Doc# OMA-BCAST-2005-0466-File-Service-Protection
Change Request

Doc# OMA-BCAST-2005-0334-CR-SG-[image: image1.jpg]"sOMaQa

Open Mobile Alliance

Content-Type
Change Request

Change Request

	Title:
	Service Protection for Files
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-V1_0-20051020

	Submission Date:
	12 Aug 2005

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Meir Fuchs, Bamboo MediaCasting, meir@bamboomc.com
Frank Hartung, Ericsson, frank.hartung@ericsson.com
David Castleford, Orange, david.castleford@francetelecom.com

	Replaces:
	n/a

1 Reason for Change

Service protection provides protection for the access to service data. In the download case one can envision that a service providing files is offered where the file content is public domain (e.g. home made videos) and need not be stored securely or content protected. The user pays for the aggregation of content and distribution of the files to his terminal. The service operator distributes SEKs or PEKs to authorized subscribers allowing them to access distributed content.
So far SRTP and IPSec have been introduced as the transport mechanisms for data. These are suitable as a service protection mechanism for protection of streams but do not readily lend themselves to protection of files. MBMS (TS 33.246) defines a service protection mechanism for file data which is based on DCF (DRM Content Format) while using a 4-layer model for protecting the data.
The acceptance of this mechanism for OMA BCAST holds the advantage of being closely aligned with MBMS while using what is originally an OMA technology.
The mechanism works as follows:

1. SEKs/PEKs are distributed prior to, during or after the file delivery.

2. During file transmission TKMs are transported in-band with file data and FDTs used for file delivery (as in streaming)

3. Files delivered using FLUTE are encapsulated and encoded using DCF format. The DCF encapsulation contains a field – mbms-key which points at the TEK used for encryption of file data inside the DCF container.

4. The receiver reconstructs the file, uses the key identifier to find/extract the proper TEK and deciphers the file contents.
2 Impact on Backward Compatibility

None.

3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

1. Add an encryption algorithm for DCF in the traffic key message with key identifiers.

2. Introduce DCF as an envelope for files requiring service protection into section 5.1.2.2.5. The proposal is given below with revision marks with respect to the text found in TS 33.246.
The following changes were introduced between R01 and R02:
· Added a fixed value (3) for identifying TKM_ALGO_DCF

· Key_identifier size 8*key_identifier_lenght (was key_indicator_length)
· Header of new section 5.1.2.2.5.3 changed to "Service Protection of.." (was: "Protection of")

· Added paragraph clarifying position of DCF as independent from the KMS
· Added note on origin in MBMS
· Added terminal or smartcard (not only terminal).
· Changed TKMs to STKMs
6 Detailed Change Proposal

<< Changes to section 5.1.2.2.4.1 in revision marks >>
5.1.2.2.4.1 Traffic Key Message (TKM)

Each TKM SHALL be encapsulated in exactly 1 UDP packet.

In order to keep access times low for devices that start accessing a service, a KSM SHALL be transmitted periodically.
The TKM SHALL be transported in-band, in the same Elementary Stream, together with the media streams that are protected with the traffic keys contained in the TKM.

	Key_Stream_Message_Description
	Length
	Type

	key_stream_message() {
	
	

	
selectors_and_flags {
	
	

	

protocol_version
	4
	uimsbf

	

reserved_for_future_use
	2
	bslbf

	

protection_after_reception
	2
	uimsbf

	

traffic_protection_protocol
	3
	uimsbf

	

traffic_authentication_flag
	1
	uimsbf

	

next_traffic_key_flag
	1
	uimsbf

	

Timestamp_flag
	1
	uimsbf

	

programme_flag
	1
	uimsbf

	

service_flag
	1
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_IPSEC) {
	
	

	

security_parameter_index
	32
	uimsbf

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_SRTP) {
	
	

	 master_key_index_length
	8
	uimsbf

	

master_key_index
	8*length
	uimsbf

	

number_of_media_flows
	8
	uimsbf

	

For (i = 0; I < number_of_media_flows; i++) {
	
	

	

synchronization_source
	32
	uimsbf

	

rollover_counter
	32
	uimsbf

	

}
	
	

	
}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_AUENCRYP) {
	
	

	

key_indicator_length
	8
	uimsbf

	

key_indicator
	<8*key_indicator_length>
	bit string

	

if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

key_indicator
	<8*key_indicator_length>
	bit string

	

}
	
	

	
if (traffic_protection_protocol == TKM_ALGO_DCF) {
	
	

	

key_identifier_length
	8
	uimsbf

	

key_identifer
	<8*key_identifier_length>
	bit string

	

}
	
	

	

TBD if necessary
	
	

	
}
	
	

	
encrypted_traffic_key_material_length
	8
	uimsbf

	
encrypted_traffic_key_material
	8*length
	bslbf

	
if (next_traffic_key_flag == TKM_FLAG_TRUE) {
	
	

	

next_encrypted_traffic_key_material
	8*length
	bslbf

	
}
	
	

	
reserved_for_future_use
	5
	bslbf

	
traffic_key_lifetime
	3
	uimsbf

	
if (timestamp_flag == TKM_FLAG_TRUE) {
	
	

	

Timestamp
	40
	mjdutc

	
}
	
	

	
if (programme_flag == TKM_FLAG_TRUE) {
	
	

	

programme_selectors_and_flags {
	
	

	

reserved_for_future_use
	6
	bslbf

	

access_criteria_flag
	1
	uimsbf

	

permissions_flag
	1
	uimsbf

	

}
	
	

	

if (access_criteria_flag == TKM_FLAG_TRUE) {
	
	

	

reserved_for_future_use
	8
	bslbf

	

number_of_access_criteria_descriptors
	8
	uimsbf

	

access_criteria_descriptor_loop() {
	
	

	

access_criteria_descriptor()
	
	

	

}
	
	

	

}
	
	

	

if (permissions_flag == KSM_FLAG_TRUE) {
	
	

	

permissions_category
	8
	uimsbf

	

}
	
	

	

if (service_flag == TKM_FLAG_TRUE) {
	
	

	

encrypted_PEK
	128
	bslbf

	

}
	
	

	

programme_CID_extension
	32
	uimsbf

	

programme_MAC
	96
	bslbf

	
}
	
	

	
if (service_flag == KSM_FLAG_TRUE) {
	
	

	

service_CID_extension
	32
	uimsbf

	

service_MAC
	96
	bslbf

	
}
	
	

	}
	
	

Descriptors for access_criteria_descriptor_loop

	Tag
	8
	uimsbf

	Length
	8
	uimsbf

	Value
	<8xlength>
	bit string

The access criteria descriptor loop is an extension mechanism to allow the addition of new access criteria in the future versions of this specification. The device SHALL ignore access criteria descriptors that it doesn’t support.

A single access criteria descriptor can carry one or more access criteria.
Constant Values

TKM_ALGO_IPSEC

0

TKM_ALGO_SRTP

1

TKM_ALGO_AUENCRYP
2
TKM_ALGO_DCF
TKM_FLAG_FALSE

0

TKM_FLAG_TRUE

1

Coding and Semantics of Attributes

protocol_version – indicates the protocol version of this key stream message.

The device SHALL ignore messages that have a protocol_version number it doesn’t support. The value of the protocol_version of this message is set to 0x0 (i.e. the original format).

Note: If set to 0x0 the format specified in the this version of the specification is used. If set to anything else than 0x0, then the format is beyond the scope of this version of the specification.
protection_after_reception – 2-bit field defining the required protection after the removal of the service protection, according to the following table:

Table 1: Protection_after_Reception Values

	Field: protection_after_reception
	Description

	0x00
	Content protection

Device has to protect all content against access in the clear.

Only the explicitly allowed types of consumption as defined in Rights Objects that the device has for this service or programme are permitted,

An example permission is 'Access' for the immediate rendering of the service or programme.

	0x01
	Implicit rendering permission; ROs may provide additional rights
Device has to protect all content against access in the clear, but:
-
direct rendering is implicitly allowed; no Rights Object is required in the device for this, or an RO with only the service or programme key but without any permissions is sufficient,
 - the device needs to have an RO with the appropriate permissions (and possibly constraints) for any other type of consumption.

	0x02
	Render and recording play back only

Device has to protect all content against access in the clear, but implicitly, two types of consumption are allowed:

· direct rendering, and

· play back of protected recordings of this service or programme, which are made by the device itself
.
Apart from the above two types, no consumption is allowed, not even any consumption granted with Rights Object(s).

The above two types of consumption may also be made available over appropriately protected digital links.

	0x03
	Service Protection

This specification does not impose any protection measures for the content after the removal of service protection.

Note that for e.g. legal or other reasons, the device still might have to protect the content in some way.

traffic_protection_protocol – defines the protocol used for the encryption and authentication of traffic:

TKM_ALGO_IPSEC = IPsec ESP (transport mode; encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-96 [key length 160] or NULL)

TKM_ALGO_SRTP = SRTP (encryption: AES-128-CTR [key length 128]; authentication: HMAC-SHA1-80 [key length 160] or NULL)

TKM_ALGO_AUENCRYP = AU encryption (encryption: AES-128-CM [key length 128]; SRTP authentication (optional): HMAC-SHA1-80 [key length 160])

TKM_ALGO_DCF = DCF encryption (encryption: AES-128-CBC [key length 128]; authentication: HMAC-SHA1-80 [key length 160])

other values = reserved for future use

Whether or not authentication is used depends on <traffic_authentication_flag>.

traffic_authentication_flag – defines whether or not the traffic is authenticated:

TKM_FLAG_FALSE = traffic authentication is not used

TKM_FLAG_TRUE = traffic authentication is used, and the algorithm depends on <traffic_protection_protocol>

next_traffic_key_flag – indicates whether or not the traffic key message contains the next traffic key material:

TKM_FLAG_FALSE = the traffic key message contains only the current traffic key material

TKM_FLAG_TRUE = the traffic key message contains both the current and the next traffic key material

The next traffic key material SHALL be be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets start arriving that are encrypted with the next traffic encryption key.

The next traffic key material SHALL NOT be included earlier than 1 minute before it becomes current. This is to limit the effect on pay-per-view enforcement that is caused by sending the next traffic key material encrypted with the encryption key of a program that may end before the next traffic key becomes current to maximally 1 minute.

The above times SHALL be relative to the moment of transmission of the key stream messages.

timestamp_flag – indicates whether or not the key stream message contains a timestamp:

TKM_FLAG_FALSE = the key stream message does not contain a timestamp

TKM_FLAG_TRUE = the key stream message contains a timestamp.
program_flag – indicates whether or not the program key layer is present in the traffic key message:

TKM_FLAG_FALSE = the program key layer is not present, i.e. the optional program key layer is not used for the service

TKM_FLAG_TRUE = the program key layer is present, i.e. the optional program key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the traffic key message:

TKM_FLAG_FALSE = the service key layer is not present, i.e. the optional service key layer is not used for the service

TKM_FLAG_TRUE = the service key layer is present, i.e. the optional service key layer is used for the service

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet.

The SPI is associated with the current TEK. If the next traffic key flag is set to 1, the SPI associated with the “next TEK” is implicitely defined as SPI+1.
master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of 8-bit values. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

The MKI is associated with the current TEK. If the next traffic key flag is set to 1, the MKI associated with the “next TEK” is implicitely defined as MKI+1.

number_of_media_flows – specifies how many RTP media flows are protected by the traffic key:

For each of the media flows, the SRTP roll-over counter needs to be signaled.

synchronization_source – identifies an RTP media flow to which the associated roll-over counter applies.

rollover_counter – signals the current roll-over counter of the RTP media flow identified by synchronization source.

The roll-over counter is an extension of the sequence number contained in the SRTP packet. It can be different for each SRTP-protected media flow, even if the same traffic key message is used. Therefore, to allow terminals instant service access, the current value of the roll-over counter for each media flow is signalled in the TKM.

Whenever the sequence number of one of the media flows rolls over, a new crypto period SHALL be started, with an incremented MKI, and the new ROC for the media flow in question. The network SHALL ensure that such a ROC-triggered change of the crypto period doesn’t violate the lower bound of crypto period durations.

A terminal that is already tuned to a particular channel SHALL locally keep track of the ROC values and increment them when the RTP sequence number wraps around (this is really an SRTP requirement).

key_indicator_length – indicates the length in bytes of the key_indicator.

key_indicator – value of the KeyIndicator used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMADRMAUheader).

key_identifier_length – indicates the length in bytes of the key_identifier.

key_identifier – value of the identifier used to identify the TEK key transported in the traffic key stream message. This is used to identify the particular TEK key needed to decrypt DCF encoded files.
encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <programme_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the programme encryption key (PEK).

If <programme_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the service encryption key (SEK).

After decryption (and discarding any padding), the traffic encryption key (TEK) and the traffic authentication key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

1.) IPsec:
If no traffic authentication is used, the TEK is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, TEK and traffic authentication seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the TEK is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section ‎5.1.2.2.4.3.

2.) SRTP:
The master key is identical to the decrypted traffic key material. If no traffic authentication is used, the master key has a length of 16 bytes; if traffic authentication is used, 36 bytes. How the TEK and TAK are derived from the master key is defined by SRTP.

next_encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is similar to encrypted_traffic_key_material attribute.
traffic_key_lifetime – denotes is the lifetime in seconds of the traffic key, relative to the first occurrence of an SPI or MKI.

If <traffic_key_lifetime> is n, then the actual lifetime is 2n seconds, as presented in the following table:

Table 2: Traffic Key Lifetime

	value of traffic_key_lifetime attribute
	0
	1
	2
	3
	4
	5
	6
	7

	actual lifetime of traffic key material (seconds)
	1
	2
	4
	8
	16
	32
	64
	128

The actual duration of the crypto period SHALL be strictly shorter than the defined lifetime of the traffic key material. Typically, an SPI or MKI appears for the first time implicitly, when the “next” traffic key material is included in a KSM. Any safety margins to cope with network and transmission delays SHALL be added by the network. A typical value for the lifetime could be three times the crypto period.

The maximal value for the crypto period duration is in practice slightly shorter than the traffic key lifetime, because the KSM will include the “current” and “next” traffic key material before a change of crypto period, to allow the devices to set up the security associations.

After the lifetime has expired, the security association containing the traffic key can be safely deleted by the terminal. This may help managing the security association database in the terminal or enable other optimizations.

The maximum value for the traffic key lifetime is defined mainly in order to have a strict upper bound for the effect of the “sneak post view” problem: the “next traffic key” material is distributed under the current PEK, and allows viewers to view a programme during the next crypto period. Should this possibility still be of a concern, the network MAY choose a shorter crypto period than the maximum value, or, during the crypto period where the current programme ends and a new programme starts, choose to distribute the “current” and the “next” traffic key material in separate KSMs, encrypted with their respective PEKs.

timestamp – Field containing a timestamp at the point of sending the key stream message. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Section ‎5.1.3.3. This 40-bit field contains the timestamp of the key stream message in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

access_criteria_flag – indicates whether or not access criteria are defined for the program:

TKM_FLAG_FALSE = no access criteria are defined, implying that the terminal is allowed to access program without further restrictions (provided the necessary keys are available to the terminal)

TKM_FLAG_TRUE = access criteria are defined, implying that the terminal is allowed to access the program only if the specified access criteria are met

Access criteria cannot change during a program, i.e. as long a program key is valid.

permissions_flag – indicates whether or not permissions category is defined for the programme:

KSM_FLAG_FALSE = no permissions category is defined

KSM_FLAG_TRUE = permissions category is defined
number_of_access_criteria_descriptors – indicates the number of access criteria descriptors.
permissions_category – indicates the permissions category for the programme:

0x00 - no permissions category, service RO applies as such,
0x01...0x3F - permissions_category is included in the post-acquisition permissions lookup, and
0x40...0xFF - reserved for future standardization.

If permissions_category is in the range 0x01...0x3F,

· in case of ICRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = bsdaID + "#S" + serviceBaseCID + "@" + hex(service_CID_extension) + "_" + hex(permissions_category)

and then apply the permissions specified in the service ICRO for this asset.

· in case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xFF, and device does not support it, device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Programme RO. The permissions delivered in a Programme RO apply as such.

encrypted_PEK – is the programme encryption key (PEK) used within the current key stream message to decrypt the traffic key material, encrypted using AES-128-CBC with fixed IV 0).

The programme encryption key is encrypted with the service encryption key (SEK).
program_CID_extension – is the extension of the program_CID which allows to identify the program key material that has been delivered to the device within a Program RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

program_CID ::= bsdaID + "#P" + serviceBaseCID + "@" + hex(program_CID_extension)

program_BCI ::= hash(bsdaID + "#P" + serviceBaseCID + "@") + program_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a TKM, the terminal can assemble the program_CID/BCI and look up the program key (wrapped inside an RO).

The hex() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. EXAMPLE: for a 16 bit value 2748, hex() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It doesn’t depend on the contents of the TKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified above (at description of the permissions_category field).

bsdaID – is the globally co-ordinated ID of the broadcast service distribution/adaptation center.
program_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the key stream message.

 It is used to authenticate the relevant part of the traffic key message in case of pay-per-view, where a PEK from a program RO is used to directly decrypt the traffic key material.

In case the terminal is accessing the traffic key message with a Program RO, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the traffic key message with a Service RO, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID which allows to identify the service key material that has been delivered to the device within a Service RO.

[Note: It is envisioned that for binary rights objects, that can be used for the unconnected mode of operation, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.]

The CID/BCI of the service key is constructed as:

service_CID ::= bsdaID + "#S" + serviceBaseCID + "@" + ascii(service_CID_extension)

service_BCI ::= hash(bsdaID + "#S" + serviceBaseCID + "@") + service_CID_extension

The bsdaID and serviceBaseCID are string values and are expected to be part of the service guide. Upon receiption of a TKM, the terminal can assemble the service_CID/BCI and look up the service key (wrapped inside an RO).

The hash function for the construction of service_BCI is SHA1-64. It doesn’t depend on the contents of the TKM, and can thus be pre-computed.

bsdaID – is the globally co-ordinated ID of the broadcast service distribution center.
service_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the key stream message. It is used to authenticate the traffic key message with SAK in case of subscription, where a SEK from a service RO is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the traffic key message with a Service RO, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the traffic key message with a Program RO, need not compute the service MAC.

5.2.1.1.1.1. Key Stream Discovery

The access description to a particular service which is distributed as part of the Service Guide is assumed to contain a media description for each IP flow of the media service itself.

Based on the basic assumption that the service can’t be consumed (because the used IP addresses, codecs, and other “technical” parameters are not known) unless the access description is present in the terminal; the access description will also carry the static security-related parameters of the service or of a session of the service.

It SHALL be possible to buffer the access description in the terminal, in order to ensure quick service access without need for Service Guide acquisition.

Therefore, the access description can only contain parameters that are likely to change very infrequently for a particular service, so that it can be tolerated that in case of a change, the terminal performs service guide acquisition before accessing a service.

The following access information pertaining to the traffic key stream must be added to the access description of the service:

format_of_key_stream – defines the format of the key stream:

0 = key stream as defined in this specification

all other values = reserved for future use

port_of_key_stream – is the port number of the UDP stream carrying the TKM flow.

IP_address_of_key_stream – is the IP address on which the key stream is transported.

<< Section 5.1.2.2.5.3 is completely new and is provided with revision marks in relation to the MBMS text in 3GPP TS33.246 >>
5.1.2.2.5.3 Service Protection of download data using DCF

Service protection of download data uses DCF as a container for ciphered file data. The DCF container also identifies the keys used in protecting the data. Usage of DCF is independent of the KMS type and DCF may be used with either GBA or DRM based solutions.
Note: The mechanism described in this section was adopted from 3GPP TS 33.246 and adapted to BCAST needs.
Data that belongs to a download Service is decrypted as soon as possible by the terminal, if the SEK and/or PEK needed to provide the relevant TEK are already available on the terminal or smartcard.

NOTE:
If the OMA DRM V2.0 DCF [DRMCF-v2.0] specification is upgraded, these upgrades do not apply for the present document.

When it is required to protect BCAST download data, OMA DRM V2.0 DCF as defined in reference [DRMCF-v2.0] shall be used. In particular, minor version 0x00000003 of OMA DRM V2.0 DCF specifies how DCF is used to protect BCAST download data. BCAST download data are therefore indicated by minor version 0x00000003 in a DCF. OMA DRM Rights Objects are not utilized. Instead, encryption and authentication keys are generated from TEK. For integrity protection, an OMADRMSignature as specified below is attached inside the optional Mutable DRM information box ('mdri') of the DCF.
The OMADRMSignature Box is an extension to OMA DRM V2.0 DCF for use by OMA BAC BCAST, and is defined as follows:
aligned(8) class OMADRMSignature extends Fullbox(‘odfssign’, version, flags) {

Unsigned int(8)
SignatureMethod;
// Signature Method

Char

Signature[];

// Actual Signature

}

SignatureMethod Field:

NULL
0x00

HMAC-SHA1
0x01

The range of data for the HMAC calculation shall be according to section 5.3 of reference [DRMCF-v2.0].

The correct TEK for decrypting and verifying the integrity of the download data is indicated by the key_id in the RightsIssuerURL field as follows:

mbms-key://<key_id>

key_id takes its value as follows:

· If SEK is used for protecting STKMs, key_id is defined as the base64 encoded concatenation service_CID_extension || ";" || key_identifier).
· If PEK is used in protectig STKMs and the PEK is not protected by an SEK, key_id is defined as the base64 encoded concatenation (program_CID_extension || ";" || key_identifier).
· If PEK is used in protecting STKMs and the PEK is protected by an SEK, key_id is defined as the base64 encoded concatenation (service_CID_extension || ";" || program_CID_extension || ";" || key_identifier).

In case the FDT of the FLUTE protocol needs to be protected, the FDT may also be wrapped in a different DCF. Confidentiality and/or integrity protection of FDT can be provided this way.
The OMA BCAST DCF format for service protection shall support the following boxes specified in OMA DRM V2.0 DCF [DRMCF-v2.0]:

-
Fixed DCF header;

-
Mutable DRM information Box;

-
OMA DRM Container Box.

� In principle, any device that has the service or programme key should be allowed to play back these recordings. However, present OMA DRM specifications require that an OMA DRM V2 agent has the appropriate Rights Objects for being allowed to play back (P)DCF files. The constraint “which are made by the device itself” can be relaxed once play back of (P)DCF files when having just a service or programme key has been standardised.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Page 11 (of 12)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20050101-I]

