Dynamic Contents Delivery Service API(JSR327)
for Java™ Micro Edition

Specification Draft Version 0.2
11-February-2009
JSR 327 Expert Group

SK Telecom
Table of Contents
31.
Preface

32.
Revision History

33.
Who Should Use This Specification

34.
How This Specification Is Organized

35.
Related Literature

46.
Report and Contact

47.
Definitions

48.
Contributors

49.
Glossary

610.
Introduction (Overview and Goals)

611.
Scope

612.
Architecture

713.
Functional Requirements

814.
Design

1015.
Use Case

1116.
Code Example

2317.
Specification Requirements

2418.
References

62Appendix A. Deploying DCD API on a MIDP 2.0 Platform

65Appendix B. Deploying DCD API on OMA DCD

67Appendix C. Interaction with OMA Enablers

68Appendix D. Index

1. Preface

This document defines the Early Draft of the Dynamic Contents Delivery Service API v1.0 for the Java Platform, Micro Edition (Java™ ME). This version of the specification is a preliminary draft that both the community and the public will review. The JSR 327 Expert Group will use feedback gathered during the review period to revise and refine this specification. This version of the specification is a work in progress, and still contains open issues that the JSR 327 Expert Group will resolve before the specification is final. This document is intended to provide a general indication of the kind of functionality that the JSR 327 Expert Group intends to produce.

This document and all associated documents are subject to the terms of the JCP and associated agreements (JSPA).

A profile of Java ME defines device-type-specific sets of APIs for a particular vertical market or industry. Profiles are more exactly defined in the related publication, Configurations and Profiles Architecture Specification, Sun Microsystems Inc.
2. Revision History
	Date
	Version
	Description

	20-Sep-08
	0.1
	Initial Dynamic Content Delivery Service API specification for EG review.

	1-Jan-09
	0.2
	Draft for Expert Group Review

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

3. Who Should Use This Specification

This document is targeted at the following audiences:

· The Java Community Process (JCP) expert group defining this profile

· Implementers of Dynamic Content Delivery Service API for Java ME
· MIDlet application developers targeting Dynamic Content Delivery Service
· Network operators deploying infrastructure to support Dynamic Content Delivery Service
4. How This Specification Is Organized

TBD
5. Related Literature

The Java Language Specification, Second Edition by James Gosling,Bill Joy, and Guy L. Steele.
Addison-Wesley, June 2000, ISBN 0-201-31008-2

The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm and Frank
Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

Mobile Information Device Profile 2.1 (JSR 118)

Connected, Limited Device Configuration 1.1 (JSR 139)
Dynamic Content Delivery Requirements, Open Mobile Alliance

Dynamic Content Delivery Architecture, Open Mobile Alliance

Dynamic Content Delivery Technical Specification – Semantics and Transactions, Open Mobile Alliance
6. Report and Contact

Your comments on this specification are welcome and appreciated. Please send your comments to:

dave_kim@sktelecom.com
7. Definitions

This document uses definitions based upon those specified in RFC 2119.
	MUST
	The associated definition is an absolute requirement of this specification.

	MUST NOT
	The definition is an absolute prohibition of this specification.

	SHOULD
	Indicates a recommended practice. There may exist valid reasons in particular circumstances to ignore this recommendation, but the full implications must be understood and carefully weighed before choosing a different course.

	SHOULD NOT
	Indicates a non-recommended practice. There may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

	MAY
	Indicates that an item is truly optional.

8. Contributors

This specification was produced by the JSR 327 Expert Group, as a part of the Java Community Process. The following companies and individuals, listed in alphabetical order, are members of the Expert Group:
· Companies/Representatives :

· Aromasoft

· AT&T
· China Mobile
· LG Electronics
· Motorola
·
· Samsung Electronics
· Sun Microsystems

· SK Telecom Inc., Dave Kim(Spec Lead)
· Telus
· Individuals :

9. Glossary

	Term
	Definition

	Application ID
	A unique identifier for an application utilizing JSR 327

	Application Profile
	The Application Profile (AP) is the set of static definitions and rules that allow the DCD Service framework to handle the delivery of the DCD Content for a particular application. The AP consists of the collection of Channel related information plus application specific parameters common for multiple DCD Channels. The AP facilitates the processing of dynamic metadata (i.e. Content Metadata).

	Channel
	A set of Content Items that the user selects or is automatically provided, and is updated periodically or on-demand.

	DCD
	Dynamic Content Delivery

	DCD Client
	A client that acts as the receiver of a DCD service (e.g. the reception, personalization, customization, charging, notification and storage of DCD Content as well as authentication of the DCD Server) deployed in user’s device. The DCD Client does not render (e.g. display, play etc) DCD Content, but provide DCD Service management and delivery functions for the Java applications utilizing JSR 327.

	DCD Server
	A Server capable of communicating with any DCD Client for the purpose of delivery of DCD Content and control information over various mobile networks and bearers (e.g. Point-To-Point and Point-To-MultiPoint).

	DCD service framework
	The framework which enabling the Application to use DCD Service, this framework include DCD client and DCD Server.

	
	

	
	

	
	

	
	

	
	

10. Introduction (Overview and Goals)

Java ME platform offers network enabled services on the user’s device. Although push based content delivery has been in existence in one form or another with varying scopes, content delivery method is mainly based on pull mechanism, where this too is individually implemented using custom methods. Therefore, Java platform needs to provide standard way for application to interact with content delivery mechanism – OMA DCD based or proprietary DCD mechanisms.
This JSR will enable Java application to interact with dynamic content delivery (DCD) service framework implementation in user’s device.

11. Scope
Figure 1 is deployment architecture diagram for DCD framework. The initial scope of this JSR is DCD Application Programming Interface(DCD API). The Expert Group will continue to expand upon the existing functionality in all areas, improve interoperability across implementations.

[image: image1]
Figure 1) Deployment Architecture Diagram

All other area is considered to be outside the scope of this JSR. These areas include:
· DCD Client.

· DCD Server:

· DCD Content Provider:
· How DCD service framework must be implemented.
· Rendering contents.

12. Architecture

This specification defines an optional JavaME package that enables applications to use DCD service on the device. This optional package will provide generic APIs that abstracts the differences between the underlying DCD agent implementations that exist in various devices. That is, the DCD APIs are not tied to any particular DCD technology. This package can be used along with the Connected Limited Devices Configuration(CLDC) and Connected Devices Configuration(CDC) on top of Generic Connection Framework(GCF).
Following is the DCD Architecture Diagram.

[image: image2.png]MiDlet DCD Enabled Client Applications

Abstracted
DCD Service

OS / Native Platform

DCD Framework
Interconnections

OMA DCD
Framework

WAP/SMS/HTTP
Push
Framework

Proprietary DCD
Service
Framework

Figure 2) DCD Architecture Diagram

13. Functional Requirements
Below are the features of DCD Application Programming Interfaces required for application:
1) DCD Application management

· Registration to DCD service
The application, which wants to subscribe to a particular DCD content, should be registered with Application Profile(application preferences). With the Application Profile provided by the application, the DCD service framework determines matching channels for this application. At the successful registration, the application receive channel metadata list which can be used for channel subscription.
· Notification of new DCD channel availability

Application can be notified from DCD service framework about availability of new channels matching application preferences.

· Deregistration from DCD service
Deregistration could be issued as a result of user request, application removal or network

disconnection..

2) Subscribing to the DCD channels and broadcast channels

· Channel Selection

To start content reception, the application must subscribe to the DCD channel that delivers the content. The application selects DCD channels according to the channel metadata provided by the DCD service framework at registration.
· Subscribing for broadcast DCD channels

Application can select broadcast channels such as CBS, OMA BCAST, etc.
3) Support for content delivery

· Notification of new content delivery via DCD

Application can receive notification synchronously or asynchronously. Content is available directly to the application or in the terminal storage.
· Request for DCD content and associated response

Application can request content update and receive responses from DCD service framework.
· Reception of asynchronously delivered content

Application can receive contents asynchronously from the DCD service framework such as Push, Broadcast channels.
· Notification of DCD channel suspension and resumption

Active DCD service channel can be suspended or resumed by the DCD service framework. Upon suspending and resumption, the application is notified with corresponding channel ID.

· Request for DCD Channel suspension and resumption

Application can suspend or resume active DCD service channels.
4) Application Profile handling

The Application Profile is the set of static definitions and rules that allow the DCD service framework to handle the delivery of the DCD Content for a particular application. The application set each specific parameter for channel selection.
Content rendering is outside the scope of this specification. DCD API can be used to access DCD content for rendering using content rendering APIs already available on a particular Java ME platform implementation.
14. Design

1) Design Concepts

JSR 327 is designed with following concepts.
· Separation of Channel Discovery and Data Transaction
· Support both of raw stream and chunked stream communication

· Compatibility with Generic Connection Framework(GCF) and PushRegistry

· Extendibility of Metadata

2) Separation of Channel Discovery and Data Transaction

Following figure.3 is Class Diagram for DCD Service.

[image: image3.emf]ApplicationProfile

ChannelManager

ChannelManagerListener

<<interface>>

ChannelMetadata

<<interface>>

DCDConnection

<<interface>>

DCDConnectionListener

<<interface>>

javax.microedition.io.Connector

0..1

0..*

0..1

DCDMetadata

<<interface>>

ChunkedContent

ChunkedInputStream

ChunkedOutputStream

0..*

0..*

java.io.InputStream

java.io.OutputStream

stream i/o

chunked stream i/o

Figure 3) DCD Service API Class Diagram

For Channel Discovery, following classes and interface is involved.

Application Profile, ChannelManger, ChannelManagerListener, ChannelMetadata

The ChannelManager class facilitates management of DCD Channels. i.e, registration and deregistration to DCD service framework, Up on completion of channel registration, ChannelManager setup list of ChannelMetadata object that contain channel metadata information.
For Communication with DCD service framework, following interface is involved.

DCDConnetion, DCDConnetionListener

The DCDConnection is an abstraction of an DCD channel subscription. It provides the functionality to send and receive with DCD service framework.
Each connection is managed by DCDConection Interface. i,e, reading data, suspending and resuming data transfer. All events relating to DCDConnection is notified with DCDConnectionListener.
3) Support both of raw stream and chunked stream communication

For the raw stream communication, java.io.inputStream and java.io.outputStream can be used.
For Chunked Contents handling, ChunkedInputStream, ChunkedOutputStream, ChunkedContent can be used.
Since the application can not use concurrently both raw and chunked communication within a connection, the application designer should determine which is suitable for their services.
4) Compatibility with Generic Connection Framework(GCF) and PushRegistry

The DCDConnection is extended from a General Connection Framework's Connection to be aligned with a widely accepted convention and to ease the application wakeup based on the usage of the MIDP PushRegistry.
DCDConnection has two states.

· Resumed: this state is associated with the delivery of DCD content. The DCD service framework may deliver content to application.

· Suspended: this state is the result of content delivery suspension request triggered by the requesting application or by the DCD service framework.

[image: image4]
Figure 4) The DCDConnection State Diagram

5) Extendibility of Metadata
The DCD service framework has various bearers and each bear can have many types of configurations. To support various application bearer’s configuration, DCDMetadata handles parameters that has following BNF definition.

DCDMetada parameter ::== *(propertyGroup) | *(propertyElement)

propertyGroup ::== propertyGroupName “(” *(propertyElement) “)”
propertyGroupName ::== *(dtext)
propertyElement ::== propertyName “:” propertyType “=” propertyValue LINEAR-WHITE-SPACE
propertyName ::== *(dtext)

propertyType ::== “string” | “integer” | “boolean” | “float”
propertyValue ::== *(dtext)

dtext :: == <any CHAR excluding "(", ")", "\" and CR and including LINEAR-WHITE-SPACE>

LINEAR-WHITE-SPACE ::== 1* ([CRLF] LWSP-char)

LWSP-char ::== SP| HT

CHAR ::== <any ASCII character>; (0-177, 0. -127)

DIGIT ::== "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |"8" | "9"
Example.
"dcd-3-connetion-profile (

 dcd-server-address:string=192.168.0.1

 broadcast-profile:(

 cell-broadcast-message-id:integer=0x12345678

)

)"
ApplicationProfile, ChannelMetadata and ChunkedContent have generally required fields by default, and for extendibility, they inherit DCDMetadata to handle optional field for various bearers.

15. Use Case
Use Case 1: Application Registration

The application must be registered with the DCD service framework in order to receive DCD Content. DCD API provides a method for registering to the DCD service framework.
To register application, application should be aware of content provider address or mime type prior to the registration.

Use Case 2: Subscription
To start content reception, the application must subscribe to the DCD Channel. The application may also be auto subscribed “out-of-the-box” (e.g. for emergency or other default channels). A subscription is an agreement between the DCD-Enabled Client Application and service provider that the DCD-Enabled Client Application is entitled to receive content from the specific DCD Channel.
A subscription can be initiated by DCD service framework, whereupon the application can determine whether to subscribe or not depending on condition of subscription.
Use Case 3: Delivery

Content delivery occurs over a DCD Channel. Content Delivery has two mechanisms, Asynchronous delivery and synchronous delivery. Some content could be delivered in chunked frame over a data stream.
Use Case 4: Charged Content Delivery

Content can be charged by channel base or content data size base.

Use Case 5: Channel Update
Channels could be updated during subscription.

Use Case 6: Channel Suspension and Resumption

A Channel could be suspended or resumed by application or DCD service framework.

Use Case 7: Chunked Content Delivery

Content can be handled as raw data using InputStream/OutputSteam, but some times content should be processed by chunk.

16. Code Example

Following are some common usage scenarios of the DCD APIs
Application Registration-1

Scenario 1: Application is aware of the DCD Content Provider address prior to the registration
Description : The application may be aware of the DCD Content Provider address prior to registering with the DCD service framework. This information could be provided to the application as a result of DCD Content discovery by external means, provided through either direct interaction with the terminal user, predefined by the application vendor, or setup by the service provider (e.g. using OMA DM).
Sequence diagram
 [image: image5.emf] : Application : DCD service framework

 : ChannelManager : ChannelMetadata : ApplicationProfile

1 : ApplicationProfile.createApplicationProfile()

<<create>>

2 : ChannelManager.register(ap)

<<create>>

3 : registerApplication

4 : Channel Guide

5 : ChannelMetadata()

<<create>>

6 : ChannelManager

1. Application creates ApplicationProfile with the DCD Content Provider address.
2. Application registers itself to ChannelManager with ApplicationProfile

3. ChannelManager registers to the DCD service framework.

4. DCD service framework responds with channel guide list for the channels matching application preferences.

5. ChannelManager create ChannelMetadata objects with channel guide
6. Application gets the ChannelManager object as the result of registration.

Example Code

ChannelManager channelManager;

int apID = 0x1234ABCD; // unique in the DCD service domain

String apName = "DCDSampleApplication";

String apParameter = "dcd-3-connetion-profile(" +

"dcd-server-address:string=dcd_server.xxx.com " +

"proxy:string=proxy_server.xxx.com" +

")";

public void register() {

// Create ApplicationProfile

ApplicationProfile ap =
ApplicationProfile.createApplicationProfile(apID, apName, apParameter);

try {

// Create ChannelManager

channelManager = ChannelManager.register(ap);

// subscribe channel

} catch (DCDException e){

// process exception

}

}
Application Registration-2
Scenario 2: Application is not aware of the DCD Content Provider address at registration, but aware of mime type
The application provides its preferences and capabilities including supported channel types (e.g. MIME types) to the DCD service framework. It expects the DCD service framework to discover content channels matching application preferences and provide this information upon registration. Examples of such applications are general purpose, off-the-shelf applications designed to handle specific content types (e.g. RSS Feed Viewer, Video Player, etc.), or applications designed for a specific business domain (e.g. Stock Quotes, Traffic News, etc.)
Sequence diagram is the same with scenario 1 except the ApplicationProfile is created with MIMI type.
Example Code

ChannelManager channelManager;

int apID = 0x1234ABCD; // unique in the DCD service domain

String apName = "DCDSampleApplication";

String apParameter = "dcd-channel-selection-metadata (" +

 "mime-types:string=video/mpeg,video/quicktime" +

 ")";

public void register() {

//Create ApplicationProfile with mime type

ApplicationProfile ap =
ApplicationProfile.createApplicationProfile(apID, apName, apParameter);

try {

// Create ChannelManager

channelManager = ChannelManager.register(ap);

// subscribe channel

} catch (DCDException e){

// process exception

}

}
Subscription-1

Scenario 3: Subscription initiation from the application
At registration, the application receives the metadata for the channels matching application preferences. Additionally, an already registered application may receive the metadata for new matching channels when they become available. The Channel Metadata exposed to the application contains channel name, description, identifier.. Based on this information, the application selects a set of DCD Channels to subscribe.

Sequence diagram
 [image: image6.emf] : Application : DCD service framework

 : ChannelManager : ChannelMetadata : Connector

 : DCDConnection

1 : getChannelMetadata()

2 : getConnectionURL()

3 : open(connectionURL)

4 : DCDConnection()

<<create>>

5 : requestSubscription

6 : responseSubscription

7 : DCDConnection

1. Application gets ChannelMetadata list that is created during registration process.
2. Application gets connection URL from the ChannelMetadata information.

3. Application requests opening of connection using Connector.open().

4. Connector creates DCDConnection, since protocol name is dcd.

5. DCDConnection requests subscription to the DCD service framework.

6. The DCD service framework returns result of subscription request.

7. Connector returns DCDConnection.
Example Code

ChannelMetadata[] channelMetadata;

DCDConnection connection;

String

connectionURL;

InputStream is;

public void subscribe(ChannelManager channelManager, int chIndex) {

channelMetadata = channelManager.getChannelMetadata();

connectionURL = channelMetadata[chIndex].getConnectionURL();

try {

connection = (DCDConnection)Connector.open(connectionURL);

is = connection.openInputStream();

int receivedCnt = is.available();

byte[] receivedData = new byte[receivedCnt];

receivedCnt = is.read(receivedData);

// handle received data

} catch (IOException e) {

// catch exception

}

}
Subscription-2
Scenario 4: Subscription initiation from DCD service framework
Subscription can be initiated by the DCD service framework. The request is notified with ChannelManagerListener interface. The JSR 327 specification does not require that implementations create individual threads for event delivery. Thus, if notifyChannelEvent() method does not return or the return is delayed, the system may be blocked. Therefore, the notifyChannelEvent() methods SHOULD return immediately. Instead, it can start a new thread which will receive the content or call another method of the application (which is outside of the listener) that will process request.
Sequence diagram

[image: image7.emf] : Application : DCD service framework

 : ChannelManager Thread : ChannelManagerListener : Connector : DCDConnection

1 : addChannelManagerListener(this)

2 : Thread()

<<create>>

3 : requestSubscription

4 : REQUEST_SUBSCRIPTION

5 : requestConnection(channelID)

6 : open(connectionURL)

7 : DCDConnection()

<<create>>

8 : responseSubscription

9 : DCDConnection

1. Application sets ChannelManagerListener to receive event related to channel managing.

2. Application creates a thread for processing of subscription request.

3. ChannelManagerListener receives subscription request from the DCD service framework.

4. Application receives the REQUEST_SUBSCRIPTION event.

5. Application forwards the request to the thread.

6. The thread calls the Connector.open() using the connectionURL.
7. The Connector creates the DCDConnection.
8. DCDConnection responds the requestSubscription to the DCD service framework.
9. The thread receives the DCDConnection object.

Example Code

ChannelManager dcdChannelManager=null;

ChannelMetadata[] channelMetadata=null;

ChannelConnector channelConnector;

DCDConnection connection;

public void listeningSubscription(ChannelManager channelManager) {

// save channel manager

dcdChannelManager = channelManager;

//add ChannelManagerListener

channelManager.addChannelManagerListener(this);

channelConnector = new ChannelConnector();

new Thread(channelConnector).start();

}

public void notifyChannelEvent(ChannelManager manager, int channelID, int event) {

switch (event) {

case ChannelManagerListener.REQUEST_SUBSCRIPTION:

if (manager == dcdChannelManager) {

channelConnector.requestConnection(channelID);

}

}

}

//Isolate blocking I/O on a separate thread, so callback

//can return immediately.

class ChannelConnector implements Runnable

{

private int requestedCID = 0;

//The run method performs the actual message reading.

public void run() {

synchronized(this) {

if (requestedCID == 0) {

try

{

wait();

} catch (Exception e)

{

//Handle interruption

}

}

channelMetadata = dcdChannelManager.getChannelMetadata();

int chIndex =
findChannelMetadataIndex(channelMetadata, requestedCID);

if (chIndex < 0)

return;

String connectionURL =

channelMetadata[chIndex].getConnectionURL();

try {

connection = (DCDConnection)Connector.open(connectionURL);

} catch (IOException e) {

// catch exception

}

}

}

public synchronized void requestConnection(int channelID)

{

requestedCID = channelID;

notify();

}

private int findChannelMetadataIndex(ChannelMetadata[] chmd, int cid)

{

if (chmd == null)

return -1;

for (int i=0; i<chmd.length; i++) {

if (chmd[i].getID() == cid)

return i;

}

return -1;

}

}
Subscription-3

Scenario 5: Subscribing to the broadcasting channel.

This example is broadcast scenario such as receive-only broadcast kiosk or emergency broadcast.
Broadcasting Channel is identified by isBroadcastingChannel method of ChannelMetadata interface.
Example Code

ChannelMetadata[] channelMetadata;

DCDConnection bConnection;

String

connectionURL;

InputStream is;

int apID = 0x1234ABCD; // unique in the DCD service domain

String apName = "DCDSampleApplication";

// example of OMA-DCD,

// in case of the connection profile name is broadcast_channels

// that is supported from the DCD service framework.

String apParameter = "dcd-3-connection-profile-name=broadcast_channels";

public void subscribeBroadcastChannel() {

//Create ApplicationProfile with mime type

ApplicationProfile ap =
ApplicationProfile.createApplicationProfile(apID, apName, apParameter);

try {

// register to DCD service

ChannelManager channelManager = ChannelManager.register(ap);

channelMetadata = channelManager.getChannelMetadata();

if (channelMetadata == null) {

return; // no broadcast channel

}

// check whether this channel is broadcasting channel.

if(channelMetadata[0].isBroadcastingChannel()) {

connectionURL = channelMetadata[0].getConnectionURL();

try {

bConnection =
 (DCDConnection)Connector.open(connectionURL);

 // receive data

} catch (IOException e) {

// catch exception

}

}

} catch (DCDException e) {

// process exception

}
}
Charged Content Delivery

Scenario 6: Content can be charged by channel base or content quantity base.
Some channel or content can be charged. Charged Channel is identified by getCostInformation method in ChannelMetadata interface. The cost information explains the policy of payments.
Example Code.

// check Pay channel

costInformation = channelMetadata[i].getCostInformation();

if(costInformation != null){

price = channelMetadata[i].getPrice();

// show cost information & price to user

// subscription Channel

connectionURL = channelMetadata[chIndex].getConnectionURL();

try {

connection = (DCDConnection)Connector.open(connectionURL);

// receive data

} catch (IOException e) {

// catch exception

}

}
Delivery-1

Scenario 7: Synchronous Content Delivery
This example illustrates Synchronous content delivery of DCD Content. The flow describes two scenarios: one with content retrieval from the DCD Content Provider upon receiving a content request and another with content publication at the DCD Server prior to the content request.

Sequence diagram
 [image: image8.emf] : Application

 : DCD service framework

DCDConnection.InputStream

1 : read()

2 : requestContent

3 : Content

4 : Content

5 : Content

6 : read()

7 : Content

Example code is same with scenario 3.
Delivery-2

Scenario 8: Asynchronous Content Delivery
Content can be delivered without read request. As soon as content is delivered from DCD service framework, the RECEIVE_CONTENT event is notified to the application. To receive the notification, the application MUST set up the DCDConnectionListener.
Sequence diagram

[image: image9.emf] : Application

 : DCD service framework

 : DCDConnectionListener : DCDConnection

1 : setDCDConnectionListener()

2 : Content

3 : RECEIVE_CONTENT

4 : read()

5 : Content

6 : RECEIVE_CONTENT

7 : read()

1. Application set DCDConnectionListener to receive event related to connection.

2. Content is published from the DCD service framework without application’s content request. As soon as the application receives the notification of new content delivery, the application can read the data using read() method of the DCDConnection.InputStream. (step 2~7).

Example Code

ContentReader contentReader;

DCDConnection dcdConnection;

boolean done;

byte[] content;

InputStream is;

public void initPushBasedContentDelivery(DCDConnection connection) {

// add ChannelListener

connection.addConnectionListener(this);

// save connection

dcdConnection = connection;

try

{

is = connection.openInputStream();

} catch (IOException e)

{

}

// create reading thread

done = false;

contentReader = new ContentReader();

new Thread(contentReader).start();

}

public void notifyDCDConnectionEvent(DCDConnection connection, int event) {

switch(event){

case DCDConnectionListener.RECEIVE_CONTENT:

if (connection == dcdConnection) {

contentReader.handleContent();

}

}

}

//Isolate blocking I/O on a separate thread, so callback

//can return immediately.

class ContentReader implements Runnable

{

//The run method performs the actual content reading.

public void run() {

while (!done) {

synchronized(this) {

try

{

if (is.available() == 0)

{

wait();

}

content = new byte[is.available()];

is.read(content);

// handle receive content

} catch (Exception ioe)

{

//Handle reading errors

}

}

}

}

public synchronized void handleContent()

{

notify();

}

}
Channel Suspension and Resumption

Scenario 9 : Channel can be suspended/resumed by application or DCD service framework.

This example shows 2 scenarios for DCD channel suspension and resumption. The first two requests are driven by the application, requesting to the DCD service framework to suspend delivery of certain connection, other two requests are driven by the DCD service framework.

Sequence diagram

[image: image10.emf] : Application

 : DCD service framework

 : DCDConnection

 : DCDConnectionListener

1 : suspend()

2 : suspendChannel

3 : channelSuspendResponse

4 : RESPONSE_SUSPENSION

5 : resume()

6 : resumeChannel

7 : channelResumeResponse

8 : RESPONSE_RESUMPTION

9 : channelSuspendNotification

10 : NOTIFICATION_SUSPENSION

11 : channelResumeNotification

12 : NOTIFICATION_RESUMPTION

Data Flow

Data Flow

Example Code

public void initSuspendResumeChannel(DCDConnection connection){

connection.addConnectionListener(this);

}

public void supendChannel(DCDConnection connection){

//suspend channel

connection.suspend();

}

public void resumeChannel(DCDConnection connection){

//resume channel

connection.resume();

}

public void notifyDCDConnectionEvent(DCDConnection connection, int event) {

switch(event) {

case DCDConnectionListener.RESPONSE_SUSPENSION:

// handle channel suspend response

return;

case DCDConnectionListener.RESPONSE_RESUMPTION:

// handle channel resume response

return;

case DCDConnectionListener.NOTIFICATION_SUSPENSION:

// handle channel suspend event from DCD service framework

return;

case DCDConnectionListener.NOTIFICATION_RESUMPTION:

// handle channel resume event from DCD service framework

return;

default:

return;

}

}
Channel Update

Scenario 10: Channel Update

The Channel Metadata information, such as cost information, price and parental rating, can be updated during subscription.
The update information is notified by ChannelManagerListener.NOTIFICATION_METADATA_UPDATE event.

Sequence diagram

[image: image11.emf] : Application

 : DCD service framework

 : ChannelManagerListener

 : ChannelManager

1 : setChannelManagerListener()

2 : updateMetadata

3 : NOTIFICATION_METADATA_UPDATE

4 : show updated Metadata to user()

1. Application set ChannelManagerListener to receive event related to channel manager.

2. The DCD service framework update Channel Metadata.

3. Application is notified the update of Metadata.

4. Application can show the updated information to user..

Example Code.

ChannelManager dcdChannelManager=null;

ChannelMetadata[] channelMetadata=null;

ChannelEventProcessor channelEventProcessor;

public void initListeningChannelEvent(ChannelManager channelManager) {

dcdChannelManager = channelManager;

//add SubscriptionResponseListener

channelManager.addChannelManagerListener(this);

channelEventProcessor = new ChannelEventProcessor();

new Thread(channelEventProcessor).start();

}

public void notifyChannelEvent(ChannelManager manager, int channelID, int event) {

switch (event) {

case ChannelManagerListener.NOTIFICATION_METADATA_UPDATE:

if (manager == dcdChannelManager) {

channelEventProcessor.updateChannelMetadata(channelID);

}

}

}

//Isolate blocking I/O on a separate thread, so callback

//can return immediately.

class ChannelEventProcessor implements Runnable

{

private int updatedCID = 0;

//The run method performs the actual message reading.

public void run() {

while (true) {

synchronized(this) {

if (updatedCID == 0) {

try

{

wait();

} catch (Exception e)

{

//Handle interruption

}

}

channelMetadata =
 dcdChannelManager.getChannelMetadata();

int chIndex =

findChannelMetadataIndex(channelMetadata, updatedCID);

// Show the Metadata Information to user.

}

}

}

public synchronized void updateChannelMetadata(int channelID)

{

updatedCID = channelID;

notify();

}

private int findChannelMetadataIndex(ChannelMetadata[] chmd, int cid)

{

if (chmd == null)

return -1;

for (int i=0; i<chmd.length; i++) {

if (chmd[i].getID() == cid)

return i;

}

return -1;

}

}
Chunked Content Delivery
Scenario 11: Chunked Content Delivery
DCDConnection provides two mechanisms to data exchange: raw data handling and chunked data handling.

Raw data is handle by InputStream/OutputStream, and chunked data is handled by ChunkedInputStream/ChunkedOutputStream. ChunkedContent has header field describing content.

Example Code.

ChannelMetadata[] channelMetadata;

DCDConnection connection;

String

connectionURL;

ChunkedInputStream cis;

ChunkedContent content;

public void processChunkedContent(ChannelManager channelManager, int chIndex) {

channelMetadata = channelManager.getChannelMetadata();

connectionURL = channelMetadata[chIndex].getConnectionURL();

try {

connection = (DCDConnection)Connector.open(connectionURL);

cis = connection.openChunkedInputStream();

int receivedCnt = cis.available();

if (receivedCnt > 0) {

content = cis.readChunkedContent();

// handle received data

}

} catch (IOException e) {

// catch exception

}

}
17. Specification Requirements

This section lists some explicit requirements of this specification. If any requirements listed here differ from requirements listed elsewhere in the specification, the requirements here takes precedence over the conflicting requirements in the other sections.
Compliant Dynamic Content Delivery Service API implementations:

• MUST include all packages, classes, and interfaces described in this specification.
• MUST implement the OTA User Initiated Provisioning specification.

• MUST support at least UTF-8 character encoding for the APIs that allow the application to define character encodings.

• MAY support other character encodings.

18. References
	Package Summary

	javax.microedition.dcd
	 This package provides the classes and interfaces of the DCD API package

	javax.microedition.dcd.chunked
	 This package is for chunked data communication

Package javax.microedition.dcd

	Interface Summary

	ChannelManagerListener
	The ChannelManagerListener interface allows an application to receive the ChannelManager related events.

	ChannelMetadata
	A set of information about channel such as genre, icon and price.

	DCDConnection
	The DCDConnection interface represents a connection-oriented DCD channel.

	DCDConnectionListener
	The DCDConnectionListener interface allows an application to receive the DCDConnection related events.

	DCDMetadata
	Extended attributes handler to be used in ApplicationProfile, ChannelMetadata and DCDContent.

	Class Summary

	ApplicationProfile
	A set of attributes to be send to DCD service frameworks during registering application.

	ChannelManager
	ChannelManager manages all channel related operations.

	Exception Summary

	DCDException
	This class is used to signal that a DCD connection cannot be subscribed, or the protocol type is not supported.

Class ApplicationProfile

javax.microedition.dcd
java.lang.Object

 [image: image12.png]

javax.microedition.dcd.ApplicationProfile

All Implemented Interfaces:

DCDMetadata
public class ApplicationProfile

extends Object

implements DCDMetadata
A set of attributes to be send to DCD service frameworks during registering application.

	Method Summary

	static ApplicationProfile
	createApplicationProfile(int id)

Constructor

	static ApplicationProfile
	createApplicationProfile(int id, String name)

Constructor

	static ApplicationProfile
	createApplicationProfile(int id, String name, String defaultProperty)

create ApplicationProfile

	String[]
	getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

	String
	getMetadata(String key)

Returns the value of the named general request property for this connection.

	void
	setChannelDiscoveryNotificationFlag(boolean chNotify)

Set Notification to application or not when the channel information is changed

	void
	setMetadata(String key, String value)

Sets the property of ApplicationProfile.

Method Detail

createApplicationProfile

public static ApplicationProfile createApplicationProfile(int id,
 String name,
 String defaultProperty)

create ApplicationProfile

Parameters:

id - Application ID

name - Application Name

defaultProperty - default properties separated by whitespace

 Each property has name:type=value format.
 The type can be "string", "integer", “float” and "boolean".
 If there is no type, "string" is default value.
 In case of group, all value under group is surrounded by parentheses i.e. "()"
 (e.g. "dcd-3-connetion-profile(
 dcd-server-address:string=192.168.0.1
 broadcast-profile(
 cell-broadcast-message-id:integer=0x12345678
)
)"

createApplicationProfile

public static ApplicationProfile createApplicationProfile(int id,
 String name)

Constructor

Parameters:

id - Application ID

name - Application Name

createApplicationProfile

public static ApplicationProfile createApplicationProfile(int id)

Constructor

Parameters:

id - Application ID

setChannelDiscoveryNotificationFlag

public void setChannelDiscoveryNotificationFlag(boolean chNotify)

Set Notification to application or not when the channel information is changed

Parameters:

chNotify - channel notification

See Also:

ChannelManagerListener.NOTIFICATION_METADATA_UPDATE
setMetadata

public void setMetadata(String key,
 String value)

Sets the property of ApplicationProfile.

Specified by:

setMetadata in interface DCDMetadata
Parameters:

key - the keyword by which the request is known

value - the value associated with it. If the value is null, the key will be removed.

See Also:

DCDMetadata.setMetadata(String, String)
getMetadata

public String getMetadata(String key)

Returns the value of the named general request property for this connection. If the key value can not be group indentifier.

Specified by:

getMetadata in interface DCDMetadata
Parameters:

key - the keyword by which the request property is known

Returns:

The value of the named general request property for this application. If there is no key with the specified key name then null is returned.

See Also:

DCDMetadata.getMetadata(String)
getKeysInMetadataGroup

public String[] getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

Specified by:

getKeysInMetadataGroup in interface DCDMetadata
Parameters:

group - the group of the keyword null means root group.

Returns:

the list of the key. The key is encoded into string. Each format is "name:type". The type can be "group", "string", "integer" and "boolean". If there is no key with the specified group then null is returned.

See Also:

DCDMetadata.getKeysInMetadataGroup()
Class ChannelManager

javax.microedition.dcd
java.lang.Object

 [image: image13.png]

javax.microedition.dcd.ChannelManager

public class ChannelManager

extends Object

ChannelManager manages all channel related operations. (discovering & managing channel)

	Field Summary

	static int
	NO_RESPONSE

	static int
	SUCCESS

	Method Summary

	void
	addChannelManagerListener(ChannelManagerListener dcml)

Add SubscriptionResponseListener interface

	int
	deregister(ApplicationProfile ap)

Deregister Application to DCD service framework

After deregistered, getChannelMetadata() returns null.

	ChannelMetadata[]
	getChannelMetadata()

Get Channel Metadata.

	static ChannelManager
	register(ApplicationProfile ap)

Register Application to DCD service framework with given application profile.

Field Detail

SUCCESS

public static final int SUCCESS = 0

NO_RESPONSE

public static final int NO_RESPONSE = -1

Method Detail

register

public static ChannelManager register(ApplicationProfile ap)
 throws DCDException
Register Application to DCD service framework with given application profile.

If this method is called when the application is already registered with same ApplicationProfile, this method returns a reference to the same ChannelManager object.

Parameters:

ap - Application Profile

Returns:

ChannelManager object for channel manager

Throws:

DCDException
deregister

public int deregister(ApplicationProfile ap)

Deregister Application to DCD service framework

After deregistered, getChannelMetadata() returns null.

Parameters:

ap - Application Profile

Returns:

SUCCESS of NO_RESPONSE

addChannelManagerListener

public void addChannelManagerListener(ChannelManagerListener dcml)

Add SubscriptionResponseListener interface

Parameters:

dcml - ChannelManagerListener

getChannelMetadata

public ChannelMetadata[] getChannelMetadata()

Get Channel Metadata.

Returns:

list of ChannelMetadata

Interface ChannelManagerListener

javax.microedition.dcd
public interface ChannelManagerListener

The ChannelManagerListener interface allows an application to receive the ChannelManager related events.

Events are subscription request from the DCD service framework, unsubscription notification and channel metadata update.

The JSR 327 specification does not require that implementations create individual threads for event delivery. Thus, if a notifyChannelEvent method does not return or the return is delayed, the system may be blocked. So the notifyChannelEvent methods SHOULD return immediately.

	Field Summary

	int
	NOTIFICATION_METADATA_UPDATE
Metadata update notification from DCD Enabler.

	int
	NOTIFICATION_UNSUBSCRIPTION
Unsubscription notification from DCD Enabler.

	int
	REQUEST_SUBSCRIPTION
Request of channel subscription from DCD service framework.

	Method Summary

	void
	notifyChannelEvent(ChannelManager manager, int channelID, int event)

Listener for channel manager event

Field Detail

REQUEST_SUBSCRIPTION

public static final int REQUEST_SUBSCRIPTION = 1

Request of channel subscription from DCD service framework.

The application should make the connection using the open() method of the java.microedition.io.Connector using the received channel ID. ChannelManagerListener should not call Connector.open() directly.
Instead, it can start a new thread which will make the connection.

NOTIFICATION_UNSUBSCRIPTION

public static final int NOTIFICATION_UNSUBSCRIPTION = 2

Unsubscription notification from DCD Enabler.

NOTIFICATION_METADATA_UPDATE

public static final int NOTIFICATION_METADATA_UPDATE = 3

Metadata update notification from DCD Enabler.

If more than one ChannelMetadata are updated, there MUST be each event for each channel.

Method Detail

notifyChannelEvent

void notifyChannelEvent(ChannelManager manager,
 int channelID,
 int event)

Listener for channel manager event

Parameters:

manager - ChannelManager

channelID - channel identifier

event - event type

Interface ChannelMetadata

javax.microedition.dcd
All Superinterfaces:

DCDMetadata
public interface ChannelMetadata

extends DCDMetadata
A set of information about channel such as genre, icon and price.

the Settings and rules of the bearer specific parameters, e.g. delivery, storage, notification rules, are handled with the DCDMetadata functions.

	Method Summary

	String
	getConnectionURL()

Returns the Connection URL.

	String
	getCostInformation()

Return the description of price.

	int
	getCurrency()

Return the monetary currency code of channel.

	String
	getDescription()

Return the description of channel.

	String
	getGenre()

Return the genre.

	byte[]
	getIcon()

Return the icon of channel.

	String
	getIconMIMEType()

Return the MIME type of icon.

	int
	getID()

Returns the channel ID.

	String
	getName()

Return the name of the channel.

	String
	getParentalRating()

Return the content rating

	float
	getPrice()

Return the price of channel.

	Date
	getUpdateDate()

Return the update date of channel metadata.

	boolean
	isBroadcastingChannel()

Check broadcast contents channel.

Method Detail

getID

int getID()

Returns the channel ID.

Returns:

Identifier set by the DCD service framework.

getConnectionURL

String getConnectionURL()

Returns the Connection URL.

Returns a String including optional parameters that can be used by a application to connect to the DCD service framework.
The return value can be used as the first argument to Connector.open().
This string might look like "dcd://1234ABCD:12AB", where "1234ABCD" is the Application ID,
and "12AB" is the Channel ID.

Returns:

URL for the connection.

getUpdateDate

Date getUpdateDate()

Return the update date of channel metadata.

Returns:

updateDate: The Time when the channel metadata was last updated.

getName

String getName()

Return the name of the channel.

Returns:

name: Can be presented to the user in content discovery.

getDescription

String getDescription()

Return the description of channel.

Returns:

description: Can be presented to the user in content discovery.

getIcon

byte[] getIcon()

Return the icon of channel.

Returns:

icon image: can be displayed to the user.

getIconMIMEType

String getIconMIMEType()

Return the MIME type of icon.

Returns:

MIME type of the channel icon

getGenre

String getGenre()

Return the genre.

Returns:

Genre of channel

getParentalRating

String getParentalRating()

Return the content rating

Returns:

rating, per FCC "TV Parental Guildlines" or similar local regulatory requirements.

getPrice

float getPrice()

Return the price of channel.

Returns:

price, free channel is 0.

getCurrency

int getCurrency()

Return the monetary currency code of channel.

Returns:

currency, defined in ISO 4217 international currency codes.

getCostInformation

String getCostInformation()

Return the description of price.

Returns:

description: information for presentation purpose that may contain the price and pricing conditions.

isBroadcastingChannel

boolean isBroadcastingChannel()

Check broadcast contents channel.

Returns:

true : yes, false : no

Interface DCDConnection

javax.microedition.dcd
All Superinterfaces:

Connection, ContentConnection, InputConnection, OutputConnection, StreamConnection

public interface DCDConnection

extends ContentConnection

The DCDConnection interface represents a connection-oriented DCD channel.

This interface is to be used as part of the CLDC Generic Connection Framework(GCF), and it is instantiated by a call to Connector.open().
The protocol is dcd.

An application SHOULD call close() when it is finished with the connection.
An IOException is thrown when any method (except close), which is declared to throw an IOException, is called on the DCDConnection after the connection has been closed.

The target is the combination of the application ID and channel ID.
The example of connection string is "dcd://1234ABCD:12AB"

See Also:

ChannelMeta.getConnectionURL

	Field Summary

	int
	CONNECTION_RESUMED
started or resumed state

	int
	CONNECTION_SUSPENDED
suspended state

	Method Summary

	void
	addConnectionListener(DCDConnectionListener connectionListener)

Add ChannelListener

	ChannelMetadata
	getMetadata()

Returns the Channel Metadata that is related with this channel connection

	int
	getState()

Returns the status value of channel.

	ChunkedInputStream
	openChunkedInputStream()

Open and return a chunked input stream for a connection.

	ChunkedOutputStream
	openChunkedOutputStream()

Open and return a chunked output stream for a connection.

	void
	resume()

request to resume this channel to DCD service framework

	void
	suspend()

request to suspend this channel to DCD service framework

Field Detail

CONNECTION_RESUMED

public static final int CONNECTION_RESUMED = 0

started or resumed state

CONNECTION_SUSPENDED

public static final int CONNECTION_SUSPENDED = 1

suspended state

Method Detail

suspend

void suspend()

request to suspend this channel to DCD service framework

resume

void resume()

request to resume this channel to DCD service framework

getState

int getState()

Returns the status value of channel.

Returns:

CONNECTION_RESUMED or CONNECTION_SUSPENDED
getMetadata

ChannelMetadata getMetadata()

Returns the Channel Metadata that is related with this channel connection

Returns:

list of ChannelMetadata

addConnectionListener

void addConnectionListener(DCDConnectionListener connectionListener)

Add ChannelListener

Parameters:

connectionListener - DCDConnectionListener

openChunkedInputStream

ChunkedInputStream openChunkedInputStream()
 throws DCDException
Open and return a chunked input stream for a connection.

If openInputStream() or openDataInputStream() is called already, this throws IOException, vice versa.

Returns:

chunked input stream

Throws:

DCDException
IOException - - If an I/O error occurs

openChunkedOutputStream

ChunkedOutputStream openChunkedOutputStream()
 throws DCDException
Open and return a chunked output stream for a connection.

If openOutputStream() or openDataOutputStream() is called already, this throws IOException, vice versa.

Returns:

chunked output stream

Throws:

DCDException
IOException - - If an I/O error occurs

Interface DCDConnectionListener

javax.microedition.dcd
public interface DCDConnectionListener

The DCDConnectionListener interface allows an application to receive the DCDConnection related events.

Event example is content received, suspended and resume notification.

The JSR 327 specification does not require that implementations create individual threads for event delivery. Thus, if a notifyDCDConnectionEvent method does not return or the return is delayed, the system may be blocked.
So the notifyDCDConnectionEvent methods SHOULD return immediately.

	Field Summary

	int
	NOTIFICATION_RESUMPTION
notification of channel resumption

	int
	NOTIFICATION_SUSPENSION
notification of channel suspension

	int
	RECEIVE_CONTENT
Notification of newly received content.

	int
	RESPONSE_RESUMPTION
response of resumption request DCDConnection#resume()

	int
	RESPONSE_SUSPENSION
response of suspension request DCDConnection#suspend()

	Method Summary

	void
	notifyDCDConnectionEvent(DCDConnection connection, int event)

Listener for channel manager event

Field Detail

RECEIVE_CONTENT

public static final int RECEIVE_CONTENT = 1

Notification of newly received content.
When an incoming content arrives, this event is called.
The application should retrieve the message using the read() method of the InputStream.

notifyDCDConnectionEvent() method should not call read() directly.
Instead, it can start a new thread which will receive the content or call another method of the application (which is outside of the listener) that will call read().

RESPONSE_SUSPENSION

public static final int RESPONSE_SUSPENSION = 10

response of suspension request DCDConnection#suspend()
RESPONSE_RESUMPTION

public static final int RESPONSE_RESUMPTION = 11

response of resumption request DCDConnection#resume()
NOTIFICATION_SUSPENSION

public static final int NOTIFICATION_SUSPENSION = 20

notification of channel suspension

NOTIFICATION_RESUMPTION

public static final int NOTIFICATION_RESUMPTION = 21

notification of channel resumption

Method Detail

notifyDCDConnectionEvent

void notifyDCDConnectionEvent(DCDConnection connection,
 int event)

Listener for channel manager event

Parameters:

connection - DCD Connection

event - RECEIVE_CONTENT,
RESPONSE_SUSPENSION,
RESPONSE_RESUMPTION,
NOTIFICATION_SUSPENSION,
NOTIFICATION_RESUMPTION
Class DCDException

javax.microedition.dcd
java.lang.Object

 [image: image14.png]

java.lang.Throwable

 [image: image15.png]

java.lang.Exception

 [image: image16.png]

java.io.IOException

 [image: image17.png]

javax.microedition.dcd.DCDException

All Implemented Interfaces:

Serializable

public class DCDException

extends IOException

This class is used to signal that a DCD connection cannot be subscribed, or the protocol type is not supported.

	Constructor Summary

	DCDException()

Constructs a new instance of this class with its stack trace filled in.

	DCDException(String detailMessage)

Constructs a new instance of this class with its stacktrace and message filled in.

Constructor Detail

DCDException

public DCDException()

Constructs a new instance of this class with its stack trace filled in.

DCDException

public DCDException(String detailMessage)

Constructs a new instance of this class with its stacktrace and message filled in.

Parameters:

detailMessage - String The detail message for the exception.

Interface DCDMetadata

javax.microedition.dcd
All Known Subinterfaces:

ChannelMetadata
All Known Implementing Classes:

ApplicationProfile, ChunkedContent
public interface DCDMetadata

Extended attributes handler to be used in ApplicationProfile, ChannelMetadata and DCDContent.

The DCD service framework has various bearers and each bear can have many types of configurations.
To support various application bearer’s configuration, ApplicationProfile, ChannelMetadata and ChunkedContent are created with parameter that has following BNF definition.

DCDMetadata ::== *(metadataGroup) | *(metadataElement)
metadataGroup ::== metadataGroupName “(” *(metadataElement) “)”
metadataGroupName ::== *(dtext)
metadataElement ::== metadataName “:” metadataType “=” metadataValue LINEAR-WHITE-SPACE
metadataName ::== *(dtext)
metadataType ::== “string” | “integer” | “boolean”
metadataValue ::== *(dtext)
dtext :: ==
LINEAR-WHITE-SPACE ::== 1* ([CRLF] LWSP-char)
LWSP-char ::== SP| HT
CHAR ::== ; (0-177, 0. -127)
DIGIT ::== "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |"8" | "9"

Example.
"dcd-3-connetion-profile (
dcd-server-address:string=192.168.0.1
broadcast-profile:(
cell-broadcast-message-id:integer=0x12345678
)
)"

	Method Summary

	String[]
	getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

	String
	getMetadata(String key)

Returns the value of the named metadata.

	void
	setMetadata(String key, String value)

Sets the value of a key.

Method Detail

setMetadata

void setMetadata(String key,
 String value)

Sets the value of a key.

Key has following rules:

· If a metadata with the key already exists, overwrite its value with the new value.
· Key has hierarchical structure with group identifier using parentheses.
· If the key is in the root group, the format is "name:type".
· If the key is in the group except root group, the format is "group-name(name:type)".
· If the group does not exist during setting metadata, the group is automatically created.
· The type can be "string", "integer", "float" and "boolean".
If there is no type indicated, "string" is default value.
 key examples:
 "dcd-3-connection-profile-name"
 "dcd-3-connection-profile-name:string"
 "dcd-3-connection-profile(dcd-server-address:string)"
 "dcd-3-connection-profile(broadcast-profile(cell-broadcast-message-id:integer))"

 metadata setup example:
 Properties to be setup:
 "dcd-3-connetion-profile(
 dcd-server-address:string=192.168.0.1
 broadcast-profile(
 cell-broadcast-message-id:integer=0x12345678
)
)"
 First call :
 setMetadata("dcd-3-connetion-profile(dcd-server-address:string)",
 "192.168.0.1");
 Second call :
 setMetadata("dcd-3-connetion-profile(
 broadcast-profile(cell-broadcast-message-id:integer))", "0x12345678");

 If the value is null, the key will be removed.

Parameters:

key - the keyword by which the request is known

value - the value associated with it.

See Also:

getMetadata()
getMetadata

String getMetadata(String key)

Returns the value of the named metadata.

If the key value can not be group identifier.

Parameters:

key - the keyword by which the request metadata is known

Returns:

The value of the named metadata. If there is no key with the specified key name then null is returned.

See Also:

setMetadata()
getKeysInMetadataGroup

String[] getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

Parameters:

group - the group of the keyword.
null means root group.

Returns:

the list of the key.
The key is encoded into String.
Each format is "name:type".
The type can be "group", "string", "integer" and "boolean".
If there is no key with the specified group then null is returned.

See Also:

setMetadata()
Package javax.microedition.dcd.chunked

	Class Summary

	ChunkedContent
	Chunked Content including header information.

	ChunkedInputStream
	Input stream for chunked content delivery

	ChunkedOutputStream
	Output stream for chunked content delivery

Class ChunkedContent

javax.microedition.dcd.chunked
java.lang.Object

 [image: image18.png]

javax.microedition.dcd.chunked.ChunkedContent

All Implemented Interfaces:

DCDMetadata
public class ChunkedContent

extends Object

implements DCDMetadata
Chunked Content including header information.

	Constructor Summary

	ChunkedContent()

	Method Summary

	int
	getBlockID()

Return the Identifier representing relationship between contents.

	int
	getChannelID()

Returns the Channel ID.

	byte[]
	getContent()

Return the data as byte array.

	String
	getContentType()

Return the content type.

	Date
	getCreatedTime()

Return the content created time.

	Date
	getExpiredTime()

Return the content expired time.

	int
	getID()

Returns the Content ID.

	String[]
	getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

	String
	getMetadata(String key)

Returns the value of the named property for this ChunkedContent.

	String
	getMIMEType()

Returns the MIME Type.

	String
	getName()

Return the content name.

	float
	getPrice()

Return the price of content.

	int
	getSize()

Return the size of this chunk.

	void
	setMetadata(String key, String value)

Sets the property of ChunkedContent.

Constructor Detail

ChunkedContent

public ChunkedContent()

Method Detail

getID

public int getID()

Returns the Content ID.

Returns:

content identifier set by the DCD service framework.

getChannelID

public int getChannelID()

Returns the Channel ID.

Returns:

channel identifier for this content.

getMIMEType

public String getMIMEType()

Returns the MIME Type.

Returns:

MIME Type the content belonging to.

getContentType

public String getContentType()

Return the content type.

Returns:

content type

getSize

public int getSize()

Return the size of this chunk.

Returns:

size in byte

getName

public String getName()

Return the content name.

Returns:

content name

getBlockID

public int getBlockID()

Return the Identifier representing relationship between contents.

Returns:

block id

getCreatedTime

public Date getCreatedTime()

Return the content created time.

Returns:

Date

getExpiredTime

public Date getExpiredTime()

Return the content expired time.

Returns:

Date

getPrice

public float getPrice()

Return the price of content.

Returns:

price, free content is 0.

getContent

public byte[] getContent()

Return the data as byte array.

Returns:

price, free content is 0.

setMetadata

public void setMetadata(String key,
 String value)

Sets the property of ChunkedContent.

Specified by:

setMetadata in interface DCDMetadata
Parameters:

key - the keyword by which the request is known

value - the value associated with it. If the value is null, the key will be removed.

See Also:

DCDMetadata.setMetadata(String, String)
getMetadata

public String getMetadata(String key)

Returns the value of the named property for this ChunkedContent. If the key value can not be group indentifier.

Specified by:

getMetadata in interface DCDMetadata
Parameters:

key - the keyword by which the request property is known

Returns:

The value of the named general request property for this application. If there is no key with the specified key name then null is returned.

See Also:

DCDMetadata.getMetadata(String)
getKeysInMetadataGroup

public String[] getKeysInMetadataGroup(String group)

Returns the list of the key in the specified group.

Specified by:

getKeysInMetadataGroup in interface DCDMetadata
Parameters:

group - the group of the keyword null means root group.

Returns:

the list of the key. The key is encoded into string. Each format is "name:type". The type can be "group", "string", "integer" and "boolean". If there is no key with the specified group then null is returned.

See Also:

DCDMetadata.getKeysInMetadataGroup(String)
Class ChunkedInputStream

javax.microedition.dcd.chunked
java.lang.Object

 [image: image19.png]

javax.microedition.dcd.chunked.ChunkedInputStream

All Implemented Interfaces:

Connection

public class ChunkedInputStream

extends Object

implements Connection

Input stream for chunked content delivery

	Constructor Summary

	ChunkedInputStream()

	Method Summary

	int
	available()

Returns the number of chunked content that can be read without blocking.

	void
	close()

Close the connection..

	ChunkedContent
	readChunkedContent()

Reads the chunked content.

Constructor Detail

ChunkedInputStream

public ChunkedInputStream()

Method Detail

close

public void close()

Close the connection..

Specified by:

close in interface Connection

available

public int available()

Returns the number of chunked content that can be read without blocking.

readChunkedContent

public ChunkedContent readChunkedContent()
 throws DCDException
Reads the chunked content.

Throws:

DCDException
IOException - - if an I/O error occurs.
In particular, an IOException may be thrown if the input stream has been closed.

Class ChunkedOutputStream

javax.microedition.dcd.chunked
java.lang.Object

 [image: image20.png]

javax.microedition.dcd.chunked.ChunkedOutputStream

All Implemented Interfaces:

Connection

public class ChunkedOutputStream

extends Object

implements Connection

Output stream for chunked content delivery

	Constructor Summary

	ChunkedOutputStream()

	Method Summary

	void
	close()

Close the connection..

	void
	writeChunkedContent(ChunkedContent content)

Write the specified byte to this output stream.

Constructor Detail

ChunkedOutputStream

public ChunkedOutputStream()

Method Detail

close

public void close()

Close the connection..

Specified by:

close in interface Connection

writeChunkedContent

public void writeChunkedContent(ChunkedContent content)
 throws DCDException
Write the specified byte to this output stream.

Parameters:

content - ChunkedContent

Throws:

DCDException - - if an I/O error occurs.
In particular, an IOException may be thrown if the output stream has been closed.

Appendix A. Deploying DCD API on a MIDP 2.0 Platform

1) Introduction
This section provides implementation notes for platform developers deploying the DCD API on MIDP 2.0 platform or higher.

This section describes how to:
· Use the property to find out the capability of device.

· Use the MIDP 2.0 push mechanism with DCD

· Use the MIDP 2.0 security features to control access to DCD capabilities
2) System Property
DCD API implementations MUST ensure that the following system property is defined and is accessible to applications as followings.

· System.getProperty(String key).

	Key
	value

	microedition.dcd.version
	“1.0” or null(DCD is not supported)

In case the user’s device supports DCD, the following property must be defined.

· javax.microedtion.dcd.Property.getProperty(String key).

	Key
	value

	dcd.service.frameworks
	comma separated list of DCD service framework that is supported on device
One or more of “OMA-DCD”, “xxx”,

3) PushRegistry
MIDP 2.0 includes mechanism for automatic lauching a MIDlet when a connection notification event is detected. Once the MIDlet has been launched, it performs the same I/O operations it would normally use to open a connection and read/write data.

For DCD application, this capability allows the application to be launched, if a subscription request is received while the MIDlet is not running or while another MIDlet is running.

In order to perform a Push registration for a DCD subscription, the MIDlet suite must request and acquire permission to use the PushRegistry and permission to subscribe the channel.

Push registrations are either defined in the application descriptor or made dynamically at runtime via PushRegistry. The entry for a DCD protocol will include the Application ID which identifies the application, the Channel ID which indentifies the channel and application profile parameter as following.

MIDlet-Push-1 : dcd://AppID:ChannelID:ap_parameter, MIDletClassName
During static registration, above parameters are taken from the JAD file or from the JAR manifest; the attribute name is MIDlet-Push-<n>. In case of dynamic registration, the parameters are passed to the PushRegistry.registerConnection() method.
The Application ID MUST be unique in the DCD service domain, and the Channel ID MUST not be changed without service termination. The ap_parameter can be restricted by size, because each application descriptor parameter could have size limitation by implemetation.
For Connection URL example

MIDlet-Push-1: dcd://1234ABCD:12AB

MIDlet-Push-1: dcd://1234ABCD:12AB:cd-3-connetion-profile-name=broadcast_channels
The PushRegistry is handled as follows.
· The platform MUST register the application using Application ID and parameter when the system is booted, and MUST maintain the channel list without MIDlet launching.
· If the subscription request is received from DCD service framework for one of the received channel IDs in the PushRegistry , the corresponding MIDlet MUST be launched.

· The MIDlet can check whether it is launched by PushRegistry using listConnection function.

· The MIDlet MUST call Connector.open() using the result of the listConnection. The channel subscription request performs registration without explicitly calling the ChannelManager.register(). This registration process is handled locally and virtually in the user’s device, since the platform already has the channel list.
· The platform MUST report fail status if the application does not respond within specified time.

[image: image21.emf]MIDlet

JSR 327

DCD service framework

1 : register(AID, parameter)

2 : Channel Metadata

3 : channel subscription request

4 : launch MIDlet

5 : PushRegistry.listConnection()

6 : connection URL

DCD service framework

request channel subscription

7 : Connector.open(connectionURL)

8 : channel subscription response

4) Security
The MIDP 2.0.1 specification defines the framework for authenticating the source of a MIDlet suite and authorizing the MIDlet suite to perform protected functions by granting permissions that it may have requested based on the security policy on the device. It also identifies functions that are deemed security vulnerable and defines permissions for those protected functions. Additionally, MIDP 2.0.1 specifies the common rules for APIs that can be used together with the MIDP but are specified outside the MIDP. The MIDP 2.0.1 specification does not mandate a single trust model but rather allows the model to accord with the device trust policy. This chapter defines the recommended security policy for DCD API. The Function group definitions referred below can be found in MIDP 2.0.1 or later versions.
To use DCD API, application MUST be granted permission to perform the requested operation, such as the registering and channel subscribing to the DCD service framework using the MIDP 2.0 Security Framework,
	Permission name
	Methods protected by this permission

	javax.microedition.io.Connector.dcd
	Connector.open(“dcd://AID…”)

	javax.microedition.dcd.ChannelManager.register
	ChannelManager.register(ap)

Appendix B. Deploying DCD API on OMA DCD

1) Property
If user’s device uses OMA DCD as a bearer, the return values of javax.microedtion.dcd.Property. getProperty(“dcd.service.frameworks”) MUST include “OMA-DCD”, and the DCD API implementations MUST ensure that the following system property is defined and is accessible to applications as followings.

· javax.microedtion.dcd.Property.getProperty(String key).

	Key
	value

	framework.oma.dcd-3-connection-profile-name
	comma separated list of profile name that is supported on the user’s device

	framework.oma.bearers

	Descending priority-ordered, comma-separated list of network/bearer types for use in content delivery, selected per arbitrary deployment-specific criteria for network selection (e.g. GPRS vs. UMTS vs. Wi-Fi) based on delivery cost, bandwidth, quality of service, etc. DCD Client and DCD Server apply these criteria for content delivery over DCD-1 and DCD-2 interfaces. One or more of “UMTS”, “WiMAX”, “LTE”, “802.11”, “CBS”, “BCAST”.

	framework.oma.protocols
	Transport protocols for the DCD that are supported by the device for P2P bearers

One or more of “HTTP”, “HTTPS”

	framework.oma.methods
	Content delivery methods supported by the DCD service framework

One or more of “Pull”, “Push”

	framework.oma.authmethods
	DCD session authentication methods supported by the device

One or more of “digest-user”, “digest-dba”, “x509”

2) Extended Metadata

To access OMA-DCD specific feature, the application MAY setup following parameters.

· ApplicationProfile.

dcd-3-connection-profile-name:string

dcd-3-connection-profile(

dcd-server-address:string

proxy:string

data-connection-details(

 apn:string

 auth-method:string

 auth-username:string

 auth-password:string

)

broadcast-profile(

 cell-broadcast-message-id:integer

 broadcast-service-id:string

 response-spread:integer

 bcast-access-info(

service-fragment-reference:string

sdp-description:string

access-fragment:string TBD

)

dcd-channel-selection-metadata(

mime-types:string

content-types:string

)

· ChannelMetadata.

storage-reservation:integer

charging-metadata(

charging-rule:string

purchase-options(

purchase-option-id:string

cost-information:string

price(

amount:integer

currency:integer

)

)

)

 content-availiability-notification:boolean
 network-preferences:string

 deliver-when-roaming:boolean

 dcd-2-broadcast-profile-name:string

 dcd-2-broadcast-profile(

cell-broadcast-message-id:integer

bcast-access-info(

 service-fragment-reference:string

 sdp-description:string

 access-fragment:string TBD

)

)

Appendix C. Interaction with OMA Enablers

1) OMA-DM
OMA-DM can be used for parameter forwarding to OMA-DCD client.
ApplicationProfile, javax.microedtion.dcd.Property.getProperty() can use OMA-DM as a bearer.

2) OMA-DRM
Content for application is opaque to JSR 327,

Since application in charge of handling the content, OMA-DRM has no direct interaction with JSR 327,
Therefore, OMA-DRM is outside the scope of JSR 327.

3) OMA-BCAST
OMA-BCAST can be used as a bearer for OMA-DCD, and it is outside the scope of this JSR 327

4) OMA-Charging
OMA-Charging server can interact with OMA-DCD server.

Since JSR 327 have no direct interaction with OMA-Charging, it is outside the scope of this JSR 327.
Chaging information is indicated explicitly in ChannelMetadata and ChunkedContent.
Appendix D. Index
TBD
JSR

327

DCD

Client

DCD Java

Application

DCD Java

Application

DCD API

(JSR 327)

Storage

Content

Database

DCD Java

Application

Content

Provider

Content

Provider

Content

Provider

DCD Server

User’s Device

DCD service framework

destroy

destroy

resume

suspend

create

Suspended

Resumed

	JSR 327 Early Draft
	Page 1 of 68

