Doc# OMA-BCAST-2006-0055-efficient-BCRO-addressing-to-subscriber-groups[image: image1.jpg]
Change Request

Doc# OMA-BCAST-2006-0055-efficient-BCRO-addressing-to-subscriber-groups
Change Request

Change Request

	Title:
	Efficient BCRO addressing to subscriber groups
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BAC-BCAST, BAC-DLDRM

	Doc to Change:
	OMA-TS-DRM-XBS-V1_0-20060123-D

	Submission Date:
	January 2006

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Mercè Serra, merce.serra@iis.fraunhofer.de
Bert Greevenbosch, bert.greevenbosch@iis.fraunhofer.de

	Replaces:
	none

1 Reason for Change

In the current specification, subscribers are distributed over subscriber groups. These subscriber groups have a maximum size of 256 or 512 devices. When a BCRO is broadcast to a subset of a subscriber group, a bitmask is included that specifies to which devices the BCRO is addressed.

This CR proposes to make the subscriber group size variable and specifies the way in which this is done.

It also proposes a compression method for the bitmask, such that the size of BCROs is decreased. This is important for the broadcast of BCROs over narrow-band systems.
This CR is accompanied by Presentation 0056 that explains the reasons in more detail.

2 Impact on Backward Compatibility

Updates in the specification, at places where a fixed subscriber group size of 256 or 512 is assumed, are required. These include the device_registration_response message, the token_delivery_response message, Section 9.3.2 about Subscriber Group Key Material and Appendix A.12.3 about the Logarithmic Scheme.
3 Impact on Other Specifications

None.

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The changes described below are presented for inclusion in the latest version of the BCAST TS document.
6 Detailed Change Proposal

7.2.1
Format of the Broadcast Rights Object

The OMADRMAsset, OMADRMPermission and OMADRMConstraint object correspond in their meaning to their counterparts in OMA-DRM-REL-V2_0. The OMADRMAction object corresponds to the allowed elements in the permissions element from the same specification.

· align(8) class OMADRMBroadcastRightsObject

· {

·
int i;

·
// MAC protected part starts here

·
bit(8)
message_tag;

·
bit(4)
version;

·
OMABCROLength
bcro_length;

·
·
bit(1)
timestamp_flag;

·
bit(1)
stateful_flag;

·
bit(1)
refresh_time_flag;

·
bit(2)
address_mode;

·
bit(1)
rights_issuer_flag;
·
OMAGroupAddress
group_address;
·
·
if (address_mode == 0x1)

·
{
·

OMABitAccessMask
bit_access_mask;

·
}

·
else if (address_mode == 0x2)

·
{
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

bit(6)
domain_id_extension;

·

bit(10)
domain_generation;

·
}

·
if (rights_issuer_flag == 1)

·
{

·

bit(160)
rights_issuer_id;

·
}

·
if (timestamp_flag == 1)

·
{

·

bit(40)
bcro_timestamp;

·
}

·
if (refresh_time_flag == 1)

·
{

·

bit(40)
refresh_time;

·
}

·
bit(1)
permissions_flag;

·
bit(7)
rekeying_period_number;

·
bit(32)
purchase_item_id;

·
bit(8)
number_of_assets;

·
for (i=0; i<number_of_assets; i++)

·
{

·

OMADRMAsset
asset[i];

·
}

·
if (permissions_flag == 1)

·
{

·

bit(8)
number_of_permissions;

·

for (i=0; i<number_of_permissions; i++)

·

{

·

OMADRMPermission permission[i];

·

}

·
}

·
// MAC protected part ends here

·
bit(96)
MAC;

· }

message_tag: Tag identifying this message as a BCRO. The value for this field is defined in A.8.
version: 3-bit flag which indicates the version of the BCRO message format. If set to 0 the original format is used. Devices SHALL ignore BCROs with versions it does not support.
bcro_length: this field indicates the length of the remainder of the BCRO in bits, starting immediately after this field (excluding locally added information).
See Section 7.2.2.1 for details on its coding.
Note: the fields up to and including ‘length’ are not protected by a MAC. All following fields up to but not including the MAC field will be protected by a MAC.

timestamp_flag: 1-bit field indicating that the BCRO is timestamped.
stateful_flag: 1-bit flag indicating that when set to 1 the BCRO contains stateful information.

refresh_time_flag: 1-bit flag indicating that a refresh_time for the BCRO is contained in this BCRO.

address_mode: 2-bit field indicating the addressing mode used by this BCRO.

	Field: address_mode
	Description

	0x0
	addressing whole of Subscriber group

	0x1
	addressing of a subgroup of devices in a Subscriber group using an addressing bitmask.

	0x2
	addressing of OMA domain. Address field concatenated with the domain_id_extension will be the domain id in this case.

	
	

	0x3
	reserved for future use

rights_issuer_flag: 1-bit flag indicating that the rights issuer id is listed in this BCRO. Normally this information is given via a dedicated BCRO stream. This flag will only be set if BCROs from different rights issuers are carried in the same stream.
group_address: indicates the Subscriber group address. Each provider has its own address space. See Section 7.2.2.2 for its coding.
rights_issuer_id: The ID of the rights issuer. This is the 160-bit SHA1 hash of the DER encoded public key of the RI. See X509PKISHash in OMA.

bit_access_mask: the entity bit_access_mask indicates to which receivers in the group this BCRO is addressed. Receivers not listed in the bit_access_mask cannot decrypt the key material in this BCRO as zero message Broadcast encryption is used for the encryption of the key material. See Section 7.2.1 for the coding of bit_access_mask.

domain_id_extension: the domain_id is given by the group_address concatenated with the domain_id_extension:
domain_id = (group_address<<6)|domain_id_extension

domain_generation: This 10 bit field specifies the generation of the domain.
bcro_timestamp: Field containing a timestamp at the point of issuing of the BCRO. This 40-bit field contains the time and date of the moment of issuing of the BCRO in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

EXAMPLE 1: 93/10/13 12:45:00 is coded as "0xC079124500".

refresh_time: The refresh_time specifies the time when the terminal should acquire a new BCRO. It does not specifies when the keys in the BCRO expire. This field is a hint to a receiver to acquire a new BCRO for the content listed in the BCRO before the keys in the BCRO expires. The encoding is similar to that of the bcro_timestamp field.

permissions_flag: 1-bit flag indicating that the BCRO contains at least 1 permission.

rekeying_period_number: 7-bit counter used to differentiate between different ROs with the same purchase_item_id.
purchase_item_id: 32-bit field specifying the purchase ID this RO is associated with

number_of_assets: This field specifies the number of assets (see below) in this BCRO. Each asset listed in this BCRO has an internal id which is equal to the index of the asset in this BCRO. In other words the first asset listed in this BCRO has the internal asset id (index) of 0, the second of 1 etc. This internal id or index is used by permissions objects (see below) to identify the assets it addresses.

number_of_permissions:This field specifies the number of permissions (see below) in this BCRO.

MAC: This is the authentication code calculated over all bytes before this field in the BCRO using HMAC-SHA-1-96 (see [RFC 2104]).

The MAC is used to authenticate and check the integrity of the BCRO. The key used to create the MAC is the BCRO authentication key BAK as described in A.9.3.
7.2.1
Format of bit_access_mask
An addressing bitmask is a string of bits, where each bit corresponds to one particular device. When a device is addressed, its bit in the addressing bit mask is set to 1, otherwise to 0.
The field bit_access_mask contains the coded addressing bitmask. The addressing bitmask is split up into subblocks, each of which is coded separately. Depending on the characteristics of the subblock the coding method is chosen. The format of bit_access_mask is as follows:
· class OMADRMBitAccessMask

· {

·
do {
·

bit(2) subblock_coding_type;

·

if(subblock_coding_type == 0x1)

·

{
·

OMADRMBitmappedBitmask bitmapped_bitmask;
·

} else if(subblock_coding_type == 0x2)
·

OMADRMBlockCompressedBitmask;
·

{

·

} else if(subblock_coding_type == 0x3)
·

OMADRMOutlierCompressedBitmask;
·

}
·
} while(subblock_coding_type != 0x0)
· }
subblock_coding_type: 2-bit value indicating how the subblock is coded.
	Field: subblock_coding_type
	Description

	0x0
	indicates the end of the bitmask

	0x1
	the subblock is not compressed, but coded by the method as described in Section 7.2.1.1.

	0x2
	the subblock is coded using the Block Compression Method as described in Section 7.2.1.2.

	0x3
	the subblock is coded using the Outlier Compression Method as described in Section 7.2.1.3.

7.2.1.1
Bitmapped Bitmask
The bitmapped_bitmask field contains a non-compressed subblock. It consists of an indicator for the length of the subblock followed by the subblock. The bitmapped_bitmask field has the following format:

· class OMABitmappedBitmask
· {

·
OMADRMBlockLength
block_length;
·
bit(block_length+1)
bit_map;
· }

block_length: indicates the length of the subblock. For a subblock of length k, block_length contains the value k-1. See Section 7.2.2.4 for more details on the coding of the field block_length.
bit_map: field of block_length+1 bits, that codes the subblock.
For EXAMPLE, a subblock 0010100101011010 has a length of 16 bits, therefore block_length contains a value 15 and is coded as 10 1011 (see Section 7.2.2.4). It is followed by the 16 bits 0010100101011010.
7.2.1.2
Block Compression Method
The Block Compression Method is used when the subblock consists of alternating blocks of ones and zeros. The lengths of these blocks are specified. The block_compressed_bit_access_mask has the following format:
· class OMABlockCompressedBitmap
· {
·
bit(1) firstbit;
·
OMADRMNole nole;
·
OMADRMBlockLength(nole+1) block_length;
· }

firstbit: indicates the value of the first bit.
nole (number of list entries): indicates the number of blocks that follow. If k blocks follow, nole contains a value k-1. This value is coded as indicated in Section 7.2.2.3.

block_length: an array that indicates the lengths of the blocks. For a block of length k, the corresponding field block_length contains a value k-1.
EXAMPLE of coding a subblock using the Block Compression Method:
Let us consider the following 512 bit subblock:
20 x '0', 15 x '1', 2 x '0', 80 x '1', 92 x '0',100 x '1', 203 x '0'.

It starts with a '0', therefore firstbit contains a 0.

There are 7 blocks; therefore nole contains the value 6 and is coded as 00 0110 (see Section 7.2.2.3).
Block 1 has a length of 20, therefore its block_length contains the value 19 and is coded as 10 1111, where 1111 is the binary representation of 15=19-4 (see Section 7.2.2.4).
Block 2 has a length of 15; its block_length is coded as 10 1010.
Block 3 has a length of 2; its block_length is coded as 0 01.
Block 4 has a length of 80; its block_length is coded as 110 0111011.
Block 5 has a length of 92; its block_length is coded as 110 1000111.
Block 6 has a length of 100; its block_length is coded as 110 1001111.
Block 7 has a length of 203, its block_length is coded as 1110 00000110110
In this example 67 bits are needed in order to specify the subblock.
7.2.1.3
Outlier Compression Method
The Outlier Compression Method exploits the fact that a subblock can have a sparse amount of '1's or '0's. The outlier_compressed_bit_access_mask has the following format:
· class OMAOutlierCompressedBitmap
· {

·
bit(1) range_flag

·
OMADRMNole nole

·
OMADRMBlockLength(nole+2) block_length
· }

range_flag: indicates the coding type. When it is equal to 0, we have single '1's separated by blocks of '0's. When it equals 1, we have single '0's separated by blocks of '1's. A bit set to the value that is in a minority is called 'outlier'.
nole (number of list entries): indicates the number of blocks. The amount of blocks is one more than the amount of outliers (since the coding starts with a block before the first outlier and ends with a block behind the last outlier). If there are k blocks, nole contains a value of k-2. See Section 7.2.2.3 for the coding of nole.
block_length: an array that indicates the lengths of the blocks. The first block_length defines the length of the block in front of the first outlier, whilst the last block_length defines the length of the block behind the last outlier. Notice that a length 0 is coded as 0. See Section 7.2.2.4 for more details on the coding of block_length.

EXAMPLE of coding a subblock using the Outlier Compression Method:
Let us consider the following 512-bit bit_access_mask:

1x'0', 90 x '1', 1 x '0', 80 x '1', 2 x '0', 338 x '1'.

range_flag is equal to 1, since we have only 4 '0's in the bit_access_mask.

There are 4 '0's covered by 5 blocks, therefore nole contains 00 0011. Notice that 0011 is the binary representation of 3 = 5-2 (see Section 7.2.2.3).

Since the 4 '0's are covered by 5 blocks of '1's (although two of these blocks have length 0), five block_length fields follow:
The first '0' occurs at the first position, so it is considered to be preceded by a block of length 0. Therefore the first block_length contains 0 and is coded as 0 00.
The second '0' occurs after 90 '1's, therefore the second block_length contains the value 90 and is coded as 110 1000110.

The third block_length contains the value 80 and is coded as 110 0111100.

The third block is followed by two adjacent zeros.
The fourth block_length contains the value 0 and is coded as 0 00.
The fifth block_length contains the value 338, and is coded as 1110 00010111110.
In this example 48 bits are needed in order to specify the bit_access_mask.

7.2.2
Efficient Coding Tables
Efficient Coding Tables are used to code values in such a way that low values require a small number of bits, whilst extra bits are included for the higher values. In general they have the following form:

· class

· {

·
OMADRMEfficientCodingIndicator indicator;

·
OMADRMEfficientCodingTranslatedValue translated_value;
· }

indicator: bit string of variable length indicating the amount of bits that are used to code the translated_value field.

translated_value: contains the binary representation of the relative position of the value in the value range as can be found in the corresponding Efficient Coding Table. This means that a value X is coded as X-L, where L is the lower bound of the value range that contains X.
7.2.2.1
OMABCROLength
	indicator
	amount of bits for value
	value range

	0
	9
	0 – 511

	10
	11
	512 – 2 559

	110
	14
	2 560 – 18 943

	1110
	20
	18 944 – 1 067 519

	1111
	32
	1 067 520 – 4 296 034 815

For EXAMPLE, the value 1200 is coded as 10 01010110000, where 01010110000 is the binary representation of 688=1200-512.
7.2.2.2
OMAGroupAddress
	indicator
	amount of bits for value
	value range

	0
	6
	0 – 63

	10
	11
	64 – 2 111

	110
	16
	2 112 – 67 647

	1110
	20
	67 648 – 1 116 223

	1111
	32
	1 116 224 - 4 296 083 519

For EXAMPLE, the value 1200 is coded as 10 10001110000, where 10001110000 is the binary representation of 1136=1200-64.
7.2.2.3
OMADRMNole

	indicator
	amount of bits for value
	value range

	00
	4
	0 – 15

	01
	8
	16 – 271

	10
	16
	272 – 65 807

	11
	20
	65 808 – 1 114 383

For EXAMPLE, the value 18 is coded as 01 00000010, where 00000010 is the binary representation of 2=18-16.
7.2.2.4
OMADRMBlockLength
	indicator
	amount of bits for value
	value range

	0
	2
	0 – 3

	10
	4
	4 – 19

	110
	7
	20 – 147

	1110
	11
	148 – 2 195

	11110
	16
	2 196 – 67 731

	11111
	22
	67 732 – 4 262 035

For EXAMPLE, the value 16 is coded as 10 1100, where 1100 is the binary representation of 12=16-4.
Text continues with Section 7.2.3 (formerly Section 7.2.2): Format of OMADRMAsset class.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 8 (of 9)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20040917]

