OMA-TS-SIP_Push-V1_0-20080303-D
Page 3 V(51)

	[image: image1.jpg]
	

	Push using SIP

	Draft Version 1.0 – 03 March 2008

	Open Mobile Alliance

	OMA-TS-SIP_Push-V1_0-20080303-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

71.
Scope

2.
References
8
2.1
Normative References
8
2.2
Informative References
9
3.
Terminology and Conventions
10
3.1
Conventions
10
3.2
Definitions
10
3.3
Abbreviations
11
4.
Introduction
12
5.
End to End Push Service
13
6.
Functional Description
15
6.1
Push Sender Agent
15
6.2
Push Receiver Agent
15
7.
Push Operations
16
7.1
MESSAGE Method (Page-Mode Messaging)
16
7.1.1
Procedures at the Push Receiver Agent
16
7.1.2
Procedures at the Push Sender Agent
16
7.2
SUBSCRIBE/NOTIFY Method (Event Notification)
17
7.2.1
Procedures at the Push Receiver Agent
17
7.2.2
Procedures at the Push Sender Agent
18
7.2.3
Use of the REFER Method
19
7.3
INVITE/MSRP Method (Session-Mode Messaging)
20
7.3.1
Procedures at the Push Receiver Agent
20
7.3.2
Procedures at the Push Sender Agent
21
7.3.3
User Plane
23
8.
Registration
24
8.1
Overview
24
8.2
Procedures at Push Receiver Agent
24
9.
Resources and Application Addressing (Normative)
25
9.1
Application Resource Identifier Definition
25
9.1.1
Feature Tag Format
25
9.2
Application Resource Identifier Usage
26
9.2.1
REGISTER
26
9.2.2
MESSAGE
26
9.2.3
SUBSCRIBE
26
9.2.4
NOTIFY
26
9.2.5
REFER
26
9.2.6
INVITE
26
10.
Security
27
10.1
General
27
10.2
Trust Model
27
10.3
SIP Signaling Security
27
10.3.1
Integrity and confidentiality protection
27
10.3.2
Source Origin Authentication
27
Appendix A.
Change History (Informative)
28
A.1
Approved Version History
28
A.2
Draft/Candidate Version 1.0 History
28
Appendix B.
The “oma-app” Profile-type
30
B.1
A SIP SUBSCRIBE for the “oma-app” Profile Type
30
B.1.1
Initial Profile Enrollment
30
B.1.2
The Profile Enrollment Confirmation
31
B.1.3
Content Push
32
B.2
“oma-app” profile-type format
32
B.2.1
Event parameters
32
B.2.2
Parameter format
33
Appendix C.
Sample flows (Informative)
35
C.1
Registration
35
C.2
MESSAGE sample flow
37
C.3
SUBSCRIBE/NOTIFY sample flow
38
C.4
REFER sample flow
41
C.5
INVITE / MSRP Sample Flow
42
Appendix D.
Response Code Interpretation (Informative)
48
Appendix E.
Interoperability with ICSI and IARI (Informative)
49
E.1
Introduction
49
E.2
Examples
49
Appendix F.
SIP/IP Core Network Considerations
51
F.1
3GPP IMS and 3GPP2 MMD Network Architectures
51
F.1.1
Architecture Compliance
51
F.1.2
Registration Procedures
51
F.1.3
Security Considerations
51
Appendix G.
Static Conformance Requirements (Normative)
52
G.1
Client Conformance Requirements
52
G.2
Server Conformance Requirements
53

Figures

12Figure 1: Push Sender and Receiver Agent

25Figure 2 SIP Push generic model

35Figure 3 Registration and de-registration procedures

37Figure 4 - MESSAGE flow with an example feature tag

38Figure 5: Push Receiver Agent subscribes to push submission events.

41Figure 6 Push Sender Agent triggers a subscription from a Push Receiver Agent.

43Figure 7: Pushing MSRP Messages

49Figure 8 ICSI, IARI and Application Resource Identifier usage

Tables

32Table 1: “oma-app” Parameters in SUBSCRIBE

33Table 2: “oma-app” Parameters in NOTIFY

48Table 3: Response code interpretation

1. Scope

This specification defines the protocol for delivery of content to a mobile terminal via SIP [RFC3261], referred to as SIP Push. The protocol specified in this document is an application layer protocol that interacts with a SIP/IP core network, such as IMS [IMSArch] to fulfil the Push using SIP service.
The scope of this specification is to specify mechanisms for the following functionality within the architecture identified in [PushSIPArch]

2. References

2.1 Normative References

	[3GPP TS 23.228]
	“IP Multimedia Subsystem (IMS); Stage 2”, 3GPP TS 23.228

	[3GPP TS 33.203]
	“Access Security for IP-based services”, 3GPP TS 33.203

	[3GPP TS 33.210]
	“Network domain security; IP network layer security”, 3GPP TS 33.210

	[3GPP TS 24.229]
	“Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3”, 3GPP TS 24.229

	[3GPP2 X.S0013-002-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Subsystem - Stage 2”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 X.S0013-004-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Call Control Protocol Based on SIP and SDP Stage 3”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 S.R0086-0]
	“IMS Security Framework”, 2004

	draft-drage-sipping-service-identification
	"A Session Initiation Protocol (SIP) Extension for the Identification of Services".

	[draft-ietf-sip-gruu]
	Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the Session Initiation Protocol

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	mmusic-file-transfer
	A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer

	RFC4975
	Campbell, B., Ed., Mahy, R., Ed., and C. Jennings, Ed., "The Message Session Relay Protocol (MSRP)", RFC 4975, September 2007.

	[RFC4976]
	Jennings, C., Mahy, R., and A. Roach, "Relay Extensions for the Message Session Relay Protocol (MSRP)", RFC 4976, September 2007.

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2183]
	“Communicating Presentation Information in Internet Messages: The Content-Disposition Header Field.” URL:http//www.ietf.org/rfc/rfc2183.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC2506]
	"Media Feature Tag Registration Procedure". Holtman et al. M1999. URL:http://www.ietf.org/rfc/rfc2506.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Fielding et al, June 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	"SIP: Session Initiation Protocol". J. Rosenberg et al. June 2002. URL:http://www.ietf.org/rfc/rfc3261.txt

	[RFC3265]
	"Session Initiation Protocol (SIP)-Specific Event Notification". A.B. Roach. June 2002. URL:http://www.ietf.org/rfc/rfc3265.txt

	[RFC3325]
	“Private Extensions to the Session Initiation Protocol”, C. Jennings, J. Peterson, M. Watson, Nov. 2002

	[RFC3428]
	"Session Initiation Protocol (SIP) Extension for Instant Messaging". B. Campbell et al. December 2002. URL:http://www.ietf.org/rfc/rfc3428.txt

	[RFC3515]
	The Session Initiation Protocol (SIP) Refer Method. R. Sparks. April 2003. URL: http://www.ietf.org/rfc/rfc3515.txt

	RFC3680
	Rosenberg, J., “A Session Initiation Protocol (SIP) Event Package for Registrations”, RFC 3680, March 2004.

	[RFC3840]
	“Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3840.txt

	[RFC3841]
	“Caller Preferences for the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3841.txt

	[RFC4483]
	E. Burger, Ed., “A Mechanism for Content Indirection in Session Initiation Protocol (SIP) Messages”, RFC 4483, May 2006

	[RFC4488]
	Suppression of Session Initiation Protocol (SIP) REFER Method Implicit Subscription. O. Levin. May 2006. URL:http://www.ietf.org/rfc/rfc4488.txt

	[RFC4508]
	“Conveying Feature Tags with the Session Initiation Protocol (SIP) REFER Method”. O. Levin, A. Johnston, May 2006. URL:http://www.ietf.org/rfc/rfc4508.txt

	[SIP_UA_Prof]
	“A Framework for Session Initiation Protocol User Agent Profile Delivery”, D. Petrie, March 6, 2006. URL: http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-13.txt

Note: Work in progress

	[OMNA]
	"OMA Naming Authority". Open Mobile Alliance(.
http://www.openmobilealliance.org/tech/omna

	[OMA-UAProf]
	"User Agent Profile", OMA-TS-UAProf-V2_0-20060206-A. URL: http://www.openmobilealliance.org/

	[RFC4479]
	“A Data Model for Presence”, J. Rosenberg, July 2006, RFC 4479

2.2 Informative References

	[IMSArch]
	"Utilization of IMS capabilities Architecture", OMA-AD-IMS-V1_0-20050204-C URL:http://www.openmobilealliance.org/

	[PushSIPArch]
	"OMA-AD-SIP_Push_AD-V1_0-20071203-D ", Open Mobile Alliance(. URL:http//www.openmobilealliance.org/

	[PushOTA]
	"Push OTA Protocol", WAP Forum™, WAP-235-PushOTA, URL:http//www.openmobilealliance.org/

	[PushPAP]
	"Push Access Protocol", WAP-247-PAP, Open Mobile Alliance(. URL:http//www.openmobilealliance.org/

	[WAP2]
	"WAP 2 Conformance Release", Open Mobile Alliance(. http://www.openmobilealliance.org/tech/affiliates/wap/

	[UAProf]
	"User Agent Profiling", Open Mobile Alliance(. http://www.openmobilealliance.org/tech/affiliates/wap/

	[PushMsg]
	"Push Message Specification". WAP Forum(.
WAP-251-PushMessage. URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Application
	An implementation of a related set of functions that perform useful work, often enabling one or more services. It may consist of software and/or hardware elements.

	Application-Level Addressing
	The ability to address push content between a particular user agent on a client and push initiator.

	Bearer Network
	A network used to carry the messages of a transport-layer protocol between physical devices.

	Capabilities
	Platform, protocol, or configuration characteristics that a system supports.

	Content
	A digital work e.g. a ringing tone, a screen saver, etc.

	Device
	Device is a network entity that is capable of sending and/or receiving packets of information and has a unique device address. A device can act as either a client or a server within a given context or across multiple contexts. For example, a device can service a number of clients (as a server) while being a client to another server.

	Encoding
	1: The act or method of converting a data object from one format to another. 2: a format of an object resulting from conversion.

	Pull
	A service delivery method in which a client initiates content delivery by requesting content from a server.

	Push
	A service delivery method in which a server initiates content delivery to a client.

	Push Access Protocol
	A protocol used for conveying content that should be pushed to a client, and push related control information, between a Push Initiator and a Push Proxy/Gateway.

	Push Content
	Content, metadata and application level control information that has a shared interpretation by both sender and receiver agents.

	Push Framework
	Is the entire push system. The push framework encompasses the protocols, service interfaces, and software entities that provide the means to push data to user agents on a client

	Push Initiator
	The entity that originates push content and submits it to the push framework for delivery to a user agent on a client

	Push OTA Protocol
	A protocol used for conveying content between a Push Proxy/Gateway and a certain user agent on a client.

	Push Proxy Gateway:
	A proxy gateway that provides push proxy services.

	Push Receiver Agent
	Push Receiver Agent is a logical entity that uses the SIP Push procedure to receive push content, and generate a response to the Push Sender Agent request.

	Push Sender Agent
	Push Sender Agent is a logical entity that creates a push request, and then uses the SIP Push procedure to send push content.

	Push Session
	A joint state shared between Push Sender and Receiver agents.

	Server
	An entity that provides resources to clients in response to requests.

	User
	An entity which uses services. Example: a person using a device as a portable telephone.

	Session Identity
	SIP URI, which identifies the Push Session and which can be used for routing initial SIP requests. It is received by the Push agent during the Session establishment in the Contact header

	User Agent
	Any software or device that acts on behalf of a user, interacting with other entities and processing resources.

	User Plane
	The User Plane includes the media (MSRP) and media control signaling between the Push Sender Agent and the Push Receiver Agent

	XML
	The Extensible Markup Language is a World Wide Web Consortium (W3C) standard for Internet markup language, of which WML is one such language.

3.3 Abbreviations

	CPI
	Capability and Preference Information

	HTTP
	Hypertext Transfer Protocol

	IANA
	Internet Assigned Numbers Authority

	IP
	Internet Protocol

	MIME
	Multipurpose Internet Mail Extensions

	MMD
	Multi-Media Domain

	MMS
	Multimedia Messaging Service

	MSISDN
	Mobile Station International Subscriber Directory Number

	MSRP
	The Message Session Relay Protocol

	OMA
	Open Mobile Alliance

	OMNA
	OMA Naming Authority

	OTA
	Over The Air

	PAP
	Push Access Protocol

	PI
	Push Initiator

	PPG
	Push Proxy Gateway

	QoS
	Quality of Service

	RFC
	Request For Comments

	SDP
	A Session Description Protocol

	SI
	Service Indication

	SIP
	Session Initiation Protocol

	SIR
	Session Initiation Request

	SL
	Service Loading

	TCP
	Transmission Control Protocol

	URI
	Uniform Resource Identifier

	URL
	Uniform Resource Locator

	WAP
	Wireless Application Protocol

	XML
	Extensible Mark-up Language

4. Introduction

Push-based service enablers in OMA define the delivery of content to a mobile device utilizing push methods. The SIP Push architecture [PushSIPArch] defines the architectural context of such enablers in SIP-based environments. This specification defines the functions required of the Push Sender and Receiver Agents as defined in [PushSIPArch].
In illustration:

[image: image2.emf]Push

Receiver

agent

Push

Sender

agent

SIP Push

Figure 1: Push Sender and Receiver Agent

In general terms, the functionality defined in this specification will be referred to as ‘SIP Push’. To implement this specification, it is necessary that the Push Sender and Receiver Agents interface with a SIP/IP Core network. An example of SIP/IP Core network definition is the 3GPP IMS [3GPP TS 23.228] and 3GPP2 MMD [3GPP2 X.S0013-002-A] networks.

Future releases may fully specify how SIP Push utilises additional types of SIP/IP Core networks.
This specification will also make reference to specific SIP RFCs [RFC3261] to further clarify the use of SIP for push service in the context of particular SIP/IP Core network definitions.
This specification encompasses the following:

1. SIP Push Protocol definition, including the push methods: page-mode, subscription mode (event notification), and session mode (INVITE/MSRP)
2. Registration of Push Receiver Agents with Push Sender Agents
3. Service, Application, and Application Resource addressing

4. Authentication and authorization for push service

5. Client capabilities disclosure via definition of the “oma-app” profile type within “ua-profile” Event Package

6. Supporting multi-terminals belonged to the same user situation in SIP Push service.
5. End to End Push Service

Within the scope of this specification, the support for end-to-end push services focuses on the relationship between the Push Sender Agent and the Push Receiver Agent. While not limiting the potential types of end-to-end services that can leverage push, there are three types of push objectives that have been considered in the creation of this specification:

· Generic Push: Push is available towards user’s device, asynchronously, whilst the user is registered with the SIP/IP Core network (e.g. used to broadcast content to a large community of users, and for generic “content-to-person” applications);

· “Trusted” Push: for pushing high value, trusted and certified information (e.g. device management/configurations, policies, based on terminal characteristics or user profile and related to application/service/user configuration)

· Selective Push: push can be used to provide content or application-related information in a personalized way, depending on user profile, user preferences or explicit interests, and device capabilities.

To provide options and methods best supporting those types of push, within the context of SIP, multiple mechanisms are defined for SIP Push. The SIP-based content delivery methods leveraged in this specification are based on page-mode messaging, subscription (event notification), and session-mode messaging models.

The SIP-based event subscription mechanism is described in [RFC3265] uses the SIP SUBSCRIBE and NOTIFY methods to allow for asynchronous notification of events during the duration of a subscription. Subscription is performed by a subscriber entity, which can refresh it periodically, whilst termination can be done either by subscriber or notifier entity. Once created, subscription provides a point-to-point, dedicated channel between Push Sender Agent and the Push Receiver Agent, for the Push Sender to send push content directly or via content indirection (delivery of a content reference only). Because the NOTIFY is a SIP signalling message, the ability to embed content is limited by the maximum size of SIP signalling messages. A “200 OK” response for notifications may be interpreted as delivery notifications from the Push Reciever without requiring extra signalling.

Page-mode messaging through SIP can be provided through the MESSAGE method ([RFC3428]), which may be more appropriate in some contexts. The MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the MESSAGE request is an extension to SIP, it inherits all the request routing and security features of that protocol. The MESSAGE request carries the content or content reference (for content indirection) in the form of MIME body parts. Because like NOTIFY, MESSAGE is a SIP signalling message, the ability to embed content is also limited by the maximum size of SIP signalling messages.The MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each MESSAGE stands alone, much like pager messages . Thus, each MESSAGE request is independent and no session states are stored in the system. The push content is carried in a SIP Message body.

Session-mode messaging (also referred to as the INVITE/MSRP method) avoids the limitations on embedded content imposed by SIP MESSAGE and SIP NOTIFY. This limitation is especially acute if the push content is multimedia in nature. To allow arbitrarily large messages, the content is carried by MSRP [RFC4975]. A SIP session is established between the interested parties (Push Sender Agent and Push Receiver Agent) with MSRP as the media component. The SIP session can be used to transmit exactly one large message or a number of large messages either parallel or sequentially. The file selection mechanism allows for the Push Receiver Agent to understand ahead of delivery on what is going to be transferred as a number of additional attributes are supported [mmusic-file-transfer].This gives the Push Receiver Agent a possibility to take decisions ahead of delivery and by that save network and terminal capacity.
This specification addresses SIP Push as a reference enabler, in which the requirements of specific end-to-end Push services are not addressed. Future work will address specific OMA enabler use of SIP Push in support of Push services. For example, a new version of the OMA Push enabler may be developed, to take advantage of SIP transport for legacy Push-based and Push-dependent services. In that case, the existing OMA Push architecture entities (Push Proxy Gateway and Push Client) will likely take on the roles of the SIP Push entities (Push Sender Agent and Push Receiver Agent, respectively). The current roles of the OMA Push entities will further be adapted to use of SIP Push as the Push transport protocol, e.g.

· For the Push Proxy Gateway, its primary role as an adapter between Push requests on the network side (via the Push Access Protocol (PAP)) and Push delivery to the Push Client will be extended to include SIP Push as an over-the-air protocol (in addition to the current Push Over-the-Air (Push-OTA) protocol). This may include updates to PAP to expose specific SIP Push related aspects, e.g. use of SIP URIs for Push Target Addressing, or enhancements to Push Quality of Service options for selection of the SIP Push methods to be used.
· For the Push Client, its primary role as a Push message receiver and router inside terminals for Push applications will be extended to include SIP Push as an over-the-air protocol (in addition to Push-OTA). This may include the ability to register and subscribe to Push services on behalf of the Push Application clients present in the terminal.

6. Functional Description

6.1 Push Sender Agent

The Push Sender Agent is an entity that pushes content to the Push Receiver Agent. Push Sender Agents support the following functions:

1. Discovering the Push Receiver Agent through its Registration with the SIP/IP Core.

2. Facilitating Push Receiver Agent subscription to specific Push-based services and application events.

3. Receiving, storing, and sharing the capabilities information of the Push Receiver Agent, such as application type or push characteristics.

4. Selecting the type of push method to the Push Receiver Agent, depending on the supported capabilities and application push request.

5. Creating push request to deliver the content to the Push Receiver Agent.

6. Requesting delivery reports from Push Receiver Agent.

7. Mapping of SIP Push delivery status (e.g. SIP response code) to application level status information for communication to the initiator of the push.
8. If required, in the multi terminal scenarios e.g. the user has registered from more then one terminal with a push sender Agent, the Push Sender Agent may select the explicit terminal(s) to take part of the communication to by using a GRUU value.
The Push Sender Agent SHALL support the P-2 reference point.
Note: Unless the Push Sender Agent receives the GRUU prior to any other communication (e.g., reg-event package, or an explicit SUBSCRIBE), it may not be able to contact a specific instance of the device.

6.2 Push Receiver Agent

The Push Receiver Agent is a logical entity that receives push content from the Push Sender Agent. It is the responsibility of Push Receiver Agents to pass the received push content to the appropriate application. Push Receiver Agent supports the following functions:

1. Registering with a SIP/IP Core.
2. Subscribing to specific Push-based services and application events.

3. Publishing its push capabilities information, such as type of push application or push characteristics
4. Receiving and acknowledging push content from Push Sender Agent..
The Push Receiver Agent SHALL support the P-1 reference point.
7. Push Operations

This section describes three delivery mechanisms for SIP Push. It is the choice of the individual Push Sender Agent to implement and select the appropriate Push method, e.g. based upon the service requirements. Such service-specific method selection criteria are considered outside the scope of SIP Push.
7.1 MESSAGE Method (Page-Mode Messaging)
The MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the MESSAGE request is an extension to SIP, it inherits all the request routing and security features of that protocol. The MESSAGE request may carry the content in the form of MIME body parts, or per [RFC4483] may indirectly reference the content. MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each MESSAGE stands alone, much like pager messages. Thus, each MESSAGE request is independent and no session states are stored in the system. The push messages are carried in a SIP Message body MUST NOT exceed 1300 bytes as defined in [RFC3428].
7.1.1 Procedures at the Push Receiver Agent

Push Receiver Agents MAY support use of the MESSAGE method for SIP Push. Push Receiver Agents that support use of the MESSAGE method for SIP Push SHALL disclose this capability through:

· a published User Agent Profile
· inclusion of the MESSAGE method in the method feature tag of the Contact header [RFC3840] as sent in REGISTER

· inclusion of the MESSAGE method in the method feature tag of the Accept-Contact header [RFC3841] as sent in SUBSCRIBE
Upon receiving an incoming MESSAGE,

1. If an Application Resource Identifier is present,, the Push receiver Agent SHALL store the Application Resource Identifier according to the rules and procedures., as defined in [RFC3841] and section Error! Reference source not found..

2. If push content is contained in the body of the MESSAGE request, the Push Receiver Agent SHALL pass the received push content to the targeted push application.

3. If the content is indirectly referenced in the MESSAGE request per [RFC4483], the Push Receiver Agent SHALL retrieve the push content at the indicated location, and pass the content to the targeted push application.
4. The Push Receiver Agent SHALL generate a success response in accordance to [RFC3428] and the procedures of the SIP/IP Core.
7.1.2 Procedures at the Push Sender Agent

The Push Sender Agent SHALL generate a MESSAGE request in accordance with [RFC3428] and [RFC3841].

In generating and sending a MESSAGE required,:

1. The Push Sender Agent MAY include an Application Resource Identifier of the application resource e.g. +g.oma.pusheventapp to the accept contact header according to rules and procedures of in section 9.3;
2. The Push Sender Agent SHALL set the Request-URI of the SIP MESSAGE request to the public user identity of the intended recipient.
3. The Push Sender Agent SHOULD check the content to send against content-types supported by the Push Receiver Agent as indicated in the Client Capabilities (see Section7.2.2)
4. If the content is to be included in the Push message, the Push Sender Agent SHALL embed the push content in the body of the MESSAGE request.

5. If content indirection is to be applied, the Push Sender Agent SHALL indirectly reference the content in the MESSAGE request per [RFC4483].
6. The Push Sender Agent SHALL, in accordance with [3GPP TS 24.229] and [RFC3325], include a P-Asserted-Identity in the header field of the MESSAGE request if the message initiator is trusted by the Push Sender Agent.
7. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY Enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
Note: The GRUU value of the Push Receiver Agent may be obtained via a SUBSCRIBE message that the Push Receiver Agent sent, or by a Push Sender Agent subscription to the registration event package from the SIP/IP Core.
8. The Push Sender Agent SHALL send the MESSAGE request towards the SIP/IP Core according to the procedures of the SIP/IP Core.
9. The Push Sender Agent SHALL recognize success responses in accordance to [RFC3428] and the procedures of the SIP/IP Core.
7.2 SUBSCRIBE/NOTIFY Method (Event Notification)
The SIP-based event subscription mechanism, or SIP event framework, is described in [RFC3265] and allows for asynchronous notification of events during the duration of the subscription. Subscription is performed explicitly by a subscriber entity, also called watcher, which can refresh it periodically, whilst termination of the subscription can be done either by watcher or notifier entity. Once created, subscription provides a dedicated channel between the watcher and notifier entities.

Subscription mechanism is also used after each registration to send the device capabilities to all Push Sender Agents. Those capabilities will be referenced via [OMA-UAProf] . This reference will be sent using the "ua-profile" Event Package, which defines a framework where devices can subscribe with a specific profile type to an application server, see Appendix B.

The Push Sender Agent and the the Push Receiver Agent SHALL support the SUBSCRIBE and NOTIFY methods as stated in [RFC3265] and [SIP_UA_Prof]. In particular, the Push Receiver Agent SHALL support the subscriber functionality for some specific push content and SHALL support reception of push content, and the Push Sender Agent SHALLsupport the notifier functionality to receive subscription requests from Push Receiver Agents and send push information to them.
The Push Sender Agent and the Push Receiver Agent SHALL support the direct embedding of push content in the NOTIFY method, and content indirection per [RFC4483]. The choice to embed or reference the content is outside the scope of this specification. It may be defined by SIP Push-referencing service enablers, or left as an implementation decision.
The Push Sender Agent MAY decide to grant or reject a subscription request from a Push Receiver Agent. The Push Receiver Agent MAY subscribe to any push application at any time, and for any duration. Subscription policies are outside the scope of this specification. They may be defined by SIP Push-referencing service enablers, or left as an implementation decision.
Based on the design of the SIP event framework, final successful (200 OK) responses to NOTIFY requests may be interpreted as delivery notifications by the Push Sender Agent.
7.2.1 Procedures at the Push Receiver Agent
Push Receiver Agents MAY support use of the SUBSCRIBE/NOTIFY method for SIP Push. Push Receiver Agents that support use of the SUBSCRIBE/NOTIFY method for SIP Push SHALL disclose this capability through: :

· a published User Agent Profile

· inclusion of the NOTIFY method in the method feature tag of the Contact header [RFC3840] as sent in REGISTER

· inclusion of the NOTIFY method in the method feature tag of the Accept-Contact header [RFC3841] as sent in SUBSCRIBE
7.2.1.1 Initial subscription

The Push Receiver Agent SHALL send a SUBSCRIBE request to Push Sender Agents after initial registration, if necessary to subscribe to push events for specific services, e.g. to convey client capabilities or to subscribe to specific events.

The SUBSCRIBE request SHALL be set according to [RFC3265] and [SIP_UA_Prof], and the Push Receiver Agent:
1. SHALL include the “oma-app” profile type according to rules and procedures of the “Initial Profile Enrolment” as specified in Appendix B.1.1. Further, it SHALL set the Request-URI to either the user AoR (public SIP URI) identifying the current user, or a SIP URI identifying the Push Sender agent, based on local policy or configuration.
2. MAY insert a P-Preferred-Identity header according to rules and procedures of [RFC 3325].
3. If GRUU [draft-ietf-sip-gruu], is supported, and has been obtained during the registration process, it SHALL be included in the Contact header of the SIP SUBSCRIBE message.
Note: See Section 8.2 for more information on when GRUU is supported.
4. SHALL send the SUBSCRIBE request towards the SIP/IP Core.
5. If a UAProf information is available for a device, the dev-cap parameter SHALL be included

6. If a UAProf information is not available for a device, then the model, vendor, and version parameters SHALL be included.
7.2.1.2 NOTIFY processing

Upon receiving an incoming NOTIFY request that is part of the same dialog as the previously sent SUBSCRIBE request the Push Receiver Agent SHALL handle the request according to [RFC3265], [RFC3841], [SIP_UA_Prof],
If the NOTIFY request was accepted,
· If push content is contained in the body of the NOTIFY request, the Push Receiver Agent SHALL pass the received push content to the targeted push application.

· If the content is indirectly referenced in the NOTIFY request per [RFC4483], the Push Receiver Agent SHALL retrieve the push content at the indicated location, and pass the content to the targeted push application.

· The Push Receiver Agent SHALL generate a response in accordance to [RFC3265] and the procedures of the SIP/IP Core.

7.2.2 Procedures at the Push Sender Agent
7.2.2.1 Initial subscription

Upon receiving a SUBSCRIBE request the Push Sender Agent SHALL follow the steps and procedures in accordance with [RDC3265], [RFC3841], and [SIP_UA_Prof] and Appendix B.1.2 “The Profile Enrollment Confirmation” with the clarifications in the following steps:

1. SHALL return the SIP “489 Bad Event” error response, if the “ua-profile” event package is not supported, as defined in [RFC3265]. Otherwise perform the following steps.
2. SHALL verify that a P-Asserted-Identity exists according to the procedures of [RFC3325]. If the authorization check fails, the Push Sender Agent SHALL return the SIP "403 Forbidden" error response,
3. SHOULD store the [OMA-UAProf] link when present and retrieve the associated device capabilities,
4. If no event-app-id value is present in the “oma-app” profile type parameters in the Event header then an IMS Communication Service Identifier MAY be interpreted as the event-app-id value of the “oma-app” profile type,
5. SHALL create a subscription to push application data identified by Event header parameters as described in [SIP_UA_Prof],
6. SHALL send a SIP “200 OK” in accordance with [RFC3265], [SIP_UA_Prof], and the procedures of the SIP/IP Core,
7. SHALL generate a Profile Enrollment Confirmation as specified in Appendix B.1.2 “The Profile Enrollment Confirmation”.
7.2.2.2 Delivering content via a NOTIFY

When generating a SIP NOTIFY for content delivery the Push Sender Agent

1. SHALL generate a Content Push as according to rules and procedures in the Appendix B.1.3 Content Push and [SIP_UA_Prof],
2. SHALL generate a SIP NOTIFY request according to rules and procedures of [RFC3265]],

3. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY Enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
4. SHALL either embed the content in the NOTIFY, or provide a content reference per [RFC4483],
5. SHALL send the SIP NOTIFY within the context of the existing subscription created by the Push Reciveer Agent according to rules and procedures of the SIP/IP Core.
The responses to the SIP NOTIFY request SHALL be handled in according to rules and procedures of [RFC3265].
7.2.3 Use of the REFER Method

The REFER method [RFC3515] is an extension to SIP [RFC3261]. The recipient of a REFER request, upon granting permission from the user, initiates a new SIP request to the resource provided in the REFER message.

The Push Receiver Agent MUST supports the REFER method as stated in [RFC3515]. In particular, the Push Receiver Agent MUST be able to receive REFER requests, perform the requested action, and notify it to the requester.

At any time, a Push Sender Agent may send a REFER request to the Push Receiver Agent to trigger a subscription (SUBSCRIBE message) from the Push Receiver Agent to a Push Sender Agent for receiving push content (NOTIFY message).

7.2.3.1 Procedures at the Push Sender Agent
A Push Sender Agent wishing to trigger a subscription from the Push Receiver Agent SHALL send a REFER request according to [RFC3515] with the clarifications given in this sub clause.

The Push Sender Agent
1. SHALL set the Request-URI to the public SIP URI identifying the destination user;

2. SHALL include a Refer-To header with the following clarifications;

a. SHALL set the referred URI to the same value as the Request-URI, or to the SIP URI identifying a Push Sender Agent;

b. SHALL include “SUBSCRIBE” as method parameter of the referred URI

c. SHALL include the Event header parameter in the referred URI with the event package name set as ua-profile and the “profile-type” parameter value set to oma-app and include the “event-app-id” parameter

i. If the Push sender Agent wants the Push Receiver Agent to explicitly terminate the existing subscription then a “Replaces” header SHALL also be inserted according to rules and procedures of [RFC 3891].
3. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY Enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
4. SHALL send the REFER request towards the SIP/IP Core according to the procedures of the SIP/IP Core.

Note: If no forking can be guaranteed the Push Sender agent may use a Refer -Sub set to false in accordance with [RFC 4488] to suppress the implicit subscription.

7.2.3.2 Procedures at the Push Receiver Agent
Upon receiving a REFER request the Push Receiver Agent SHALL behave as described in [RFC3515] with the following clarifications:
SHALL return the SIP “489 Bad Event” error response as defined in [RFC3265]., if the Refer-To header does not include a: SUBSCRIBE to the ua-profile event, with an oma-app equal to an event-app-id
Otherwise the Push Receiver Agent.
1. SHALL verify that a P-Asserted-Identity exists according to the procedures of [RFC3325]. If the authorization check fails, the Push Receiver agent SHALL return the SIP "403 Forbidden" error response.
2. SHALL generate and send an initial SUBSCRIBE request to the “ua-profile” event in a separated dialog as specified in section 7.2.1 using the content of the ‘Refer-To’ header
3. SHALL send a SIP “202 Accepted “ in accordance with [RFC 3515]

Note: When there are existing profile subscriptions, for one or more of event-app-ids, a Push Receiver Agent may still receive a SIP REFER method containing those event-app-ids. In such cases, the SIP REFER method can explicitly terminate existing subscriptions using the information in “Replaces” Header as allowed by [RFC 3515]. However, when there is no explicit indication to replace existing subscriptions (e.g. using the “Replaces” header), the behaviour is unspecified and left to the enabler using this TS.

7.3 INVITE/MSRP Method (Session-Mode Messaging)
When a Push Sender Agent wishes to send a large content without using content indirection, the Push Sender Agent SHALL initiate a MSRP session as described in procedure 7.3.2“Procedures at the Push Sender Agent”. Once the MSRP session is established and the message is delivered, Push Sender Agent shall automatically close down the MSRP session as specified in 7.3.1.2 MSRP Session release.
7.3.1 Procedures at the Push Receiver Agent
Push Receiver Agents MAY support use of the INVITE/MSRP method for SIP Push. Push Receiver Agents that support use of the INVITE/MSRP method for SIP Push SHALL disclose this capability through: :

· a published User Agent Profile

· inclusion of the INVITE method in the method feature tag of the Contact header [RFC3840] as sent in REGISTER
· inclusion of the INVITE method in the method feature tag of the Accept-Contact header [RFC3841] as sent in SUBSCRIBE
7.3.1.1 Push Receiver Agent Invited to a MSRP Session

When the Push Receiver Agent receives a SIP INVITE to set up a MSRP session, the Push Receiver Agent:

1. SHALL check if the accept-type attribute of the SDP m line in the SIP INVITE request are supported by the Push Receiver Agent and if not, reject the request with a SIP 488 "Not Acceptable Here" response. Otherwise, continue with the rest of the steps;

2. MAY reject the SIP INVITE request with an appropriate reject code as specified in [RFC3261] e.g. when the Push Receiver Agent determines that there is not enough resources to handle the MSRP Session; or,

3. SHALL store as the Session Identity the content of the Contact header as described in [RFC 4579].

4. If an Application Resource Identifier is present, the Push receiver Agent SHALL store the Application Resource Identifier according to the rules and procedures for the SIP Push implementing enabler.

5. When the Push Receiver Agent receives a SIP INVITE containing a “file-selector” parameter, the Push Receiver Agent SHALL accept from the Push Sender Agent input regarding the file (s) he is willing to accept;

6. SHALL include in the SIP 200 "OK" response a SDP body as a SDP answer according to rules and procedures of [RFC3264], [RFC4566] and [RFC4975] and

a. SHALL set the SDP directional media attribute to a=recvonly

b. MAY indicate the maximum size message they wish to receive using the max-size a-line attribute according to rules and procedures of [RFC4975]

c. MAY add a feature tag +g.oma.pusheventapp to the Accept-Contact header according to rules and procedures of [RFC3841] and section 9.3.
7. SHALL send the SIP 200 "OK" response towards the Push Sender Agent according to rules and procedures of the SIP/IP Core; and,
8. SHALL include the option tag 'timer' in a Require header;
9. SHALL include the Session-Expires header in the SIP 200 "OK" response to the initial SIP INVITE request or the SIP re-INVITE request within a Pre-established Session and start the SIP Session timer according to rules and procedures specified in [RFC4028],
10. SHOULD include an Allow header with the SIP methods supported in this SIP dialog according to rules and procedures of [RFC3261];
11. SHALL prepare to receive MSRP SEND messages as described in [RFC4975];

7.3.1.2 MSRP Session release

Upon reception of a SIP BYE request, the Push Receiver Agent:

1. SHALL generate a 200 “OK” response according to rules and procedures of [RFC3261]; and,

2. SHALL send a 200 “OK” response according to rules and procedures of SIP/IP Core.

3. SHALL release User Plane resources associated with the SIP Session ;

7.3.1.3 MSRP Relays
Push Receiver Agents MAY support the use of intermediaries for MSRP sessions, as described in [RFC4976].
Push Receiver Agents that support use of MSRP Relays per [RFC4976] SHALL disclose this capability through a published User Agent Profile.
7.3.2 Procedures at the Push Sender Agent
7.3.2.1 Establishment of a MSRP Session

When the establishment of an MSRP session is needed, the Push Sender Agent:

1. SHALL generate an initial SIP INVITE request as according to rules and procedures of [RFC3261];
2. MAY include an Application Resource Identifier of the application resource e.g. +g.oma.pusheventapp to the Accept-Contact header according to rules and procedures of in section 9.3;
3. SHOULD include an Allow header with all supported SIP methods;
4. SHALL include the option tag 'timer' in the Supported header according to rules and procedures RFC 4028;
5. SHOULD include the Session-Expires header with the refresher parameter set to ''uac'' according to rules and procedures of [RFC4028].
6. SHALL set the Request-URI of the SIP INVITE request to the Push Receiver Agent
7. SHALL include in the SIP INVITE request a MIME SDP body as a SDP offer according to rules and procedures of [RFC3264], [RFC4566] and [RFC4975] and
a. SHALL set the SDP directional media attribute to a=sendonly

b. MAY add the media attribute to the SDP settings as specified in [mmusic-file-transfer]

c. SHALL support multiple "m=" lines if more than one file is to be transfered as described in [mmusic-file-transfer]

8. In the case of a user having multiple registered terminals with a Push Sender Agent, the Push Sender Agent:
a. MAY Enforce a delivery model including a GRUU value according to rules and procedures in [draft-ietf-sip-gruu] in order to select the explicit terminal(s) to set up the communication to.
9. SHALL send the SIP INVITE request towards the Push Receiver Agent according to rules and procedures of the SIP/IP Core.
On receiving a SIP 200 "OK" response to the SIP INVITE request the Push Sender Agent:

1. SHALL store the list of supported SIP methods if received in the Allow header;
2. SHALL store the Session Identity if received in the Contact header as described in [RFC 4579];
3. SHALL start the Session timer using the value received in the Session-Expires header according to rules and procedures of [RFC4028].
4. SHALL interact with the User Plane as specified in 7.3.3.2 MSRP Media Session
5. When the 200 OK response for the last MSRP SEND is received, the Push Sender Agent SHALL close the MSRP session for that particular file transfer by setting the m line to zero i.e. m= 0, according to the procedures defined in 5.2.1.2“MSRP Session Release”.
7.3.2.2 Push Sender Agent canceling a MSRP Session

When the Push Sender Agent wants to cancel the MSRP Session initiation, and the MSRP Session signalling is used as specified in section 7.3.2.1 ”Establishment of a MSRP Session” and the Push Receiver Agent has not yet received a final SIP response for the SIP INVITE request, Push Sender Agent SHALL send a SIP CANCEL according to rules and procedures of [RFC3261].

7.3.2.3 MSRP Session release

When the Push Sender Agent completes MSRP session, Push Sender Agent:
1. SHALL generate a SIP BYE request according to rules and procedures of [RFC3261] if there had been only one MSRP-file or the MSRP-file is the last remaining media stream in the SDP file;
2. SHALL set the Request-URI to the SIP Session Identity of the SIP Session to release;
3. SHALL send a SIP BYE request according to rules and procedures of SIP/IP Core.
If the timer set expires, the Push Sender Agent:

1. SHALL send re-INVITE to set the media line to zero i.e. m= 0 of the MSRP-file that has been transferred, if there is any other media stream than the MSRP-file transfer media stream in the SDP file
2. In case of multiple media lines for multiple different file transfer , the Push Sender Agent SHALL send the re-INVITE to set to zero i.e. m=0 , of all the media lines corresponding to the MSRP-files that have been transferred
Upon receiving a SIP 200 "OK" response to the SIP BYE request the Push Sender Agent SHALL release User Plane resources associated with the SIP Session with the Push Receiver Agent.

7.3.2.4 MSRP Relays
Push Sender Agents MAY support the use of intermediaries for MSRP sessions, as described in [RFC4976].

7.3.3 User Plane

7.3.3.1 General

· MSRP Session between end points is negotiated with an Offer and Answer model using Session Description Protocol. These negotiation parameters are carried by SIP Signalling.
· Recommended media parameters to be used in near real-time communication are specified in [3GPP TS 26.141].

7.3.3.2 MSRP Media Session

7.3.3.2.1 Procedures for Originating Client

The Push Sender Agent sends a MSRP Message according to the following procedure:
1. To provide rich description of the Push content when sending multimedia message during an MSRP session, the Push Sender Agent:
a. SHOULD add a Content-Disposition header field according to [RFC2183] to the MSRP SEND method .

b. If the Push Sender Agent does not want the content to be rendered automatically to the receiver, but only on an express action of the receiver, then the sending Push Sender Agent SHALL add a Content-Disposition header field ‘attachment’ according to [RFC2183] to the MSRP SEND according to rules and procedures of [RFC4975].
2. The Push Sender Agent MAY include Content-Description header field whenever available;
3. To get the confirmation of the MSRP delivery, the Push Sender Agent MAY add a Success-Report header in the MSRP SEND method and set the value to yes

When the Push Sender Agent has received the corresponding response for the last chunk of the MSRP SEND request, e.g. 200 OK or Success-Report, the Push Sender Agent should close the MSRP session according to [RFC4975].

Upon receipt of an MSRP Failure response (e.g. 4XX), the Push Sender Agent:
1. SHALL check whether the corresponding MSRP request contains a failure delivery request, if true the the Push Sender Agent SHALL generate a Failure delivery notification with MSRP REPORT; Otherwise, end the procedures;
7.3.3.2.2 Procedures for Terminating Client

The Push Reciver Agent SHALL checks whether the message contains the request for delivery report. If true, the Push Reciver Agent SHALL sends a delivery notification with MSRP REPORT to the initiating Push Sender Agent according to the rules and procedures of [RFC4975].
8. Registration

8.1 Overview

SIP provides a registration function, using the SIP REGISTER request, which allows users to notify SIP/IP core of their availability for specific services. The registration process can also be used by the SIP/IP core to perform authentication and authorization procedures prior to granting network access.

Whenever a Push Receiver Agent performs registration with the SIP/IP core and indicates support for SIP Push, the SIP/IP core can notify the Push Sender Agent via a third-party registration, as specified in [RFC 3261]. Alternatively, the Push Sender Agent can subscribe to the “reg” event package, as specified in [RFC 3680]. For specific SIP/IP Network Architecture Considerations, refer to Appendix F.

8.2 Procedures at Push Receiver Agent

The Push Receiver Agent SHALL register, re-register and de-register to the SIP/IP Core according to rules and procedures of [RFC3261] with the clarifications in the following subsection.

When the Push Receiver Agent registers it performs the following steps:

1. SHALL generate a SIP REGISTER request;
2. MAY include a Application Resource Identifier of each supported push resource in the Contact header as feature tag +g.oma.pusheventapp (see Section Error! Reference source not found.).
3. SHALL include a Require header with the option tag “pref” according to rules and procedures of [RFC3840];
4. If the Push Receiver Agent relies on Globally Routable User Agent URIs (GRUU), the Push Receiver Agent:
a. SHALL request a GRUU value during the registration process by including the +sip.instance Contact header parameter according to rules and procedures of [draft-ietf-sip-gruu].
Note: Upon successful registration, the SIP/IP returns the GRUU values (temporary and permanent GRUU values). These GRUU values can then be used by the Push Receiver Agent in non-REGISTER requests such as the SIP SUBSCRIBE.
5. When the Push Receiver Agent re-registers, or deregisters it perform the following steps:
a. SHALL generate a SIP REGISTER request.
b. If the client needs to remain registered the Push Receiver Agent SHALL reregister with the SIP/IP Core without including each of the SIP Push feature-tag.
c. If the client also needs to deregister from the SIP/IP Core, the Push Receiver Agent SHALL send a SIP REGISTER request with an Expires header set to 0.
9. Resources and Application Addressing
(Normative)
9.1 Application Resource Identifier Definition
As described in [SIP Push AD], enablers need to integrate SIP Push specifications to build a service using SIP Push. An Application Resource Identifier is intended to identify the resources (e.g. service access point or enabler-specific application) of implementing enablers. Such resources can be targeted using SIP Push as a content or notification transport mechanism.

Application Resource Identifiers are represented using two approaches depending upon the SIP message in which they are included.

· As a media feature tag as defined in [ref to 9.2]
· Through the event package framework, as the “app-res-id” parameter in the oma-app profile type [ref to appendix B]
Both approaches use the same format for the value of the Application Resource Identifier, referred to as “app-res-id”. If the Application Resource Identifier is not used for a particular implementing enabler, the media feature tag and the app-res-id parameter of the oma-app profile type are omitted.

[image: image3.emf]S

I

P

/

I

P

C

o

r

e

Push

Sender

Agent

EnablerResourceEnabler

Push

Receiver

Agent

Resource

Figure 2 SIP Push generic model
9.1.1 Feature Tag Format
The syntax of the Application Resource Identifier feature tag is name=value.
The Application Resource Identifier SHALL be encoded into a feature tag where:

· The name of the media feature tag [RFC3840] is g.oma.pushappres, an object identifier assigned by IANA. When the feature tag is included in a header, it is prefixed with “+”.

· The value of the media feature tag is the app-res-id presented as a quoted-string (which may be a comma-separated list) that defines the resource(s).
The syntax of the quoted-string is “app-res-id*("," app-res-id)”, where app-res-id = 1*(%x21 / %x23-2B / %x2D-7E).
Example:

In the context of an OMA Push 2.x Service that integrates SIP Push, the Application Resource Identifier could be used to distinguish and route between applications that use the push enabler. If there is an MMS application on top of this Push 2.x service, the app-res-id can be the full URN or only the Namespace Specific String of the PUSH Application ID defined by OMNA, e.g. x-wap-application:mms.ua or only mms.ua. The feature tag in this case is g.oma.pushappres =”x-wap-application:mms.ua” or g.oma.pushappres =” mms.ua”.

9.1.2 Event Package Format
See Appendix B.2.2.

9.2 Application Resource Identifier Usage

9.2.1 REGISTER

The Application Resource Identifier of each supported push application MAY be included as a feature tag in the Contact header of the REGISTER message..

9.2.2 MESSAGE

In delivering push messages through the MESSAGE method the Push Sender Agent MAY add the Application Resource Identifiers as a feature tag in the Accept-Contact header according to rules and procedures in section Error! Reference source not found..
When receiving a MESSAGE request, the Push Receiver Agent SHALL use the Application Resource Identifier (when present) to route the incoming MESSAGE to the correct application. (see Section 7.1)

An example usage (sample flow) of the MESSAGE method with feature tag is shown in Appendix C.2.
9.2.3 SUBSCRIBE

When sending a SUBSCRIBE request, the Push Receiver Agent MAY provide the Application Resource Identifier in the app-res-id parameter of the oma-app event package according to rules and procedures of Appendix B.
An example usage (sample flow) of the SUBSCRIBE method with feature tag is shown in Appendix C.3.
9.2.4 NOTIFY

In delivering push messages through the NOTIFY method the push sender agent MAY add the Application Resource Identifier in the app-res-id parameter of the oma-app event package according to rules and procedures in section Error! Reference source not found..

9.2.5 REFER

The Push Sender Agent MAY add theApplication Resource Identifier as a feature tag in the Accept-Contact header of the REFER message according to the rules and procedures in section Error! Reference source not found..

9.2.6 INVITE

The Push Sender Agent MAY add the Application Resource Identifiers as a feature tag in the Accept-Contact header of the INVITE message according to rules and procedures in section 9.3.
10. Security

10.1 General
The SIP Push enabler SHOULD rely on and reuse security features and mechanisms provided by the underlying SIP/IP Core, to e.g. secure the service environment and authenticate users. Such dependence is assumed as the basis for the security architecture. Access level security mechanisms will be provided by the SIP/IP core network, including user authentication and integrity. The SIP/IP Core SHALL provide confidentiality protection of SIP signalling as defined in [RFC3261].
For Push Receiver Agents implemented on trusted or untrusted network elements, authentication and secure communication channels can be established using intra-network security procedures provided by the SIP/IP core. In certain cases confidentiality of SIP Signaling may also be required, e.g., SIP methods such as SIP NOTIFY or SIP MESSAGE that contain sensitive profile data.

The Push Sender Agent and the Push Receiver Agent SHALL rely on the authentication and confidentiality mechanisms provided by the underlying SIP/IP Core network to accomplish user identity verification.
Note that the user plane security is not a part of the SIP/IP Core Security. SIP Push implementing enablers must ensure that user plane security is addressed through the options available for the user plane transport protocols, e.g. MSRP, or HTTP (in the case of content redirection).

For applicability to specific SIP/IP core environments please refer to Appendix F. The following sub-sections provide detailed security requirements for the SIP Push enabler.

10.2 Trust Model

The SIP Push trust model for SIP signalling is based on the SIP/IP Core security trust model which SHALL provide hop-by-hop security, proxy authentication, and intra-domain security. When intra-domain security is not sufficient, e.g., the Push Receiver Agent is not part of a trusted network component, then the SIP/IP core SHOULD provide security mechanisms for authentication and secure communications between the SIP/IP core and the Push Receiver Agent.

It SHALL be possible to assert, by the SIP/IP Core according to [RFC3261], the user identities of the Push Sender Agent when the Push Sender Agent is acting as the originating user agent.
10.3 SIP Signaling Security

The SIP signalling security mechanisms/features described here cover signalling and user messaging using SIP messages.

10.3.1 Integrity and confidentiality protection

Any SIP/IP core used to support the SIP Push enabler SHALL be capable of providing the necessary security mechanisms to enable authentication, integrity protection and confidentiality of SIP signalling between the Push Receiver Agent and the Push Sender Agent. This includes, but is not limited to, credentials, authentication mechanisms, and security protocols.

10.3.2 Source Origin Authentication
Push Receiver Agents and Push Sender Agents SHALL use the security mechanisms provided by the SIP/IP core to ensure source origin authentication. One way to accomplish this is using the P-Asserted-Identity header as specified in [RFC3325]. See Appendix F for examples of SIP/IP core implementations

Appendix A. Change History
(Informative)

A.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

A.2 Draft/Candidate Version 1.0 History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-SIP-Push-V0_1
	21 Jul 2005
	-
	From input paper OMA-PUSH-2005-0032; OMA-PUSH-2005-0030; and emails

	OMA-SIP-Push-V0_2
	16 Sep 2005
	6.2 and 6.3
	OMA-PUSH-2005-0043R02-PushUsingSIP-SenderReceiver-Description.zip

	OMA-SIP-Push-V0_3
	19 Oct 2005
	all
	Incorporated OMA-PUSH-2005-0037R02

OMA-PUSH-2005-0039R04

OMA-PUSH-2005-0046R01

OMA-PUSH-2005-0047

OMA-PUSH-2005-0049

OMA-PUSH-2005-0051

OMA-PUSH-2005-0053

OMA-PUSH-2005-0054

	OMA-SIP-Push-V0_4
	17 Apr 2006
	All
	Editorial clean up, and generate a clean version of the document.

	OMA-SIP-Push-V0_4
	17 May 2006
	All
	OMA-PUSH-2006-0004R02

OMA-PUSH-2006-0010R02

OMA-PUSH-2006-0011R02

OMA-PUSH-2006-0012R02

OMA-PUSH-2006-0013R02

OMA-PUSH-2006-0016R01

	OMA-SIP-Push-V0_6
	23 Jun 2006
	
	OMA-PUSH-2006-0022R01

OMA-PUSH-2005-0055R04

	OMA-SIP-Push-V0_7
	12 Apr 2007
	
	Based on OMA-CD-2006-074-Minutes_21Aug2006_Push_Beijing_Meeting

OMA-CD-2006-0014R03

Based on OMA-CD-2006-0101-MINUTES_21Sept2006Push_CC

OMA-CD-2006-0039R01

OMA-CD-2006-0064R01

OMA-CD-2007-0085-INP_SIP_Push_IC0034_Comment_Tracking.doc

- implemented: A001, A002, A003, A007, A008, A012, A013

	OMA-SIP-Push-V0_8
	6 Jun 2007
	
	Editorial: Move section 6.1 and 6.2 to section 6.

Global technical change to reflect +g.oma.icsi.push’;+ g.oma.iari.push.XXX based on contribution -0125R04

OMA-CD-2007-0125R04-CR_SIP_push_service_and_application_addressing.doc

	OMA-SIP-Push-V0_9
	4 Jul 2007
	
	OMA-CD-2007-0124R04-CR_Introducing_INVITE_MSRP_as_push_method.zip

OMA-CD-PUSH-2007-0012-CR_SIP_Push_ClientCapabilitiesWithPresence.doc

	OMA-SIP-Push-V0_10
	10 Sep 2007
	
	OMA-CD-PUSH-2007-0008R02-CR_SIP_Push_Client_Capabilities.doc

OMA-CD-PUSH-2007-0032R02-CR_Update_of_SUBSCRIBE_NOTIFY_Method.doc

OMA-CD-PUSH-2007-0024R04-CR_Definition_of_additional_profile_to_the_sipping_config_framework_package.doc

	OMA-TS-SIP_Push_V1_0
	28 Sep 2007
	All
	Version fixed from V0_10 to V1_0

Editorial fixes:

- Cover page with correct file name and versioning

- History moved to App A and fixed as per template
- 2007 template and styles

- fixed cross-references

	OMA-TS-SIP_Push_V1_0
	14 November 2007
	All
	OMA-CD-PUSH-2007-0047-CR_AppID_inconsistency.doc
OMA-CD-PUSH-2007-0061R01-INP_MSRP_Relay.doc
OMA-CD-PUSH-2007-0063R01-INP_SIP_PUSH_Content_Indirection.doc
OMA-CD-PUSH-2007-0024R08-CR_Definition_of_additional_profile_to_the_sipping_config_framework_package.doc
OMA-CD-PUSH-2007-0058R01-INP_AI2007_0001.doc

OMA-CD-PUSH-2007-0064-CR_Device_reference_removal_.doc
OMA-CD-PUSH-2007-0054R03-CR_An_update_to_support_for_CSI_and_ARI_in_SIP_Push_.doc
OMA-CD-PUSH-2007-0068-CR_OMA_TS_SIP_Push_V1_0_20070928_D_left_to_change.doc
OMA-CD-PUSH-2007-0065R02-CR_SCR_in_SIP_Push_.doc.doc

	OMA-TS-SIP_Push_V1_0
	05 December 2007
	All
	OMA-CD-PUSH-2007-0085R01-INP_OMA_TS_SIP_Push_V1_0_20071204_D.doc
OMA-CD-PUSH-2007-0077-CR_SIP_Push_TS_Edits.doc (implemented Change #1 and #3 only).

	OMA-TS-SIP_Push_V1_0
	08 January 2008
	All
	OMA-CD-PUSH-2007-0060R01-INP_SIP_PUSH_TS_edits.doc

OMA-CD-PUSH-2007-0088R01-CR_Section_9_Rewording.doc

OMA-CD-PUSH-2007-0067R02-CR_ICSI_IARI_usage_example.doc
OMA-CD-PUSH-2007-0082R01-CR_New_figure_for_ICSI_and_IARI_usage.doc

	OMA-TS-SIP_Push_V1_0
	07 February 2008
	
	OMA-CD-PUSH-2007-0091R01-CR_Security_chapter_10.doc
OMA-CD-PUSH-2008-0001R02-CR_Example_Consistency.doc
OMA-CD-PUSH-2008-0006-CR_Resolution_AI1012_1.doc
OMA-CD-PUSH-2008-0005R01-CR_Includes_changes_agreed_to_by_the_group_based_on_the_comments_from_CableLabs.doc
OMA-CD-PUSH-2008-0010R02-CR_Update_of_the_REFER.doc

	OMA-TS-SIP_Push_V1_0
	15 February 2008
	
	OMA-CD-PUSH-2008-0008R02-CR_CR_SIPPUSH_NewAppendix.doc

OMA-CD-PUSH-2007-0079-R5-CR_Multi_terminals_situation_in_SIP_Push_latest.doc

	OMA-TS-SIP_Push_V1_0
	03 March 2008
	
	Same as 15 February, 2008 (clean version)

Appendix B. The “oma-app” Profile-type

The “ua-profile” Event Package defines a configuration framework, and allow for SIP devices to subscribe with a specific profile type to an application server.

The “oma-app” profile-type specified in this document proposes and specifies a new profile-type as allowed by [SIP_UA_Prof].

The Push Receiver Agent uses the “oma-app” profile type to subscribe to content for push applications. The “oma-app” profile allows a Push Sender Agent to provide application-specific content.

The “oma-app” profile type SHALL follow the steps of Profile Enrolment and Profile Content Retrieval as defined in [SIP_UA_Prof]. Profile Enrolment is the process by which the Push Receiver Agent requests and if successful, subscribes with a Push Sender Agent corresponding to the Profile Delivery Server and the Profile Content Retrieval is the process by which an application on a device receives profile content.

B.1 A SIP SUBSCRIBE for the “oma-app” Profile Type

To initiate Profile Enrolment the Push Receiver Agent sends a SIP SUBSCRIBE with the “oma-app” profile type.

B.1.1 Initial Profile Enrollment

During the “oma-app” Profile Enrolment the Push Receiver Agent transmits a SIP SUBSCRIBE, optionally including the specific applications and versions being requested using the "event-app-id" parameter as specified in B.2.2.2. This parameter SHALL be used in SUBSCRIBE requests only when the Event package is set to "ua-profile" and the profile-type header is set to "oma-app".

The Push Receiver Agent MAY add the Application Resource Identifier (see section 9) of each application that it is interested within to receive content updates in the event-app-id parameter of the “oma-app” profile. The event-app-id parameter MAY contain one or more Application Resource Identifiers. If no Application Resource Identifier is specified the event-app-id is omitted.
B.1.1.1 SUBSCRIBE and NOTIFY Examples

Examples 1:
The Push Receiver Agent only subscribes to one application (app1), and supports UAProf. The Push Sender Agent supports app1.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1";dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app; event-app-id=”app1”
Examples 2:
The Push Receiver Agent only subscribes to one application (app1), and does not support UAProf. The Push Sender Agent supports app1.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1";vendor= "vendor.example.net";model="Z-phone";version="1.2.3"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

Examples 3:
The Push Receiver Agent subscribes to multiple applications (app1, app2 and app3), and supports UAProf. The Push Sender Agent supports app1, app2, and app3.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="app1, app2, app3";dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app2”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app3”

Examples 4:
The Push Receiver Agent subscribes to multiple applications (app1, app2 and app3), and does not support UAProf. The Push Sender Agent supports app1, app2.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id=" app1, app2, app3";vendor= "vendor.example.net";model="Z-phone";version="1.2.3"

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app1”

NOTIFY

Event: ua-profile; profile-type=oma-app;event-app-id="app2”

Examples 5:
The Push Receiver Agent does not specify any Application Resource Identifier, and supports UAProf.

SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;dev-cap= "http://wap.company.com/UAProf/model.xml"

NOTIFY

Event: ua-profile; profile-type=oma-app;

B.1.2 The Profile Enrollment Confirmation

The Push Sender Agent that can accomodate the profile enrollment request SHALL accept the SIP SUBSCRIBE by transmitting a 2xx-class response, and subsequently send a NOTIFY upon a successful SUBSCRIBE as specified in [SIP-UA-Prof].

Content MAY be delivered in the NOTIFY, if this is the case, the SIP Push Receiver Agent SHALL process the notification as specified in [SIP-UA-Prof].

When the Push Sender Agent receives a SUBSCRIBE with the “oma-app” profile type and no event-app-id parameter it SHALL NOT include an event-app-id parameter in the response.

If the event-app-id parameter includes one or more Application Resource Identifiers, the Push Sender Agent SHALL respond only with the event-app-id values supported by the Push Sender Agent, using a separate NOTIFY for each event-app-id supported.

B.1.3 Content Push

A successful Profile Enrollment may result in continuous delivery of notifications to the Push Receiver Agent.

For content push, the Push Sender Agent SHALL use the same format for the Event header as provided in the profile enrollment confirmation.

The Push Sender Agent SHALL include only the targeted Application Resource Identifier in the event-app-id parameter in the NOTIFY.

When there was no event-app-id parameter specified during the Profile Enrollment, the Push Sender Agent SHALL not include any event-app-id parameter in the Event header of the NOTIFY.

B.2 “oma-app” profile-type format

The "profile-type" parameter is used to indicate the token name of the profile type the user agent wishes to obtain data or URIs for and to be notified of subsequent changes. Specifying "device" type profile(s) indicates the desire for the profile data (URI when content indirection is used) and change notification of the contents of the profile that is specific to the device or user agent.

In the following syntax definition using ABNF, EQUAL and token are defined in [RFC3261]. It is to be noted that additional profile types may be defined in subsequent documents.

profile-type = "profile-type" EQUAL profile-value

profile-value = profile-type / token

profile-type = "oma-app"

B.2.1 Event parameters

The following table shows the use of Event header parameters in SUBSCRIBE requests for the “oma-app” Profile Type:

	Event header
	oma-app

	event-app-id
	optional

	dev-cap
	conditional

	model
	conditional

	version
	conditional

	vendor
	conditional

	extension
	optional

Table 1: “oma-app” Parameters in SUBSCRIBE
Push Receiver Agents and Push Sender Agents MAY support extensions to the “oma-app” profile type. Extensions MUST be registered via OMNA. Push Receiver Agents and Push Sender Agents SHALL ignore extensions that they do not support.

The following table shows the use of Event header parameters in NOTIFY requests for the “oma-app” profile type:

	Event header
	oma-app

	event-app-id
	optional

Table 2: “oma-app” Parameters in NOTIFY
B.2.2 Parameter format

A Push Receiver or Sender Agent Shall use the following format for “oma-app”:

In the following ABNF, SEMI,EQUAL and token are defined in [RFC3261].

 OMA-APP = EVENT-APP-ID SEMI DEV-CAP SEMI VENDOR SEMI MODEL SEMI VERSION

 EVENT-APP-ID = “event-app-id” EQUAL event-app-id-list

 DEV-CAP = "dev-cap" EQUAL quoted-string
 ; the quoted-string is a URI, as specified in [OMA-UAProf]
 VENDOR = "vendor" EQUAL quoted-string

 MODEL = "model" EQUAL quoted-string

 VERSION = "version" EQUAL quoted-string

 event-app-id-list = DQUOTE app *("," app) DQUOTE

 app = 1*(%x21 / %x23-2B / %x2D-7E)

 DQUOTE = %x22 ;as per section 6.1 of [RFC2234]

B.2.2.1 Vendor, model, version, dev-cap

The "vendor", "model" and "version" parameter values are tokens specified by the implementer of the user agent. These parameters MUST be provided in the SUBSCRIBE request for all profile types, if the dev-cap parameter is not supported.

The implementer SHOULD use their DNS domain name (e.g., example.com) as the value of the "vendor" parameter so that it is known to be unique.

These parameters are useful to the Push Sender Agent to affect the service provided. In some scenarios it is desirable to provide different services based upon these parameters. e.g., feature property X in a service may work differently on two versions of the same user agent. This gives the Push Sender Agent the ability to compensate for, or take advantage of, the differences.

The DEV-CAP parameter is a parameter that provides an optional method of getting the device capabilities

When using DEV-CAP Parameter, the "vendor", "model" and "version" parameter SHOULD not be used.

The DEV-CAP Parameter SHOULD use the [OMA-UAProf] reference to the device capabilities..

B.2.2.2 Event-app-id

The event-app-id parameter provides the reference for the Push Sender / Receiver Agent to the requested resources

A SUBSCRIBE MAY include one event-app-id parameter that can contain one or more identifiers to the requested resources. When no identifier is specified, the event-app-id is omitted..

A NOTIFY MAY include one one event-app-id parameter if the SUBCRIBE contained one. The event-app-id in the NOTIFY SHALL contain exactly one identifier to a requested resource.

This document does not define values for event-app-id. These values will be defined by individual applications, and MUST be registered with OMNA.

Appendix C. Sample flows
(Informative)

C.1 Registration

[image: image4.emf]REGISTER request

200 (OK)

Push

Receiver

Agent

SIP/IP Core

Network

Push Sender Agent

Third-Party

REGISTER request

200 (OK)

Figure 3 Registration and de-registration procedures

· Upon connecting to the SIP/IP Core Network, the Push Receiver Agent will perform the registration procedure as specified in 3GPP [3GPP TS 23.228] and 3GPP2 [3GPP2 X.S0013-002-A], respectively. For de-registration, the same procedures will apply accordingly.

· Upon successful registration procedure and filter information the SIP/IP Core Network generates a third-party REGISTER request and sends it to the Push Sender Agent, when the Push Receiver Agent is authorized to use the service. Based on filter processing, the SIP/IP Core Network informs the Push Sender Agent about the registration of the client. The same procedures apply for de-registration.
· Upon receipt of the REGISTER request, the Push Sender Agent wills response with 200 (OK).

REGISTER sip:registrar.biloxi.com SIP/2.0

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>; +g.oma.pusheventapp=" mms.ua”
Expires: 7200

Content-Length: 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP bobspc.biloxi.com:5060;branch=z9hG4bKnashds7

;received=192.0.2.4

To: Bob <sip:bob@biloxi.com>;tag=2493k59kd

From: Bob <sip:bob@biloxi.com>;tag=456248

Call-ID: 843817637684230@998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:bob@192.0.2.4>

Expires: 7200

Content-Length: 0

C.2 MESSAGE sample flow

[image: image5.emf]Push

Receiver

Agent

SIP/IP Core

Network

Push Sender Agent

MESSAGE

MESSAGE

200 OK

200 OK

Figure 4 - MESSAGE flow with an example feature tag
1. A Push Sender Agent sends a MESSAGE request to the Push Receiver Agent
MESSAGE sip:user2@domain.com SIP/2.0

Via: SIP/2.0/TCP user1pc.domain.com;branch=z9hG4bK776sgdkse

Max-Forwards: 70

From: sip:user@PushSenderAgent.domain.com;tag=49583

To: sip:user@PushReceiverAgent.domain.com
Accept-Contact; +g.oma.pusheventapp=" mms.ua”
Call-ID: asd88asd77a@1.2.3.4

CSeq: 1 MESSAGE

Content-Type: text/plain

P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
Content-Length: 18

2 Push Receiver Agent returns a 200 OK to Push Sender Agent
SIP/2.0 200 OK

Via: SIP/2.0/TCP proxy.domain.com;branch=z9hG4bK123dsghds;received=192.0.2.1

Via: SIP/2.0/TCP user1pc.domain.com;;branch=z9hG4bK776sgdkse;received=1.2.3.4

From: sip:user@PushRecieverAgent.domain.com;tag=49394

To: sip:user@ PushsenderAgent.domain.com;tag=ab8asdasd9

Call-ID: asd88asd77a@1.2.3.4

CSeq: 1 MESSAGE
Content-Length: 0

C.3 SUBSCRIBE/NOTIFY sample flow

[image: image6.wmf]Push

Send

er

Agent

SIP

/

IP Core

Network

Push

Receiv

er

Agent

(

1

)

SIP SUBSCRIBE

Event

:

ua

-

profile

(

4

)

200

OK

(

11

)

200

OK

(

6

)

NOTIFY

(

7

)

200

OK

(

9

)

NOTIFY

(

12

)

200

OK

(

2

)

SIP SUBSCRIBE

Event

:

ua

-

profile

(

3

)

200

OK

(

5

)

NOTIFY

(

8

)

200

OK

P

u

s

h

s

u

b

m

i

s

s

i

o

n

(

10

)

NOTIFY

Figure 5: Push Receiver Agent subscribes to push submission events.

1) 1) Push Receiver Agent (john.doe@home1.net) subscribes to push submission events for PUSH Application ID number ‘0x05’ (Push SyncML), and device capability. Note that this value is only given as illustrative example and cannot be used without being registered with OMNA.

SUBSCRIBE sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:orig@scscf1.home1.net;lr>

From: <sip:john.doe@PushRecieverAgent.home1.net>;tag=31415

To: <sip:john.doe@ PushSenderAgent.home1.net>

Accept-Contact: *
Event: ua-profile;profile-type=oma-app;event-app-id=”pushsyncml”
;vendor="sonyericsson.com";model="xxx";version="1.2.3”
Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 85 SUBSCRIBE

Privacy: none

Expires: 600000

Accept: application/vnd.syncml.ds.notification

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>

Content-Length: 0

2) The SIP/IP Core network forwards the SIP SUBSCRIBE request to the corresponding Push Sender Agent. When the SIP/IP Core network corresponds to 3GPP IMS or 3GPP2 MMD, the subscriber's preferred public SIP URI is inserted in the P-Asserted-Identity header.

SUBSCRIBE sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP scscf1.home1.net;branch=z9hG4bK351g45.1,

SIP/2.0/UDP pcscf1.visited1.net:7531 branch=z9hG4bK240f34.1,

SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 68

Record-Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:orig@scscf1.home1.net;lr>

Route: <sip:psadm1.home1.net;lr>

From: <sip:john.doe@PushRecieverAgent.home1.net>;tag=31415

To: <sip:john.doe@PushSenderAgent.hom1e.net>
Accept-Contact: *
Event: ua-profile;profile-type=oma-app;event-app-id=”pushsyncml”
;vendor="sonyersicson.com";model="xxx";version="1.2.3”
Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 85 SUBSCRIBE

P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
Privacy: none

Expires: 600000

Accept: application/vnd.syncml.ds.notification
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>

Content-Length: 0

3) Upon receiving a SIP SUBSCRIBE request for the “ua-profile” event package, the Push Sender Agent performs the necessary authorization checks on the originator's identity, whether the identity is allowed to subscribe according to local policy (e.g., allow the user to subscribe from his current device). If the authorization is successful, it creates a subscription dialog to "ua-profile" event package to provide the changes of the data identified by the "Event" header parameters, and returns a 200 OK to the subscriber.

4) The SIP/IP Core network forwards the 200 OK response to the originator of the SIP SUBSCRIBE request, i.e. sip:john.doe@home1.net.

5) Push Sender Agent generates and sends an initial SIP NOTIFY containing an empty body (or push content if applicable).

NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp SIP/2.0

Via: SIP/2.0/UDP psadm1.home1.net;branch=z9hG4bK332b23.1

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>,<sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@home1.net>;tag=151170

Call-ID:b89rjhnedlrfjflslj40a222

CSeq: 102 NOTIFY

Subscription-State:active;expires=600000

Event: ua-profile;profile-type=oma-app;event-app-id=”pushsyncml”
Content-Type: application/vnd.syncml.ds.notification
Contact: <sip:PushSenderAgent. home1.net>

Content-Length: 0

6) The SIP/IP Core network forwards the SIP NOTIFY request to the appropriate Push Receiver Agent.

7) The Push Receiver Agent responds with a 200 OK.

8) The SIP/IP Core network forwards the 200 OK to the Push Sender Agent.

9) During the subscription, the Push Sender Agent submits a push content by sending a SIP NOTIFY request to the Push Receiver Agent.

NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp SIP/2.0

Via: SIP/2.0/UDP psadm1.home1.net;branch=z9hG4bK332b23.1

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@home1.net>;tag=151170

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 112 NOTIFY

Subscription-State: active;expires=600000

Event: ua-profile;profile-type=oma-app;event-app-id=”pushsyncml”
Content-Type: application/vnd.syncml.ds.notification
Contact: <sip:PushRecieverAgent.home1.net>

Content-Length: (...)

[SyncML DS notification content]

10) The SIP/IP Core network forwards the SIP NOTIFY request to appropriate Push Receiver Agent.

11) The Push Receiver Agent responds with a 200 OK.

12) The SIP/IP Core network forwards the 200 OK to the Push Sender Agent.

Note: The steps 1-8 (in the box) aim at creating an initial subscription between the Push Receiver and the Push Sender Agents. Once the Push Receiver Agent is successfully subscribed to the “ua-profile” event package at the Push Sender Agent, steps 1-8 are not required anymore.
C.4 REFER sample flow

[image: image7.emf]Push Sender

Agent

SIP/IP Core

Network

Push Receiver

Agent

(3) 202Accepted

(1) REFER

Refer-To:

sip:john.doe@PushSenderAgent.home1.net;method=

”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(4) 202 Accepted

(2) REFER

Refer-To:

sip:john.doe@PushSenderAgent.home1.net;method=

”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(10) NOTIFY

Event: refer

(11) NOTIFY

Event: refer

(12) 200 Ok

(13) 200 Ok

(5) NOTIFY

Event: refer

(6) NOTIFY

Event: refer

(7) 200 Ok

(8) 200 Ok

(9) Subscription (steps 1-8 of figure 5)

Figure 6 Push Sender Agent triggers a subscription from a Push Receiver Agent.

1. A Push Sender Agent sends a REFER request to the Push Receiver Agent
REFER sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>

From: <sip:john.doe@PushSenderAgent.home1.net>;tag=31415

To: <sip:john.doe@home1.net>
Accept-Contact:*;

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 1 REFER

Expires: 600

Refer-To: <sip:john.doe@PushSenderAgent.home1.net;method=SUBSCRIBE?Event=ua-profile;% profile-type=oma-app;event-app-id="PushSyncML";vendor="sonyericson.com";model="xxx";version="1.2.3"

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357>
P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
Content-Length: 0
2. Push Receiver Agent receives a REFER request via SIP/IP Core network. The REFER request message instructs it to send a SUBSCRIBE message to the user’ SIP URI (sip:john.doe@home1.net) to subscribe to the “ua-profile” event package and to the “omaapp” profile type. Note that the event profile type value indicating Application Resource ID number Push SyncML is only given as illustrative example and cannot be used without being registered with OMNA.
3. Upon receiving the REFER request, the Push Receiver Agent requests approval from the user prior to proceed. If the approval is granted, the Push Receiver Agent sends an appropriate response (202 Accepted) to the SIP/IP Core network.
4. SIP/IP Core network forwards the response (202 Accepted) to the requester of the REFER.
5. The Push Receiver Agent sends an immediate initial NOTIFY request within the REFER-created dialog to the SIP/IP Core network
6. SIP/IP Core network forwards the NOTIFY request to the requester of the REFER.
7. The requester entity sends an appropriate response (200 OK) to the SIP/IP Core network.
8. SIP/IP Core network forwards the 200 OK response to the Push Receiver Agent.
9. The Push Receiver Agent sends a SUBSCRIBE request to the resource identified by the URI in the Refer-To header field value, according to the procedures defined in 6.2.1.1, as a separated dialog. The SUBSCRIBE request initiates a subscription to the ua-profile event package.
10. Upon receiving the first NOTIFY request within the ua-profile dialog, the Push Receiver Agent sends a final NOTIFY request within the refer dialog to inform the requester of the result of the action triggered out of the REFER request.
NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357 SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:eee]:5060;branch=z9hG4bK-abcd

Max-Forwards: 70

To: <sip:john.doe@PushSenderAgent.home1.net>;tag=31415

From: <sip:john.doe@home1.net>;tag=1234

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 1 NOTIFY

Event: refer

Subscription-State: terminated;reason=noresource

Contact: sip:[5555::aaa:bbb:ccc:eee]:5060

Content-Type: message/sipfrag;version=2.0

Content-Length: 16

SIP/2.0 200 OK

11. SIP/IP Core network forwards the NOTIFY request (Event:refer) to the requester entity.
12. The requester entity sends an appropriate response (200 OK) to the SIP/IP Core network.
13. SIP/IP Core network forwards the 200 OK response to the Push Receiver Agent.
INVITE / MSRP SAMPLE FLOW

C.5 INVITE / MSRP Sample Flow

The following example describes how to push content to a user.

In this scenario, the Content will be sent over MSRP to the Push Receiver Agent.

 Push Sender Agent Push Receiver Agent.

 | |

 |(1) (SIP) INVITE |

 |----------------------->|

 |(2) (SIP) 200 OK |

 |<-----------------------|

 |(3) (SIP) ACK |

 |----------------------->|

 | |

 |(4) (MSRP) SEND (chunk) |

 |----------------------->|

 |(5) (MSRP) SEND (chunk) |

 |----------------------->|

 |(6) (MSRP) 200 OK |

 |<-----------------------|

 |(7) (MSRP) 200 OK |

 |<-----------------------|

|

 |

|(8) (MSRP) REPORT |

 |<-----------------------|

 | |

 |(9) (SIP) BYE |

 |----------------------->|

 |(10) (SIP) 200 OK |

 |<-----------------------|

 | |

 | |

Figure 7: Pushing MSRP Messages

One or more messages will be sent to the Push Receiver Agent by MSRP channel. The Push Sender Agent will sends a SIP INVITE request to the SIP/IP core to negotiate with the Push Receiver Agent about establishing MSRP channel. . If the Push Sender want to send more then one file then one m= line is required per file with file descriptor information connected to each of the m lines.
1. The SIP/IP Core sends the SIP INVITE to the Push Receiver Agent based on information stored during registration.
2. The Push Receiver Agent analyses the SDP parameters and returns the agreed parameters by sending a SIP 200 "OK" response to the SIP/IP Core. If the Push Receiver Agent for some reason do not want to reject a file offered by the offerer, it sets the port number of the "m=" line associated with the file to zero.

a. The SIP/IP Core forwards the SIP 200 "OK" response to the Push Sender Agent. (not shown in the picture)
3. The Push Sender Agent acknowledges the SIP 200 "OK" response with a SIP ACK request sent to the SIP/IP Core.
a. The SIP/IP Core forwards the SIP ACK request to the Push Sender Agent.(not shown in the picture)
4. The Push Sender Agent send the the first chunk of data in a MSRP SEND to the Push Receiver Agent using the MSRP channel and the Success-Report header is inserted and set to yes. The MSRP SEND request that will carry the push message as payload.

5. The Push Sender Agent send the the second chunk of data in a MSRP SEND to the Push Receiver Agent using the MSRP channel. The MSRP SEND request that will carry the push message as payload.

6. The Push Receiver Agent responds with an MSRP 200 “OK” on the first MSRP SEND to the Push Sender Agent using the MSRP channel.
7. The Push Receiver Agent responds with an MSRP 200 “OK” on the second MSRP SEND to the Push Sender Agent using the MSRP channel.12. When the Push Sender Agent and the Push Receiver Agent do not need the MSRP channel, the Push Sender Agent sends a SIP BYE to SIP/IP Core to disconnect the MSRP channel with the Push Receiver Agent.
8. When the complete message was successfully received, the Push Receiver Agent sends a MSRP REPORT as a Success Report was requested.

9. The Push Sender Agent terminates the session by sending a SIP BYE to the Push Receiver Agent.

a. The SIP/IP Core forwards the SIP BYE request to the Push Receiver Agent. .(not shown in the picture).
10. The Push Sender Agent responds to the Push Receiver Agent with SIP 200 "OK" through the SIP/IP Core.
a. The SIP/IP Core forwards the SIP 200 "OK” to the Push Sender Agent. .(not shown in the picture)
NOTE: If more than one message is to be sent to the client before step10, the Push Sender Agent will repeat the step 8-10.
File Transfer with SDP offer/answer, modified example from file transfer draft
INVITE request containing an SDP offer for file transfer

 INVITE sip:bob@example.com SIP/2.0

 To: Bob <sip:bob@example.com>

 From: My Sender Agent <sip:bob@push-sender-agent.example.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 CSeq: 1 INVITE

 Max-Forwards: 70

 Date: Sun, 21 May 2006 13:02:03 GMT

 Contact: <sip:bob@push-sender-agent.example.com>
 Accept-Contact:*; +g.oma.pusheventapp="mms.ua”
 P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>

 Content-Type: application/sdp

 Content-Length: [length of SDP]

 --boundary71

 Content-Type: application/sdp

 Content-Length: [length of SDP]

 v=0

 o=push 2890844526 2890844526 IN IP4 push-sender-agent.example.com

 s=

 c=IN IP4 push-sender-agent.example.com

 t=0 0

 m=message 7654 TCP/MSRP *

 i=This is my latest picture

 a=sendonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://push-sender-agent.example.com:7654/jshA7we;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg

 size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

 a=disposition: not-render
 a=file-date:creation:"Mon, 15 May 2006 15:01:31 +03:00"

 a=icon:cid:id2@ push-sender-agent.example.com

 --boundary71

 Content-Type: image/jpeg

 Content-Transfer-Encoding: binary

 Content-ID: <id2@ push-sender-agent.example.com>

 Content-Length: [length of image]

 Content-Disposition: icon

 ...small preview icon of the file...

 --boundary71--

From now on we omit the SIP details for the sake of brevity.

The Push Receiver Agent on bobpc receives the INVITE request, inspects the SDP offer, computes the file descriptor and finds a local file whose hash equals the one indicated in the SDP. Push Receiver Agent accepts the file transmission and creates an SDP answer as follows:

 v=0

 o=bob 2890844656 2890844656 IN IP4 bobpc.example.com

 s=

 c=IN IP4 bobpc.example.com

 t=0 0

 m=message 8888 TCP/MSRP *

 a=recvonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://bobpc.example.com:8888/9di4ea;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

The push sender agent opens a TCP connection to the push receiver agent. The push sender agent then creates an MSRP SEND request that. This SEND request contains the first chunk of the file.

 MSRP d93kswow SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

Byte-Range: 1-2048/4385
 Success-Report: yes
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>

 From: <sip:bob@push-sender-agent.example.com>

 DateTime: 2006-05-15T15:02:31-03:00

 Content-Disposition: not-render; filename="My cool picture.jpg"; creation-date="Mon, 15 May 2006 15:01:31 +03:00"; size=4092

 Content-Type: image/jpeg

 ... first set of bytes of the JPEG image ...

 -------d93kswow+

The Push Sender Agent sends the second and last chunk. Note that MSRP allows to send pipelined chunks, so there is no need to wait for the 200 (OK)response from the previous chunk.

 MSRP op2nc9a SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

 Byte-Range: 2049-4385/4385

 Content-Type: message/cpim

 ... second set of bytes of the JPEG image ...

 -------op2nc9a$

Bob acknowledges the reception of the first chunk.

 MSRP d93kswow 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 1-2048/4385

 -------d93kswow$

Bob acknowledges the reception of the second chunk.

 MSRP op2nc9a 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 2049-4385/4385

 -------op2nc9a$

Bob acknowledges the reception of the complete message as a REPORT was requested

Bob-> The Push Sender Agent (MSRP):

 MSRP dkei38sd REPORT

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Message-ID: 12339sdqwer

 Byte-Range: 1-4385/4385
 Status: 000 200 OK

 -------dkei38sd$

Push Sender Agent terminates the SIP session by sending a SIP BYE request.

Bob acknowledges the reception of the BYE request and sends a 200 (OK) response.

Appendix D. Response Code Interpretation
(Informative)

When the Push Receiver Agent receives a NOTIFY request, it will generate a SIP response. The following Table 3 shows a mapping between SIP response codes to the SIP Push response scenarios. These response scenarios represent an interpretation of SIP response codes and guidance for applications. Unless stated otherwise in this document, response is interpreted according to the rules in the SIP specification [RFC3261], [RFC3265], [RFC3428], and [RFC3515].

	Scenario
	SIP Push Method
	SIP Response code
	Description

	1
	NOTIFY, MESSAGE, REFER
	200 OK
	Push request accepted

	2
	NOTIFY, MESSAGE

REFER
	- 400 bad request

- 500 server internal error

- 503 server unavailable

- 603 decline

	Push request rejected without specific causes, retries allowed

	3
	NOTIFY, MESSAGE, REFER
	- 403 Forbidden

- 604 does not exist anywhere
	Push request rejected without specific causes, no retries

	4
	NOTIFY, MESSGE, REFER
	- 408 request timeout
	Push request rejected because the push message cannot be delivered to the intended destination

	5
	NOTIFY, MESSAGE, REFER
	- 500 Server internal error.
	Push request rejected because the push message is discarded due to resource shortage

	6
	NOTIFY, MESSAGE, REFER
	- 415 Unsupported media type
	Push request rejected, because the content type cannot be processed

	7
	NOTIFY, REFER
	- 481 Subscription does not exist
	Push request rejected, matching provisioning context not found

Table 3: Response code interpretation
Appendix E. Interoperability with ICSI and IARI
(Informative)

E.1 Introduction

Enablers using this specification to enable push services may be deployed within 3GPP IMS networks. In this case the implementing enabler is considered a communication service which is identified through an IMS Communication Service Identifier (ICSI) within the IMS network.
More than one application of the same type may run over the same communication service. The IMS application reference identifier (IARI) is used to address the application instance. For example it might be possible to use two MMS applications on the same device.

An enabler utilizing SIP Push may itself have different resources (see Section 9.4) which needs to be addressed. It is addressing them by the use of the Application Resource Identifier.

[image: image8.emf]S

I

P

/

I

P

C

o

r

e

ICSIIARI

Application

Resource

Identifier

ICSIIARI

Application

Resource

Identifier

Resource 1

Enabler

(including

Push Sender

Agent)

Enabler

Application 1

Resource 1

Enabler

(including

Push Receiver

Agent)

Enabler

Application 1

Enabler

Application 2

Resource 2

Resource 1

Resource 2

Enabler

Application 2

Figure 8 ICSI, IARI and Application Resource Identifier usage

Only the usage of the Application Resource Identifier is specified in this specification. However if an enabler is deployed in an IMS environment the ICSI, IARI and Application Resource Identifier may be used together.
E.2 Examples

This simple Example shows the use of ICSI, IARI and the Application Resource Identifier coexistent within one push request utilizing the MESSAGE method. The IARI and the Push Event Id are send as feature tag parameters within the Accept-Contact header. The ICSI is send in the P-Preferred-Service/P-Asserted-Service header.

MESSAGE sip:user2@domain.com SIP/2.0
Via: SIP/2.0/TCP user1pc.domain.com;branch=z9hG4bK776sgdkse
Max-Forwards: 70
From: sip:user1@domain.com;tag=49583
To: sip:user2@domain.com
Accept-Contact; +g.ims.app_ref="<urn:urn-xxx:3gpp.application.mmsua >"; + g.oma.pusheventappp=”mms.ua”
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
Content-Type: text/plain
P-Preferred-Identity: "John Doe" <sip:john.doe@home1.net>
P-Preferred-Service: urn:urn-xxx.push
Content-Length: 18

SIP/2.0 200 OK
Via: SIP/2.0/TCP proxy.domain.com;branch=z9hG4bK123dsghds;received=192.0.2.1
Via: SIP/2.0/TCP user1pc.domain.com;;branch=z9hG4bK776sgdkse;received=1.2.3.4
From: sip:user1@domain.com;tag=49394
To: sip:user2@domain.com;tag=ab8asdasd9
Call-ID: asd88asd77a@1.2.3.4
CSeq: 1 MESSAGE
P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>
P-Asserted-Service: urn:urn-xxx.push
Content-Length: 0

In the next example the Push Receiver Agent subscribes on behalf of multiple resources (res1, res2 and res3) within the push service. It uses the Accept-Contact header to indicate the IARI (IMS Application Reference Identifier). The push sender agent answers with a Notify within the same push service, but now asserted by the network and sets the IARI to the value received in the Subscribe, and with the ICSI in the P-Asserted-Service header.
SUBSCRIBE sip:user-aor@example.com SIP/2.0

Event: ua-profile;profile-type=oma-app;event-app-id="res1,res2,res3";dev-cap="http://wap.company.com/UAProf/model.xml"

Contact: sip:user-contact@example.com

Accept-Contact: +g.ims.app_ref="<urn:urn-xxx:3gpp.application.vendor>"

P-Preferred-Service: urn:urn-xxx.push

NOTIFY sip:user-contact@example.com SIP/2.0

Event: ua-profile; profile-type=oma-app;event-app-id="res1,res2,res3"

Accept-Contact: +g.ims.app_ref="<urn:urn-xxx:3gpp.application.vendor>"

P-Asserted-Service: urn:urn-xxx.push

(time passes)

NOTIFY sip:user-contact@example.com SIP/2.0

Event: ua-profile; profile-type=oma-app;event-app-id="res1"

Accept-Contact: +g.ims.app_ref="<urn:urn-xxx:3gpp.application.vendor>"

P-Asserted-Service: urn:urn-xxx.push

NOTIFY sip:user-contact@example.com SIP/2.0

Event: ua-profile; profile-type=oma-app;event-app-id="res2"

Accept-Contact: +g.ims.app_ref="<urn:urn-xxx:3gpp.application.vendor>"

P-Asserted-Service: urn:urn-xxx.push

NOTIFY sip:user-contact@example.com SIP/2.0

Event: ua-profile; profile-type=oma-app;event-app-id="res3"

Accept-Contact: +g.ims.app_ref="<urn:urn-xxx:3gpp.application.vendor>"

P-Asserted-Service: urn:urn-xxx.push
Appendix F. SIP/IP Core Network Considerations
The SIP Push Architectural Model, specified in [PUSHSIPArch], specifes the SIP/IP core functional requirements for using SIP Push. Two SIP/IP network architectures that meet these requirements are considered by this version of the document. They include the 3rd Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS) and the Third Generation Partnership Project 2 (3GPP2) Multimedia Domain (MMD). Additional requirements and considerations for implementing SIP Push within these architectures are specified in the following sub-section. Other SIP/IP Core Network Architectural considerations may be added in the future.

F.1 3GPP IMS and 3GPP2 MMD Network Architectures

Within the context of 3GPP IMS and 3GPP2 MMD networks, SIP Push should be considered as the primary mechanism for push-based services. When the SIP/IP core complies with the 3GPP IMS or 3GPP2 MMD specifications, the following additional requirements and considerations in the following subsections apply:

F.1.1 Architecture Compliance

The Push Sender Agent and Push Receiver Agent SHALL comply with the 3GPP IMS or 3GPP2 MMD requirements, mechanisms and procedures, such as session establishment, according to rules and procedures of [3GPP TS 24.229] and [3GPP2 X.S0013-004-A], respectively. Specifically:

· The P-1 reference point defined for the Push Receiver Agent SHALL conform to the Gm reference point when the Push Receiver Agent is implemented on the UE, or to the ISC reference point when the Push Receiver Agent is implemented on an Application Server, as specified in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A], respectively.
· The P-2 reference point defined for Push Sender Agent shall conform to the ISC reference point as defined in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A], respectively.

F.1.2 Registration Procedures

In order for the Push Sender Agent to be aware of a registration request (SIP REGISTER) from the Push Receiver Agent, when implemented on the UE, the SIP/IP Core Network can initiate a third-party REGISTER request upon receiving a registration request from the Push Receiver Agent. Such third party registrations can be triggered based on a filter criteria set for REGISTER requests that indicate support for SIP Push as specified in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A]. Alternatively, the Push Sender Agent can subscribe to the “reg” event package as specified in [3GPP TS 24.229] and [3GPP2 X.S0013-004-A].

F.1.3 Security Considerations

The 3GPP IMS and 3GPP2 MMD Network Architectures provide for mutual authentication and integrity protection between the Push Receiver Agent (when implemented on a UE) and the Push Sender Agent (if implemented as part of a trusted network element), as well as confidentiality protection of SIP signalling. Access network security requirements to accomplish these are specified for 3GPP IMS and 3GPP MMD in [3GPP TS 33.203] and [3GPP2 S.R0086-0], respectively. Inter- and Intra-domain security procedures for accomplishing secure communication between trusted network elements is specified in [3GPP TS 33.210] for 3GPP IMS and [3GPP2 S.R0086-0] for 3GPP MMD.

Specific requirements are listed below:

· Push Sender Agents (in the role of an Application Server) and Push Receiver Agents (implemented on the UE or as part of an Application Server) in 3GPP IMS networks SHALL comply with all applicable security requirements and procedures, such as mutual authentication, in [3GPP TS 33.203], [3GPP TS 33.210] and [3GPP TS 24.229] for 3GPP IMS, and [3GPP2 S.R0086-0] and [3GPP2 X.S0013-002-A] for 3GPP MMD.
· When the Push Sender Agent, in the role of an IMS Application Server, is not part of a trusted network element (intra-domain security is not sufficient), it SHOULD authenticate and establish secure communications to Proxies or Push Receiver Agent as specified in [3GPP TS 33.210] for 3GPP IMS and [3GPP2 S.R0086-0] for 3GPP MMD.
· It SHALL be possible to assert the Push Sender Agent when it is acting as the originating user agent, by the SIP/IP Core, as specified in [3GPP TS 24.229] and [3GPP2 X.S0013-002-A] for 3GPP IMS and 3GPP2 MMD, respectively.
Appendix G. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

G.1 Client Conformance Requirements

The table below enumerates the client conformance requirements. A client being a Push Receiver Agent wishes to receive push content.
	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PRA-C-001
	Support receive push content from the Push Sender Agent
	6.2
	M
	(SIPPUSH-PRA-C-004 OR SIPPUSH-PRA-C-005 OR SIPPUSH-PRA-C-013), AND SIPPUSH-PRA-C-006

	SIPPUSH-PRA-C-002
	Use UAProf URI to publish the capabilities
	7.2.1
	O
	SIPPUSH-PRA-C-003

	SIPPUSH-PRA-C-003
	Device Profile extension
	7.2.1
	O
	UAPROF

	SIPPUSH-PRA-C-004
	Support reception of page mode messaging
	7.1
	O
	SIPPUSH-PRA-C009

	SIPPUSH-PRA-C-005
	Support subscription to push
	7.2
	O
	SIPPUSH-PRA-C010,

SIPPUSH-PRA-C011,

SIPPUSH-PRA-C012

	SIPPUSH-PRA-C-006
	Register to the SIP/IP Core network
	8.2
	M
	SIPPUSH-PRA-C008

	SIPPUSH-PRA-C-007
	Support application ID
	9
	O
	

	SIPPUSH-PRA-C008
	SIP REGISTER method
	8.2
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C009
	SIP MESSAGE method
	7.1.1
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C010
	SIP SUBSCRIBE method
	7.2.1
	O
	SIPPUSH-PRA-C-007,

SIPPUSH-PRA-C-002

	SIPPUSH-PRA-C011
	SIP NOTIFY method
	7.2.1
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C012
	SIP REFER method
	7.2.3
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C013
	 SIP INVITE & MSRP methods
	7.3
	O
	SIPPUSH-PRA-C-007

G.2 Server Conformance Requirements

The table below enumerates the server conformance requirements. A server being a Push Sender Agent wishes to send content.

	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PSA-S-001
	Creating push request to deliver the content to the push receiver agent
	6.1
	M
	SIPPUSH-PSA-S-004, AND
(SIPPUSH-PSA-S-005, OR

SIPPUSH-PSA-S-006, OR

SIPPUSH-PSA-S-012)

	SIPPUSH-PSA-S-002
	Receiving and store the capabilities of push receiver agent
	7.2.2
	M
	SIPPUSH-PSA-S-003,
SIPPUSH-PSA-S-006

	SIPPUSH-PSA-S-003
	Device Profile extension
	7.2.2
	O
	UAPROF

	SIPPUSH-PSA-S-004
	Supporting Push Receiver Agent registration status
	8.3
	M
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-005
	Support page mode push
	7.1
	O
	SIPPUSH-PSA-S-008

	SIPPUSH-PSA-S-006
	Support subscription push
	7.2
	O
	SIPPUSH-PSA-S-009,

SIPPUSH-PSA-S-010,

SIPPUSH-PSA-S-011

	SIPPUSH-PSA-S-007
	Support application ID
	9
	O
	

	SIPPUSH-PSA-S-008
	SIP MESSAGE method
	7.1.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-009
	SIP SUBSCRIBE method
	7.2.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-010
	SIP NOTIFY method
	7.2.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-011
	SIP REFER method
	7.2.3
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-012
	SIP INVITE & MSRP methods
	7.3
	O
	SIPPUSH-PSA-S-007

(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]
(2007 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20070611-I]

_1200866227.vsd
Push Receiver agent

Push Sender agent

SIP Push

_1263908496.vsd
�

Push Sender Agent

SIP/IP Core Network

Push Receiver Agent

(3) 202 Accepted

(1) REFER
Refer-To: sip:john.doe@PushSenderAgent.home1.net;method=”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(4) 202 Accepted

(2) REFER
Refer-To: sip:john.doe@PushSenderAgent.home1.net;method=”SUBSCRIBE”?Event:ua-profile;profile-type=oma-app

(10) NOTIFY
Event: refer

(11) NOTIFY
Event: refer

(12) 200 Ok

(13) 200 Ok

(5) NOTIFY
Event: refer

(6) NOTIFY
Event: refer

(7) 200 Ok

(8) 200 Ok

(9) Subscription (steps 1-8 of figure 5)�

_1264753041.vsd
SIP/IP Core

Push Sender Agent

Enabler

Resource

Enabler

Push Receiver Agent

Resource

_1256494522.vsd
MESSAGE

200 OK

Push Receiver Agent

SIP/IP Core Network

Push Sender Agent

MESSAGE

200 OK

_1261229005.vsd
SIP/IP Core

ICSI

IARI

Application Resource Identifier

ICSI

IARI

Application Resource Identifier

Resource 1

Enabler
(including Push Sender Agent)

Enabler Application 1

Resource 1

Enabler (including Push Receiver Agent)

Enabler Application 1

Enabler
Application 2

Resource 2

Resource 1

Resource 2

Enabler Application 2

_1186457555.vsd
Push Receiver Agent

SIP/IP Core Network

Push Sender Agent

Third-Party
REGISTER request

200 (OK)

REGISTER request

200 (OK)

