 STYLEREF ZDID * MERGEFORMAT
Page 17 V(98)

	[image: image1.jpg]
	

	RESTful Network API for
Video Share

	Draft Version 1.0 – 01 Dec 2011

	Open Mobile Alliance

	OMA-TS-REST_NetAPI_VideoShare-V1_0-20111201-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

81.
Scope

2.
References
9
2.1
Normative References
9
2.2
Informative References
9
3.
Terminology and Conventions
11
3.1
Conventions
11
3.2
Definitions
11
3.3
Abbreviations
11
4.
Introduction
13
4.1
Version 1.0
13
5.
Video Share API definition
14
5.1
Resources Summary
14
5.2
Data Types
18
5.2.1
XML Namespaces
18
5.2.2
Structures
18
5.2.2.1
Type: VideoShareSessionInformation
19
5.2.2.2
Type: SessionInvitationNotificaiton
20
5.2.2.3
Type: ReceiverSessionStatus
21
5.2.2.4
Type: ReceiverSessionStatusResp
22
5.2.2.5
Type: MediaInformation
22
5.2.2.6
Type: MediaFormat
23
5.2.2.7
Type: VideoShareEventNotification
23
5.2.2.8
Type: SessionAcceptanceNotification
24
5.2.2.9
Type: VideoShareSubscriptionList
25
5.2.2.10
Type: VideoShareNotificationSubscription
25
5.2.3
Enumerations
26
5.2.3.1
Enumeration: EventTypes
26
5.2.3.2
Enumeration: ReceiverStatus
26
5.2.3.3
Enumeration: MediaType
26
5.2.4
Values of the Link “rel” attribute
27
5.3
Sequence Diagrams
27
5.3.1
Subscribe and unsubscribe to video share notifications
27
5.3.2
1-1 video share with successful result
28
5.3.2.1
1-1 video share session with recorded or stored video file
28
5.3.2.2
1-1 video share session with live video
30
5.3.3
1-1 video share session failure
31
5.3.3.1
Cancelling a 1-1 video share invitation
31
5.3.3.2
Declining a 1-1 video share session invitation
32
5.3.3.3
1-1 video share failed
32
6.
Detailed specification of the resources
34
6.1
Resource: All subscriptions to video share notifications
34
6.1.1
Request URL variables
34
6.1.2
Response Codes and Error Handling
35
6.1.3
GET
35
6.1.3.1
Example 1: Reading all active video share notification subscriptions (Informative)
35
6.1.3.1.1
Request
35
6.1.3.1.2
Response
35
6.1.4
PUT
35
6.1.5
POST
35
6.1.5.1
Example 1: Creating a new subscription to video share notifications using tel URI, response with copy of created resource (Informative)
36
6.1.5.1.1
Request
36
6.1.5.1.2
Response
36
6.1.5.2
Example 2: Creating a new subscription to video share notifications using ACR, response with location of created resource (Informative)
36
6.1.5.2.1
Request
36
6.1.5.2.2
Response
37
6.1.6
DELETE
37
6.2
Resource: Individual subscription to video share event notifications
37
6.2.1
Request URL variables
37
6.2.2
Response Codes and Error Handling
38
6.2.3
GET
38
6.2.3.1
Example: Reading an individual subscription (Informative)
38
6.2.3.1.1
Request
38
6.2.3.1.2
Response
38
6.2.4
PUT
38
6.2.5
POST
38
6.2.6
DELETE
39
6.2.6.1
Example: Cancelling a subscription (Informative)
39
6.2.6.1.1
Request
39
6.2.6.1.2
Response
39
6.3
Resource: All 1-1 video share sessions
39
6.3.1
Request URL variables
39
6.3.2
Response Codes and Error Handling
39
6.3.3
GET
40
6.3.4
PUT
40
6.3.5
POST
40
6.3.5.1
Example 1: Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related) (Informative)
40
6.3.5.1.1
Request
40
6.3.5.1.2
Response
40
6.3.5.2
Example 2: Creating a new 1-1 video share session with recorded video file content (CS call related) (Informative)
41
6.3.5.2.1
Request
41
6.3.5.2.2
Response
41
6.3.5.3
Example 3: Creating a new 1-1 video share session with live video (no CS call related) (Informative)
42
6.3.5.3.1
Request
42
6.3.5.3.2
Response
42
6.3.6
DELETE
43
6.4
Resource: Individual 1-1 video share session
43
6.4.1
Request URL variables
43
6.4.2
Response Codes and Error Handling
44
6.4.3
GET
44
6.4.3.1
Example 1: Retrieving 1-1 video share session information (Informative)
44
6.4.3.1.1
Request
44
6.4.3.1.2
Response
44
6.4.4
POST
44
6.4.5
DELETE
45
6.4.5.1
Example: Terminating a 1-1 video share session (Informative)
45
6.4.5.1.1
Request
45
6.4.5.1.2
Response
45
6.5
Resource: Individual 1-1 video share session status
45
6.5.1
Request URL variables
45
6.5.2
Response Codes and Error Handling
46
6.5.3
GET
46
6.5.4
PUT
46
6.5.5
POST
47
6.5.5.1
Example1: Accepting a 1-1 video share invitation with accepted media information (Informative)
47
6.5.5.1.1
Request
47
6.5.5.1.2
Response
47
6.5.5.2
Example2: Accepting a 1-1 video share invitation without accepted media information (Informative)
47
6.5.5.2.1
Request
47
6.5.5.2.2
Response
48
6.5.6
DELETE
48
6.6
Resource: Client notification about 1-1 video share session invitations
48
6.6.1
Request URL variables
48
6.6.2
Response Codes and Error Handling
48
6.6.3
GET
48
6.6.4
PUT
48
6.6.5
POST
49
6.6.5.1
Example1: Notify a client about 1-1 video share session invitations (Informative)
49
6.6.5.1.1
Request
49
6.6.5.1.2
Response
49
6.6.6
DELETE
49
6.7
Resource: Client notification about 1-1 video share session acceptance
50
6.7.1
Request URL variables
50
6.7.2
Response Codes and Error Handling
50
6.7.3
GET
50
6.7.4
PUT
50
6.7.5
POST
50
6.7.5.1
Example 1: Notify a client about the acceptance of 1-1 video share session with recorded video (no CS call related) (Informative)
50
6.7.5.1.1
Request
50
6.7.5.1.2
Response
51
6.7.5.2
Example 2: Notify a client about the acceptance of 1-1 video share session with recorded video (CS call related) (Informative)
51
6.7.5.2.1
Request
51
6.7.5.2.2
Response
51
6.7.5.3
Example 3: Notify a client about the acceptance of 1-1 video share session with live video (no CS call related) (Informative)
51
6.7.5.3.1
Request
51
6.7.5.3.2
Response
52
6.7.6
DELETE
52
6.8
Resource: Client notification about 1-1 video share events
52
6.8.1
Request URL variables
52
6.8.2
Response Codes and Error Handling
53
6.8.3
GET
53
6.8.4
PUT
53
6.8.5
POST
53
6.8.5.1
Example 1: Notify a client about video share session event (ended) (Informative)
53
6.8.5.1.1
Request
53
6.8.5.1.2
Response
53
6.8.5.2
Example 2: Notify a client about video share session event (declined) (Informative)
54
6.8.5.2.1
Request
54
6.8.5.2.2
Response
54
6.8.5.3
Example 3: Notify a client about video share session event (cancelled) (Informative)
54
6.8.5.3.1
Request
54
6.8.5.3.2
Response
54
6.8.5.4
Example 4: Notify a client about video share session event (failed) (Informative)
55
6.8.5.4.1
Request
55
6.8.5.4.2
Response
55
6.8.6
DELETE
55
Appendix A.
Change History (Informative)
56
A.1
Approved Version History
56
A.2
Draft/Candidate Version 1.0 History
56
Appendix B.
Static Conformance Requirements (Normative)
57
B.1
SCR for REST.VideoShare Server
57
B.1.1
SCR for REST.VideoShare.Subscriptions Server
57
B.1.2
SCR for REST.VideoShare.Individual.Subscription Server
57
B.1.3
SCR for REST.VideoShare.Sessions Server
58
B.1.4
SCR for REST.VideoShare.Individual.Session Server
58
B.1.5
SCR for REST.VideoShare.Individual.Session.Status Server
58
B.1.6
SCR for REST.VideoShare.Session.Invitation.Notifications Server
58
B.1.7
SCR for REST.VideoShare.Session.Acceptance.Notifications Server
59
B.1.8
SCR for REST.VIDEOSHARE.Events.Notifications Server
59
Appendix C.
Application/x-www-form-urlencoded Request Format for POST Operations (Normative)
60
C.1
Creating a new subscription to video share notifications
60
C.1.1
Example: Creating a new subscription to video share notifications using tel URI, response with copy of created resource (Informative)
61
C.1.1.1
Request
61
C.1.1.2
Response
61
C.1.2
Example: Creating a new subscription to video share notifications using ACR, response with location of created resource (Informative)
61
C.1.2.1
Request
61
C.1.2.2
Response
62
C.2
Creating a new 1-1 video share session
62
C.2.1
Example 1: Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related) (Informative)
64
C.2.1.1
Request
64
C.2.1.2
Response
65
C.2.2
Example 2: Creating a new 1-1 video share session with recorded video file content (CS call related) (Informative)
65
C.2.2.1
Request
65
C.2.2.2
Response
66
C.2.3
Example 3: Creating a new 1-1 video share session with live video (no CS call related) (Informative)
66
C.2.3.1
Request
66
C.2.3.2
Response
67
C.3
Accepting a 1-1 video share session invitation
67
C.3.1
Example1: Accepting a 1-1 video share invitation with accepted media information (Informative)
69
C.3.1.1
Request
69
C.3.1.2
Response
69
C.3.2
Example2: Accepting a 1-1 video share invitation without accepted media information (Informative)
69
C.3.2.1
Request
69
C.3.2.2
Response
69
Appendix D.
JSON examples (Informative)
71
D.1
Reading all active video share notification subscriptions (section 6.1.3.1)
71
D.2
Creating a new subscription to video share notifications using tel URI, response with copy of created resource (section 6.1.5.1)
71
D.3
Creating a new subscription to video share notifications using ACR, response with location of created resource (section 6.1.5.2)
72
D.4
Reading an individual subscription (section 6.2.3.1)
73
D.5
Cancelling a subscription (section 6.2.6.1)
73
D.6
Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related) (section 6.3.5.1)
73
D.7
Creating a new 1-1 video share session with recorded video file content (CS call related) (section 6.3.5.2)
74
D.8
Creating a Creating a new 1-1 video share session with live video (section 6.3.5.3)
75
D.9
Retrieving 1-1 video share session information (section 6.4.3.1)
76
D.10
Terminating a 1-1 video share session (section 6.4.5.1)
77
D.11
Accepting a 1-1 video share invitation with accepted media information (section 6.5.5.1)
77
D.12
Accepting a 1-1 video share invitation without accepted media information (section 6.5.5.2)
78
D.13
Notify a client about 1-1 video share session invitations (section 6.6.5.1)
78
D.14
Notify a client about the acceptance of 1-1 video share session with recorded video (no CS call related) (section 6.7.5.1)
79
D.15
Notify a client about the acceptance of 1-1 video share session with recorded video (CS call related) (section 6.7.5.2)
80
D.16
Notify a client about the acceptance of 1-1 video share session with live video (no CS call related) (section 6.7.5.3)
80
D.17
Notify a client about video share session event (ended) (section 6.8.5.1)
81
D.18
Notify a client about video share session event (declined) (section 6.8.5.2)
82
D.19
Notify a client about video share session event (cancelled) (section 6.8.5.3)
82
D.20
Notify a client about video share session event (failed) (section 6.8.5.4)
83
Appendix E.
Operations mapping to a pre-existing baseline specification (Informative)
84
Appendix F.
Light-weight resources (Informative)
85
Appendix G.
Authorization aspects (Normative)
86
G.1
Use of Autho4API
86
G.1.1
Scope values
86
G.1.1.1
Definitions
86
G.1.1.2
Downscoping
86
G.1.1.3
Mapping with resources and methods
87

Figures

15Figure 1 Resource structure defined by this specification

28Figure 2 Subscribing to and unsubscribing from video share notifications

29Figure 3 1-1 video share session with recorded or stored video file

30Figure 4 1-1 video share session with live video

31Figure 5 Cancelling a 1-1 video share invitation

32Figure 6 Declining a 1-1 video share session invitation

33Figure 7 Video share failed

Tables

1. Scope

This specification defines a RESTful API for Video Share using HTTP protocol bindings.
2. References

2.1 Normative References

	[Autho4API_10]
	“Authorization Framework for Network APIs”, Open Mobile Alliance™, OMA-ER-Autho4API-V1_0, URL: http://www.openmobilealliance.org/

	[IETF_ACR_draft]
	“The acr URI for anonymous users”, S.Jakobsson, K.Smith, July 2011, URL: http://tools.ietf.org/html/draft-uri-acr-extension-03

	[IR.84]
	“Video Share Phase 2 Interoperability Specification”, URL:
http://gsmworld.com/documents

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[RC API RD]
	APIs for Rich Communications Requirements, OMA-RD-RC_API-V1_0, Open Mobile Alliance, URL: http://www.openmobilealliance.org/

	[REST_NetAPI_Common]
	“Common definitions for RESTful Network APIs”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_Common-V1_0, URL:http://www.openmobilealliance.org/

	[REST_NetAPI_NotificationChannel]
	“RESTful Network API for Notification Channel”, Open Mobile Alliance™, OMA-TS-REST_NetAPI_NotificationChannel-V1_0, URL: http://www.openmobilealliance.org/

	[REST_SUP_VideoShare]
	“XML schema for the RESTful Network API for Video Share”, Open Mobile Alliance™, OMA-SUP-XSD-rest_netapi_VideoShare-V1.0, URL:http://www.openmobilealliance.org/

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et. al, January 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	“SIP: Session Initiation Protocol”, J. Rosenberg et al., June 2002, URL: http://www.rfc-editor.org/rfc/rfc3261.txt

	[RFC3986]
	“Uniform Resource Identifier (URI): Generic Syntax”, R. Fielding et. al, January 2005, URL:http://www.ietf.org/rfc/rfc3986.txt

	[RFC3966]
	“The tel URI for Telephone Numbers”, H. Schulzrinne, December 2004, URL: http://www.ietf.org/rfc/rfc3966.txt

	[RFC4627]
	“The application/json Media Type for JavaScript Object Notation (JSON)”, D. Crockford, July 2006, URL: http://www.ietf.org/rfc/rfc4627.txt

	[SCRRULES]
	“SCR Rules and Procedures”, Open Mobile Alliance™, OMA-ORG-SCR_Rules_and_Procedures, URL:http://www.openmobilealliance.org/

	[W3C_URLENC]
	HTML 4.01 Specification, Section 17.13.4 Form content types, The World Wide Web Consortium, URL: http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

	[XMLSchema1]
	W3C Recommendation, XML Schema Part 1: Structures Second Edition, URL: http://www.w3.org/TR/xmlschema-1/

	[XMLSchema2]
	W3C Recommendation, XML Schema Part 2: Datatypes Second Edition, URL: http://www.w3.org/TR/xmlschema-2/

Ed Note: do we need to reference the VS specification here?
2.2 Informative References
	[OMADICT]
	“Dictionary for OMA Specifications”, Version 2.8, Open Mobile Alliance™,
OMA-ORG-Dictionary-V2_8, URL:http://www.openmobilealliance.org/

	[REST_WP]
	“Guidelines for RESTful Network APIs”, Open Mobile Alliance™, OMA-WP-Guidelines_for_RESTful_Network_APIs, URL:http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Client-side Notification URL
	An HTTP URL exposed by a client, on which it is capable of receiving notifications and that can be used by the client when subscribing to notifications.

	Long Polling
	A variation of the traditional polling technique, where the server does not reply to a request unless a particular event, status or timeout has occurred. Once the server has sent a response, it closes the connection, and typically the client immediately sends a new request. This allows the emulation of an information push from a server to a client.

	Notification Channel
	A channel created on the request of the client and used to deliver notifications from a server to a client. It is represented as a resource and provides means for the server to post notifications and for the client to receive them via specified delivery mechanisms.

For example in the case of Long Polling the channel resource is defined by a pair of URLs. One of the URLs is used by the client as a call-back URL when subscribing for notifications. The other URL is used by the client to retrieve notifications from the Notification Server.

	Notification Server
	A server that is capable of creating and maintaining Notification Channels.

	Originator
	The party that initiates a video share session.

	Participant
	A party that participates in a video share session, including the Originator and the Receiver.

	Receiver
	The party that is invited to a video share session to receive video content.

	
	

	
	

	
	

	
	

	
	

	Server-side Notification URL
	An HTTP URL exposed by a Notification Server, that identifies a Notification Channel and that can be used by a client when subscribing to notifications.

Additionally, all definitions from the OMA Dictionary apply [OMADICT].
3.3
Abbreviations
	ACR
	Anonymous Customer Reference

	API
	Application Programming Interface

	HTTP
	HyperText Transfer Protocol

	JSON
	JavaScript Object Notation

	OMA
	Open Mobile Alliance

	REST
	REpresentational State Transfer

	SCR
	Static Conformance Requirements

	SIP
	Session Initiation Protocol

	TS
	Technical Specification

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	XML
	eXtensible Markup Language

	XSD
	XML Schema Definition

4. Introduction

The Technical Specification of the RESTful Network API for Video Share contains HTTP protocol bindings for sharing the videos, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML, JSON, and application/x-www-form-urlencoding).
4.1 Version 1.0

Version 1.0 of this specification supports the following operations:
· Manage subscriptions to video share related event notifications
· Manage 1-1 video share sessions
· Notify the application about the 1-1 video share session invitation
· Notify the application about the 1-1 video share session acceptance
· Notify the application about the 1-1 video share session events
Version 1.0 of this specification also supports the following authorization functionalities:
· Support for scope values used with authorization framework defined in [Autho4API_10]
· Support for Anonymous Customer Reference (ACR) as an end user identifier
· Support for “acr:Authorization” as a reserved keyword in a resource URL variable that identifies an end user
5. Video Share API definition
This section is organized to support a comprehensive understanding of the Video Share API design. It specifies the definition of all resources, definition of all data structures, and definitions of all operations permitted on the specified resources.
Common data types, naming conventions, fault definitions and namespaces are defined in [REST_NetAPI_Common].

The remainder of this document is structured as follows:

Section 5 starts with a diagram representing the resources hierarchy followed by a table listing all the resources (and their URL) used by this API, along with the data structure and the supported HTTP verbs (section 5.1). What follows are the data structures (section 5.2). A sample of typical use cases is included in section 5.3, described as high level flow diagrams.

Section 6 contains the detailed specification for each of the resources. Each such subsection defines the resource, the request URL variables that are common for all HTTP commands, the possible HTTP response codes, and the supported HTTP verbs. For each supported HTTP verb, a description of the functionality is provided, along with an example of a request and an example of a response. For each unsupported HTTP verb, the returned HTTP error status is specified, as well as what should be returned in the Allow header.

All examples in section 6 use XML as the format for the message body. Application/x-www-form-urlencoded examples are provided in Appendix C, while JSON examples are provided in Appendix D. Appendix B provides the Static Conformance Requirements (SCR).
Appendix E provides the operations mapping to a pre-existing baseline specification, where applicable.
Appendix F provides a list of all lightweight resources, where applicable.
Appendix G defines authorization aspects to control access to the resources defined in this specification.

Note: Throughout this document client and application can be used interchangeably.

5.1 Resources Summary

This section summarizes all the resources used by the RESTful Network API for Video Share.
The "apiVersion" URL variable SHALL have the value "v1" to indicate that the API corresponds to this version of the specification. See [REST_NetAPI_Common] which specifies the semantics of this variable.

[image: image2]
Figure 1 Resource structure defined by this specification

Ed. Note: As the video share use cases in the RD are rather fuzzy, a LS has been sent to RCE to clarify these. Depending on the response and the better understanding of the use cases, the resource design above may be updated.

The following tables give a detailed overview of the resources defined in this specification, the data type of their representation and the allowed HTTP methods.
Ed. Note: Remove the “OPTIONAL” in the method columns once this information has been reflected in SCRs.

Purpose: Handling of 1-1 video share sessions
	Resource
	URL
Base URL: http://{serverRoot}/videoshare/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Video Share Sessions
	/sessions

	VideoShareSessionInformation (used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	no
	no

	Create a new video share session
	no

	Individual Video Share Session
	/sessions/{sessionId}
	VideoShareSessionInformation

	Retrieve a information about a video share session

(OPTIONAL)
	no

	no

	Cancel a video share session (Originator)

Decline a video share session (Receiver)

Terminate a video share session

	Video Share Session Status
	/sessions/{sessionId}/status
	ReceiverSessionStatus
(used for POST)

ReceiverSessionStatusResp (used for POST response)

	no

	no

	Accept a video share session invitation
	no

Purpose: Handling of video share subscriptions

	Resource
	URL
Base URL: http://{serverRoot}/videoshare/{apiVersion}/{userId}
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All Subscriptions to Video Share Event Notifications

	/subscriptions
	VideoShareSubscriptionList (used for GET)

VideoShareNotificationSubscription (used for POST)

common:ResourceReference (OPTIONAL alternative for POST response)
	Read all active video share notification subscriptions (OPTIONAL)
	no

	Create a new subscription for video share notifications
	no

	Individual Subscription to Video Share Event Notifications

	/subscriptions/{subsctiptionId}

	VideoShareNotificationSubscription

	Read an active video share notification subscription (OPTIONAL)
	no

	no

	Cancel subscription and stop corresponding notifications

Purpose: Handling of video share notifications
	Resource
	URL
Base URL:
<Specified by the client>
	Data Structures
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	Client Notification about Video Share Session Invitations,Session Accepatance and other events
	Specified by client when subscription is created or provisioned
	SessionInvitationNotification
SessionAcceptanceNotification
VideoShareEventNotification
	no
	no

	Notify client about the incoming video share session invitation, session acceptance and other events
	no

We may be able to merge VideoShareEventNotification and VideoUploadEventNotification. To be seen once the data model is there.
The following table gives an overview of the different types of notifications. It is also outlined which video share session party receive notifications of a particular type, whether a response is needed, and which resources a notification links to via the <link> element.

In the “Notification sent to” column, the following values can occur:

· Originator: the Originator of the video share session

· Receiver: one individual Receiver in the video share session at a time

· all: Receiver and Originator of the video share session at once

Table 1: 1-1 video share notifications
	EventType
	Notification Root Element Type
	Notification sent to
	Response to Notification
	Link rel
	Link href

Base URL: //{serverRoot}/video share/{apiVersion}/{userId}/sessions

	n/a
	SessionInvitationNotification
	Receiver
	decline
accept
	VideoShareSessionInformation

ReceiverSessionStatus
	/{sessionId}

/{sessionId}/status

	n/a
	SessionAcceptanceNotification
	Originator
	n/a
	VideoShareSessionInformation
	/{sessionId}

	Declined
	VideoShareEventNotification
	Originator
	n/a
	VideoShareSessionInformation
	/{sessionId}

	SessionCancelled
	VideoShareEventNotification
	Receiver
	n/a
	VideoShareSessionInformation
	/{sessionId}

	SessionEnded
	VideoShareEventNotification
	All
	n/a
	VideoShareSessionInformation
	/{sessionId}

	Failed
	VideoShareEventNotification
	all
	n/a
	VideoShareSessionInformation
	/{sessionId}

5.2 Data Types
5.2.1 XML Namespaces

The XML namespace for the Video Share data types is:

urn:oma:xml:rest:netapi:videoshare:1
The 'xsd' namespace prefix is used in the present document to refer to the XML Schema data types defined in XML Schema [XMLSchema1, XMLSchema2]. The 'common' namespace prefix is used in the present document to refer to the data types defined in [REST_NetAPI_Common]. The use of namespace prefixes such as 'xsd' is not semantically significant.
The XML schema for the data structures defined in the section below is given in [REST_SUP_VideoShare].
5.2.2 Structures

The subsections of this section define the data structures used in the Video Share API.
Some of the structures can be instantiated as so-called root elements.
For structures that contain elements which describe a user identifier, the statements in section 6 regarding 'tel', 'sip' and 'acr' URI schemes apply.
5.2.2.1 Type: VideoShareSessionInformation
This type defines a set of parameters of a video share session.
	Element
	Type
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator of this video share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this video share session.

	receiverAddress

	xsd:anyURI
	Yes
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this video share session.

It SHALL be present in request bodies during resource creation in case of video sharing without CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing with CS voice call. The server can get the receiverAddress using the callObjectRef received in the request bodies during resource creation in case of video sharing with CS voice call.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked).

It SHALL be present in request bodies during resource creation in case of video sharing with CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing without CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.
SHALL NOT be present when callObjectRef is used, and MAY be present when receiverAddress is used.

	mediaURL
	xsd:anyURI
	Yes
	The video media URL from where the video content can be retrieved.

It SHALL not be present in the POST request during resource creation if liveVideo is set to true.

If it is present in the POST operation during resource creation, the server could fetch the video content using this URL.

If it is not present in the POST request during resource creation and the liveVideo is not set to true (not live video), the video content is included in the HTTP body. The HTTP body can be represented as multipart/form-data entity bodies, where the first entry of the form is the root element and the second entry of the form is the video content.

	mediaInformation
	MediaInformation
[0..unbounded]
	Yes
	List of the information about the video content such as codecs, transport protocols.
It SHALL be present if the video is live (liveVideo is set to true).

It SHALL not be present if the video is not live (the liveVideo is not set to true).

	liveVideo
	xsd:boolean
	Yes
	Indicates whether the video is live video (true) or video clip (false).
This element MUST be present and set to “true” if the video is live.

Default value is ‘false.’

	status
	ReceiverStatus
	Yes
	Connection status of the Receiver. Set by the server. SHALL NOT be present in request bodies during resource creation.

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named videoShareSessionInformation of type VideoShareSessionInformation is allowed in request and/or response bodies.

Note that the clientCorrelator is used for purposes of error recovery as specified in [REST_NetAPI_Common], and internal client purposes. The server is NOT REQUIRED to use the clientCorrelator value in any form in the creation of the URL of the resource. The specification [REST_NetAPI_Common] provides a recommendation regarding the generation of the value of this field.
5.2.2.2 Type: SessionInvitationNotificaiton
This describes the set of parameters in a video share session invitation notification.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.

Further, the server SHOULD include a link to the related subscription.

	originatorAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator of this video share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this video share session.

	receiverAddress

	xsd:anyURI
	Yes
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this video share session.

It SHALL be present in the POST request in case of video sharing without CS voice call.

It SHALL not be present in the POST request in case of video sharing with CS voice call.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked) in case of video sharing with CS voice call.
It SHALL be present in the POST request in case of video sharing with CS voice call. The server can get the callObjectRef using receiverAddress in case of video sharing with CS voice call.
It SHALL not be present in the POST request in case of video sharing without CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.

	mediaInformation
	MediaInformation

[1..unbounded]
	No
	List of the information about the video content such as codecs, transport protocols from which the application of the Receiver can choose the ones accepted by it.

A root element named sessionInvitationNotification of type SessionInvitationNotification is allowed in notification request bodies.

The recipient can accept the request by updating the status, which is addressed by the URL passed in the “href” attribute of the “link” element with rel=” ReceiverSessionStatus”.

Typically, this is http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions/{sessionId}/status.

The recipient can decline the request by sending a DELETE request to one the URL passed in the “href” attribute of the “link” element with rel=”VideoShareSessionInformation”.

Typically, this is http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions/{sessionId}
If the recipient fails to react within a time interval defined by service policies, the session invitation will time out. In case of a 1-1 session, this means that the session will terminate.
5.2.2.3 Type: ReceiverSessionStatus
This type represents the status of a Receiver in the video share session.
	Element
	Type
	Optional
	Description

	status
	ReceiverStatus
	No
	Status of the Receiver.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	mediaInformation
	MediaInformation
[0..2]
	Yes
	It contains the accepted media formats which are a sub set of the media information received in the SessionInvitationNotification..
It SHALL not be present If none of the media formats in the SessionInvitationNotification is accepted.

A root element named receiverSessionStatus of type ReceiverSessionStatus is allowed in request bodies.
5.2.2.4 Type: ReceiverSessionStatusResp
This type represents the response to the receiver session status request.
	Element
	Type
	Optional
	Description

	mediaURL
	xsd:anyURI
	No
	The media URL from where the video content can be retrieved.

	parameters
	xsd:string

[0..unbounded]
	Yes
	Sets of parameters for accessing the video content.

A root element named receiverSessionStatusResp of type ReceiverSessionStatusResp is allowed in the response bodies.
5.2.2.5 Type: MediaInformation
This type defines the information about the video content, including codecs, transport protocol and media URLs from where the video content can be retrieved.
	Element
	Type
	Optional
	Description

	mediaType
	MediaType
	No
	Type of the media a (e.g. “Audio” or “Video”).

	transportProtocol
	xsd:string
	No
	The transport protocol of the media (e.g. “RTP/AVP”, “RTP/SAVP”,”udp”).

	mediaFormats
	MediaFormat

[1…unbounded]
	No
	List of media formats of the specified media type.

	bandWidth
	xsd: unsignedLong
	Yes
	Band width in kilobits per second

	bwType
	xsd:string
	Yes
	Currently only CT" (Conference Total) and "AS" (Application Specific) are supported.

Refer to RFC 4566.

	size
	xsd: unsignedLong
	Yes
	The size of the file in octets.

	frameRate
	xsd: unsignedInt

	Yes
	The maximum video frame rate in frames/sec, defined only for video media.

	pTime
	xsd: unsignedInt

	Yes
	The length of time in milliseconds represented by the media in a packet. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	maxPTime
	xsd: unsignedInt

	Yes
	This gives the maximum amount of media that can be encapsulated in each packet, expressed as time in milliseconds. For frame-based codecs, the time SHOULD be an integer multiple of the frame size. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	attributeList
	xsd:string
[0…unbounded]
	Yes
	Any other attributes applicable for the specified media type.

[Editor’s Note]: The exact structure is FFS.
5.2.2.6 Type: MediaFormat
This type defines the information about the video content, including codecs, transport protocol and media URLs from where the video content can be retrieved.
	Element
	Type
	Optional
	Description

	encodingName
	xsd:string
	No
	The encoding name of the media type.

It SHALL use media subtype (e.g., PCMA” for audio, “H.263” or “H.263-1998” for video.) when “RTP/AVP" or "RTP/SAVP" transport protocol is used.

See IANA for registered media subtypes for audio and video.

	clockRate
	xsd:unsignedLong
	Yes
	Number of samples per second

	encodingPara
	xsd:string
[0…unbounded]
	Yes
	List of encoding parameters for the specified media type and sub media type.

	fmtp
	xsd:string
	Yes
	Parameters that are specific to a particular format (payload type) as defined in IEFT RFC 4566.

[Editor’s Note]: The exact structure is FFS.
5.2.2.7 Type: VideoShareEventNotification

This type define a set of parameters for the video share event notifications.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	eventType
	EventTypes
	No
	Type of event

	eventDescription
	xsd:string
	Yes
	Textual description of the event

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
Depending on the value of eventType, the server MUST include links as defined in Table 1 for VideoShareEventNotification.

Further, the server SHOULD include a link to the related subscription.

A root element named videoSharetEventNotification of type VideoShareEventNotification is allowed in notification request bodies.
5.2.2.8 Type: SessionAcceptanceNotification
This type defines a set of parameters to inform the Originator that the video share session invitation is accepted.
	Element
	Type
	Optional
	Description

	callbackData
	xsd:string
	Yes
	CallbackData if passed by the application during the associated subscription.

See [REST_TS_Common]

	receiverAddress
	xsd:anyURI
	Yes
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this video share session.
It SHOULD be present in notification request bodies in case of video sharing without CS voice call.

IT MAY be present in case of video sharing with CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.
It MAY be present when receiverAddress is present.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked).

It SHOULD be present in notification request bodies in case of video sharing with CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing without CS voice call.

	status
	ReceiverStatus
	Yes
	The status of a Receiver in the video share session.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	mediaURL
	xsd:anyURI
	YesNo
	The media URL to where the live video can be delivered.

It SHALL be present if the mediaInformation is not empty.

	parameters
	xsd:string

[0..unbounded]
	Yes
	Sets of parameters for accessing the video content.

It MAY be present if the mediaURL is present.

	mediaInformation
	MediaInformation
[0..2]
	Yes
	It contains the accepted media formats which are a sub set of the media information received in the VideoShareSessionInformation during resource creation in case of video sharing with live video.

It SHALL not be present If none of the media formats in the POST operation during resource creation is accepted,

	link
	common:Link
[0..unbounded]
	Yes
	Links to other resources that are in relationship to the notification (e.g. related video share session).
The server MUST include links as defined in Table 1 for SessionInvitationNotification.Further, the server SHOULD include a link to the related subscription.

A root element named sessionAcceptanceNotification of type SessionAcceptanceNotification is allowed in notification request bodies.
5.2.2.9 Type: VideoShareSubscriptionList

List of all active video share notification subscriptions. In order to be able to receive notifications, the client needs to create a subscription first.
	Element
	Type
	Optional
	Description

	videoShareNotificationSubscription
	VideoShareNotificationSubscription
[0..unbounded]
	Yes
	Array of video share event subscriptions.

	resourceURL
	xsd:anyURI
	No
	Self referring URL.

A root element named videoShareSubscriptionList of type VideoShareSubscriptionList is allowed in response bodies.
5.2.2.10 Type: VideoShareNotificationSubscription

This type defines a set of parameters for the subscription of video share related notifications, i.e. VideoShareEventNotification, InvitationAcceptanceNotification and SessionInvitationNotification,
	Element
	Type
	Optional
	Description

	callbackReference
	common:CallbackReference
	No
	Client's Notification URL and OPTIONAL callbackData

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

A root element named videoShareNotificationSubscription of type VideoShareNotificationSubscription is allowed in request and/or response bodies.
5.2.3 Enumerations

The subsections of this section define the enumerations used in the Video Share API.
5.2.3.1 Enumeration: EventTypes
This enumeration is used in notifications to describe the type of event which the notification is about.
	Enumeration
	Description

	SessionCancelled
	The Originator has cancelled the video share session during the invite phase.

	SessionEnded
	The video share session has ended.

	Declined
	The video share Receiver has declined the video share session invitation.

	Failed
	The video share was failed.

5.2.3.2 Enumeration: ReceiverStatus
List of the status values associated with a Receiver in a video share session.
	Enumeration
	Description

	Initial
	The participant is being invited to a video share session

	Connected
	The participant is active in the session

	Disconnected
	The session to the Receiver was terminated.

5.2.3.3 Enumeration: MediaType
List of the media types.
	Enumeration
	Description

	Video
	Video type media

	Audio
	Audio type media

5.2.4 Values of the Link “rel” attribute
The “rel” attribute of the Link element is a free string set by the server implementation, to indicate a relationship between the current resource and an external resource. The following are possible strings (list is non-exhaustive, and can be extended):
· VideoShareSessionInformation
· SessionInvitationNotificaiton
· ReceiverSessionStatus
· VideoShareEventNotification
· SessionAcceptanceNotification
· VideoShareSubscriptionList

· VideoShareNotificationSubscription

These values indicate the kind of resource that the link points to.
5.3 Sequence Diagrams
The following sub-sections describe the resources, methods and steps involved in typical scenarios.
Note that some of the following scenarios involve both an application of the Originator and an application of the Receiver, depending on the implementations, if the scenarios involving only an application of one participant (either Originator or Receiver), the following scenarios of an application of that particular participant apply.
5.3.1 Subscribe and unsubscribe to video share notifications
This figure below shows a scenario for r an application subscribing to video share notifications.
The notification URL passed by the client during the subscription step can be a Client-side Notification URL, or a Server-side Notification URL. Refer to [REST_NetAPI_NotificationChannel] for sequence flows illustrating the creation of a Notification Channel and obtaining a Server-side Notification URL on the server-side, and its use by the client via Long Polling.
The resources:
· To subscribe to video share notifications, create a new resource under http://{serverRoot}/videoshare/{apiVersion}/{userId}/subscriptions
· To cancel subscription to video share notifications delete the resource under http://{serverRoot}/videoshare/{apiVersion}/{userId}/subscriptions/{subscriptionId}

[image: image3.emf]ApplicationServer

POST VideoeShareNotificationSubscription

Response

Delete the

subscription

Create a new

subscription

with subscriptionId in resourceURL

with callback URL

DELETE VideoeShareNotificationSubscription

Response

with subscriptionId

Figure 2 Subscribing to and unsubscribing from video share notifications
Outline of the flows:
1. An application subscribes to video share notifications using the POST method to submit the VideoShareNotificationSubscription structure to the resource containing all subscriptions and receives the result resource URL containing the subscriptionId
2. The application stops receiving notifications using DELETE with the resource URL containing the subscriptionId
5.3.2 1-1 video share with successful result

The figure below shows a scenario for a video share session with successful result.

The resources:

· To start a 1-1 video share session, create a new resource with the VideoShareSessionInformation structure under http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions
· To accept a 1-1 video share session invitation update the receiver session status resource http://{serverRoot}/videoshare/{apiVersion}/{{userId}/sessions/{sessionId}/status
· To end a 1-1 video share session delete the resource
http://{serverRoot}/videoshare/{apiVersion}/{{userId}/sessions/{sessionId}

· To notify the applications about the incoming video share session invitation, POST a SessionInvitationNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the session acceptance, POST a SessionAcceptanceNotification to the applications supplied Notification URL during notification subscription.
· To notify the applications about the status of the video share session , POST a VideoShareEventNotification to the applications supplied Notification URL during notification subscription.
5.3.2.1 1-1 video share session with recorded or stored video file

[image: image4.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

1. POST

VideoShareSessionInformation

Response

4. POST

SessionAcceptanceNotification

Receiver accepted

Start a new 1-1 video

share session

with sessionId

Application

(Receiver)

2. POST

SessionInvitationNotification

3. POST ReceiverSessionStatus

Status=connected and

chosen media format

Video share session

invitation accepted

status=connected

with fileURL or video file in

the request body

Video share session

invitation notification

received

with sessionId

5. DELETE

VideoShareSessionInformation

eventType-SessionEnded

6. POST

VideoShareEventNotification

Response

Response

Response

Response

End the video share

session

Video share session

termination notification

received

With sessionId and a list of

media formats

with mediaURL and/or access

parameters

Response

Media URL and/or any

other access parameters

for accessing the video

content received

Video streamVideo stream

Receiving video

stream

Figure 3 1-1 video share session with recorded or stored video file
Outline of the flows:
1. An application of the Originator starts a 1-1 video share session using the POST method to submit the VideoShareSessionInformation structure containing either the recorded or stored video file or the media URL of that video file to the resource containing all video share sessions. Thereby the creation of a new video share session resource is triggered and the application of the Originator receives the resulting resource URL containing the sessionId.
2. An application of the Receiver receives a video share session invitation notification with sessionId and a list of media formats in which the media can be made available.

3. The application of the Receiver accepts the video share session invitation using the POST method to submit the ReceiverSessionStatus structure with status set to “Connected” and the chosen media format to the resource containing the session status and receives a response containing the media URL and/or any other access parameters for accessing the media.
4. The application of the Originator receives a notification with a SessionAcceptanceNotification structure indicating that the Receiver has accepted the invitation. The server of the Originator can start streaming the video and the application of the Receiver receives the video streaming using the media URL and access parameters received in step 3.
Note: How the application of the Receiver gets the video streaming using the received media URL and/or access parameters is out of scope.
5. After the video share invitation has been accepted, the application of the Originator can end the video share session at any time by using DELETE method on the resource URL of the session with sessionId
6. The application of the Receiver receives a VideoShareEventNotification structure indicating that the session has been ended.
Note regarding steps 5 and 6: Either the application of the Originator or the application of the Receiver can end the video share session after video share session invitation has been accepted. In that case, the application on the other side of the video share session receives a VideoShareEventNotification structure indicating that the session has been ended.

5.3.2.2 1-1 video share session with live video

[image: image5.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

1. POST

VideoShareSessionInformation

Response

4. POST

SessionAcceptanceNotification

Receiver accepted

Start a new 1-1 video

share session

with sessionId

Application

(Receiver)

2. POST

SessionInvitationNotification

3. POST ReceiverSessionStatus

Status=connected and

chosen media format

Video share session

invitation accepted

Status=connected, mediaURL,

chosen formats and/or access

parameters

with a list of supported media

formats

Video share session

invitation notification

received

with sessionId

5. DELETE

VideoShareSessionInformation

eventType-SessionEnded

6. POST

VideoShareEventNotification

Response

Response

Response

Response

End the video share

session

Video share session

termination notification

received

With sessionId and a list of

media formats

with mediaURL and/or access

parameters

Response

Media URL and/or any

other access parameters

for accessing the video

content received

Video streamVideo streamVideo stream

Streaming the video

Receiving video

stream

Figure 4 1-1 video share session with live video
Outline of the flows:
1. An application of the Originator starts a 1-1 video share session using the POST method to submit the VideoShareSessionInformation structure containing a list of the media formats the application can support to the resource containing all video share sessions. Thereby the creation of a new video share session resource is triggered and the application of the Originator receives the resulting resource URL containing the sessionId.
2. An application of the Receiver receives a video share session invitation notification with sessionId and a list of media formats in which the media can be made available.
Note: that list doesn’t have to be the same as the list in step 1.
3. The application of the Receiver accepts the video share session invitation using the POST method to submit the ReceiverSessionStatus structure with status set to “Connected” and the chosen media format to the resource containing the session status and receives a response containing the media URL and/or any other access parameters for accessing the media.
4. The application of the Originator receives a notification with a SessionAcceptanceNotification structure indicating that the Receiver has accepted the invitation and additionally the chosen media format, the media URL and/or any other access parameters, to which the application shall subsequently send the media. The application of the Originator can start streaming the video.

5. After the video share invitation has been accepted, the application of the Originator can end the video share session at any time by using DELETE method on the resource URL of the session with sessionId
6. The application of the Receiver receives a VideoShareEventNotification structure indicating that the session has been ended.
Note regarding steps 5 and 6: Either the application of the Originator or the application of the Receiver can end the video share session after video share session invitation has been accepted. In that case, the application of the other side of the video share session receives a VideoShareEventNotification structure indicating that the session has been ended.

5.3.3 1-1 video share session failure
There are different causes which may lead to video share session failed, following are some options (not exclusive list):

a. The application of the Originator cancels the video share session.
b. The application of the Receiver reject or decline the video share session invitation

c. The video streaming failed due to the underlying network problem

5.3.3.1 Cancelling a 1-1 video share invitation

The figure below shows a scenario for an application of the Originator to cancel a video share session invitation.

The resources:

1. To cancel a 1-1 video share session invitation delete the session resource http://{serverRoot}/video share/{apiVersion}/{userId}/sessions/{sessionId}

[image: image6.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

1. DELETE

VideoShareSessionInformation

Response

with sessionId

Cancel the 1-1 video

share session

eventType-SessionCancelled

2. POST

VideoShareEventNotification

Response

Video share session

cancelled notification

received

Figure 5 Cancelling a 1-1 video share invitation

Outline of the flows:
An application of the Originator has created a video share session resource triggering a video share invitation sent to the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:

1. The application of the Originator can cancel a 1-1 video share session invitation using the DELETE method on the resource URL of the session with sessionId and receives a response weather the request was successfully initiated.

2. A VideoShareEventNotification is sent to the application of the Receiver when the video share session has been cancelled.
Note that cancelling a session only works before the Receiver has accepted the video share invitation. After that, the DELETE method leads to an existing session to be terminated.

5.3.3.2 Declining a 1-1 video share session invitation

The figure below shows a scenario for an application to decline a video share session invitation.

The resources:

· To decline a video share session invitation delete the session resource http://{serverRoot}/video share/{apiVersion}/{userId}/sessions/{sessionId}

[image: image7.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

Response

Video share session

declined notification

received

Response

1. DELETE

VideoShareSessionInformation

with sessionId

Decline the

session invitation

2.POST

VideoShareEventNotification

eventType=Declined

Figure 6 Declining a 1-1 video share session invitation
Outline of the flows:
An application of the Originator has created a video share session resource triggering a video share invitation sent to the Receiver (Refer to step 1 and step 2 in 5.3.2). Subsequently:
1. The application of the Receiver declines the video share session invitation using the DELETE method on the session resource including the sessionId

2. The application of the Originator receives a VideoShareEventNotification structure indicating that the Receiver has declined the invitation.
Note that declining a session only works before the Receiver has accepted the video share invitation. After that, the DELETE method leads to an existing session to be terminated.

5.3.3.3 1-1 video share failed

The figure below shows a scenario for video share failed.

The resources:

· To notify the applications about video share failure, POST a VideoShareEventNotification to the applications supplied Notification URL during notification subscription.

[image: image8.emf]Application

(Originator)

Server

(Receiver)

Server

(Originator)

Application

(Receiver)

Response

1.POST

VideoShareEventNotification

eventType=Failed

eventType=Failed

2. POST

VideoShareEventNotification

Response

Video streaming failed

notification received

Video streaming failed

notification received

Figure 7 Video share failed
Outline of the flows:
After an application of the Originator creates a video share session resource and the application of the Receiver accepts the video share session invitation (Refer to step 1 to step 4 in 5.3.2), the video streaming is started, subsequently:
1. When error occurs during video streaming (i.e. after step 4 and before step 5), the server of the Originator notifies the application of the Originator using POST containing a VideoShareEventNotification with status set to “Failed”.

2. The server of the Receiver also notifies the application of the Receiver using POST containing a VideoShareEventNotification with status set to “Failed”

6. Detailed specification of the resources

 The following applies to all resources defined in this specification regardless of the representation format (i.e. XML, JSON, application/x-www-form-urlencoded):

· Reserved characters in URL variables (parts of a URL denoted below by a name in curly brackets) MUST be percent-encoded according to [RFC3986]. Note that this always applies, no matter whether the URL is used as a Request URL or inside the representation of a resource (such as in “resourceURL” and “link” elements).
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an MSISDN, it MUST be defined as a global number according to [RFC3966] (e.g. tel:+19585550100).The use of characters other than digits and the leading “+” sign SHOULD be avoided in order to ensure uniqueness of the resource URL. This applies regardless of whether the user identifier appears in a URL variable or in a parameter in the body of an HTTP message.
· If a user identifier (e.g. address, userId, etc.) of type anyURI is in the form of a SIP URI, it MUST be defined according to [RFC3261].
· If a user identifier (e.g. address, userId, etc) of type anyURI is in the form of an Anonymous Customer Reference (ACR), it MUST be defined according to [IETF_ACR_draft], i.e. it MUST include the protocol prefix 'acr:' followed by the ACR.
· For requests and responses that have a body, the following applies: in the requests received, the server SHALL support JSON and XML encoding of the parameters in the body, and MAY support application/x-www-form-urlencoded parameters in the body. The Server SHALL return either JSON or XML encoded parameters in the response body, according to the result of the content type negotiation as specified in [REST_NetAPI_Common]. In notifications to the Client, the server SHALL use either XML or JSON encoding, depending on which format the client has specified in the related subscription. The generation and handling of the JSON representations SHALL follow the rules for JSON encoding in HTTP Requests/Responses as specified in [REST_ NetAPI_Common].
6.1 Resource: All subscriptions to video share notifications
The resource used is:
http://{serverRoot}/videoshare/{apiVersion}/{userId}/subscriptions

This resource is used to manage subscriptions to video share notifications. Note that there is one subscription per client instance.
This resource can be used in conjunction with a Client-side Notification URL, or in conjunction with a Server-side Notification URL. In this latter case, the application MUST first create a Notification Channel (see [REST_NetAPI_NotificationChannel]) before creating a subscription.
6.1.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API client wants to use. The value of this variable is defined in section 5.1

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.1.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].
For Policy Exception and Service Exception fault codes applicable to Video Share, see TBD.
6.1.3 GET
This operation is used for reading the list of active video share notification subscriptions.

6.1.3.1 Example 1: Reading all active video share notification subscriptions
(Informative)
6.1.3.1.1 Request

	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/xml
Host: example.com

6.1.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSubscriptionList xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<videoShareNotificationSubscription>

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</videoShareNotificationSubscription>

<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions</resourceURL>

</vs:videoShareSubscriptionList>

6.1.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.1.5 POST
This operation is used to create a new subscription for video share notifications.
The notifyURL in the callbackReference either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
6.1.5.1 Example 1: Creating a new subscription to video share notifications using tel URI, response with copy of created resource
(Informative)
6.1.5.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareNotificationSubscription xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</vs:videoShareNotificationSubscription>

6.1.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001

Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<vs:videoShareNotificationSubscription xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</vs:videoShareNotificationSubscription>

6.1.5.2 Example 2: Creating a new subscription to video share notifications using ACR, response with location of created resource
(Informative)
6.1.5.2.1 Request

	POST /exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/ HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareNotificationSubscription xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

</vs:videoShareNotificationSubscription>

6.1.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Location: http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001

Date: Thu, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001</resourceURL>

</common:resourceReference>

6.1.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, POST’ field in the response as per section 14.7 of [RFC 2616].
6.2 Resource: Individual subscription to video share event notifications
The resource used is:

http://{serverRoot}/videoshare/{apiVersion}/{userId}/subscriptions/{subscriptionId}
This resource represents an individual subscription to video share notifications.

6.2.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	subscriptionId
	identifier of the subscription

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.2.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.2.3 GET
This operation is used for reading an individual subscription.

6.2.3.1 Example: Reading an individual subscription
(Informative)
This example shows also an alternative way to indicate desired content type in response from the server, by using URL query parameter “?resFormat” which is described in [REST_NetAPI_Common].
6.2.3.1.1 Request

	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Accept: application/xml
Host: example.com

6.2.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<vs:videoShareNotificationSubscription xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

<clientCorrelator>12345</clientCorrelator>

<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</vs:videoShareNotificationSubscription>

6.2.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.5 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.2.6 DELETE

This operation is used to cancel a subscription and to stop corresponding notifications.

6.2.6.1 Example: Cancelling a subscription
(Informative)
6.2.6.1.1 Request

	DELETE /exampleAPI/videoshare/v1/tel%3A%2B19585550100/videoshare/subscriptions/sub001 HTTP/1.1
Accept: application/xml
Host: example.com

6.2.6.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

6.3 Resource: All 1-1 video share sessions
The resource used is:

http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions
This resource represents the active 1-1 video share sessions for a particular user.

6.3.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.3.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.3.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.3.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.3.5 POST
This operation is used to create a new 1-1 video share session.
6.3.5.1 Example 1: Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related)
(Informative)
6.3.5.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName >
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <mediaURL>http://myvideos.com/recorded/holidays/20110501/file1/</mediaURL>
 <clientCorrelator>12345</clientCorrelator>
</vs:videoShareSessionInformation>

6.3.5.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <mediaURL>http://myvideos.com/recorded/holidays/20110501/file1/</mediaURL>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.3.5.2 Example 2: Creating a new 1-1 video share session with recorded video file content (CS call related)
(Informative)
6.3.5.2.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: multipart/form-data; boundary="===============123456==";
Content-Length: nnnn
Accept: application/xml

Host: example.com
MIME-Version: 1.0
--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/xml

Content-Length: nnnn

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName >
 <callObjectRef>http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001</callObjectRef>

 <clientCorrelator>12345</clientCorrelator>
</vs:videoShareSessionInformation>
--===============123456==
Content-Disposition: form-data; name=” attachments ”;filename=”file1”
Content-Type: video/H263-2000

Content-Transfer-Encoding: binary
Content-Length: [length of video file]

 ...binary video file...

--===============123456==--

6.3.5.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>

 <callObjectRef>http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001</callObjectRef>

 <receiverName>Bob</receiverName>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.3.5.3 Example 3: Creating a new 1-1 video share session with live video (no CS call related)
(Informative)
6.3.5.3.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn

Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
<originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName >

 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>

 <mediaInformation>

 <mediaType>Video</mediaType >

 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>

 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp>
 </mediaFormats>

 <mediaFormats>

 <encodingName>MP4V-ES</encodingName>

 </mediaFormats>

 <bandWidth>54</bandWidth>

 <bwType>AS</bwType>
 <frameRate>8</frameRate>
 </mediaInformation>

 <clientCorrelator>12345</clientCorrelator>

</vs:videoShareSessionInformation>

6.3.5.3.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
<originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName >

 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
<mediaInformation>

 <mediaType>Video</mediaType >

 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>

 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp>
 </mediaFormats>

 <mediaFormats>

 <encodingName>MP4V-ES</encodingName>

 </mediaFormats>

 <bandWidth>54</bandWidth>

 <bwType>AS</bwType>
 <frameRate>8</frameRate>
 </mediaInformation>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.3.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.4 Resource: Individual 1-1 video share session
The resource used is:

http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions/{sessionId}
This resource represents a 1-1 video share session.

6.4.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.4.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.4.3 GET
This operation is used to retrieve video share session information.

6.4.3.1 Example 1: Retrieving 1-1 video share session information
(Informative)
6.4.3.1.1 Request

	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/xml
Host: example.com

6.4.3.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>
 <callObjectRef>http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001</callObjectRef>

 <receiverName>Bob</receiverName>
 <mediaURL>http://myvideos.com/recorded/holidays/20110501/file1/</mediaURL>
<status>Connected</status>

 <clientCorrelator>12345</clientCorrelator>
<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

6.4.4 POST
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: GET, DELETE’ field in the response as per section 14.7 of [RFC 2616].
6.4.5 DELETE

This operation ends the 1-1 video share session.

It is used by an application of the Originator to cancel a 1-1 video share session before the Receiver has accepted the session invitation.

It is used by an application of the Receiver to decline a 1-1 video share session when the session invitation has been received.

It is used by an application of the Originator or an application of the Receiver to terminate a 1-1 video share session after the session has been accepted.

6.4.5.1 Example: Terminating a 1-1 video share session
(Informative)
6.4.5.1.1 Request

	DELETE /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/xml

Host: example.com

6.4.5.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5 Resource: Individual 1-1 video share session status

The resource used is:

http://{serverRoot}/videoshare/{apiVersion}/{userId}/sessions/{sessionId}/status

This resource represents the status of the 1-1 video session and is used for accepting a 1-1 video share invitation, by means of updating the status.

6.5.1 Request URL variables

The following request URL variables are common for all HTTP commands:

	Name
	Description

	serverRoot
	server base url: hostname+port+base path. Port and base path are OPTIONAL. Example: example.com/exampleAPI

	apiVersion
	version of the API clients want to use. The value of this variable is defined in section 5.1.

	userId
	identifier of the user on whose behalf the application acts. Examples: tel:+19585550100, acr:pseudonym123

	sessionId
	identifier of the session

See section 6 for a statement on the escaping of reserved characters in URL variables.
6.5.2 Response Codes and Error Handling

For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].

6.5.3 GET

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.5.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.5.5 POST

This operation is used for accepting a 1-1 video share invitation, by means of updating the status.

6.5.5.1 Example1: Accepting a 1-1 video share invitation with accepted media information
(Informative)

6.5.5.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml
Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:receiverSessionStatus xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">

 <status>Connected</status>

 <mediaInformation>

 <mediaType>Video</mediaType >

 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>

 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp>

 </mediaFormats>

 <bandWidth>54</bandWidth>

 <bwType>AS</bwType>
 <frameRate>8</frameRate>
 </mediaInformation>
</vs:receiverSessionStatus>

6.5.5.1.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5.5.2 Example2: Accepting a 1-1 video share invitation without accepted media information
(Informative)

6.5.5.2.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/xml

Content-Length: nnnn
Accept: application/xml

Host: example.com

<?xml version="1.0" encoding="UTF-8"?>

<vs:receiverSessionStatus xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
<status>Connected</status>
 </vs:receiverSessionStatus>

6.5.5.2.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

6.5.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.6 Resource: Client notification about 1-1 video share session invitations
This resource is a callback URL provided by the client for notification about 1-1 video share session invitations. The RESTful VideoShare API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.6.5.
6.6.1 Request URL variables

Client provided if any.
6.6.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.6.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.6.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.6.5 POST
This operation is used to notify the client about video share session invitations.
6.6.5.1 Example1: Notify a client about 1-1 video share session invitations
(Informative)
6.6.5.1.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:sessionInvitationNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <link rel="ReceiverSessionstatus" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001/status"/>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>

 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <mediaInformation>

 <mediaType>Video</mediaType>
 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>
 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp>
 </mediaFormats>
 <bandWidth>54</bandWidth >

 <bwType>AS</bwType>
 <frameRate>8</frameRate>
 </mediaInformation>

</vs:sessionInvitationNotification>

6.6.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.6.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.7 Resource: Client notification about 1-1 video share session acceptance
This resource is a callback URL provided by the client for notification about 1-1 video share session acceptance. The RESTful VideoShare API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.6.5.
6.7.1 Request URL variables

Client provided if any.
6.7.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.7.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.7.5 POST
This operation is used to notify the client about video share session acceptance.
6.7.5.1 Example 1: Notify a client about the acceptance of 1-1 video share session with recorded video (no CS call related)
(Informative)
6.7.5.1.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:sessionAcceptanceNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <status>Connected</status>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:sessionAcceptanceNotification>

6.7.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.7.5.2 Example 2: Notify a client about the acceptance of 1-1 video share session with recorded video (CS call related)
(Informative)
6.7.5.2.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:sessionAcceptanceNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <callObjectRef>http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001</callObjectRef>
 <status>Connected</status>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:sessionAcceptanceNotification>

6.7.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.7.5.3 Example 3: Notify a client about the acceptance of 1-1 video share session with live video (no CS call related)
(Informative)
6.7.5.3.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1

Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:sessionAcceptanceNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <status>Connected</status>
 <mediaURL>http://application.example.com/userId/tel%3A%2B19585550101/20110728175159/file1</mediaURL>
<mediaInformation>

 <mediaType>Video</mediaType >

 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>

 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp>

 </mediaFormats>

 <bandWidth>54</bandWidth>

 <bwType>AS</bwType>
 <frameRate>8</frameRate>
 </mediaInformation>

<link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:sessionAcceptanceNotification>

6.7.5.3.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.7.6 DELETE

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
6.8 Resource: Client notification about 1-1 video share events
This resource is a callback URL provided by the client for notification about 1-1 video share session events. The RESTful VideoShare API does not make any assumption about the structure of this URL. If this URL is a Client-side Notification URL, the server will POST notifications directly to it. If this URL is a Server-side Notification URL, the server uses it to determine the address of the Notification Server to which the notifications will subsequently be POSTed. The way the server determines the address of the Notification Server is out of scope of this specification.
Note: In the case when the client has set up a Notification Channel in order to use Long Polling to obtain the notifications, in order to retrieve the notifications, the client needs to use the Long Polling mechanism described in [REST_NetAPI_NotificationChannel], instead of the mechanism described below in section 6.6.5.
6.8.1 Request URL variables

Client provided if any.
6.8.2 Response Codes and Error Handling
For HTTP response codes, see [REST_NetAPI_Common].

For Policy Exception and Service Exception fault codes applicable to Video Share, see [tbd].
6.8.3 GET
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.4 PUT

Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].

6.8.5 POST
This operation is used to notify the client about video share session events.
6.8.5.1 Example 1: Notify a client about video share session event (ended)
(Informative)
6.8.5.1.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn
Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareEventNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <eventType>SessionEnded</eventType>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:videoShareEventNotification>

6.8.5.1.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.8.5.2 Example 2: Notify a client about video share session event (declined)
(Informative)
6.8.5.2.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn

Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareEventNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <eventType>Declined</eventType>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:videoShareEventNotification>

6.8.5.2.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.8.5.3 Example 3: Notify a client about video share session event (cancelled)
(Informative)
6.8.5.3.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn

Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareEventNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <eventType>SessionCancelled</eventType>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:videoShareEventNotification>

6.8.5.3.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.8.5.4 Example 4: Notify a client about video share session event (failed)
(Informative)
6.8.5.4.1 Request

	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/xml
Content-Length: nnnn

Accept: application/xml
Host: application.example.com
<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareEventNotification xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <eventType>Failed</eventType>
 <link rel="VideoShareSessionInformation" href="http://example.com/exampleAPI/videoshare/v1/sessions/sess001"/>
</vs:videoShareEventNotification>

6.8.5.4.2 Response

	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

6.8.6 DELETE
Method not allowed by the resource. The returned HTTP error status is 405. The server should also include the ‘Allow: POST’ field in the response as per section 14.7 of [RFC 2616].
Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	

Description

	Draft Version:

REST_NetAPI _VideoShare-V1_0
	10 May 2011
	All
	Baseline

	
	17 May 2011
	5.1
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0014-CR_VideoShare_ResourceSummary_originating_sid
· OMA-ARC-REST-NetAPI-2011-0015-CR_CR_VideoShare_ResourceSummary_originating_side (Note : CR0014 and CR 0015 are identical)

	
	15 Jun 2011
	5, 5.1,

Appendix E
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0025R03-CR_VideoShare_Resources

	
	02 Aug 2011
	5.1
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0130R02-CR_VideoShare_Resources_alignment_with_new_resource_model

	
	08 Oct 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0183R03-CR_VideoShare_DataTypes_with_tel_URI_and_Notif_channel_changes

	
	31 Oct 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0286-CR_VideoShare_ACR
· OMA-ARC-REST-NetAPI-2011-0290R01-CR_VideoShare_DataTypes_update_SequenceDiagrams

	
	10 Nov 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0347R01-CR_VideoShare_Sequece_diagrams_update
· OMA-ARC-REST-NetAPI-2011-0348R01-CR_VideoShare_DateType_improvements

	
	27 Nov 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0388R02-CR_videoshare_detailed_specification_of_resources
· OMA-ARC-REST-NetAPI-2011-0392R02-CR_VideoShare_media_datatTypes

	
	01 Dec 2011
	Many
	CRs implemented

· OMA-ARC-REST-NetAPI-2011-0417-CR_VideoShare_Appendix_G
· OMA-ARC-REST-NetAPI-2011-0420R01-CR_VideoShare_SCR
· OMA-ARC-REST-NetAPI-2011-0428R03-CR_VideoShare_Appendix_C
· Change "acr:authorization" to "acr:Authorization"

Appendix B. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [SCRRULES].
B.1 SCR for REST.VideoShare Server

	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-SUPPORT-S-001-M
	Support for the RESTful Video Share API
	5, 6
	

	REST-VIDEOSHARE-SUPPORT-S-002-M
	Support for the XML request & response format
	6
	

	REST-VIDEOSHARE-SUPPORT-S-003-M
	Support for the JSON request & response format
	6
	

	REST-VIDEOSHARE-SUPPORT-S-004-O
	Support for the application/x-www-form-urlencoded format
	Appendix C
	

B.1.1 SCR for REST.VideoShare.Subscriptions Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-SUBSCR-S-001-M
	Support for subscriptions to video share notifications
	6.1
	

	REST-VIDEOSHARE-SUBSCR-S-002-O
	Read the list of active video share notification subscriptions – GET
	6.1.3
	

	REST-VIDEOSHARE-SUBSCR-S-003-M
	Create new subscription to video share notifications – POST (XML or JSON)
	6.1.5
	

	REST-VIDEOSHARE-SUBSCR-S-004-O
	Create new subscription to video share notifications – POST (application/x-www-form-urlencoded)
	C.1
	

B.1.2 SCR for REST.VideoShare.Individual.Subscription Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-IND-SUBSCR-S-001-M
	Support for access to an individual subscription to video share notifications
	6.2
	

	REST-VIDEOSHARE-IND-SUBSCR-S-002-O
	Read an individual video share notification subscription – GET
	6.2.3
	

	REST-VIDEOSHARE-IND-SUBSCR-S-003-M
	Cancel subscription and stop corresponding notifications – DELETE
	6.2.6

	

B.1.3 SCR for REST.VideoShare.Sessions Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-SESS-S-001-M
	Support for video share sessions
	6.3
	

	REST-VIDEOSHARE-SESS-S-002-M
	Create a new video share session – POST(XML or JSON)
	6.3.5
	

	REST-VIDEOSHARE-SESS-S-003-O
	Create a new video share session – POST(application/x-www-form-urlencoded)
	C.2
	

B.1.4 SCR for REST.VideoShare.Individual.Session Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-IND-SESS-S-001-M
	Support for individual video share sessions
	6.4
	

	REST-VIDEOSHARE-IND-SESS-S-002-O
	Retrieve video share session information – GET
	6.4.3
	

	REST-VIDEOSHARE-IND-SESS-S-003-M
	Terminate video share session – DELETE
	6.4.6
	

B.1.5 SCR for REST.VideoShare.Individual.Session.Status Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-IND-SESS-STAT-S-001-M
	Support for acceptance of the session
	6.5
	

	REST-VIDEOSHARE-IND-SESS-STAT-S-002-M
	Accept an video share session invitation – POST (XML or JSON)
	6.5.5
	

	REST-VIDEOSHARE-IND-SESS-STAT-S-003-O
	Accept an video share session invitation – POST(application/x-www-form-urlencoded)
	C.3
	

B.1.6 SCR for REST.VideoShare.Session.Invitation.Notifications Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-INVITE-NOTIF-S-001-M
	Support for notifications about video share session invitations
	6.6
	

	REST-VIDEOSHARE-INVITE-NOTIF-S-002-M
	Video share session invitation notifications – POST (XML or JSON)
	6.6.5
	

B.1.7 SCR for REST.VideoShare.Session.Acceptance.Notifications Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-ACCEPT-NOTIF-S-001-M
	Support for notifications about video share session acceptance
	6.7
	

	REST-VIDEOSHARE-ACCEPT-NOTIF-S-002-M
	Video share session acceptance notifications – POST (XML or JSON)
	6.7.5
	

B.1.8 SCR for REST.VIDEOSHARE.Events.Notifications Server
	Item
	Function
	Reference
	Requirement

	REST-VIDEOSHARE-EVENT-NOTIF-S-001-M
	Support for notifications about video share session events
	6.8
	

	REST-VIDEOSHARE-EVENT-NOTIF-S-002-M
	Video share session event notifications – POST (XML or JSON)
	6.8.5
	

B.2
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

B.2.1
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix C. Application/x-www-form-urlencoded Request Format for POST Operations
(Normative)

This section defines a format for the RESTful Video Share API requests where the body of the request is encoded using the application/x-www-form-urlencoded MIME type.

Note: only the request body is encoded as application/x-www-form-urlencoded, the response is still encoded as XML or JSON depending on the preference of the client and the capabilities of the server. Names and values MUST follow the application/x-www-form-urlencoded character escaping rules from [W3C_URLENC].
The encoding is defined below for the following Video Share REST operations which are based on POST requests:
· Creating a new subscription to video share notifications
· Creating a new 1-1 video share session
· Accepting a 1-1 video share session invitation

C.1 Creating a new subscription to video share notifications
This operation is used to create a new subscription to video share notifications. See section 6.1.5.

The notifyURL either contains the Client-side Notification URL (as defined by the client) or the Server-side Notification URL (as obtained during the creation of the Notification Channel [REST_NetAPI_NotificationChannel]).
The request parameters are as follows:

C.2

	Name
	Type/Values
	Optional
	Description

	callbackData
	xsd:string
	Yes
	Data the application can register with the server when subscribing to notifications, and that are passed back unchanged in each of the related notifications.

	notificationFormat
	common:NotificationFormat
	Yes
	Default: XML

Application can specify format of the resource representation in notifications that are related to this subscription. The choice is between {XML, JSON}

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

	resourceURL
	xsd:anyURI
	Yes
	Self referring URL. The resourceURL SHALL NOT be included in POST requests by the client, but MUST be included in POST requests representing notifications by the server to the client, when a complete representation of the resource is embedded in the notification. The resourceURL MUST also be included in responses to any HTTP method that returns an entity body, and in PUT requests.

If the operation was successful, it returns an HTTP Status of “201 Created”.

	
	
	
	

	
	
	
	

	

	
	
	
	

	

C.2.1 Example: Creating a new subscription to video share notifications using tel URI, response with copy of created resource
(Informative)

C.2.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml
Host: example.com

notifyURL=http%3A%2F%2Fapplication.example.com%2Fvideoshare%2Fnotifications%2F77777&

callbackData=abcd&

clientCorrelator=12345

C.2.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001
Date: Thu, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<vs:videoShareNotificationSubscription xmlns:vs="urn:oma:xml:rest:netapi:videoshare:1">

<callbackReference>

<notifyURL>http://application.example.com/videoshare/notifications/77777</notifyURL>

<callbackData>abcd</callbackData>

</callbackReference>

 <clientCorrelator>12345</clientCorrelator>

 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001</resourceURL>

</vs:videoShareNotificationSubscription>

C.2.2 Example: Creating a new subscription to video share notifications using ACR, response with location of created resource
(Informative)

C.2.2.1 Request

	POST /exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/ HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

notifyURL=http%3A%2F%2Fapplication.example.com%2Fvideoshare%2Fnotifications%2F77777&

callbackData=abcd&

clientCorrelator=12345

C.2.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn

Location: http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001
Date: Thu, 28 Jul 2011 17:51:59 GMT
<?xml version="1.0" encoding="UTF-8"?>

<common:resourceReference xmlns:common="urn:oma:xml:rest:netapi:common:1">

 <resourceURL>http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001</resourceURL>

</common:resourceReference>

C.3 Creating a new 1-1 video share session
This operation is used to create a new 1-1 video share session. See section 6.3.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	originatorAddress
	xsd:anyURI
	No
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Originator of this video share session

	originatorName
	xsd:string
	Yes
	Name of the Originator of this video share session.

	receiverAddress

	xsd:anyURI
	Yes
	Address (e.g. 'sip' URI, 'tel' URI, 'acr' URI) of the Receiver of this video share session.

It SHALL be present in request bodies during resource creation in case of video sharing without CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing with CS voice call. The server can get the receiverAddress using the callObjectRef received in the request bodies during resource creation in case of video sharing with CS voice call.

	callObjectRef
	xsd:anyURI
	Yes
	Reference to the CS voice object (to which the Receiver is linked).

It SHALL be present in request bodies during resource creation in case of video sharing with CS voice call.

It SHALL not be present in request bodies during resource creation in case of video sharing without CS voice call.

	receiverName
	xsd:string
	Yes
	Name of the Receiver of this video share session.
SHALL NOT be present when callObjectRef is used, and MAY be present when receiverAddress is used.

	mediaURL
	xsd:anyURI
	Yes
	The video media URL from where the video content can be retrieved.

It SHALL not be present in the POST request during resource creation if liveVideo is set to true.

If it is present in the POST operation during resource creation, the server could fetch the video content using this URL.

If it is not present in the POST request during resource creation and the liveVideo is not set to true (not live video), the video content is included in the HTTP body. The HTTP body can be represented as multipart/form-data entity bodies, where the first entry of the form is the root element and the second entry of the form is the video content.

	mediaType
	MediaType
[0…unbounded]

	Yes
	Type of the media a (e.g. “Audio” or “Video”).

	transportProtocol
	xsd:string
[0…unbounded]
	Yes
	The transport protocol of the media (e.g. “RTP/AVP”, “RTP/SAVP”,”udp”).

	encodingName
	xsd:string
[0…unbounded]
	Yes
	The encoding name of the media type.

It SHALL use media subtype (e.g., PCMA” for audio, “H.263” or “H.263-1998” for video.) when “RTP/AVP" or "RTP/SAVP" transport protocol is used.

See IANA for registered media subtypes for audio and video.

	clockRate
	xsd:unsignedLong
[0…unbounded]
	Yes
	Number of samples per second

	encodingPara
	xsd:string
[0…unbounded]
	Yes
	List of encoding parameters for the specified media type and sub media type.

	fmtp
	xsd:string
[0…unbounded]
	Yes
	Parameters that are specific to a particular format (payload type) as defined in IEFT RFC 4566.

	bandWidth
	xsd: unsignedLong
[0…unbounded]
	Yes
	Band width in kilobits per second

	bwType
	xsd:string
[0…unbounded]
	Yes
	Currently only CT" (Conference Total) and "AS" (Application Specific) are supported.

Refer to RFC 4566.

	size
	xsd: unsignedLong
[0…unbounded]
	Yes
	The size of the file in octets.

	frameRate
	xsd: unsignedInt
[0…unbounded]

	Yes
	The maximum video frame rate in frames/sec, defined only for video media.

	pTime
	xsd: unsignedInt
[0…unbounded]

	Yes
	The length of time in milliseconds represented by the media in a packet. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	maxPTime
	xsd: unsignedInt
[0…unbounded]

	Yes
	This gives the maximum amount of media that can be encapsulated in each packet, expressed as time in milliseconds. For frame-based codecs, the time SHOULD be an integer multiple of the frame size. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	attributeList
	xsd:string
[0…unbounded]
	Yes
	Any other attributes applicable for the specified media type.

	liveVideo
	xsd:boolean
	Yes
	Indicates whether the video is live video (true) or video clip (false).
This element MUST be present and set to “true” if the video is live.

Default value is ‘false.’

	clientCorrelator
	xsd:string
	Yes
	A correlator that the client MAY use to tag this particular resource representation during a request to create a resource on the server. In case the field is present, the server SHALL not alter its value, and SHALL provide it as part of the representation of this resource. In case the field is not present, the server SHALL NOT generate it.

If the operation was successful, it returns an HTTP Status of “201 Created”.

6.8.6.1 Example 1: Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related)
(Informative)

6.8.6.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml
Host: example.com

 originatorAddress=tel%3A%2B19585550100&
 originatorName=Alice&
receiverAddress=tel%3A%2B19585550101&
receiverName=Bob&
mediaURL=http%3A%2F%2Fmyvideos.com%2Frecorded%2Fholidays%2F20110501%2Ffile1/&
clientCorrelator=12345

6.8.6.1.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
 <mediaURL>http://myvideos.com/recorded/holidays/20110501/file1/</mediaURL>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

6.8.6.2 Example 2: Creating a new 1-1 video share session with recorded video file content (CS call related)
(Informative)

6.8.6.2.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1
Content-Type: multipart/form-data; boundary="===============123456==";
Content-Length: nnnn
Accept: application/xml

Host: example.com
MIME-Version: 1.0
--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn

originatorAddress=tel%3A%2B19585550100&
originatorName=Alice&
callObjectRef=http%3A%2F%2F example.com%2F exampleAPI%2F call%2F tel%3A%2B19585550101%2F sessions%2F callSess001&
clientCorrelator=12345
--===============123456==
Content-Disposition: form-data; name=” attachments ”;filename=”file1”
Content-Type: video/H263-2000

Content-Transfer-Encoding: binary
Content-Length: [length of video file]

 ...binary video file...

--===============123456==--

6.8.6.2.2 Response

	HTTP/1.1 201 Created

Content-Type: application/xml
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName>
 <receiverAddress>tel:+19585550101</receiverAddress>

 <callObjectRef>http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001</callObjectRef>

 <receiverName>Bob</receiverName>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
 <resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

C.3.1 Example 3: Creating a new 1-1 video share session with live video (no CS call related)
(Informative)

C.3.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: nnnn

Accept: application/xml

Host: example.com

originatorAddress=tel%3A%2B19585550100&
originatorName=Alice&
receiverAddress=tel%3A%2B19585550101&
receiverName=Bob&
mediaType=Video&

transportProtocol=RTP/AVP&
encodingName=H263-2000&
clockRate=90000&

fmtp=profile=0; level=45&
encodingName=MP4V-ES&
bandWidth=54&
bwType=AS&
frameRate=8&
clientCorrelator=12345

6.8.6.2.3 Response

	HTTP/1.1 201 Created

Content-Type: application/xml

Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>
<vs:videoShareSessionInformation xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
<originatorAddress>tel:+19585550100</originatorAddress>

 <originatorName>Alice</originatorName >

 <receiverAddress>tel:+19585550101</receiverAddress>

 <receiverName>Bob</receiverName>
<mediaInformation>

 <mediaType>Video</mediaType >

 <transportProtocol>RTP/AVP</transportProtocol>

 <mediaFormats>

 <encodingName>H263-2000</encodingName>

 <clockRate>90000</clockRate>
 <fmtp>profile=0; level=45</fmtp> </mediaFormats>

 <mediaFormats>

 <encodingName>MP4V-ES</encodingName>

 </mediaFormats>

 <bandWidth>54</bandWidth>

 <bwType>AS</bwType>
 <frameRate>8</frameRate> </mediaInformation>
<status>Initial</status>

 <clientCorrelator>12345</clientCorrelator>
<resourceURL>http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001</resourceURL>
</vs:videoShareSessionInformation>

Note that alternatively, a ‘resourceReference’ root element can be returned, as illustrated in section 6.1.5.2.2.

C.4 Accepting a 1-1 video share session invitation

This operation is used for accepting a 1-1 video share invitation, by means of updating the status, see section 6.5.5.
The request parameters are as follows:
	Name
	Type/Values
	Optional
	Description

	status
	ReceiverStatus
	No
	Status of the Receiver.

To indicate that the user accepts the session invitation, this element MUST be set to “Connected”

	mediaType
	MediaType
[0…2]
	Yes
	Type of the media a (e.g. “Audio” or “Video”).

	transportProtocol
	xsd:string
[0…2]
	Yes
	The transport protocol of the media (e.g. “RTP/AVP”, “RTP/SAVP”,”udp”).

	encodingName
	xsd:string
[0…2]
	Yes
	The encoding name of the media type.

It SHALL use media subtype (e.g., PCMA” for audio, “H.263” or “H.263-1998” for video.) when “RTP/AVP" or "RTP/SAVP" transport protocol is used.

See IANA for registered media subtypes for audio and video.

	clockRate
	xsd:unsignedLong
[0…2]
	Yes
	Number of samples per second

	encodingPara
	xsd:string
[0…unbounded]
	Yes
	List of encoding parameters for the specified media type and sub media type.

	fmtp
	xsd:string
[0…2]
	Yes
	Parameters that are specific to a particular format (payload type) as defined in IEFT RFC 4566.

	bandWidth
	xsd: unsignedLong
[0…2]
	Yes
	Band width in kilobits per second

	bwType
	xsd:string
[0…2]
	Yes
	Currently only CT" (Conference Total) and "AS" (Application Specific) are supported.

Refer to RFC 4566.

	size
	xsd: unsignedLong
[0…2]
	Yes
	The size of the file in octets.

	frameRate
	xsd: unsignedInt
[0…2]
	Yes
	The maximum video frame rate in frames/sec, defined only for video media.

	pTime
	xsd: unsignedInt
[0…2]
	Yes
	The length of time in milliseconds represented by the media in a packet. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	maxPTime
	xsd: unsignedInt
[0…2]

	Yes
	This gives the maximum amount of media that can be encapsulated in each packet, expressed as time in milliseconds. For frame-based codecs, the time SHOULD be an integer multiple of the frame size. It is probably only meaningful for audio data, but may be used with other media types if it makes sense.

	attributeList
	xsd:string
[0…unbounded]
	Yes
	Any other attributes applicable for the specified media type.

	
	
	
	

	
	
	
	

	
	

	
	

C.4.1 Example1: Accepting a 1-1 video share invitation with accepted media information
(Informative)

C.4.1.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

Status=Connected&

mediaType=Video&

transportProtocol=RTP/AVP&
encodingName=H263-2000&
clockRate=90000&

fmtp=profile=0; level=45&
bandWidth=54&
bwType=AS&

frameRate=8&

C.4.1.2 Response

	HTTP/1.1 200 OK

Content-Type: application/xml

Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

<?xml version="1.0" encoding="UTF-8"?>

<vs:receiverSessionStatusResp xmlns:vs ="urn:oma:xml:rest:netapi:videoshare:1">
 <mediaURL>http://example.com/received/userId/tel%3A%2B19585550101/20110728175159/file1</mediaURL>
</vs:receiverSessionStatusResp>

C.4.2 Example2: Accepting a 1-1 video share invitation without accepted media information
(Informative)

C.4.2.1 Request

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: nnnn
Accept: application/xml

Host: example.com

Status=Connected

C.4.2.2 Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

C.5

	
	
	
	

	
	
	
	

	

	
	
	
	

	

C.5.1
C.5.1.1
	

C.5.1.2
	

Appendix D. JSON examples
(Informative)

JSON (JavaScript Object Notation) is a lightweight, text-based, language-independent data interchange format. It provides a simple means to represent basic name-value pairs, arrays and objects. JSON is relatively trivial to parse and evaluate using standard JavaScript libraries, and hence is suited for REST invocations from browsers or other processors with JavaScript engines. Further information on JSON can be found at [RFC 4627].

The following examples show the request and response for various operations using the JSON data format. The examples follow the XML to JSON serialization rules in [REST_NetAPI_Common]. A JSON response can be obtained by using the content type negotiation mechanism specified in [REST_NetAPI_Common].

For full details on the operations themselves please refer to the section number indicated.

D.1 Reading all active video share notification subscriptions (section 6.1.3.1)
Request:
	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Thu, 28 Jul 2011 17:51:59 GMT

{"videoShareSubscriptionList": {

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions",

 "videoShareNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/videoshare/notifications/77777"

 },

 "clientCorrelator": "12345",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001"

 }

}}

D.2 Creating a new subscription to video share notifications using tel URI, response with copy of created resource (section 6.1.5.1)

Request:

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/ HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"videoShareNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/videoshare/notifications/77777"

 },

 "clientCorrelator": "12345"

}}

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Location: "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001

Date: Thu, 28 Jul 2011 17:51:59 GMT

{"videoShareNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/videoshare/notifications/77777"

 },

 "clientCorrelator": "12345",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.3 Creating a new subscription to video share notifications using ACR, response with location of created resource (section 6.1.5.2)
Request:

	POST /exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/ HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com
{"videoShareNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/videoshare/notifications/77777"

 },

 "clientCorrelator": "12345"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001

Date: Thu, 28 Jul 2011 17:51:59 GMT
{"resourceReference": {"resourceURL": "http://example.com/exampleAPI/videoshare/v1/acr%3Apseudonym123/subscriptions/sub001"}}

D.4 Reading an individual subscription (section 6.2.3.1)
Request:

	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001?resFormat=XML HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jun 2010 17:51:59 GMT

{"videoShareNotificationSubscription": {

 "callbackReference": {

 "callbackData": "abcd",

 "notifyURL": "http://application.example.com/videoshare/notifications/77777"

 },

 "clientCorrelator": "12345",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/subscriptions/sub001"

}}

D.5 Cancelling a subscription (section 6.2.6.1)
Request:

	DELETE /exampleAPI/videoshare/v1/tel%3A%2B19585550100/videoshare/subscriptions/sub001 HTTP/1.1
Accept: application/json
Host: example.com

Response

	HTTP/1.1 204 No Content

Date: Mon, 28 Jun 2010 17:51:59 GMT

D.6 Creating a new 1-1 video share session with mediaURL for recorded video (no CS call related) (section 6.3.5.1)
Request:

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"videoShareSessionInformation": {

 "clientCorrelator": "12345",

 "mediaURL": "http://myvideos.com/recorded/holidays/20110501/file1/",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob"

}}

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

{"videoShareSessionInformation": {

 "clientCorrelator": "12345",

 "mediaURL": "http://myvideos.com/recorded/holidays/20110501/file1/",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Initial"

}}

D.7 Creating a new 1-1 video share session with recorded video file content (CS call related) (section 6.3.5.2)
Request:

	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: multipart/form-data; boundary="===============123456==";
Content-Length: nnnn
Accept: application/json
Host: example.com
MIME-Version: 1.0

--===============123456==
Content-Disposition: form-data; name=”root-fields”

Content-Type: application/json
Content-Length: nnnn
{"videoShareSessionInformation": {

 "callObjectRef": "http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001",

 "clientCorrelator": "12345",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice"

}}
--===============123456==
Content-Disposition: form-data; name=” attachments ”;filename=”file1”
Content-Type: video/H263-2000

Content-Transfer-Encoding: binary
Content-Length: [length of video file]

 ...binary video file...

--===============123456==--

Response:
	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

{"videoShareSessionInformation": {

 "callObjectRef": "http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001",

 "clientCorrelator": "12345",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Initial"

}}

D.8 Creating a Creating a new 1-1 video share session with live video (section 6.3.5.3)
Request:
	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions HTTP/1.1

Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: example.com

{"videoShareSessionInformation": {

 "clientCorrelator": "12345",

 "mediaInformation": {

 "bandWidth": "54",

 "bwType": "AS",

 "frameRate": "8",

 "mediaFormats": [

 {

 "clockRate": "90000",

 "encodingName": "H263-2000",

 "fmtp": "profile=0; level=45"

 },

 {"encodingName": "MP4V-ES"}

],

 "mediaType": "Video",

 "transportProtocol": "RTP/AVP"

 },

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob"

}}

Response:

	HTTP/1.1 201 Created

Content-Type: application/json
Content-Length: nnnn
Location: http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001

Date: Mon, 28 Jul 2011 17:51:59 GMT

{"videoShareSessionInformation": {

 "clientCorrelator": "12345",

 "mediaInformation": {

 "bandWidth": "54",

 "bwType": "AS",

 "frameRate": "8",

 "mediaFormats": [

 {

 "clockRate": "90000",

 "encodingName": "H263-2000",

 "fmtp": "profile=0; level=45"

 },

 {"encodingName": "MP4V-ES"}

],

 "mediaType": "Video",

 "transportProtocol": "RTP/AVP"

 },

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Initial"

}}

D.9 Retrieving 1-1 video share session information (section 6.4.3.1)
Request:
	GET /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1
Accept: application/json
Host: example.com

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

{"videoShareSessionInformation": {

 "callObjectRef": "http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001",

 "clientCorrelator": "12345",

 "mediaURL": "http://myvideos.com/recorded/holidays/20110501/file1/",

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "resourceURL": "http://example.com/exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001",

 "status": "Connected"

}}

D.10 Terminating a 1-1 video share session (section 6.4.5.1)
Request:
	DELETE /exampleAPI/videoshare/v1/tel%3A%2B19585550100/sessions/sess001 HTTP/1.1

Accept: application/json
Host: example.com

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.11 Accepting a 1-1 video share invitation with accepted media information (section 6.5.5.1)
Request:
	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com

{"receiverSessionStatus": {

 "mediaInformation": {

 "bandWidth": "54",

 "bwType": "AS",

 "frameRate": "8",

 "mediaFormats": {

 "clockRate": "90000",

 "encodingName": "H263-2000",

 "fmtp": "profile=0; level=45"

 },

 "mediaType": "Video",

 "transportProtocol": "RTP/AVP"

 },

 "status": "Connected"

}}

Response:
	HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: nnnn
Date: Mon, 28 Jul 2011 17:51:59 GMT

{"receiverSessionStatusResp": {"mediaURL": "http://example.com/received/userId/tel%3A%2B19585550101/20110728175159/file1"}}

D.12 Accepting a 1-1 video share invitation without accepted media information (section 6.5.5.2)
Request:
	POST /exampleAPI/videoshare/v1/tel%3A%2B19585550101/sessions/sess001/status HTTP/1.1

Content-Type: application/json
Content-Length: nnnn
Accept: application/json
Host: example.com
{"receiverSessionStatus": {"status": "Connected"}}

Response:
	HTTP/1.1 204 No Content

Date: Mon, 28 Jul 2011 17:51:59 GMT

D.13 Notify a client about 1-1 video share session invitations (section 6.6.5.1)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com

{"sessionInvitationNotification": {

 "link": [

 {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001/status",

 "rel": "ReceiverSessionstatus"

 },

 {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 }

],

 "mediaInformation": {

 "bandWidth": "54",

 "bwType": "AS",

 "frameRate": "8",

 "mediaFormats": {

 "clockRate": "90000",

 "encodingName": "H263-2000",

 "fmtp": "profile=0; level=45"

 },

 "mediaType": "Video",

 "transportProtocol": "RTP/AVP"

 },

 "originatorAddress": "tel:+19585550100",

 "originatorName": "Alice",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.14 Notify a client about the acceptance of 1-1 video share session with recorded video (no CS call related) (section 6.7.5.1)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com
{"sessionAcceptanceNotification": {

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 },

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "status": "Connected"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.15 Notify a client about the acceptance of 1-1 video share session with recorded video (CS call related) (section 6.7.5.2)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com

{"sessionAcceptanceNotification": {

 "callObjectRef": "http://example.com/exampleAPI/call/tel%3A%2B19585550101/sessions/callSess001",

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 },

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "status": "Connected"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.16 Notify a client about the acceptance of 1-1 video share session with live video (no CS call related) (section 6.7.5.3)

Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com

{"sessionAcceptanceNotification": {

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 },

 "mediaInformation": {

 "bandWidth": "54",

 "bwType": "AS",

 "frameRate": "8",

 "mediaFormats": {

 "clockRate": "90000",

 "encodingName": "H263-2000",

 "fmtp": "profile=0; level=45"

 },

 "mediaType": "Video",

 "transportProtocol": "RTP/AVP"

 },

 "mediaURL": "http://application.example.com/userId/tel%3A%2B19585550101/20110728175159/file1",

 "receiverAddress": "tel:+19585550101",

 "receiverName": "Bob",

 "status": "Connected"

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.17 Notify a client about video share session event (ended) (section 6.8.5.1)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com
{"videoShareEventNotification": {

 "eventType": "SessionEnded",

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.18 Notify a client about video share session event (declined) (section 6.8.5.2)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com
{"videoShareEventNotification": {

 "eventType": "Declined",

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.19 Notify a client about video share session event (cancelled) (section 6.8.5.3)
Request:
	POST http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com
{"videoShareEventNotification": {

 "eventType": "SessionCancelled",

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

D.20 Notify a client about video share session event (failed) (section 6.8.5.4)
Request:
	POST
 http://application.example.com/videoshare/notifications/77777 HTTP/1.1
Content-Type: application/json
Content-Length: nnnn

Accept: application/json
Host: application.example.com
{"videoShareEventNotification": {

 "eventType": "Failed",

 "link": {

 "href": "http://example.com/exampleAPI/videoshare/v1/sessions/sess001",

 "rel": "VideoShareSessionInformation"

 }

}}

Response:
	HTTP/1.1 204 No Content
Date: Thu, 28 Jul 2010 02:51:59 GMT

Appendix E. Operations mapping to a pre-existing baseline specification
(Informative)

As this specification does not have a baseline specification, this appendix is empty.
Appendix F. Light-weight resources
(Informative)

As this version of the specification does not define any light-weight resources, this Appendix is empty.
Appendix G. Authorization aspects
(Normative)

This appendix specifies how to use the RESTful Video Share API in combination with some authorization frameworks.

G.1 Use of Autho4API

The RESTful Video Share API MAY support the Autho4API authorization framework defined in [Autho4API_10].

A RESTful Video Share API supporting [Autho4API_10]:

· SHALL conform to section D.1 of [REST_NetAPI_Common];

· SHALL conform to this section G.1.

G.1.1 Scope values

G.1.1.1 Definitions

In compliance with [Autho4API_10], an authorization server serving clients requests for getting authorized access to the resources exposed by the RESTful Video Share API:

· SHALL support the scope values defined in Table below;

· MAY support scope values not defined in this specification.

	Scope value
	Description
	For one-time access token

	oma_rest_videoshare.all_{apiVersion}
	Provide access to all defined operations on the resources in this version of the API. The {apiVersion} part of this identifier SHALL have the same value as the “apiVersion” URL variable which is defined in section 5.1.1 This scope value is the union of the other scope values listed in next rows of this table.
	No

	oma_rest_videoshare.sessions
	Provide access to all defined operations on 1-1 video share sessions
	No

	oma_rest_videoshare.subscr
	Provide access to all defined operations on video share subscriptions
	No

Table 2: Autho4API scope values for RESTful Video Share API

G.1.1.2 Downscoping

In the case where the Autho4API client requests authorization for “ oma_rest_videoshare.all_{apiVersion}” scope, the Autho4API Authorization Server and/or resource owner MAY restrict the granted scope to some of the following scope values:

· “oma_rest_videoshare.sessions”
· “oma_rest_videoshare.subscr”

G.1.1.3 Mapping with resources and methods

Tables in this section specify how the scope values defined in section G.1.1.1 for the RESTful Video Share API map to the REST resources and methods of this API. In these tables, the root “oma_rest_videoshare.” of scope values is omitted for readability reasons.

	Resource
	URL
Base URL: http://{serverRoot}/videoshare/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All 1-1 video share sessions
	/sessions

	6.3
	n/a
	n/a
	all_{apiVersion} or sessions
	n/a

	Individual 1-1 video share session

	/sessions/{sessionId}
	6.4
	all_{apiVersion} or sessions
	n/a
	n/a
	all_{apiVersion} or sessions

	Individual 1-1 video share session status

	/sessions/{sessionId}/status
	6.5
	n/a
	n/a
	all_{apiVersion} or sessions
	n/a

Table 3: Required scope values for: 1-1 video share sessions
	Resource
	URL
Base URL: http://{serverRoot}/videoshare/{apiVersion}/{userId}
	Section reference
	HTTP verbs

	
	
	
	GET
	PUT
	POST
	DELETE

	All subscriptions to video share notifications

	/subscriptions
	6.1
	all_{apiVersion} or subscr
	n/a
	all_{apiVersion} or subscr
	n/a

	Individual subscription to video share notifications

	/subscriptions/{subscriptionId}

	6.2
	all_{apiVersion} or subscr
	n/a
	n/a
	all_{apiVersion} or subscr

Table 4: Required scope values for: video share subscriptions

/sessions

//{serverRoot}/videoshare/{apiVersion}/{userId}

/{sessionId}

/status

/subscriptions

/{subscriptionId}

(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]
(2011 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20090101-I]

_1382419385.vsd

_1383573462.vsd

_1382117127.vsd

_1382419352.vsd

_1382292805.vsd

_1382101833.vsd

