]
	No
	It contains the list of the information about the video content such as codecs, transport protocols and media URLs from where the video content can be retrieved.

A root element named sessionInvitationNotification of type SessionInvitationNotification is allowed in notification request bodies.

The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=” ReceiverSessionStatus”.

Typically, this is http://{serverRoot}/{apiVersion}/videoshare/{userId}/sessions/{sessionId}/status.

The recipient can decline the request by sending a DELETE request to one the URL passed in the “href” attribute of the “link” element with rel=”VideoShareSessionInformation”.

Typically, this is http://{serverRoot}/{apiVersion}/videoshare/{userId}/sessions/{sessionId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate.
5.2.2.3 Type: ReceiverSessionStatus
This type represents the status of a Receiver in the video share session.
	Element
	Type
	Optional
	Description

	status
	ReceiverStatus
	No
	Status of the Receiver.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	mediaInformation
	MediaInformation
	Yes
	It contains the information about the video media such as codecs, transport protocol and media URL which are accepted by the Receiver.
It SHALL not be present if both rejectVideo and rejectAudio are set to true.

It SHALL be present if not both rejectVideo and rejectAudio are set to true.

	rejectAudio
	xsd:boolean
	Yes
	If present and set to true, it indicates that the receiver rejects the audio media. Default is false
The Receiver has the option to decline the PS audio stream (audio in video clip) in case of video share with CS call.

	rejectVideo
	xsd:boolean
	Yes
	If present and set to true, it indicates that the receiver rejects to receive the video media. Default is false.

A root element named receiverSessionStatus of type ReceiverSessionStatus is allowed in request bodies.
5.2.2.4 Type: MediaInformation
This type defines the information about the video content, including codecs, transport protocol and media URLs from where the video content can be retrieved.
	Element
	Type
	Optional
	Description

	mediaURL
	xsd:anyURI
	No
	The video media URL from where the video content can be retrieved.

	transportProtocol
	xsd:string
	No
	The transport protocol of the media (e.g. RTP).

	supportedVideo
	xsd:string
	No
	The video codec (e.g. H.263-2000 profile 0 level 45).

	supportedAudio
	xsd:string
	Yes
	The audio codec (e.g. AMR-WB).

[Editor’s Note]: The exact structure is FFS.
5.2.2.5 Type: VideoShareEventNotification

This type define a set of parameters for the video share event notifications.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	eventType
	EventTypes
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
Depending on the value of eventType, the server MUST include links as defined in Table 1 for VideoShareEventNotification.

Further, the server SHOULD include a link to the related subscription.

A root element named videoSharetEventNotification of type VideoShareEventNotification is allowed in notification request bodies.
5.2.2.6 Type: InvitationAcceptanceNotification
This type defines a set of parameters to inform the Originator that the video share session invitation is accepted.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	status
	ReceiverSessionStatus
	Yes
	The status of a Receiver in the video share session.
To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	mediaInformation
	MediaInformation
	Yes
	It contains the information abou the video content such as codecs, transport protocol and media URL which are accepted

It SHALL not be present if the rejectVideo is set to true.

It SHALL be present if the rejectVideo is not set to true and there is media offer (supportedVideo is present) in the POST operation during the resource creation.

	rejectAudio
	xsd:Boolean
	Yes
	If present and set to true, it indicates that the receiver rejects the audio media. Default is false.

	rejectVideo
	xsd:Boolean
	Yes
	If present and set to true, it indicates that the receiver rejects the video media. Default is false.

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.Further, the server SHOULD include a link to the related subscription.

A root element named invitationAcceptanceNotification of type InvitationAcceptanceNotification is allowed in notification request bodies.
5.2.2.7 Type: VideoShareSubscriptionList

List of all active video share notification subscriptions. In order to be able to receive notifications, the client needs to create a subscription first.
	Element
	Type
	Optional
	Description

	videoShareSubscription
	VideoShareSubscription
[0..unbounded]
	Yes
	Array of video share event subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named videoShareSubscriptionList of type VideoShareSubscriptionList is allowed in response bodies.
5.2.2.8 Type: VideoShareSubscription

This type defines a set of parameters for the subscription of video share related notifications, i.e. VideoShareEventNotification, InvitationAcceptanceNotification and SessionInvitationNotification,
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. SHALL NOT be included in POST requests, MUST be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named videoShareSubscription of type VideoShareSubscription is allowed in request and/or response bodies.
5.2.3 Enumerations

The subsections of this section define the enumerations used in the Video Share API.
5.2.3.1 Enumeration: EventTypes
This enumeration is used in notifications to describe the type of event which the notification is about.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the video share session during the invite phase.

	SessionEnded
	The video share session has ended.

	Declined
	The video share Receiver has declined the video share session invitation.

5.2.3.2 Enumeration: ReceiverStatus
List of the status values associated with a Receiver in a video share session.
	Enumeration
	Description

	Initial
	The participant is being invited to a video share session

	Connected
	The participant is active in the session

	Disconnected
	The session to the Receiver was terminated.

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· VideoShareSessionInformation
· SessionInvitationNotificaiton
· ReceiverSessionStatus
· VideoShareEventNotification
· InvitationAcceptanceNotification
· VideoShareSubscriptionList

· VideoShareSubscription

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
5.3.1 [Title of flow scenario]
This figure below shows a scenario for [description of scenario].
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:

· To [description of operation], [create/read/update/delete] resource under [resource URL]
· To [description of operation], [create/read/update/delete] resource under [resource URL]
<< Include a flow diagram, and add a figure caption
Use solid lines for requests

Use dotted lines for responses

Use numbers if you want to reference in the text

If multiple servers are involved, name them (e.g. Foo Server, Bar Server), otherwise do not name the server
An editable PPT versions of the figure is provided below, as editing the embedded figure is problematic

[image: image3.emf]example-flow.zip

example-flow.zip

>>

[image: image4.emf]3. Remove a callparticipant(including

resourceURLwithparticipantId) fromthesession

Application Server

1. POST CallSessionInformation

Response withcreatedcallsession

resourceincl. callSessionId

2. POST CallParticipantInformationto

resourceURLofnewcallsession

Response withinformationabout addedcall

Participantincl. resourceURLwithparticipantId

Create a newcall

session

Add participantto

session

4. GET participantlistforcallSessionId

Response withinformationabout each

participantincl. theirstatus

Fetch participants

5. Terminatethecallsession

Response orerrormessage

Terminatecall

session

Request removal

ofparticipant

Response whetherremovalwas successful

Delete participant

fromsession

Figure 2 [Caption of this flow]
Outline of the flows:

1. [High-level description of 1 or more steps in the flow diagram]
a) Alternative 1

b) Alternative 2

2. [High-level description of 1 or more steps in the flow diagram]
3. [High-level description of 1 or more steps in the flow diagram]
6. Detailed specification of the resources

 The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100) and the use of characters other than digits SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: [Description of the resource]
<< Description of the resource in the title heading should match the description of the resource from the first column of the purpose table in section 5.1 >>

The resource used is:
[resource URL]

[without lightweight resources usually http://{serverRoot}/{apiVersion}/funcarea/...]
[with lightweight resources usually http://{serverRoot}/{apiVersion}/funcarea/.../[ResourceRelPath]]
This resource is used for [descriptive explanation of the resource].
If the resource is on the server side and supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
Alternatively, if the resource is a notification resource to which the server provides notifications based on a previously created subscription, and if the use of Notification Channel is supported, include/adapt this paragraph and the following Note, otherwise delete them. This resource is a callback URL provided by the client for notification about FOO. The RESTful [Functional Area] API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.

Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.x.y. 6.x.y to be replaced by the reference to the section that describes the actual POST method on THIS resource (e.g. in this case 6.1.5)
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: http://example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	[ResourceRelPath]
	Relative resource path for a light-weight resource, consisting of a relative path down to an element in the data structure. For more information about the applicable values (strings) for this variable see [section number entitled “Light-weight relative resource paths” applicable for the current resource]. [This row is only present in case the resource has lightweight child resources]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

See section 6 for a statement on the escaping of reserved characters in URL variables.
<< Light-weight resource relative paths. This subsection is only applicable if the resource allows accessing individual sub-trees in the data structure using the lightweight resource mechanism (i.e. [ResourceRelPath is part of the resourceURL]>>
6.1.1.1 Light-weight relative resource paths

The following table describes the types of light-weight resources that can be accessed by using this resource, applicable methods, and links to data structures that contain values (strings) for those relative resource paths.

	Light-weight resource type
	Method supported
	Description

	[Description of the type]

	[list of HTTP methods, POST not allowed]
	[Description and reference to the allowed values]

	<< Example - DELETE This Row>>

	Person attributes
	GET, PUT, DELETE
	Enables access to a single presence attribute related to a person.

See data structure 5.2.4 for possible values for the light-weight relative resource path.

6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Video Share, see TBD].
<< Note that the second sentence is applicable if there is Parlay X legacy, but may be adopted if there are exceptions coming from other underlying systems. In case there are no error handling mechanisms / exceptions from underlying systems, the second sentence can be omitted.>>

6.1.3 GET
<< This is a blueprint for GET in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [PUT/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for GET in case it is a valid operation>>

This operation is used for [description of operation].

<< The following table is optional and is used only if query parameters are supported in request URL for GET, otherwise it needs to be deleted >>

Supported parameters in the query string of the Request URL are:

	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type/Values]
	[Yes/No]
	[Parameter description]

	<< Add/Remove rows to this table as needed - DELETE This Row>>

When using query parameters the following conventions apply: >>

· Query parameters are appended to the resource URL starting with a question mark “?” character and then followed by query parameter name – value pairs.

· Multiple query parameter name-value pairs are separated by an ampersand "&" character. Example: ?par1=par1Val&par2=par2Val&..

· Multiple values for the same query parameters are specified as a list of name-value pairs using the same name, separated by an ampersand “&” character. Example: ?par1=par1Val1&par1=par1Val2&...

6.1.3.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

<< Prior to Candidate approval, a TS with XML examples MUST be submitted to the OMA XML validation service for validation of the examples: http://www.openmobilealliance.org/xml/. It is RECOMMENDED to do the same prior to or as part of CONR.
The examples must use real-world values. See document OMA-ARC-REST-2010-0675R01

The following conventions apply:

· {serverRoot} http://example.com/exampleAPI also to be updated in the tables where {serverRoot} is defined in section 6.x.

· {version} In our case this is 1 matching the TS version.

· {userId} E-mail names: mailto:alice@example.com mailto:bob@example.com or phone numbers: tel:+1-555-555-0100 to tel:+1-555-555-0199. In fact, only 555-0100 through 555-0199 are now specifically reserved for fictional use, with the other numbers having been released for actual assignment.

· {deviceAddress}, {senderAddress} Typically a phone number

· {equipmentId} Typically a manufacturer type name or serial number

· {memberListId} Typically a group name, “friend”, “list123”

· {contactId} Typically a person’s name, “bob”

· {memberId} Typically a phone number or e-mail address or SIP URI

· {subscriptionId} Typically a number or a sequence of digits and letters, “sub123”

· {messageId} Typically a number or a sequence of digits and letters, “msg123”

· {interactionId} Typically a number or a sequence of digits and letters, “int123”

· {registrationId} Typically a number or a sequence of digits and letters, “reg123”

· {requestId} Typically a number or a sequence of digits and letters, “req123”

· {ruleId} Typically a number or a sequence of digits and letters, “rule123”>>

6.1.3.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.3.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.3.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.3.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4 PUT

<< This is a blueprint for PUT in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/POST/DELETE]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for PUT in case it is a valid operation>>

This operation is used for [description of operation].

6.1.4.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.4.1.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.1.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.4.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.4.2.1 Request

	[HTTP headers]
[XML request (if applicable), starting with <?xml]

6.1.4.2.2 Response

	[HTTP headers]
[XML response (if applicable), starting with <?xml]

6.1.5 POST
<< This is a blueprint for POST in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/DELETE]’ field in the response as per section 14.7 of [RFC 2616].

<< This is a blueprint for POST in case it is a valid operation>>

This operation is used for [description of operation].
If the resource is on the server side and it supports creating a subscription for notifications, and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.5.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.5.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.5.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.5.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6 DELETE

<< This is a blueprint for DELETE in case it is not a valid operation>>

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: [GET/PUT/POST]’ field in the response as per section 14.7 of [RFC 2616].
<< This is a blueprint for DELETE in case it is a valid operation>>

This operation is used for [description of operation].

6.1.6.1 Example 1: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove the sequence number from the title heading >>

6.1.6.1.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.1.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

6.1.6.2 Example 2: [Example title]
(Informative)
<< Section 6.1.3.1 provides guidance w.r.t. naming conventions and validation of examples.

If there is only one example, remove this section >>

6.1.6.2.1 Request

	[HTTP headers]
[XML request (if applicable, starting with <?xml]

6.1.6.2.2 Response

	[HTTP headers]
[XML response (if applicable, starting with <?xml]

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	

Description

	Draft Version:

REST_NetAPI _VideoShare-V1_0
	10 May 2011
	All
	Baseline

	
	17 May 2011
	5.1
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0014-CR_VideoShare_ResourceSummary_originating_sid
· OMA-ARC-REST-NetAPI-2011-0015-CR_CR_VideoShare_ResourceSummary_originating_side (Note : CR0014 and CR 0015 are identical)

	
	15 Jun 2011
	5, 5.1,

Appendix E
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0025R03-CR_VideoShare_Resources

	
	02 Aug 2011
	5.1
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0130R02-CR_VideoShare_Resources_alignment_with_new_resource_model

	
	08 Oct 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0183R03-CR_VideoShare_DataTypes_with_tel_URI_and_Notif_channel_changes

	
	
	
	

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].

B.1 SCR for REST.VIDEOSHARE Server

	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-SUPPORT-S-001-M
	Support for the RESTful VideoShare API
	[section(s)]
	

	REST-VIDEOSHARE-SUPPORT-S-002-M
	Support for the XML request & response format
	[section(s)]
	

	REST-VIDEOSHARE-SUPPORT-S-003-M
	Support for the JSON request & response format
	[section(s)]
	

	RESTVIDEOSHARE-SUPPORT-S-004-O
	Support for the application/form-urlencoded format
	[section(s)]
	

B.1.1 SCR for REST. VIDEOSHARE.FUNCTION Server
	Item
	Function
	Reference
	Requirement

	
	
	
	

	
	
	
	

<<

If an Item is MANDATORY (-M) it has no requirement.

If an Item is OPTIONAL (-O), but other OPTIONAL items are conditional on that first item i.e. MUST be implemented if the first item is implemented, then the conditional items are listed in the Requirements column of the first item, linked by “AND”

Example: optional resource with conditional GET and DELETE operations
	REST-CN-SUBSCR-INDCALLDIR-S-001-O
	Support for access to an individual subscription to call direction notifications
	5.8
	REST-CN-SUBSCR-INDCALLDIR-S-002-O
AND
REST-CN-SUBSCR-INDCALLDIR-S-003-O

	REST-CN-SUBSCR-INDCALLDIR-S-002-O
	Retrieving an individual subscription to call direction notifications – GET
	5.8.3
	

	REST-CN-SUBSCR-INDCALLDIR-S-003-O
	Deleting an individual subscription to call direction notifications – DELETE
	5.8.6
	

>>

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)
<< Some APIs do support form-url-encoded parameters, some don’t. Pick the right text block. >>

<< The text below is a blueprint of Appendix C for no support of url-encoding. >>

In most OMA RESTful Network API specifications, Appendix C defines a format for API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

In this particular specification, Appendix C has been intentionally left empty.

Note: The use case for x-www-form-urlencoded parameters is the submission of the parameters directly to the REST resource from an HTML form in a web browser. The web browser submits forms using the POST method. Therefore, this section only applies to the POST method. As there are no POST methods defined in this specification, there are no x-www-form-urlencoded parameters to specify.

<< The text below is a blueprint of Appendix C for support of url-encoding. >>

This section defines a format for the RESTful Video Share API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-formurlencoded character escaping rules from [W3C-URLENC].
The encoding is defined below for the following VideoShare REST operations which are based on POST requests:
<< List the operations for which url-encoded is supported. For those TSs where ALL the POST operations are described in the Appendix C, it is left to the editor to use either the sentence above, followed by a list operations, or alternatively use the sentence: “The encoding is defined for all [Functional Area] REST operations which are based on POST requests.” , in which case the list of operations can be omitted in this section.
Note that the parameters are all of simple types. In case a parameter is of complex type in the original XML data structure, the structure needs to be “flattened” >>
C.1 [Operation]
This operation is used for [description of operation], see section 6.z.w. . 6.z.w to be replaced by the reference to section where the equivalent method is defined in section 6 (e.g. 6.1.5).
If the resource supports creating a subscription for notifications (i.e. includes a notifyURL parameter), and if the use of Notification Channel is supported, include/adapt this paragraph, otherwise delete it. The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	[Parameter name]
	[Type and cardinality or allowed values for that parameter]
	[Yes/No]
	[Parameter description]

	<< Example - DELETE this and next Row>>

	address
	xsd:anyURI [1…unbounded]
	No
	Destination address(es) for the message

	<< Add/Remove rows to this table as needed - DELETE This Row>>

C.1.1 Example

(Informative)

C.1.1.1 Request

	[HTTP headers]
[url-encoded request]

C.1.1.2 Response

	[HTTP headers]
[xml response]

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 [Example Title] (section [section number cross reference])
<< Example title should be copied from title heading of the section with the corresponding XML example. And that section number should be added in brackets to the end of the example title >>

Request:
	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Response:

	[HTTP headers copied from referenced example, type specific signalling updated for JSON]
[JSON example generated from the equivalent XML example using the JSON2XML utility]

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources for VideoShare
(Informative)

The following table lists all VideoShare data structure elements that can be accessed individually as light-weight resources.
For each light-weight resource, the following information is provided: corresponding root element name, root element type and [ResourceRelPath] string.

	Type of light-weight resources (and references to data structures)
	Element/attribute
that can be accessed as light-weight resource
	Root element name for the light-weight resource
	Root element type for the light-weight resource
	[ResourceRelPath] string that needs to be appended to the corresponding heavy-weight resource URL

	[Resource Type]
([section ref])
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	
	[child element name]
	[root element name]
	[root element type]
	[ResourceRelPath]

	<< Example below - DELETE this and following Row>>

	Presence data

(5.2.3)
	person
	person
	PersonAttributes
	person

	
	service
	service
	ServiceAttributes
	service/{serviceId}/{version}

	
	device
	device
	DeviceAttributes
	device/{deviceId}

Appendix G. Authorization aspects
(Normative)

<< This appendix lists authorization aspects specific of the particular API, such as OAuth scope values. It is mandatory but may be empty (“None specified in this version of the specification”) >>

/{subscriptionId}

/subscriptions

/status

/{sessionId}

/videoshare/{userId}

//{serverRoot}/{apiVersion}

/sessions

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1357634611/example-flow.zip

example-flow.ppt

3. Remove a call participant (including

resourceURL with participantId) from the session

Application

Server

1. POST CallSessionInformation

Response with created call session

resource incl. callSessionId

2. POST CallParticipantInformation to

resourceURL of new call session

Response with information about added call

Participant incl. resourceURL with participantId

Create a new call

session

Add participant to

session

4. GET participant list for callSessionId

Response with information about each

participant incl. their status

Fetch participants

5. Terminate the call session

Response or error message

Terminate call

session

Request removal

of participant

Response whether removal was successful

Delete participant

from session

