Doc# OMA-BCAST-2008-0127-CR_SPCP_Bugfix_in_BCAST_DRM_Profile.doc[image: image1.jpg]
Change Request

Doc# OMA-BCAST-2008-0127-CR_SPCP_Bugfix_in_BCAST_DRM_Profile.doc
Change Request

Change Request

	Title:
	SPCP_Bugfix_in_BCAST_DRM_Profile
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	BCAST and DRM

	Doc to Change:
	OMA-TS-BCAST_SvcCntProtection-V1_0-20080306-D

	Submission Date:
	27.03.2008

	Classification:
	 FORMCHECKBOX
 0: New Functionality
 FORMCHECKBOX
 1: Major Change
 FORMCHECKBOX
 2: Bug Fix
 FORMCHECKBOX
 3: Clerical

	Source:
	Anja Jerichow, Nokia Siemens Networks, Anja.Jerichow@nsn.com
Uwe Rauschenbach, Nokia Siemens Networks, Uwe.Rauschenbach@nsn.com
Menno Bangma, KPN, Menno.Bangma@tno.nl
Ilkka Oksanen, Nokia, Ilkka.Oksanen@nokia.com
John AC Bernsen, Philips, john.ac.bernsen@philips.com

	Replaces:
	n/a

1 Reason for Change

In the OMA BCAST DRM Profile, an inconsistency was found with respect to the service_CID and program_CID and their compliance with RFC 2392 (which defines the cid: URI syntax) and RFC 2396 (which defines the generic URI syntax). According to the DRM REL and DCF specs, content IDs must comply with these RFCs.
CIDs in BCAST are defined in line with the following example:
service_CID = “cid:” || stringtomakeitunique || "#S" || baseCID || "@" || HEX(service_CID_extension) || "_" || HEX(permissions_category)

The component “stringtomakeitunique” is defined by OMA BCAST to be the empty string, as baseCID is defined to be unique according to Appendix H of BCAST TS SG.

There are two bugs that are fixed with this CR:

1) As stringtomakeitunique is defined to be empty, CIDs start with “cid:#S....”. However, according to RFC 2396 URI syntax, it is illegal to use “#” as the first character following the colon after the URI component “scheme” (i.e. “#” immediately after cid: is forbidden)
2) Further, the “:” character (which is introduced in Appendix H as part of baseCID) is not allowed in a content id according to RFCs 2392 and referenced RFC 2822.
This set of CRs (against 3TSs SPCP, XBS, SG) proposes the following resolution:
· Delete "stringtomakeitunique", because in the spec it is stated that it is an empty string.
· Add a defined character ”b” in front of “#”, such that the syntax of the resulting CID no longer violates RFC 2396 URI syntax.

· Add a note that any characters in baseCID that are not allowed according to RFC 2392 SHALL be escaped, i.e. replaced by their hex representation. For example, “:” becomes “%3A”.
Further, a few clerical changes.
Please note that this CR is part of a set of three related CRs (127, 128, 129) against TSs SG, SPCP, XBS.
2 Impact on Backward Compatibility

None.
3 Impact on Other Specifications

None.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

The group is asked to agree the following change.
6 Detailed Change Proposal

Change 1: Add normative references

2.1 Normative References
	[RFC 2392]
	“Content-ID and Message-ID Uniform Resource Locators”, E. Levinson, August 1998,
URL: http://www.ietf.org/rfc/rfc2392.txt

	[RFC 2396]
	“Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee et al., August 1998,
URL: http://www.ietf.org/rfc/rfc2396.txt

Change 2: Section 5.5.1
5.1.1 Coding and Semantics of Attributes
Section Fehler! Verweisquelle konnte nicht gefunden werden. introduces the coding and semantics of all Attributes common between the DRM Profile and the Smartcard Profile. Any DRM Profile specific attributes are introduced below.

next_traffic_key_flag – indicates whether or not the Short Term Key Message contains the next traffic key material:

	TKM_FLAG_FALSE
	The Short Term Key Message contains only the current traffic key material.

	TKM_FLAG_TRUE
	The Short Term Key Message contains both the current and the next traffic key material.

The next traffic key material SHALL be included at least 1 second before it becomes current. This is to enable the devices to process the traffic key material and put the necessary security associations in place before the media packets that are encrypted with the next traffic encryption key start arriving.

The above time SHALL be relative to the moment of transmission of the key stream messages.

If PEK is used to protect the traffic key material, then next traffic key material that protects a program different from the current program SHALL NOT be included.
timestamp_flag – indicates whether or not the STKM contains a timestamp:

	TKM_FLAG_FALSE
	The STKM does not contain a timestamp.

	TKM_FLAG_TRUE
	The STKM contains a timestamp.

program_flag – indicates whether or not the program key layer is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The PEK is not present, i.e. the optional program key layer is not used for the service.

	TKM_FLAG_TRUE
	The PEK is present, i.e. the optional program key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

service_flag – indicates whether or not the service block is present in the Short Term Key Message:

	TKM_FLAG_FALSE
	The SEK is not present, i.e. the optional service key layer is not used for the service.

	TKM_FLAG_TRUE
	The SEK is present, i.e. the optional service key layer is used for the service.

<program_flag> and <service_flag> SHALL NOT both be 0. All other combinations are allowed, indicating that either one or both of the key layers are present.

security_parameter_index – provides the link to the IPsec ESP header:

Upon reception of a protected IP packet, the terminal SHALL use the security parameter index (SPI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for the received IPsec ESP packet. The SPI value SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the encrypted traffic key material field as keymaterial for the decryption operation.
next_security_parameter_index – provides the link to the IPsec ESP header:

This field is present in the packet only if next traffic key flag is set to true. This field then contains the IPsec SPI value corresponding to the next_encrypted_traffic_key_material field. The value of the SPI SHALL be in the range 0x00000100 – 0xFFFFFFFF. An incoming ESP packet containing the SPI value specified in this field SHALL use the keymaterial provided in the next encrypted traffic key material field as keymaterial for the decryption operation.

master_key_index_length – provides the length of the master_key_index field

This field gives the length of the master_key_index field in bytes.
master_key_index – provides the link to the SRTP header:

Upon reception of a protected RTP packet, the terminal SHALL use the master key index (MKI) to identify (look up) the correct security association and thereby find the decryption and authentication keys to be used for a received SRTP packet.

This field is a sequence of Octets. The sequence consists of master_key_index_length bytes. The bytes are in the same order that they will be in an SRTP packet and SHALL be in SRTP [RFC3711] network byte-order when extracting the MKI value.

next_master_key_index_flag – specifies if the master key index (MKI) for the next TEK is explicitly included in the SRTP parameters (as the next_master_key_index field). In the case that the next_master_key_index is not present in the message, the value of current MKI+1 SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.

next_master_salt_flag – specifies if the next SRTP master salt value corresponding to the next TEK is explicitly included in the SRTP parameters (as the next_master_salt field). In the case that the next_master_salt is not present in the message, the same value as for the current master salt SHALL be assumed. In the case when the next_traffic_key_flag is false there is no information related to the next traffic key included in the message and this parameter does not apply.
master_salt_flag – specifies if the master salt is included in the SRTP parameters. In the case that the master salt is not present in the message, a NULL value consisting of 112 0-bits SHALL be assumed.

master_salt – SRTP master salt that is used along with the master key to derive SRTP session keys as defined by SRTP [RFC3711].

next_master_key_index – provides the link to the SRTP header:

This field is present in the packet only if the next_traffic_key_flag and the next_master_key_index_flag are both set to true. This field then contains the SRTP MKI value corresponding to the next_encrypted_traffic_key_material field. An incoming protected RTP packet containing the MKI value specified in this field SHALL use the key material provided in the next encrypted traffic key material field as key material for the decryption operation.

next_master_salt – next value of the SRTP master salt that is used along with the next master key to derive SRTP session keys as defined by SRTP [RFC3711].

This field is present in the packet only if the next_traffic_key_flag and the next_master_salt_flag are both set to true. This field then contains the SRTP master salt value corresponding to the next_encrypted traffic key material field. An incoming protected RTP packet containing the next MKI value SHALL use the next master salt value provided in this field during the SRTP session key derivation.

key_indicator – value of the KeyIndicator used to identify the TEK transported in the STKM. This is used to identify the particular TEK key needed to decrypt AUs (as indicated in the OMABCASTAUHeader).
key_identifier_length – indicates the length in bytes of the key_identifier. For ISMACryp, key_indicator_length is signaled in SDP. For DRM Profile, the key_indicator_length is also signaled in STKM. Note that the Smartcard Profile STKM does not contain such field for ISMACryp. The key_indicator_length parameter is part of the Session Description Protocol (SDP) and is described in Section Fehler! Verweisquelle konnte nicht gefunden werden..
key_identifier – value of the identifier used to identify the TEK transported in the STKM. This is used to identify the particular TEK needed to decrypt DCF encoded files.

encrypted_traffic_key_material_length – is the length in bytes of the encrypted traffic key material.

The length of the traffic key material depends on the encryption and authentication algorithm, and is obtained by adding the respective key sizes. Encryption MAY require the clear-text key material to be padded.

encrypted_traffic_key_material – is the key material currently used for encryption and optional authentication of the traffic, encrypted using AES-128-CBC, with fixed IV 0, and with 0 padding in the last block, if needed.

If <program_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Program Encryption Key (PEK).

If <program_flag> == TKM_FLAG_FALSE and <service_flag> == TKM_FLAG_TRUE, the traffic key material is encrypted with the Service Encryption Key (SEK).

After decryption (and discarding any padding), the Traffic Encryption Key (TEK) and the Traffic Authentication Key (TAK) are obtained in a way that depends on the protocol used for traffic protection:

IPsec: If no traffic authentication is used, the IPsec encryption key is identical to the decrypted traffic key material (16 bytes).
If traffic authentication is used, IPsec encryption key and Traffic Authentication Seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the IPsec encryption key is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The TAK (20 bytes) is derived from the TAS, as described in Section Fehler! Verweisquelle konnte nicht gefunden werden..

SRTP: The master key is identical to the decrypted traffic key material and SHALL always be a 16-byte key. How the keys for traffic decryption and authentication are derived from the master key is defined by SRTP.
ISMACRYP: If no traffic authentication is used, the decrypted traffic key material is identical to the key used for the AES-CTR decryption and its length is 16 bytes. If authentication is used, the first 16 bytes of the decrypted traffic key material are used as the 128 bit master key (MK) together with the 112 bit master_salt (MS) to derive encryption and authentication keys as described by STRP.

For the DRM Profile, when traffic authentication is used, the MS, from which the actual salt keys are derived, SHALL be signalled via SDP. When traffic authentication is not used, the salt keys as such are signaled in SDP.
Note that, for the Smartcard Profile, the MK is sent in the MIKEY STKM, and the MS is also sent in the MIKEY STKM.

DCF: If no traffic authentication is used, the encryption key is identical to the decrypted traffic key material (16 bytes).

If traffic authentication is used, the encryption key and the Traffic Authentication Seed (TAS) are obtained by splitting the decrypted traffic key material into two parts, where the encryption key is identical to the first 16 bytes, and the TAS is identical to the second 16 bytes. The authentication key (20 bytes) is derived from the TAS in the same way as specified for IPsec (see Section Fehler! Verweisquelle konnte nicht gefunden werden., Authentication for IPsec).

next_encrypted_traffic_key_material – is the encrypted key material used for encryption and optional authentication of the traffic after the current crypto period is over and the next crypto period starts. The structure of this attribute is the same as for the encrypted_traffic_key_material attribute.
timestamp – Field containing a timestamp at the point of sending the STKM. The timestamp SHALL be used as a reliable time of reception of the associated media stream for post-acquisition permissions. The device SHALL not use the timestamp as a reliable source for DRM time.

The format of the 40-bit mjdutc field is specified in Section Fehler! Verweisquelle konnte nicht gefunden werden.. This 40-bit field contains the timestamp of the STKM in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal (BCD).

As an example, 93/10/13 12:45:00 is coded as "0xC079124500".

permissions_flag – indicates whether or not permissions category is defined for the program:

	TKM_FLAG_FALSE
	No permissions category is defined.

	TKM_FLAG_TRUE
	Permissions category is defined.

permissions_category – indicates the permissions category for the program:

	0x00
	No permissions category, RO applies as such,

	0x01...0x3F
	Permissions_category is included in the post- acquisition permissions lookup.

	0x40...0xEF
	Reserved for future standardization.

	0xFF
	No post-acquisition content protection (export in plaintext is allowed)

If permissions_category is in the range 0x01...0x3F,

· In case of a RO that is not a BCRO, the device SHALL use as service_CID for post-acquisition permissions lookup the text string

service_CID = "cid:" || "b" || "#S" || baseCID || "@" || HEX(service_CID_extension) || "_" || HEX(permissions_category)

and then apply the permissions specified in the service RO for this asset. Note that ‘service_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ in the Service Guide, the global uniqueness is guaranteed (see Appendix H of [BCAST10-SG]). The baseCID component MUST NOT contain characters which are disallowed either by RFC 2396 URI syntax or by RFC 2392 cid-url syntax, such as ":".
· In case of BCRO, the device SHALL look up the permissions specified in the service BCRO for the asset that has a matching permissions_category field.

If permissions_category is in the (reserved for future standardization) range 0x40...0xEF, and the device does not support it, the device SHALL drop (i.e. ignore) all post-acquisition permissions (like play, redistribute etc.) indicated in the service RO, or if the device cannot do such permissions dropping, allow real-time rendering of the streaming content only (i.e. refuse to record the content, or to redistribute it in real time). Permissions_category has no impact on a Program RO. The permissions delivered in a Program RO apply as such.

If permissions_category = 0xFF, there is no need to protect the content after service protection has been removed; in other words, export in plaintext is allowed. This is comparable to setting protection_after_reception to 0x03.
If protection_after_reception = 0x03 and permissions_category value is included in the STKM, the permission_category SHALL be set to 0xFF.
encrypted_PEK – is the Program Encryption Key (PEK) used within the current STKM to decrypt the traffic key material, encrypted using AES-128-CBC with a fixed IV equal to 0. The PEK is encrypted with the SEK.

program_CID_extension – is the extension of the program_CID, which allows to identify the program key material that has been delivered to the device within a LTKM for a program.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

program_CID = "cid:" || "b" || "#P" || baseCID || "@" || HEX(program_CID_extension)

program_BCI = hash("cid:" || "b" || "#P" || baseCID || "@") || program_CID_extension

The baseCID is a string value announced in the Service Guide (see Section 5.1.2 of [BCAST10-SG]). Upon reception of a STKM, the terminal can assemble the program_CID/BCI and look up the PEK (wrapped inside a LTKM). Note that ‘program_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ the global uniqueness is guaranteed (see Appendix H of [BCAST10-SG]). The baseCID component MUST NOT contain characters which are disallowed either by RFC 2396 URI syntax or by RFC 2392 cid-url syntax, such as ":".
The HEX() function is a hexadecimal presentation of the parameter containing hexadecimal characters 0-9 and a-f (in lowercase) with possible preceding zeros. As an example, for a 16 bit value 2748, HEX() returns "0abc". Note that two characters are always generated for each byte.
The hash function for the construction of program_BCI is SHA1-64. It does not depend on the contents of the STKM, and can thus be pre-computed.

program_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the relevant part of the STKM in case of pay-per-view, where a PEK from a LTKM for a program is used to directly decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a program, the terminal SHALL compute the program MAC, and drop the message if authentication fails. In this case, <program_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular STKM is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a service, it will not be able to compute the program MAC, and there is no need for it to do so.

service_CID_extension – is the extension of the service_CID, which allows identifying the service key material that has been delivered to the device within a LTKM for a service.

Note that for BCRO, a binary, fixed-size version of the content ID (CID) is needed. This ID is called BCI in this specification.

The CID/BCI of the service key is constructed as:

service_CID ::= "cid:" || "b" || "#S" || baseCID || "@" || HEX(service_CID_extension)

service_BCI ::= hash("cid:" || "b" || "#S" || baseCID || "@") || service_CID_extension

The baseCID is a string value announced in the service guide (see Section 5.1.2 of [BCAST10-SG]). Upon reception of a STKM, the terminal can assemble the service_CID/BCI and look up the SEK (wrapped inside a LTKM). Note that ‘service_CID’ shall be globally unique. Note further that because of the specification of ‘baseCID’ the global uniqueness is guaranteed (see Appendix H of [BCAST10-SG]). The baseCID component MUST NOT contain characters which are disallowed either by RFC 2396 URI syntax or by RFC 2392 cid-url syntax, such as ":".
The hash function for the construction of service_BCI is SHA1-64. It does not depend on the contents of the STKM, and can thus be pre-computed.

If the permissions_category field is present and has a nonzero value, the Service_CID of the service is constructed as specified at description of the permissions_category field.

service_MAC – is the HMAC-SHA-1-96 according to [RFC2104] and [RFC2404] calculated over all preceding fields of the Short Term Key Message. It is used to authenticate the STKM with SAK in case of subscription, where a SEK from a LTKM for a service is used to decrypt the PEK and further decrypt the traffic key material.

In case the terminal is accessing the STKM with a LTKM for a service, the terminal SHALL compute the service MAC, and drop the message if authentication fails, i.e. if the computed MAC doesn’t correspond to <service_MAC>. In this case, <service_MAC> MAY also be used to detect and drop duplicates (it can be expected that a particular traffic key message is repeated multiple times, in order to keep access times short for terminals that newly start receiving a broadcast transmission).

In case the terminal is accessing the STKM with a LTKM for a program, it needs not to compute the service MAC.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 7 (of 8)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-ChangeRequest-20080101-I]

