OMA-SIP-Push-V0_109-200709100704-D
Page 51 V(44)

	[image: image8.wmf]

Push Sender Agent

SIP/IP core Network

Push Receiver Agent

SIP MESSAGE

Accept contact = +

g.oma.sip

-

push

Body: Push message

SIP MESSAGE

Accept contact = +

g.oma.sip

-

push

Body: Push message

(7) 200 OK

(8) 200 OK

Message to be

delivered (e.g. over

PAP in PPG case)

Message sent to

Push Sender Agent

AS

Application

Message delivered to

application

P

-

Asserted

-

Identity

 = “Originator”

 <orig@domain.com>

*(COMMA PAssertedID

-

value)

P

-

Asserted

-

Identity = 徹riginator��

 <orig@domain.com>

*(COMMA PAssertedID

-

value)

	

	Push using SIP

	Draft Version 0.10 – 10 September 2007

	Open Mobile Alliance

	OMA-SIP-Push-V0_10-20070910-D

	
	

	

	
	

Use of this document is subject to all of the terms and conditions of the Use Agreement located at http://www.openmobilealliance.org/UseAgreement.html.

Unless this document is clearly designated as an approved specification, this document is a work in process, is not an approved Open Mobile Alliance™ specification, and is subject to revision or removal without notice.

You may use this document or any part of the document for internal or educational purposes only, provided you do not modify, edit or take out of context the information in this document in any manner. Information contained in this document may be used, at your sole risk, for any purposes. You may not use this document in any other manner without the prior written permission of the Open Mobile Alliance. The Open Mobile Alliance authorizes you to copy this document, provided that you retain all copyright and other proprietary notices contained in the original materials on any copies of the materials and that you comply strictly with these terms. This copyright permission does not constitute an endorsement of the products or services. The Open Mobile Alliance assumes no responsibility for errors or omissions in this document.

Each Open Mobile Alliance member has agreed to use reasonable endeavors to inform the Open Mobile Alliance in a timely manner of Essential IPR as it becomes aware that the Essential IPR is related to the prepared or published specification. However, the members do not have an obligation to conduct IPR searches. The declared Essential IPR is publicly available to members and non-members of the Open Mobile Alliance and may be found on the “OMA IPR Declarations” list at http://www.openmobilealliance.org/ipr.html. The Open Mobile Alliance has not conducted an independent IPR review of this document and the information contained herein, and makes no representations or warranties regarding third party IPR, including without limitation patents, copyrights or trade secret rights. This document may contain inventions for which you must obtain licenses from third parties before making, using or selling the inventions. Defined terms above are set forth in the schedule to the Open Mobile Alliance Application Form.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

© 2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms set forth above.

Contents

51.
Scope

62.
References

62.1
Normative References

72.2
Informative References

83.
Terminology and Conventions

83.1
Conventions

83.2
Definitions

93.3
Abbreviations

104.
Introduction (Informative)

115.
End to End Push Service (Informative)

126.
Functional Description (Normative)

126.1
Push Sender Agent

126.2
Push Receiver Agent

137.
Push Operations (Normative)

137.1
MESSAGE Method

137.1.1
Procedures at the Push Receiver Agent

137.1.2
Procedures at the Push Sender Agent

147.2
SUBSCRIBE/NOTIFY Method

147.2.1
Procedures at the Push Receiver agent

157.2.2
Procedures at the Push Sender agent

167.2.3
Use of the REFER Method

177.3
INVITE MSRP Method

177.3.1
Procedures at the Push Receiver agent

187.3.2
Procedures at the Push Sender agent

197.3.3
User Plane

218.
Registration (Normative)

218.1
Overview (Informative)

218.2
Procedures at Push Receiver agent (Normative)

218.3
Procedures at Push Sender agent (Normative)

229.
Service and Application Addressing

229.1
Introduction

229.2
Communication Service Identifier (Normative)

229.3
Application Reference Identifier (Normative)

239.4
Example

239.5
Communication Service Identifier and Application Reference Identifier Usage (Normative)

239.5.1
REGISTER

239.5.2
MESSAGE

239.5.3
SUBSCRIBE

249.5.4
NOTIFY

249.5.5
REFER

249.5.6
INVITE

2510.
Security (Normative)

2510.1
General

2510.2
Trust Model

2510.3
SIP Signaling Security

2510.3.1
Integrity and confidentiality protection

2510.3.2
Assurance of user identity

2610.3.3
SIP MESSAGE Security

2610.4
Terminal Based Whitelists Authorisation

27Appendix A.
The “oma-app” Profile-type (Normative)

27A.1
SIP SUBSCRIBE for the oma-app Profile Type

27A.1.1
Initial Profile Enrolment

28A.1.2
The Profile Enrollment Confirmation

28A.1.3
Content Push

29A.2
Summary of event parameters

30A.3
Appid parameter format

31Appendix B.
Sample flows (Informative)

31B.1
Registration

32B.2
MESSAGE sample flow

33B.3
SUBSCRIBE/NOTIFY sample flow

36B.4
REFER sample flow

37B.5
INVITE / MSRP Sample Flow

37B.5.1
Pushing Messages over INVITE and MSRP

44Appendix C.
Initial Filter Criteria (Informative)

44C.1
General

44C.2
Originating Filter Criteria

45Appendix D.
Response Code Interpretation (Informative)

46Appendix E.
Change History (Informative)

46E.1
Approved Version History

46E.2
Draft/Candidate Version <current version> History

47Appendix F.
Static Conformance Requirements (Normative)

47F.1
Client Conformance Requirements

47F.2
Server Conformance Requirements

1. Scope

This specification defines the protocol for delivery of content to a mobile terminal via SIP [RFC3261], referred to as SIP Push. The protocol specified in this document is an application layer protocol that interacts with a SIP/IP core network, such as IMS [IMSArch] to fulfil the Push using SIP service.
The scope of this specification is to specify mechanisms for the following functionality within the architecture identified in [PushSIPArch]

2. References

2.1 Normative References

	[3GPP TS 23.228]
	“IP Multimedia Subsystem (IMS); Stage 2”, 3GPP TS 23.228

	[3GPP TS 33.203]
	“Access Security for IP-based services”, 3GPP TS 33.203

	[3GPP TS 33.210]
	“Network domain security; IP network layer security”, 3GPP TS 33.210

	[3GPP TS 24.229]
	“Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3”, 3GPP TS 24.229

	[3GPP2 X.S0013-002-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Subsystem - Stage 2”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 X.S0013-004-A]
	“All-IP Core Network Multimedia Domain: IP Multimedia Call Control Protocol Based on SIP and SDP Stage 3”, Revision A, Version 2.0, 3GPP2, 2004

	[3GPP2 S.R0086-0]
	“IMS Security Framework”, 2004

	[IOPPROC]
	“OMA Interoperability Policy and Process”, Version 1.1, Open Mobile Alliance™, OMA-IOP-Process-V1_1, URL:http://www.openmobilealliance.org/

	mmusic-file-transfer
	A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer

	MSRP
	The Message Session Relay Protocol (draft-ietf-simple-message-sessions-19)

	[RFC2119]
	“Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner, March 1997, URL:http://www.ietf.org/rfc/rfc2119.txt

	[RFC2234]
	“Augmented BNF for Syntax Specifications: ABNF”. D. Crocker, Ed., P. Overell. November 1997, URL:http://www.ietf.org/rfc/rfc2234.txt

	[RFC2506]
	"Media Feature Tag Registration Procedure". Holtman et al. M1999. URL:http://www.ietf.org/rfc/rfc2506.txt

	[RFC2616]
	“Hypertext Transfer Protocol -- HTTP/1.1”, Fielding et al, June 1999, URL:http://www.ietf.org/rfc/rfc2616.txt

	[RFC3261]
	"SIP: Session Initiation Protocol". J. Rosenberg et al. June 2002. URL:http://www.ietf.org/rfc/rfc3261.txt

	[RFC3265]
	"Session Initiation Protocol (SIP)-Specific Event Notification". A.B. Roach. June 2002. URL:http://www.ietf.org/rfc/rfc3265.txt

	[RFC3325]
	“Private Extensions to the Session Initiation Protocol”, C. Jennings, J. Peterson, M. Watson, Nov. 2002

	[RFC3428]
	"Session Initiation Protocol (SIP) Extension for Instant Messaging". B. Campbell et al. December 2002. URL:http://www.ietf.org/rfc/rfc3428.txt

	[RFC3840]
	“Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3840.txt

	[RFC3841]
	“Caller Preferences for the Session Initiation Protocol (SIP)”.J. Rosenberg, H.Schulzrinne, P.Kyzivat, Aug. 2004. URL:http://www.ietf.org/rfc/rfc3841.txt

	[RFC4508]
	“Conveying Feature Tags with the Session Initiation Protocol (SIP) REFER Method”. O. Levin, A. Johnston, May 2006. URL:http://www.ietf.org/rfc/rfc4508.txt

	[SIP_UA_Prof]
	“A Framework for Session Initiation Protocol User Agent Profile Delivery”, D. Petrie, March 6, 2006. URL: http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-08.txt

Note: Work in progress

	[OMNA]

[OMNA-devprof]
	"OMA Naming Authority". Open Mobile Alliance(.
http://www.openmobilealliance.org/tech/omna
Editor note: reference to OMNA device profile link

	[OMA-UAProf]
	"User Agent Profile", OMA-TS-UAProf-V2_0-20060206-A. URL: http://www.openmobilealliance.org/

	[RFC4479]
	“A Data Model for Presence”, J. Rosenberg, July 2006, RFC 4479

	
	

	
	

2.2 Informative References

	[IMSArch]
	"Utilization of IMS capabilities Architecture", OMA-AD-IMS-V1_0-20050204-C URL:http://www.openmobilealliance.org/

	[PushSIPArch]
	"OMA-AD-SIP_Push_AD-V0_8_0-20060208-D ", Open Mobile Alliance(. URL:http//www.openmobilealliance.org/

	[PushOTA]

	"Push OTA Protocol", WAP Forum™, WAP-235-PushOTA, URL:http//www.openmobilealliance.org/

	[PushPAP]
	"Push Access Protocol", WAP-247-PAP, Open Mobile Alliance(. URL:http//www.openmobilealliance.org/

	[WAP2]
	"WAP 2 Conformance Release", Open Mobile Alliance(. http://www.openmobilealliance.org/tech/affiliates/wap/

	[UAProf]

[PushMsg]
	"User Agent Profiling", Open Mobile Alliance(. http://www.openmobilealliance.org/tech/affiliates/wap/
"Push Message Specification". WAP Forum(.
WAP-251-PushMessage. URL: http://www.openmobilealliance.org/

3. Terminology and Conventions

3.1 Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

All sections and appendixes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be informative.

3.2 Definitions

	Application
	An implementation of a related set of functions that perform useful work, often enabling one or more services. It may consist of software and/or hardware elements.

	Application-Level Addressing
	The ability to address push content between a particular user agent on a client and push initiator.

	
	

	Bearer Network
	A network used to carry the messages of a transport-layer protocol between physical devices.

	Capabilities
	Platform, protocol, or configuration characteristics that a system supports.

	Content
	A digital work e.g. a ringing tone, a screen saver, etc.

	Device
	Device is a network entity that is capable of sending and/or receiving packets of information and has a unique device address. A device can act as either a client or a server within a given context or across multiple contexts. For example, a device can service a number of clients (as a server) while being a client to another server.

	Encoding
	1: The act or method of converting a data object from one format to another. 2: a format of an object resulting from conversion.

	Pull
	A service delivery method in which a client initiates content delivery by requesting content from a server.

	Push
	A service delivery method in which a server initiates content delivery to a client.

	Push Access Protocol
	A protocol used for conveying content that should be pushed to a client, and push related control information, between a Push Initiator and a Push Proxy/Gateway.

	Push Content
	Content, metadata and application level control information that has a shared interpretation by both sender and receiver agents.

	Push Framework
	Is the entire push system. The push framework encompasses the protocols, service interfaces, and software entities that provide the means to push data to user agents on a client

	Push Initiator
	The entity that originates push content and submits it to the push framework for delivery to a user agent on a client

	Push OTA Protocol
	A protocol used for conveying content between a Push Proxy/Gateway and a certain user agent on a client.

	Push Proxy Gateway:
	A proxy gateway that provides push proxy services.

	Push Receiver agent
	Push Receiver agent is a logical entity that uses the SIP Push procedure to receive push content, and generate a response to the Push Sender agent request.

	Push Sender agent
	Push Sender agent is a logical entity that creates a push request, and then uses the SIP Push procedure to send push content.

	Push Session
	A joint state shared between Push Sender and Receiver agents.

	Server
	An entity that provides resources to clients in response to requests.

	User
	An entity which uses services. Example: a person using a device as a portable telephone.

	Session Identity
	SIP URI, which identifies the Push Session and which can be used for routing initial SIP requests. It is received by the Push agent during the Session establishment in the Contact header

	User Agent
	Any software or device that acts on behalf of a user, interacting with other entities and processing resources.

	User Plane
	The User Plane includes the media (MSRP) and media control signaling between the Push Sender Agent and the Push Receiver Agent

	XML
	The Extensible Markup Language is a World Wide Web Consortium (W3C) standard for Internet markup language, of which WML is one such language.

	3.3 Abbreviations

CPI

Capability and Preference Information

HTTP

Hypertext Transfer Protocol

IANA

Internet Assigned Numbers Authority

IP

Internet Protocol

MIME

Multipurpose Internet Mail Extensions

MMD

Multi-Media Domain

MMS

Multimedia Messaging Service

MSISDN

Mobile Station International Subscriber Directory Number

MSRP

The Message Session Relay Protocol

OMA

Open Mobile Alliance

OMNA

OMA Naming Authority

OTA

Over The Air
PAP

Push Access Protocol

PI

Push Initiator

PPG

Push Proxy Gateway

QoS

Quality of Service

RFC

Request For Comments

SDP

A Session Description Protocol

SI

Service Indication

SIP

Session Initiation Protocol

SIR

Session Initiation Request

SL

Service Loading

TCP

Transmission Control Protocol

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

WAP

Wireless Application Protocol

XML

Extensible Mark-up Language

	

4. Introduction
(Informative)

The push service defines a service to deliver content to a mobile device utilizing the OMA architecture; the SIP Push architecture [PushSIPArch] further defines the architectural context of this service. This specification defines the function required of the Push Sender and Receiver Agents.
In illustration:

[image: image2.emf]Push

Receiver

agent

Push

Sender

agent

SIP Push

Figure 1: Push Sender and Receiver Agent

In general terms, the functionality defined in this specification will be referred to as ‘SIP Push’ but in fact to properly achieve push service it is necessary that the Push Sender and Receiver Agents interface with a SIP/IP Core network. An example of SIP/IP Core network definition is the 3GPP IMS [3GPP TS 23.228] and 3GPP2 MMD [3GPP2 X.S0013-002-A] networks.

In the context of an IMS Architecture [IMSArch] (3GPP IMS and 3GPP2 MMD networks) Push using SIP (SIP Push) should be considered as the primary mechanism for push function.

Future releases may fully specify how SIP Push utilises additional types of SIP/IP Core network.
This specification will also make reference to specific SIP RFCs [RFC 3261] to further clarify the use of SIP for push service in the context of particular SIP IP Core network definitions.
This specification encompasses the following:

· End to End Service definition

· Push using SIP Protocol definition

· User addressing

· Application addressing

· Providing client capability information
· Push Payload: Content and header compression for transmission

· Exchanging push control information between the Push Sender agent and Push Receiver agent.
· Authentication and authorization for push service

· The Push Receiver agent can make itself available for push from Sender agent
· Access independent and discovery.

· Mapping of OTA-SIP delivery status (e.g. SIP response code) to application level status information for communication to the initiator of the push, via the Push Sender agent.

· Mapping PAP request to SIP push (in the event that the Push Sender agent interface with [PushPAP])

5. End to End Push Service
(Informative)

Within the scope of this specification the end-to-end push service is concerned with the relationship between the Push Sender agent and the Push Receiver agent. There are three types of push to consider:

· Generic Push: Push is available towards user’s device, asynchronously, whilst the user is registered with the SIP/IP Core network (e.g. used to broadcast content to a large community of users, and for generic content2person applications);

· “Trusted” Push: for pushing high value, trusted and certified information (e.g. device management/configurations, policies, based on terminal characteristics or user profile and related to application/service/user configuration)

· Selective Push: push can be used to provide content or application-related information in a personalized way, depending on user profile, user preferences or explicit interests, and device capabilities.

In delivering service for each of these types of push, within the context of SIP, more than one mechanism is required. The SIP-Based models re-used in this specification are based on subscription and paging.

The SIP-based event subscription mechanism is described in [RFC3265] and allows for asynchronous notification of events during the duration of the subscription. Subscription is performed by a subscriber entity, which can refresh it periodically, whilst termination can be done either by subscriber or notifier entity. Once created, subscription provides a point-to-point, dedicated channel between Push Sender agent and the Push Receiver agent, for the Push Sender to send push content and information. 200 Ok for notifications may be interpreted as delivery notifications from the Push Reciever without requiring extra signalling.

The Paging through SIP can be provided through the MESSAGE method ([RFC3428]), which may be more appropriate in some usages. The MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the MESSAGE request is an extension to SIP, it inherits all the request routing and security features of that protocol. The MESSAGE request carries the content in the form of MIME body parts. The MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each MESSAGE stands alone, much like pager messages . Thus, each MESSAGE request is independent and no session states are stored in the system. The push content is carried in a SIP Message body.

The INVITE / MSRP method removes the SIP MESSAGE and the SIP SUBSCRIBE / NOTIFY limitations on message size. This limitation is especially acute if the push contents are multimedia in nature. To allow arbitrarily large messages, the content is carried by MSRP [MSRP]. A SIP session is established between the interested parties (Push Sender Agent and Push Receiver Agent) with MSRP as the media component. The SIP session can be used to transmit exactly one large message or a number of large messages either parallel or sequentially. The file selection mechanism allows for the Push Receiver Agent to understand ahead of delivery on what is going to be transferred as a number of additional attribute are supported [mmusic-file-transfer].This gives the Push Receiver Agent a possibility to take decisions ahead of delivery and by that save network and terminal capacity.
Editor Note: Bryan S. will add new text descripbing oma push 2.x
6. Functional Description
(Normative)

6.1 Push Sender Agent

Push Sender agent is an entity that pushes content to the Push Receiver agent. Push Sender agent supports the following functions:

1. Creating push request to deliver the content to the Push Receiver agent.

2. Subscribing, receiving, and storing the presence information including the capabilities information of the Push Receiver Agent, such as application type or push characteristics.

3. Managing the capabilities information (e.g. sharing the capabilities information to the application).

4. Selecting the type of push method to the Push Receiver agent, depending on the supported capabilities and application push request.

5. Requesting delivery reports from Push Receiver agent.

6. Mapping of SIP Push delivery status (e.g. SIP response code) to application level status information for communication to the initiator of the push.

7. Exchanging push control information between the Push Server and Receiver agents.

8. Subscribing the Push Receiver agent registration status.

The Push Sender agent SHALL support the P-2 reference point.
When SIP/IP Core corresponds with 3GPP/3GPP2 IMS or MMD [IMSArch], the P-2 reference point SHALL conform to the ISC reference point as defined in 3GPP [3GPP TS 23.228] and 3GPP2 [3GPP2 X.S0013-002-A], respectively.
6.2 Push Receiver Agent

Push Receiver agent is a logical entity that receives push content from the Push Sender agent. It is the responsibility of Push Receiver agent to pass the received push content to the appropriate application to take action. Push Receiver agent supports the following functions:

1. Receiving push content from Push Sender agent.

2. Exchanging push control information between the Push Server and Receiver agents.

3. Executing the push request operation.

4. Generating a response to the Push Sender agent request

5. Publishing the push capabilities information of the Push Receiver Agent, such as type of push application or push characteristics, as part of the presence information.

6. Registering the Push Receiver agent with SIP/IP Core.

The Push Receiver agent SHALL support the P-1 reference point.
When SIP/IP Core corresponds with 3GPP/3GPP2 IMS or MMD [IMSArch], the P-1 reference point SHALL conforms to the Gm reference point when the Push Receiver agent is implemented on the UE or to the ISC reference point when the Push Receiver agent is implemented on an Application Server as defined in [3GPP TS 23.228] and [3GPP2 X.S0013-002-A], respectively
7. Push Operations
(Normative)

This section describes three delivery mechanisms for Push Using SIP. It is the choice of the individual Push Sender Agent to implement and select the appropriate Push method. The selection criterion is considered out of scope of the standardization.
7.1 MESSAGE Method

The MESSAGE method [RFC3428] is an extension to SIP that allows the transfer of messages to the client. Since the MESSAGE request is an extension to SIP, it inherits all the request routing and security features of that protocol. The MESSAGE request carries the content in the form of MIME body parts. MESSAGE requests do not themselves initiate a SIP dialog; under normal usage each MESSAGE stands alone, much like pager messages. Thus, each MESSAGE request is independent and no session states are stored in the system. The push messages are carried in a SIP Message body MUST NOT exceed 1300 bytes as defined in [RFC3428].
Editor Note: Global change the feature tag and application ID (Thinh)
7.1.1 Procedures at the Push Receiver Agent

Upon receiving an incoming MESSAGE, the Push Receiver Agent

1. SHALL verify that a P-Asserted-Identity exists according to the procedures of [3GPP TS 24.229]

1. SHALL verify that Accept-Contact header field to contain the feature tag of the targeted push Communication Service Identifier service , and Application Reference Identifier, as defined in [RFC3841] and section 9.2 and 9.3.

2. SHALL pass the received push content contained in the body of the MESSAGE request to the targeted push application to take action.

3. SHALL generate a response in accordance to [RFC3428] and the procedures of the SIP/IP Core

When the SIP/IP Core corresponds to 3GPP/3GPP2 IMS, the Push Sender agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures according to rules and procedures of [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in the above subclause.

7.1.2 Procedures at the Push Sender Agent

The Push Sender agent SHALL generate a MESSAGE request in accordance with [RFC3428] and [RFC3841].

The Push Sender agent:

1. SHALL set the Accept-Contact header field to contain the feature tag of the targeted push application Push Receiver Agent as defined in [RFC3841] and section 9.5.2..

2. SHALL set the Request-URI of the SIP MESSAGE request to the public user identity of the intended recipient.

3. SHOULD check the content to send against content-types supported by the Push Receiver agent as indicated in the Client Capabilities (see Section Error! Reference source not found.)

4. SHALL, in accordance with [3GPP TS 24.229] and [RFC3325], include a P-Asserted-Identity in the header field of the MESSAGE request if the message initiator is trusted by the Push Sender Agent

5. SHALL send the MESSAGE request towards the SIP/IP Core according to the procedures of the SIP/IP Core.

When the SIP/IP Core corresponds to 3GPP/3GPP2 IMS, the Push Sender agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures according to rules and procedures of [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in the above subclause.

7.2 SUBSCRIBE/NOTIFY Method

The SIP-based event subscription mechanism, or SIP event framework, is described in [RFC3265] and allows for asynchronous notification of events during the duration of the subscription. Subscription is performed explicitly by a subscriber entity, also called watcher, which can refresh it periodically, whilst termination of the subscription can be done either by watcher or notifier entity. Once created, subscription provides a dedicated channel between the watcher and notifier entities.

Subscription mechanism is also used after each registration to send the device capabilities to all Push Sender Agents. Those capabilities will be referenced via [OMA-UAProf] . This reference will be sent using the "ua-profile" Event Package, which defines a framework where devices can subscribe with a specific profile type to an application server. The specific profile type will be "device"as defined in [SIP_UA_Prof] and the capabilities reference will be set in the "model" header as described below.

Push Sender agent and the Push Receiver agent SHALL support the SUBSCRIBE and NOTIFY methods as stated in [RFC3265]. In particular, Push Receiver agent SHALL support the subscriber functionality for some specific push content and SHALL support reception of push content, and Push Sender agent SHALLsupport the notifier functionality to receive subscription requests from Push Receiver agents and send push information to them.

Push Sender agent may decide to grant or reject a subscription request from a Push Receiver agent. Decision policy is left to implementation and is out of scope of this specification.

Push Receiver agent may subscribe to any push application at any time, and for any duration. Rules for the exact usage of this mechanism is out of scope of this specification and MUST be provided by each specific application that makes use of it.

Based on the design of the SIP event framework, final successful (200 OK) responses to NOTIFY requests may be interpreted as delivery notifications on the Push Sender agent.

7.2.1 Procedures at the Push Receiver agent

7.2.1.1 Initial subscription

The Push Receiver agent SHALL send a SUBSCRIBE request to Push Sender agents after initial registration, if necessary to subscribe to push events for specific services, e.g. to convey client capabilities or to subscribe to specific events.

The SUBSCRIBE request SHALL be set according to [RFC3265] and [SIP_UA_Prof], and the Push Receiver agent

1. SHALL set the Request-URI to the Public SIP URI identifying the current user, and MAY set it to the SIP URI identifying the Push Sender agent based on local policy or configuration;

2. SHALL include value “device” in the “profile-type” Event header parameter; with the "model" header parameter to the [OMA-UAProf] reference to the device capabilities if supported, otherwise the default settings for this header SHALL be applied
3. SHALL include the oma-app Profile Type according to rules and procedures of the “Initial Profile Enrolment” as specified in Appendix X "The "oma-app" Profile-type"
4. SHALL include one Communication Service Identifier in the Accept-Contact header according to rules and procedures of [RFC3841] and section 9.2.
5. MAY insert a P-Preferred-Identity header according to rules and procedures of [RFC 3325]
6. SHALL send the SUBSCRIBE request towards the SIP/IP Core.
When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Receiver agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures as defined in [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this sub clause.

Editors Note: The conlusion of both "device" and "oma-app" profile types need to be clarified/changed to be comply with IETF.

7.
8.
9.
10.
11.

7.2.1.2 NOTIFY processing

Upon receiving an incoming NOTIFY request that is part of the same dialog as the previously sent SUBSCRIBE request the Push Receiver agent SHALL handle the request according to [RFC3265], [RFC3841], [SIP_UA_Prof],
If the NOTIFY request was accepted, the Push Receiver agent SHALL pass the received push content contained in the body of the NOTIFY request to the appropriate application associated with the subscription to take action.

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Receiver agent SHALL also apply the 3GPP/3GPP2 IMS rules and procedures as defined in [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this sub clause.

7.2.2 Procedures at the Push Sender agent

7.2.2.1 Initial subscription

Upon receiving a SUBSCRIBE request the Push Sender agent SHALL follow the steps and procedures in accordance with [SIP_UA_Prof] and Appendix X "The "oma-app" Profile-type" with the clarifications in the following steps:

1. SHALL return the SIP “489 Bad Event” error response, if the “ua-profile” event package is not supported, as defined in [RFC3265]. Otherwise perform the following steps.
2. SHALL check whether one IMS Communication Service Identifier [3GPP and section 9.2] is present in the Accept-Contact header ’ ' and if not included the Push Sender agent SHALL return a SIP 403 "Forbidden" response. Otherwise, continue with the rest of the steps;

3. SHALL verify that a P-Asserted-Identity exists according to the procedures of [RFC3325]. If the authorization check fails, the Push Sender agent SHALL return the SIP "403 Forbidden" error response.
4. SHOULD store the [OMA-UAProf] link when present and retrieve the associated device capabilities

5. If no appid value is present in the oma-app profile type parameters in the Event header then the IMS Communication Service Identifier SHALL be interpreted as the appid value of the oma-app profile type.

6. SHALL create a subscription to push application data identified by Event header parameters as described in [SIP_UA_Prof];
7. SHALL send a SIP “200 OK” in accordance with [RFC3265], [SIP_UA_Prof], and the procedures of the SIP/IP Core.
8. SHALL generate a Profile Enrollment Confirmation as specified in Appendix X "The "oma-app" Profile-type"
When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Sender agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures as defined in [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this sub clause.

9.
10.
11.
12.
13.
14.

7.2.2.2 Delivering content via a NOTIFY
When generating a SIP NOTIFY for content delivery the Push Sender Agent

- 1. SHALL generate a Content Push as according to rules and procedures in the Appendix X "The "oma-app" Profile-type" and [SIP_UA_Prof]
· 2. SHALL generate a SIP NOTIFY request according to rules and procedures of [RFC3265]]

· 3. SHALL send the SIP NOTIFY within the context of the existing subscription created by the Push Reciveer Agent according to rules and procedures of the SIP/IP Core.

The responses to the SIP NOTIFY request SHALL be handled in according to rules and procedures of [RFC3265], [RFC3515],
When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Sender agent SHALL use 3GPP/3GPP2 IMS mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this subclause

1.
a.
b.
2.

7.2.3 Use of the REFER Method
The REFER method [RFC3515] is an extension to SIP [RFC3261]. The recipient of a REFER request, upon granting permission from the user, initiates a new SIP request to the resource provided in the REFER message.

Push Receiver agent MUST supports the REFER method as stated in [RFC3515]. In particular, Push Receiver agent MUST be able to receive REFER requests, perform the requested action, and notify it to the requester.

At any time, a Push Sender agent may send a REFER request to the Push Receiver agent to trigger a subscription (SUBSCRIBE message) from the Push Receiver agent to a Push Sender agent for receiving push content (NOTIFY message).

7.2.3.1 Procedures at the Push Sender agent

A Push Sender agent wishing to trigger a subscription from the Push Receiver agent SHALL send a REFER request according to [RFC3515] with the clarifications given in this sub clause.

The Push Sender agent

1. SHALL set the Request-URI to the public SIP URI identifying the destination user;

2. SHALL include a Refer-To header with the following clarifications;

a. SHALL set the referred URI to the same value as the Request-URI, or to the SIP URI identifying a Push Sender agent;

b. SHALL include “SUBSCRIBE” as method parameter of the referred URI

c. SHALL include the “Event” header parameter in the referred URI with the event package name set as “ua-profile” and the “profile-type” parameter value set to “application”;
d. SHALL include the “Accept-Contact” header parameter in the referred URI with the feature tag of the targeted push application along with “require” and “explicit” parameters according to rules and procedures of [RFC3841] and section 9.5.3.

3. SHALL send the REFER request towards the SIP/IP Core according to the procedures of the SIP/IP Core.

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Sender agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures as defined in [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this sub section.

7.2.3.2 Procedures at the Push Receiver agent
Upon receiving a REFER request the Push Receiver agent SHALL behave as described in [RFC3515] with the following clarifications:

1. SHALL perform the necessary security checks on the request according to procedures of sections 10.4. If the request is granted, the Push Receiver agent:

2. SHALL conform to the procedures defined in [RFC3515] to either reject, or accept the reference and create a subscription to the referred event. If the request is accepted, the Push Receiver agent:

3. SHALL generate and send an initial SUBSCRIBE request to the “ua-profile” event in a separated dialog as specified in section 7.2.1 using the content of the ‘Refer-To’ header

Upon receiving the first NOTIFY request within the “ua-profile” dialog, the Push Receiver agent SHALL generate and send a subsequent NOTIFY request within the existing subscription to the referred event according to [RFC3515] to inform the requester of the result of the action triggered out of the REFER request, with subscription state set to "terminated" with a reason of "noresource".

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Receiver agent SHALL use 3GPP/3GPP2 IMS requirements, mechanisms and procedures as defined in [3GPP 24.229] / [3GPP2 X.S0013.4] with the clarifications given in this sub section.
7.3 INVITE MSRP Method
When a Push Sender Agent wishes to send a large content without using content indirection, the Push Sender Agent SHALL initiate a MSRP session as described in procedure 6.5.2“Procedures at the Push Sender agent”. Once the MSRP session is established and the message is delivered, Push Sender Agent shall automatically close down the MSRP session as specified in 7.3.1.2 MSRP Session release.
7.3.1 Procedures at the Push Receiver agent

7.3.1.1 Push Receiver Agent Invited to a MSRP Session

When the Push Receiver Agent receives a SIP INVITE to set up a MSRP session, the Push Receiver Agent:

1. SHALL check if the accept-type attribute of the SDP m line in the SIP INVITE request are supported by the Push Receiver Agent and if not, reject the request with a SIP 488 "Not Acceptable Here" response. Otherwise, continue with the rest of the steps;

2. MAY reject the SIP INVITE request with an appropriate reject code as specified in [RFC3261] e.g. when the Push Receiver Agent determines that there is not enough resources to handle the MSRP Session; or,

3. SHALL store as the Session Identity the content of the Contact header as described in [RFC 4579].

4. If an Application Reference Identifier is present in the Accept-Contact header, the Push receiver Agent SHALL store the Application Reference Identifier according to the rules and procedures for the enabler.

5. When the Push Receiver Agent receives a SIP INVITE containing a “file-selector” parameter, the Push Receiver Agent SHALL accept from the Push Sender Agent input regarding the file (s) he is willing to accept;

6. SHALL include in the SIP 200 "OK" response a SDP body as a SDP answer according to rules and procedures of [RFC3264], [RFC4566] and [MSRP] and

a. SHALL set the SDP directional media attribute to a=recvonly

b. MAY indicate the maximum size message they wish to receive using the max-size a-line attribute according to rules and procedures of [MSRP]

c. SHALL include an Accept-Contact header with the communication service identifier of the Enabling Service and MAY add the 'require' and 'explicit' parameters according to rules and procedures of [RFC3841] and 3GPP 24.229

7. SHALL send the SIP 200 "OK" response towards the Push Sender Agent according to rules and procedures of the SIP/IP Core; and,
8. SHALL include the option tag 'timer' in a Require header;
9. SHALL include the Session-Expires header in the SIP 200 "OK" response to the initial SIP INVITE request or the SIP re-INVITE request within a Pre-established Session and start the SIP Session timer according to rules and procedures specified in [RFC4028],
10. SHOULD include an Allow header with the SIP methods supported in this SIP dialog according to rules and procedures of [RFC3261];
11. SHALL prepare to receive MSRP SEND messages as described in [MSRP];

SHALL use 3GPP/3GPP2 IMS Session establishment mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.004] with the clarifications given in this section.

7.3.1.2 MSRP Session release

Upon reception of a SIP BYE request, the Push Receiver Agent:

1. SHALL generate a 200 “OK” response according to rules and procedures of [RFC3261]; and,

2. SHALL send a 200 “OK” response according to rules and procedures of SIP/IP Core.

3. SHALL release User Plane resources associated with the SIP Session ;

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Receiver Agent SHALL use 3GPP/3GPP2 IMS mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.004] with the clarifications given in this section Procedures at the Push Sender agent

7.3.2 Procedures at the Push Sender agent

7.3.2.1 Establishment of a MSRP Session

When the establishment of an MSRP session is needed, the Push Sender Agent:

1. SHALL generate an initial SIP INVITE request as according to rules and procedures of [RFC3261;

2. SHALL include an Accept-Contact header with the communication service identifier of the Enabling Service and MAY add the 'require' and 'explicit' parameters according to rules and procedures of [RFC3841] and 3GPP 24.229;

3. MAY include an Accept-Contact header with the Application Reference Identifier of the referenced application according to rules and procedures of [RFC3841] and 3GPP 24.229;

4. SHOULD include an Allow header with all supported SIP methods;

5. SHALL include the option tag 'timer' in the Supported header according t orules and procedures RFC 4028; and,

6. SHOULD include the Session-Expires header with the refresher parameter set to ''uac'' according to rules and procedures of [RFC4028].

7. SHALL set the Request-URI of the SIP INVITE request to the Push Receiver Agent

8. SHALL include in the SIP INVITE request a MIME SDP body as a SDP offer according to rules and procedures of [RFC3264], [RFC4566] and [MSRP] and

a. SHALL set the SDP directional media attribute to a=sendonly

b. MAY add the media attribute to the SDP settings as specified in [mmusic-file-transfer]

c. SHALL support multiple "m=" lines if more than one file is to be transfered as described in [mmusic-file-transfer 1]

9. SHALL send the SIP INVITE request towards the Push Receiver Agent according to rules and procedures of the SIP/IP Core.

On receiving a SIP 200 "OK" response to the SIP INVITE request the Push Sender Agent:

1. SHALL store the list of supported SIP methods if received in the Allow header;
2. SHALL store the Session Identity if received in the Contact header as described in [RFC 4579];

3. SHALL start the Session timer using the value received in the Session-Expires header according to rules and procedures of [RFC4028].

4. SHALL interact with the User Plane as specified in 7.3.3.2 MSRP Media Session
5. When the 200 OK response for the last MSRP SEND is received, the Push Sender Agent SHALL close the MSRP session for that particular file transfer by setting the m line to zero i.e. m= 0, according to the procedures defined in 5.2.1.2“MSRP Session Release”.
When the SIP/IP Core corresponds to 3GPP/3GPP2 IMS, the Push Sender Agent SHALL use 3GPP/3GPP2 IMS Session establishment mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.004] with the clarifications given in this section.

7.3.2.2 Push Sender Agent canceling a MSRP Session

When the Push Sender Agent wants to cancel the MSRP Session initiation, and the MSRP Session signalling is used as specified in section 5.2.1.1 "Establishment of a MSRP Session” and the Push Receiver Agent has not yet received a final SIP response for the SIP INVITE request, Push Sender Agent SHALL send a SIP CANCEL according to rules and procedures of [RFC3261].

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Sender Agent SHALL use 3GPP/3GPP2 IMS mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.004] with the clarifications given in this section.

7.3.2.3 MSRP Session release

When the Push Sender Agent completes MSRP session, Push Sender Agent:
1. SHALL generate a SIP BYE request according to rules and procedures of [RFC3261] if there had been only one MSRP-file or the MSRP-file is the last remaining media stream in the SDP file;

2. SHALL set the Request-URI to the SIP Session Identity of the SIP Session to release;

3. SHALL send a SIP BYE request according to rules and procedures of SIP/IP Core.

If the timer set expires, the Push Sender Agent:

1. SHALL send re-INVITE to set the media line to zero i.e. m= 0 of the MSRP-file that has been transferred, if there is any other media stream than the MSRP-file transfer media stream in the SDP file
2. In case of multiple media lines for multiple different file transfer , the Push Sender Agent SHALL send the re-INVITE to set to zero i.e. m=0 , of all the media lines corresponding to the MSRP-files that have been transferred

Upon receiving a SIP 200 "OK" response to the SIP BYE request the Push Sender Agent SHALL release User Plane resources associated with the SIP Session with the Push Receiver Agent.

When the SIP/IP Core corresponds with 3GPP/3GPP2 IMS, the Push Sender Agent SHALL use 3GPP/3GPP2 IMS mechanisms according to rules and procedures of [3GPP TS 24.229] / [3GPP2 X.S0013.004] with the clarifications given in this section.

7.3.3 User Plane

7.3.3.1 General

· MSRP Session between end points is negotiated with an Offer and Answer model using Session Description Protocol. These negotiation parameters are carried by SIP Signalling.
· Recommended media parameters to be used in near real-time communication are specified in [3GPP TS 26.141].

7.3.3.2 MSRP Media Session

7.3.3.2.1 Procedures for Originating Client

The Push Sender Agent sends a MSRP Message according to the following procedure:
1. To provide rich description of the Push content when sending multimedia message during an MSRP session, the Push Sender Agent:
a. SHOULD add a Content-Disposition header field according to [RFC 2183] to the MSRP SEND method .

b. If the Push Sender Agent does not want the content to be rendered automatically to the receiver, but only on an express action of the receiver, then the sending Push Sender Agent SHALL add a Content-Disposition header field ‘attachment’ according to [RFC 2183] to the MSRP SEND according to rules and procedures of [MSRP].
2. The Push Sender Agent MAY include Content-Description header field whenever available;
3. To get the confirmation of the MSRP delivery, the Push Sender Agent MAY add a Success-Report header in the MSRP SEND method and set the value to yes

When the Push Sender Agent has received the corresponding response for the last chunk of the MSRP SEND request, e.g. 200 OK or Success-Report, the Push Sender Agent should close the MSRP session according to [MSRP].

Upon receipt of an MSRP Failure response (e.g. 4XX), the Push Sender Agent:
1. SHALL check whether the corresponding MSRP request contains a failure delivery request, if true the the Push Sender Agent SHALL generate a Failure delivery notification with MSRP REPORT; Otherwise, end the procedures;
7.3.3.2.2 Procedures for Terminating Client

The Push Reciver Agent SHALL checks whether the message contains the request for delivery report. If true, the Push Reciver Agent SHALL sends a delivery notification with MSRP REPORT to the initiating Push Sender Agent according to the rules and procedures of [MSRP].
8. Registration
(Normative)

8.1 Overview
(Informative)

SIP/IP Core Network registration, and de-registration, which use REGISTER request, are a procedure where the user requests authorization to use the SIP/IP Core services in the network. The SIP/IP Core Network authenticates and authorizes the user to access the SIP/IP network.

In order for the Push Sender agent to receive a REGISTER request from the Push Receiver agent, the SIP/IP Core Network can trigger a third-party REGISTER to it whenever it receives a registration request from the Push Receiver agent, as specified in 3GPP [3GPP TS 23.228] and 3GPP2 [3GPP2 X.S0013-002-A] , respectively. This trigger is based on a filter criterion configured for this user and this type of message, which indicates that every REGISTER message including SIP Push support will be sent, via a 3rd party registration, to the Push Sender agent. An informative example of such criterion is provided in Appendix 0 of this specification,

Push Sender agent can also act as watcher of the “reg” event package according to [3GPP TS 24.229] and [3GPP2 X.S0013-004-A].

8.2 Procedures at Push Receiver agent
(Normative)

The Push Receiver agent SHALL register, re-register and de-register to the SIP/IP Core according to rules and procedures of [RFC3261] with the clarifications in the following subsection.

When the Push Receiver agent register, re-register, it perform the following steps:

1) SHALL generate a SIP REGISTER request;

2) SHALL include the SIP Push feature-tag of each push application (see Section Error! Reference source not found. for the detail) in the Contact header of the SIP REGISTER request;

3) SHALL include a Require header with the option tag “pref” according to rules and procedures of [RFC3840];

When the Push Receiver agent deregisters it perform the following steps:

1) SHALL generate a SIP REGISTER request.

2) If the client needs to remain SIP/IP Core registered the Push Receiver agent SHALL reregister with the SIP/IP Core without including each of the SIP Push feature-tag.

3) If the client also needs to deregister from the SIP/IP Core, the Push Receiver agent SHALL send a SIP REGISTER request with an Expires header set to 0.

When the SIP/IP Core corresponds with 3GPP IMS or 3GPP2 MMD networks, the Push Receiver agent implemented by the UE SHALL comply with registration, re-registration rules and procedures in subsection 5.1.1 of the [3GPP TS 24.229] and [3GPP2 X.S0013-004-A].

Editor note: verify the SIP REGISTER can support service and application ref ID.(Kent)
8.3 Procedures at Push Sender agent
(Normative)

When the SIP/IP Core corresponds with 3GPP IMS or 3GPP2 MMD networks, the Push Sender agent implemented by the Application Server (AS) SHALL behave according to the procedures in subsection 5.7.1 of the [3GPP TS 24.229] and [3GPP2 X.S0013-004-A].
9. Service and Application Addressing
9.1 Introduction

As described earlier SIP Push specifications will be used by other enablers to build a service using SIP Push and applications may run on top of those enablers as described in Figure 2
[image: image3.png]Enabler

SIP IP Core

Figure 2 SIP Push generic model
Note: applications that run on top of the enabler can be another enabler e.g. MMS

For communication and routing purposes the SIP Push specifications will refer to two types of identifiers called Communication Service Identifier and Application Reference Identifier [3GPP 23.228 and 24.229.]
The purpose of the Communication Service Identifier is necessary to manage routing within the SIP/IP Core. This means that the Communication Service Identifier is only used between the SIP Push Sender and the SIP Push Receiver. The consumer of the Communication Service Identifier is the SIP IP core and the SIP stack in the terminal.

The Application Reference Identifier on the other hand is intended to be used by the enabler and optionally to dispatch messages to the specified application.

9.2 Communication Service Identifier
(Normative)
The Communication Service Identifier

2. SHALL be used in SIP requests/responses as specified in section 9.5

3. SHALL be expressed as feature tag
4. SHALL be identified with the string .icsi as as a part of the feature tag [3GPP 23.228 and 3GPP 24.229] e.g +g.oma.icsi.xxx where xxx represents the identifier of the enabler.

The icsi string is used to express that this is a communication service identifier so that for example the SIP IP core can use it for routing to the correct enabler.

The Push Receiver agent can register or de-register for a specific push enabler by inserting or omitting the Communication Service Identifier corresponding to that specific enabler.
9.3 Application Reference Identifier
(Normative)
The Application Reference Identifier

1. MAY be used in SIP requests/responses

2. SHALL be expressed as feature tags.
3. SHALL be identified with the string .iari as as a part of the feature tag [3GPP 23.228 and 24.229] e.g +g.oma.iari.xxx where xxx represents the identifier of the application.

The iari string is used to express that this is an Application Reference Identifier so that for example the SIP IP core can ignore this tag..
9.4 Example
This example describes a possible use of Communication Service Identifier and Application Reference Identifier for the OMA Push 2.x Service where OMA Push 2.x service use SIP Push.

The SIP Push 2.x enabler could use Application Reference Identifier to distinguish and route between applications that use the push enabler. Push applications are identified with a unique identifier registered with [OMNA] called the ‘PUSH Application ID’. For SIP Push 2.x each push application id is mapped to an Application Reference Identifier.
If this specification is used to extend the OMA Push 2.x enabler then the name of the Communication Service Identifier is “g.oma.icsi.push”. This translates according to [RFC 3841] to a feature parameter name of “+g.oma.icsi.push”.

The names used in WAP Push 2.x for push application reference identifiers may be coded with the pattern “g.oma.iari.push.xxx”, where xxx is derived from the OMNA registered push application id URN. For well known push applications xxx is the URN without the “x-wap-application:” or “x-oma-application:” prefix. For other registered applications xxx is replaced with the full registered URN. For example the MMS URN “x-wap-application:mms.ua” could map to the feature tag name “g.oma.iari.push.mms.ua” which maps to the feature parameter name “+g.oma.iari.push.mms.ua”.

9.5 Communication Service Identifier and Application Reference Identifier Usage
(Normative)

9.5.1 REGISTER
The Communication Service Identifier SHALL be included in the Contact header as feature parameter as specified in [RFC3840] of the SIP REGISTER request, during the Registration procedure (see Section 8). The Application Reference Identifier of each supported push application MAY be included in the Contact header as feature parameters (see Section 7).

9.5.2 MESSAGE
In delivering push messages through the MESSAGE method the Push Sender Agent SHALL add the Communication Service Identifier as feature parameter in the Accept-Contact [RFC3841] header field to identify the targeted push service. The Application Reference Identifier MAY be added in the Accept-Contact header as feature parameter. When the targeted application is unknown the Application Reference Identifier MUST be omitted (see Section 7.1).
When receiving a MESSAGE request, the Push Receiver agent SHALL use the Application Reference Identifier (when present) to route the incoming MESSAGE to the correct application. (see Section7.1)

An example usage (sample flow) of the MESSAGE method with feature tag is shown in Appendix A.2.
9.5.3 SUBSCRIBE

When sending a SUBSCRIBE request, the Push Receiver agent SHALL indicate the Communication Service Identifier in the Accept-Contact header as feature parameter [RFC3841]. It MAY also provide a list of supported Application Reference Identifiers in the Accept-Contact header (see Section 7.2.1).
An example usage (sample flow) of the SUBSCRIBE method with feature tag is shown in AppendixA.3.
9.5.4 NOTIFY

In delivering push messages through the NOTIFY method the Communication Service Identifier SHALL be set in the Accept-Contact [RFC3841] header field to identify the push service. On sending the Notify message the push sender agent MAY add an Application Reference Identifier in the Accept-Contact header as feature parameter [RFC3841].

9.5.5 REFER

The push sender SHALL insert the Communication Service Identifier in the Accept-Contact header [RFC38419. The push sender SHALL insert the Communication Service Identifier of the refered to push service into the “Refer-To” header [RFC4508]. The push sender may add an Application Reference Identifier to the Accept-Contact header. The push sender MAY add Application Reference Identifiers of the referred to push applications.

9.5.6 INVITE

The push sender MUST Communication Service Identifier in the Accept-Contact [RFC3841] header field to identify the push service. On sending the INVITE request the push sender MAY add Application Reference Identifier in the Accept-Contact header as feature parameter [RFC3841].
10. Security
(Normative)

10.1 General
The SIP Push enabler SHOULD rely on and reuse security features and mechanisms provided by the underlying SIP/IP Core, to e.g. secure the service environment and authenticate users. Such dependence will be the assumed as the basis for the security architecture. The access level security mechanism will be provided by the SIP/IP core network. The SIP/IP Core is assumed to provide user authentication and integrity. The SIP/IP Core can also provide confidentiality protection of SIP signalling as defined in 3GPP TS33.203 and 3GPP2S.R0086-0.

All SIP Push users SHALL be securely authenticated to allow reliable access control to SIP Push services. When the SIP/IP Core corresponds to 3GPP/3GPP2 IMS, and the User Equipment contains USIM/ISIM or UIM/R-UIM, mutual authentication between the user and the SIP/IP Core SHALL be applied as specified in [3GPP TS 33.203] and [3GPP2 S.R0086-0].

The Push Sender Agent and the Push Receiver Agent SHALL rely on the authentication and confidentiality mechanisms provided by the underlying SIP/IP Core network to accomplish user identity verification. When the SIP/IP Core corresponds to 3GPP/3GPP2 IMS it needs to ensure, during registration, that the registered SIP Push users public and private address is allocated and authorized to be used by that User in order to prevent spoofing attacks. When the SIP/IP core does not correspond to 3GPP/3GPP2 IMS, it should ensure equivalent levels of authentication and security. Note that the user plane security is not necessarily a part of the SIP/IP Core Security.

10.2 Trust Model

The SIP Push trust model for SIP signalling is based on the SIP/IP Core trusted network model with hop-by-hop security and proxy authentication.

In those cases the intra-domain security is insufficient, Push Sender Agents, e.g. Application Servers, SHOULD authenticate and secure communication to Proxies/Push Receiver Agents, according to [3GPP TS 33.210]. For inter-domain security, Push Sender Agents, e.g. Application Servers, SHALL rely on communication channels that are protected according to [3GPP TS 33.210].

It SHALL be possible to assert, by the SIP/IP Core according to [3GPP TS 24.229], the public identities of the Push Sender Agent when the Push Sender Agent is acting as the originating user agent.
10.3 SIP Signaling Security

The SIP signalling security mechanisms/features described here cover signalling and user messaging using SIP MESSAGE.

10.3.1 Integrity and confidentiality protection

The integrity and optional confidentiality protection mechanism SHALL be used as specified in [3GPP TS 33.203] and [3GPP2 S.R0086-0].

NOTE: [RFC3261] mandates the support for HTTP digest authentication [RFC2617 according to] if authentication is performed. However, the 3GPP standard overrules this requirement (as well as the requirement of TLS usage).

10.3.2 Assurance of user identity

For assurance of user identities and for source origin authentication of SIP Signalling, Push Using SIP SHALL use P-Asserted-Identities according to [3GPP TS 24.229].

If the Push Sender Agent acts as an originating UA then it MUST support P-Asserted-Identities according to [3GPP TS 24.229].
10.3.3 SIP MESSAGE Security

In particular, a SIP MESSAGE SHALL be secured according to [3GPP TS 33.203], [3GPP TS 33.210], and [3GPP TS 24.229].
10.4 Terminal Based Whitelists Authorisation
Editor’s note: a whitelist mechanism will be provided here to authorize incoming requests. The exact realization of this mechanism will be detailed after clarification of the management of such whitelists.
Appendix A. The “oma-app” Profile-type
 (Normative)
The “ua-profile” Event Package defines a framework, where to allow for devices to subscribe with a specific profile type to an application server.

The “oma-app” profile-type specified in this document proposes and specifies a new profile-type as allowed by [SIP_UA_Prof].

The oma-app profile type specifies the applications that are available via the push receiver agent, and that are willing to receive content.

The push receiver agent uses the oma-app profile type to subscribe to content.

The oma-app profile type SHALL follow the steps of Profile Enrolment and Profile Content Retrieval as defined in [SIP_UA_Prof] where Profile Enrolment is the process by which the Push Receiver Agent requests and if successful, subscribes with a Push Sender Agent (corresponding to the Profile Delivery Server (PDS) as defined in [SIP_UA_Prof]) and the Profile Content Retrieval is the process by which an application on a device receives subscribed content

SIP SUBSCRIBE for the oma-app Profile Type

To initiate Profile Enrolment the Push Receiver agent sends a SIP SUBSCRIBE with the oma-app profile type.

Initial Profile Enrolment

During the oma-app Profile Enrolment the Push Receiver Agent establishes a content update subscription and announces what are the applications and versions available using the "appid" parameter as specified in A.x. This parameter can be used in SUBSCRIBE requests only when the Event package is set to "UA-Profile" and the profile-type header is set to "oma-app".

The Push Receiver Agent MAY add the Application Reference Identifier (see chapter 9.2) of each application that is available to receive content updates in the appid parameter of the oma-app profile. The appid parameter MAY contain one or more Application Reference Identifiers

Examples
* The Push Receiver Agent only subscribes to one application: app1
SUBSCRIBE sip:user-aor@example.com SIP/2.0

 Event: ua-profile;profile-type=oma-app;appid="app1";

* The Push Receiver Agent subscribes to multiple applications: app1, app2 and app3

SUBSCRIBE sip:user-aor@example.com SIP/2.0

 Event: ua-profile;profile-type=oma-app;appid="app1, app2, app3";

* The Push Receiver Agent does not specify any Application Reference Identifier

SUBSCRIBE sip:user-aor@example.com SIP/2.0

 Event: ua-profile;profile-type=oma-app;

The Profile Enrollment Confirmation

The Push Sender Agent SHALL send a NOTIFY upon a successful SUBSCRIBE as specified in draft-ietf-sipping-config-framework.

Content MAY be delivered in the NOTIFY, if this is the case, the SIP Push Receiver agent SHALL process the notification as specified in draft-ietf-sipping-config-framework.
When the Push Sender Agent receives a SUBSCRIBE with the oma-app profile type and no appid parameter it SHALL NOT include an appid parameter either in the response.
If the appid parameter includes one or more Application Reference Identifiers, the Push Sender Agent SHALL respond only with the appid values supported by the Push Sender Agent and the Push Receiver Agent SHALL understand that only those subscriptions have been agreed.
Examples:

* The Push Receiver Agent has subscribed to one application: app1
SUBSCRIBE

Event: ua-profile; profile-type=oma-app;app1

NOTIFY

Event: ua-profile; profile-type=oma-app;app1

The Push Receiver Agent has subscribed to multiple applications: app1, app2 and app3 and the Push Sender Agent only support app1 and app2

SUBSCRIBE

Event: ua-profile; profile-type=oma-app; appid="app1, app2, app3";
NOTIFY

Event: ua-profile; profile-type=oma-app; appid="app1, app2";

* The Push Receiver Agent has not specified any Application Reference Identifier
SUBSCRIBE

Event: ua-profile; profile-type=oma-app;

NOTIFY

Event: ua-profile; profile-type=oma-app;

Content Push

A successful Profile Enrollment may result in continuous delivery of notifications to the Push Receiver Agent

The Push Sender Agent SHALL deliver notifications upon availability of new content to any of the application defined in the appid parameter delivered under oma-app profile-type in the Profile Enrollment process.

When there was one or more Application Reference Identifier in the appid parameter during the Profile Enrollment, the Push Sender Agent SHALL include only the targeted Application Reference Identifier in the appid parameter in the NOTIFY.
When there was no appid parameter specified during the Profile Enrolment, the Push Sender Agent SHALL not include any appid parameter in the Event header of the NOTIFY.
Examples:

* The Push Receiver Agent has subscribed to multiple applications: app1, app2 and app3 during Profile Enrolment

SUBSCRIBE

Event: ua-profile; profile-type=oma-app; appid="app1, app2, app3";
NOTIFY
Event: ua-profile; profile-type=oma-app; appid="app1";
* The Push Receiver Agent has not specified any Application Reference Identifier during Profile Enrolment:

SUBSCRIBE

Event: ua-profile; profile-type=oma-app

NOTIFY

Event: ua-profile; profile-type=oma-app;

Summary of event parameters

The following table shows the use of Event header parameters in SUBSCRIBE requests for the oma-app Profile Type:

 Event header || oma-app |

 ========================

 appid
 || optional |

 The following table shows the use of Event header parameters in NOTIFY requests for the oma-app profile type:

 Event header || oma-app |

 ========================

 appid
 || optional |

Appid parameter format

A Push Receiver or Sender Agent Shall use the following format for oma-app:

 APPID= “appid” EQUAL applist

 applist = DQUOTE app *(COMMA app) DQUOTE

 app = 1*(%x21 / %x23-2B / %x2D-7E)

 COMMA = %x2C

 DQUOTE = %x22 ;as per section 6.1 of RFC 2234 [2]

This document does not define values for appid. These values will be defined by individual applications, and MUST be registered with OMNA.
Appendix B. Sample flows
(Informative)

B.1 Registration

[image: image4.emf]REGISTER request

200 (OK)

Push

Receiver

Agent

SIP/IP Core

Network

Push Sender Agent

Third-Party

REGISTER request

200 (OK)

Figure 3 Registration and de-registration procedures

· Editor note: update these flows with application id, etc. (Thinh)

· Upon connecting to the SIP/IP Core Network, the Push Receiver agent will perform the registration procedure as specified in 3GPP [3GPP TS 23.228] and 3GPP2 [3GPP2 X.S0013-002-A], respectively. For de-registration, the same procedures will apply accordingly.

· Upon successful registration procedure and filter information the SIP/IP Core Network generates a third-party REGISTER request and sends it to the Push Sender agent, when the Push Receiver agent is authorized to use the service. Based on filter processing, the SIP/IP Core Network informs the Push Sender agent about the registration of the client. The same procedures apply for de-registration.
· Upon receipt of the REGISTER request, the Push Sender agent wills response with 200 (OK).

B.2 MESSAGE sample flow
[image: image1.jpg]«“+OMa

Open Mobile Alliance

Figure 4 - MESSAGE flow with an example feature tag
B.3 SUBSCRIBE/NOTIFY sample flow

[image: image5.wmf]Push

Send

er

Agent

SIP

/

IP Core

Network

Push

Receiv

er

Agent

(

1

)

SIP SUBSCRIBE

Event

:

ua

-

profile

(

4

)

200

OK

(

11

)

200

OK

(

6

)

NOTIFY

(

7

)

200

OK

(

9

)

NOTIFY

(

12

)

200

OK

(

2

)

SIP SUBSCRIBE

Event

:

ua

-

profile

(

3

)

200

OK

(

5

)

NOTIFY

(

8

)

200

OK

P

u

s

h

s

u

b

m

i

s

s

i

o

n

(

10

)

NOTIFY

Figure 5: Push Receiver agent subscribes to push submission events.

1) 1) Push Receiver agent (john.doe@home1.net) subscribes to push submission events for PUSH Application ID number ‘0x05’ (Push SyncML). Note that this value is only given as illustrative example and cannot be used without being registered with OMNA.

SUBSCRIBE sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 70

Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:orig@scscf1.home1.net;lr>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@home1.net>

Accept-Contact: *;+g.oma.icsi.push’;+ g.oma.iari.push.PushSyncML;;require;explicit
Event: ua-profile;profile-type="application"
Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 85 SUBSCRIBE

P-Preferred-Identity: "John Doe" <sip:john.doe@home1.net>

Privacy: none

Expires: 600000

Accept: application/vnd.syncml.ds.notification

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>

Content-Length: 0

2) The SIP/IP Core network forwards the SIP SUBSCRIBE request to the corresponding Push Sender agent. When the SIP/IP Core network corresponds to 3GPP IMS or 3GPP2 MMD, the subscriber's preferred public SIP URI is inserted in the P-Asserted-Identity header.

SUBSCRIBE sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP scscf1.home1.net;branch=z9hG4bK351g45.1,

SIP/2.0/UDP pcscf1.visited1.net:7531 branch=z9hG4bK240f34.1,

SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp;branch=z9hG4bKnashds7

Max-Forwards: 68

Record-Route: <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>, <sip:orig@scscf1.home1.net;lr>

Route: <sip:psadm1.home1.net;lr>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@hom1e.net>
Accept-Contact: *;+g.oma.icsi.push’; + g.oma.iari.push.PushSyncML;require;explicit
Event: ua-profile;profile-type="application"
Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 85 SUBSCRIBE

P-Asserted-Identity: "John Doe" <sip:john.doe@home1.net>

Privacy: none

Expires: 600000

Accept: application/vnd.syncml.ds.notification
Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp>

Content-Length: 0

3) Upon receiving a SIP SUBSCRIBE request for the “ua-profile” event package, the Push Sender agent performs the necessary authorization checks on the originator's identity, whether the identity is allowed to subscribe according to local policy (e.g., allow the user to subscribe from his current device). If the authorization is successful, it creates a subscription dialog to "ua-profile" event package to provide the changes of the data identified by the "Event" header parameters, and returns a 200 OK to the subscriber.

4) The SIP/IP Core network forwards the 200 OK response to the originator of the SIP SUBSCRIBE request, i.e. sip:john.doe@home1.net.

5) Push Sender agent generates and sends an initial SIP NOTIFY containing an empty body (or push content if applicable).

NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp SIP/2.0

Via: SIP/2.0/UDP psadm1.home1.net;branch=z9hG4bK332b23.1

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@home1.net>;tag=151170

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 102 NOTIFY

Subscription-State: active;expires=600000

Event: ua-profile

Contact: <sip:psadm1.home1.net>

Content-Length: 0

6) The SIP/IP Core network forwards the SIP NOTIFY request to the appropriate Push Receiver agent.

7) The Push Receiver agent responds with a 200 OK.

8) The SIP/IP Core network forwards the 200 OK to the Push Sender agent.

9) During the subscription, the Push Sender agent submits a push content by sending a SIP NOTIFY request to the Push Receiver agent.

NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357;comp=sigcomp SIP/2.0

Via: SIP/2.0/UDP psadm1.home1.net;branch=z9hG4bK332b23.1

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>, <sip:pcscf1.visited1.net:7531;lr;comp=sigcomp>

From: <sip:john.doe@home1.net>;tag=31415

To: <sip:john.doe@home1.net>;tag=151170

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 112 NOTIFY

Subscription-State: active;expires=600000

Event: ua-profile

Content-Type: application/vnd.syncml.ds.notification
Contact: <sip:psadm1.home1.net>

Content-Length: (...)

[SyncML DS notification content]

10) The SIP/IP Core network forwards the SIP NOTIFY request to appropriate Push Receiver agent.

11) The Push Receiver agent responds with a 200 OK.

12) The SIP/IP Core network forwards the 200 OK to the Push Sender agent.

Note: The steps 1-8 (in the box) aim at creating an initial subscription between the Push Receiver and the Push Sender agents. Once the Push Receiver agent is successfully subscribed to the “ua-profile” event package at the Push Sender agent, steps 1-8 are not required anymore.
B.4 REFER sample flow

[image: image6.wmf]Push Sender

Agent

SIP

/

IP Core

Network

Push

Receiv

er

Agent

(

3

)

20

2

Accepted

(

1

)

REFER

Refer

-

To

:

sip

:

psadm

.

home

1

.

net

;

method

=

”SUBSCRIBE”

?

Event

:

ua

-

profile

;

profile

-

type

=

application

(

4

)

20

2

Accepted

(

2

)

REFER

Refer

-

To

:

sip

:

psadm

.

home

1

.

net

;

method

=

”SUBSCRIBE”

?

Event

:

ua

-

profile

;

profile

-

type

=

application

(

10

)

NOTIFY

Event

:

refer

(

11

)

NOTIFY

Event

:

refer

(

12

)

200

Ok

(

13

)

200

Ok

(

5

)

NOTIFY

Event

:

refer

(

6

)

NOTIFY

Event

:

refer

(

7

)

200

Ok

(

8

)

200

Ok

(

9

)

Subscription

(

steps

1

-

8

of figure X

.

1

)

Figure 6 Push Sender agent triggers a subscription from a Push Receiver agent.

1. A Push Sender agent sends a REFER request to the Push Receiver agent

REFER sip:john.doe@home1.net SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]:1357;branch=z9hG4bKnashds7

Max-Forwards: 70

Route: <sip:scscf1.home1.net;lr>

From: <sip:psadm.home1.net>;tag=31415

To: <sip:john.doe@home1.net>

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 1 REFER

Expires: 600

Refer-To: <sip:john.doe@home1.net;method=SUBSCRIBE?Event=ua-profile%3bprofile-type%3d%22application%22&Accept-Contact=*%3b+g.oma.icsi.push’;+ g.oma.iari.push.PushSyncML %3bexplicit%3brequire>

Contact: <sip:[5555::aaa:bbb:ccc:ddd]:1357>

Content-Length: 0
2. Push Receiver agent receives a REFER request via SIP/IP Core network. The REFER request message instructs it to send a SUBSCRIBE message to the user’ SIP URI (sip:john.doe@home1.net) to subscribe to the “ua-profile” event package and to the “application” profile type. Note that the Accept-Contact value indicating Push Application ID number 0x05 (Push SyncML) is only given as illustrative example and cannot be used without being registered with OMNA.
3. Upon receiving the REFER request, the Push Receiver agent requests approval from the user prior to proceed. If the approval is granted, the Push Receiver agent sends an appropriate response (202 Accepted) to the SIP/IP Core network.
4. SIP/IP Core network forwards the response (202 Accepted) to the requester of the REFER.
5. The Push Receiver agent sends an immediate initial NOTIFY request within the REFER-created dialog to the SIP/IP Core network
6. SIP/IP Core network forwards the NOTIFY request to the requester of the REFER.
7. The requester entity sends an appropriate response (200 OK) to the SIP/IP Core network.
8. SIP/IP Core network forwards the 200 OK response to the Push Receiver agent.
9. The Push Receiver agent sends a SUBSCRIBE request to the resource identified by the URI in the Refer-To header field value, according to the procedures defined in 6.2.1.1, as a separated dialog. The SUBSCRIBE request initiates a subscription to the ua-profile event package.
10. Upon receiving the first NOTIFY request within the ua-profile dialog, the Push Receiver agent sends a final NOTIFY request within the refer dialog to inform the requester of the result of the action triggered out of the REFER request.
NOTIFY sip:[5555::aaa:bbb:ccc:ddd]:1357 SIP/2.0

Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:eee]:5060;branch=z9hG4bK-abcd

Max-Forwards: 70

To: <sip:psadm.home1.net>;tag=31415

From: <sip:john.doe@home1.net>;tag=1234

Call-ID: b89rjhnedlrfjflslj40a222

CSeq: 1 NOTIFY

Event: refer

Subscription-State: terminated;reason=noresource

Contact: sip:[5555::aaa:bbb:ccc:eee]:5060

Content-Type: message/sipfrag;version=2.0

Content-Length: 16

SIP/2.0 200 OK

11. SIP/IP Core network forwards the NOTIFY request (Event:refer) to the requester entity.
12. The requester entity sends an appropriate response (200 OK) to the SIP/IP Core network.
13. SIP/IP Core network forwards the 200 OK response to the Push Receiver agent.
INVITE / MSRP SAMPLE FLOW

B.5 INVITE / MSRP Sample Flow

B.5.1 Pushing Messages over INVITE and MSRP

The following example describes how to push content to a user.

In this scenario, the Content will be sent over MSRP to the Push Receiver Agent.

[image: image7.wmf]

Push Sender Agent

SIP/IP core Network

Push Receiver Agent

SIP MESSAGE

Accept contact = +

g.oma.sip

-

push

Body: Push message

SIP MESSAGE

Accept contact = +

g.oma.sip

-

push

Body: Push message

(7) 200 OK

(8) 200 OK

Message to be

delivered (e.g. over

PAP in PPG case)

Message sent to

Push Sender Agent

AS

Application

Message delivered to

application

P

-

Asserted

-

Identity

 = “Originator”

 <orig@domain.com>

*(COMMA PAssertedID

-

value)

P

-

Asserted

-

Identity = 徹riginator��

 <orig@domain.com>

*(COMMA PAssertedID

-

value)

 Push Sender Agent Push Receiver Agent.

 | |

 |(1) (SIP) INVITE |

 |----------------------->|

 |(2) (SIP) 200 OK |

 |<-----------------------|

 |(3) (SIP) ACK |

 |----------------------->|

 | |

 |(4) (MSRP) SEND (chunk) |

 |----------------------->|

 |(5) (MSRP) SEND (chunk) |

 |----------------------->|

 |(6) (MSRP) 200 OK |

 |<-----------------------|

 |(7) (MSRP) 200 OK |

 |<-----------------------|

|

 |

|(8) (MSRP) REPORT |

 |<-----------------------|

 | |

 |(9) (SIP) BYE |

 |----------------------->|

 |(10) (SIP) 200 OK |

 |<-----------------------|

 | |

 | |

Figure 7: Pushing MSRP Messages

One or more messages will be sent to the Push Receiver Agent by MSRP channel. The Push Sender Agent will sends a SIP INVITE request to the SIP/IP core to negotiate with the Push Receiver Agent about establishing MSRP channel. . If the Push Sender want to send more then one file then one m= line is required per file with file descriptor information connected to each of the m lines.
1. The SIP/IP Core sends the SIP INVITE to the Push Receiver Agent based on information stored during registration.
2. The Push Receiver Agent analyses the SDP parameters and returns the agreed parameters by sending a SIP 200 "OK" response to the SIP/IP Core. If the Push Receiver Agent for some reason do not want to reject a file offered by the offerer, it sets the port number of the "m=" line associated with the file to zero.
a. The SIP/IP Core forwards the SIP 200 "OK" response to the Push Sender Agent. (not shown in the picture)
3. The Push Sender Agent acknowledges the SIP 200 "OK" response with a SIP ACK request sent to the SIP/IP Core.
a. The SIP/IP Core forwards the SIP ACK request to the Push Sender Agent.(not shown in the picture)
4. The Push Sender Agent send the the first chunk of data in a MSRP SEND to the Push Receiver Agent using the MSRP channel and the Success-Report header is inserted and set to yes. The MSRP SEND request that will carry the push message as payload.

5. The Push Sender Agent send the the second chunk of data in a MSRP SEND to the Push Receiver Agent using the MSRP channel. The MSRP SEND request that will carry the push message as payload.

6. The Push Receiver Agent responds with an MSRP 200 “OK” on the first MSRP SEND to the Push Sender Agent using the MSRP channel.
7. The Push Receiver Agent responds with an MSRP 200 “OK” on the second MSRP SEND to the Push Sender Agent using the MSRP channel.12. When the Push Sender Agent and the Push Receiver Agent do not need the MSRP channel, the Push Sender Agent sends a SIP BYE to SIP/IP Core to disconnect the MSRP channel with the Push Receiver Agent.
8. When the complete message was successfully received, the Push Reciver Agent sends a MSRP REPORT as a Success Report was requested.

9. The Push Sender Agent terminates the session by sending a SIP BYE to the Push Receiver Agent.

a. The SIP/IP Core forwards the SIP BYE request to the Push Receiver Agent. .(not shown in the picture).
10. The Push Sender Agent responds to the Push Receiver Agent with SIP 200 "OK" through the SIP/IP Core.
a. The SIP/IP Core forwards the SIP 200 "OK” to the Push Sender Agent. .(not shown in the picture)
NOTE: If more than one message is to be sent to the client before step10, the Push Sender Agent will repeat the step 8-10.
File Transfer with SDP offer/answer, modified example from file transfer draft
INVITE request containing an SDP offer for file transfer

 INVITE sip:bob@example.com SIP/2.0

 To: Bob <sip:bob@example.com>

 From: My Sender Agent <sip:bob@push-sender-agent.example.com>;tag=1928301774

 Call-ID: a84b4c76e66710

 CSeq: 1 INVITE

 Max-Forwards: 70

 Date: Sun, 21 May 2006 13:02:03 GMT

 Contact: <sip:bob@push-sender-agent.example.com>

 Accept-Contact: +g.oma.lcsi.sip-push, +g.oma.iari.syncml

 Content-Type: application/sdp

 Content-Length: [length of SDP]

 --boundary71

 Content-Type: application/sdp

 Content-Length: [length of SDP]

 v=0

 o=push 2890844526 2890844526 IN IP4 push-sender-agent.example.com

 s=

 c=IN IP4 push-sender-agent.example.com

 t=0 0

 m=message 7654 TCP/MSRP *

 i=This is my latest picture

 a=sendonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://push-sender-agent.example.com:7654/jshA7we;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg

 size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

 a=disposition: not-render
 a=file-date:creation:"Mon, 15 May 2006 15:01:31 +03:00"

 a=icon:cid:id2@ push-sender-agent.example.com

 --boundary71

 Content-Type: image/jpeg

 Content-Transfer-Encoding: binary

 Content-ID: <id2@ push-sender-agent.example.com>

 Content-Length: [length of image]

 Content-Disposition: icon

 ...small preview icon of the file...

 --boundary71--

From now on we omit the SIP details for the sake of brevity.

The Push Receiver Agent on bobpc receives the INVITE request, inspects the SDP offer, computes the file descriptor and finds a local file whose hash equals the one indicated in the SDP. Push Receiver Agent accepts the file transmission and creates an SDP answer as follows:

 v=0

 o=bob 2890844656 2890844656 IN IP4 bobpc.example.com

 s=

 c=IN IP4 bobpc.example.com

 t=0 0

 m=message 8888 TCP/MSRP *

 a=recvonly

 a=accept-types:message/cpim

 a=accept-wrapped-types:*

 a=path:msrp://bobpc.example.com:8888/9di4ea;tcp

 a=file-selector:name:"My cool picture.jpg" type:image/jpeg size:4092 hash:sha-1:72245FE8653DDAF371362F86D471913EE4A2CE2E

The push sender agent opens a TCP connection to the push receiver agent. The push sender agent then creates an MSRP SEND request that. This SEND request contains the first chunk of the file.

 MSRP d93kswow SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

Byte-Range: 1-2048/4385
 Success-Report: yes
 Content-Type: message/cpim

 To: Bob <sip:bob@example.com>

 From: <sip:bob@push-sender-agent.example.com>

 DateTime: 2006-05-15T15:02:31-03:00

 Content-Disposition: not-render; filename="My cool picture.jpg"; creation-date="Mon, 15 May 2006 15:01:31 +03:00"; size=4092

 Content-Type: image/jpeg

 ... first set of bytes of the JPEG image ...

 -------d93kswow+

The Push Sender Agent sends the second and last chunk. Note that MSRP allows to send pipelined chunks, so there is no need to wait for the 200 (OK)response from the previous chunk.

 MSRP op2nc9a SEND

 To-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 From-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 Message-ID: 12339sdqwer

 Byte-Range: 2049-4385/4385

 Content-Type: message/cpim

 ... second set of bytes of the JPEG image ...

 -------op2nc9a$

Bob acknowledges the reception of the first chunk.

 MSRP d93kswow 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 1-2048/4385

 -------d93kswow$

Bob acknowledges the reception of the second chunk.

 MSRP op2nc9a 200 OK

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp

 Byte-Range: 2049-4385/4385

 -------op2nc9a$

Bob acknowledges the reception of the complete message as a REPORT was requested

Bob-> The Push Sender Agent (MSRP):

 MSRP dkei38sd REPORT

 To-Path: msrp://push-sender-agent.example.com:7654/iau39;tcp

 From-Path: msrp://bobpc.example.com:8888/9di4ea;tcp
 Message-ID: 12339sdqwer

 Byte-Range: 1-4385/4385
 Status: 000 200 OK

 -------dkei38sd$

Push Sender Agent terminates the SIP session by sending a SIP BYE request.

Bob acknowledges the reception of the BYE request and sends a 200 (OK) response.
Appendix C. Initial Filter Criteria
(Informative)
C.1 General

The 3GPP IMS/ 3GPP2 MMD SIP/IP Core uses initial Filter Criteria to determine the routing of initial SIP requests between the home network SIP/IP Core and push Application Servers such as the PPG. The initial Filter Criteria is part of the push application of User subscription information and represent the provisioned subscription of a push User to an application(s).

If some other SIP/IP Core than 3GPP IMS/ 3GPP2 MMD that does not use initial Filter Criteria is used to deploy the push service then the logic identified here needs to be implemented by the SIP/IP Core to route the push related SIP requests to the push application server.

Based on filter criteria SIP/IP Core sends a 3rd party REGISTER to the push application server.

Further details on initial Filter Criteria are specified in [TS23.218] and [TS29.228].

C.2 Originating Filter Criteria

NOTE1: Originating Filter Criteria is indexed on the P-Asserted-Identity header.

CASE method="SUBSCRIBE" AND header= "event" =”ua-profile” AND header=”event”=”profile-type=application” AND header =”Accept-Contact”=” +g.oma.icsi.push’;+ g.oma.iari.push.*”

THEN: ROUTE request to the specified push application server.

CASE method="REGISTER" AND header="Contact" = "+g.oma.icsi.push "

THEN: ROUTE request to the specified push application server

NOTE 2: The “*” represents a wildcard for string processing of the trigger.

NOTE3: The above SUBSCRIBE and REGISTER examples, the ROUTE request of the “*” is to the same push application server.
Appendix D. Response Code Interpretation
(Informative)

When the Push Receiver agent receives a NOTIFY request, it will generate a SIP response. The following Table 1 shows a mapping between SIP response codes to the SIP Push response scenarios. These response scenarios represent an interpretation of SIP response codes and guidance for applications. Unless stated otherwise in this document, response is interpreted according to the rules in the SIP specification [RFC3261], [RFC3265], [RFC3428], and [RFC3515].

	Scenario
	SIP Push Method
	SIP Response code
	Description

	1
	NOTIFY, MESSAGE, REFER
	200 OK
	Push request accepted

	2
	NOTIFY, MESSAGE

REFER
	- 400 bad request

- 500 server internal error

- 503 server unavailable

- 603 decline

	Push request rejected without specific causes, retries allowed

	3
	NOTIFY, MESSAGE, REFER
	- 403 Forbidden

- 604 does not exist anywhere
	Push request rejected without specific causes, no retries

	4
	NOTIFY, MESSGE, REFER
	- 408 request timeout
	Push request rejected because the push message cannot be delivered to the intended destination

	5
	NOTIFY, MESSAGE, REFER
	- 500 Server internal error.
	Push request rejected because the push message is discarded due to resource shortage

	6
	NOTIFY, MESSAGE, REFER
	- 415 Unsupported media type
	Push request rejected, because the content type cannot be processed

	7
	NOTIFY, REFER
	- 481 Subscription does not exist
	Push request rejected, matching provisioning context not found

Table 1: Response code interpretation

Appendix E. Change History
(Informative)

E.1 Approved Version History

	Reference
	Date
	Description

	n/a
	n/a
	No prior version –or- No previous version within OMA

E.2 Draft/Candidate Version <current version> History

	Document Identifier
	Date
	Sections
	Description

	Draft Versions

OMA-SIP-Push-V0_1-20050721-D
	21 July 2005
	-
	From input paper OMA-PUSH-2005-0032; OMA-PUSH-2005-0030; and emails

	OMA-SIP-Push-V0_2-20050916-D
	16 September, 2005
	6.2 and 6.3
	OMA-PUSH-2005-0043R02-PushUsingSIP-SenderReceiver-Description.zip

	OMA-SIP-Push-V0_3-20051019-D
	19 October, 2005
	all
	Incorporated OMA-PUSH-2005-0037R02

OMA-PUSH-2005-0039R04

OMA-PUSH-2005-0046R01
OMA-PUSH-2005-0047

OMA-PUSH-2005-0049

OMA-PUSH-2005-0051

OMA-PUSH-2005-0053

OMA-PUSH-2005-0054

	OMA-SIP-Push-V0_4-20060417-D
	17 April, 2006
	All
	Editorial clean up, and generate a clean version of the document.

	OMA-SIP-Push-V0_4-20060517-D
	17 May 2006
	All
	OMA-PUSH-2006-0004R02

OMA-PUSH-2006-0010R02

OMA-PUSH-2006-0011R02

OMA-PUSH-2006-0012R02

OMA-PUSH-2006-0013R02

OMA-PUSH-2006-0016R01

	OMA-SIP-Push-V0_6-20060623-D
	23 June 2006
	
	OMA-PUSH-2006-0022R01
OMA-PUSH-2005-0055R04

	OMA-SIP-Push-V0_7-20070410-D
	12 April 2007
	
	Based on OMA-CD-2006-074-Minutes_21Aug2006_Push_Beijing_Meeting
OMA-CD-2006-0014R03

Based on OMA-CD-2006-0101-MINUTES_21Sept2006Push_CC
OMA-CD-2006-0039R01
OMA-CD-2006-0064R01
OMA-CD-2007-0085-INP_SIP_Push_IC0034_Comment_Tracking.doc

- implemented: A001, A002, A003, A007, A008, A012, A013

	OMA-SIP-Push-V0_8-20070606-D
	June 6, 2007
	
	Editorial: Move section 6.1 and 6.2 to section 6.

Global technical change to reflect +g.oma.icsi.push’;+ g.oma.iari.push.XXX based on contribution -0125R04
OMA-CD-2007-0125R04-CR_SIP_push_service_and_application_addressing.doc

	OMA-SIP-Push-V0_9-20070704-D
	July 4, 2007
	
	OMA-CD-2007-0124R04-CR_Introducing_INVITE_MSRP_as_push_method.zip
OMA-CD-PUSH-2007-0012-CR_SIP_Push_ClientCapabilitiesWithPresence.doc

	OMA-SIP-Push-V0_10-20070910-D
	September 10, 2007
	
	OMA-CD-PUSH-2007-0008R02-CR_SIP_Push_Client_Capabilities.doc
OMA-CD-PUSH-2007-0032R02-CR_Update_of_SUBSCRIBE_NOTIFY_Method.doc
OMA-CD-PUSH-2007-0024R04-CR_Definition_of_additional_profile_to_the_sipping_config_framework_package.doc

Appendix F. Static Conformance Requirements
(Normative)

The notation used in this appendix is specified in [IOPPROC].

F.1 Client Conformance Requirements

The table below enumerates the client conformance requirements. A client being a Push Receiver agent wishes to receive push content.
Editor note: update these tables (Thinh
	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PRA-C-001
	Support receive push content from the Push Sender agent
	6.2
	M
	SIPPUSH-PRA-C-004 AND SIPPUSH-PRA-C-005 AND SIPPUSH-PRA-C-006

	SIPPUSH-PRA-C-002
	Use Presence Source to publish the capabilities
	8
	M
	SIMPLE-SRC-C-MCF AND

SIPPUSH-PRA-C-003

	SIPPUSH-PRA-C-003
	Device Profile extension
	8
	M
	UAPROF

	SIPPUSH-PRA-C-004
	Support reception of page mode messaging
	6.3
	M
	SIPPUSH-PRA-C010 OR

SIPPUSH-PRA-C011

	SIPPUSH-PRA-C-005
	Support subscription to push
	6.4.
	M
	(SIPPUSH-PRA-C012 AND

SIPPUSH-PRA-C014, AND

SIPPUSH-PRA-C016) OR

(SIPPUSH-PRA-C013 AND

SIPPUSH-PRA-C015, AND

SIPPUSH-PRA-C017)

	SIPPUSH-PRA-C-006
	Support SIP REGISTER function to register to the SIP/IP Core network
	6.2
	M
	SIPPUSH-PRA-C008 OR

SIPPUSH-PRA-C009

	SIPPUSH-PRA-C-007
	Support application ID
	9
	O
	

	SIPPUSH-PRA-C008
	IMS SIP REGISTER method
	7.2
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C009
	NON-IMS SIP REGISTER method
	N/A
	O
	

	SIPPUSH-PRA-C010
	IMS SIP MESSAGE method
	6.3.1
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C011
	NON-IMS SIP MESSAGE method
	N/A
	O
	

	SIPPUSH-PRA-C012
	IMS SIP SUBSCRIBE method
	6.4.1
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C013
	NON-IMS SIP SUBSCRIBE method
	N/A
	O
	

	SIPPUSH-PRA-C014
	IMS SIP NOTIFY method
	6.4.1
	O
	SIPPUSH-PRA-C-007

	SIPPUSH-PRA-C015
	NON-IMS SIP NOTIFY method
	N/A
	O
	

	SIPPUSH-PRA-C016
	IMS SIP REFER method
	6.4.3
	O
	

	SIPPUSH-PRA-C017
	NON-IMS SIP REFER method
	N/A
	O
	

F.2 Server Conformance Requirements

The table below enumerates the server conformance requirements. A server being a Push Sender agent.

	Item
	Function
	Reference
	Status
	Requirements

	SIPPUSH-PSA-S-001
	Creating push request to deliver the content to the push receiver agent
	6.1
	M
	SIPPUSH-PSA-S-004 AND

SIPPUSH-PSA-S-005 AND

SIPPUSH-PSA-S-006

	SIPPUSH-PSA-S-002
	Subscribing, receiving, and store the presence and capabilities of push receiver agent
	6.1
	O
	SIMPLE-WATCH-C-MCF AND

SIPPUSH-PSA-S-003

	SIPPUSH-PSA-S-003
	Device Profile extension
	8
	O
	UAPROF

	SIPPUSH-PSA-S-004
	Subscribing Push Receiver agent registration status
	7.3
	M
	

	SIPPUSH-PSA-S-005
	Support sending of page mode messaging
	6.3
	M
	SIPPUSH-PSA-S-008 OR SIPPUSH-PSA-S-009

	SIPPUSH-PSA-S-006
	Support subscription to push
	6.4
	M
	(SIPPUSH-PSA-S-010 AND

SIPPUSH-PSA-S-012 AND

SIPPUSH-PSA-S-014) OR

(SIPPUSH-PSA-S-011 AND SIPPUSH-PSA-S-013 AND SIPPUSH-PSA-S-015)

	SIPPUSH-PSA-S-007
	Support user, device, and application ID
	9
	O
	

	SIPPUSH-PSA-S-008
	IMS SIP MESSAGE method
	6.3.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-009
	NON-IMS SIP MESSAGE method
	N/A
	O
	

	SIPPUSH-PSA-S-010
	IMS SIP SUBSCRIBE method
	6.4.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-011
	NON-IMS SIP SUBSCRIBE method
	N/A
	O
	

	SIPPUSH-PSA-S-012
	IMS SIP NOTIFY method
	6.4.2
	O
	SIPPUSH-PSA-S-007

	SIPPUSH-PSA-S-013
	NON-IMS SIP NOTIFY method
	N/A
	O
	

	SIPPUSH-PSA-S-014
	IMS SIP REFER method
	6.4.3
	O
	

	SIPPUSH-PSA-S-015
	NON-IMS SIP REFER method
	N/A
	O
	

�EMBED Word.Picture.8���

Editor note: �Problem with implementing the CR#08R2.

�Editor note: problem with implementing the CR08R2.

�Editor note: Problem with implement the CR#08R2.

(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]
(2005 Open Mobile Alliance Ltd. All Rights Reserved.
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-Spec-20040205]

_1191173527.doc

Push Sender Agent

SIP/IP core Network

Push Receiver Agent

Message to be delivered (e.g. over PAP in PPG case)

SIP MESSAGE

Accept contact = +

g.oma.sip-push

P-Asserted-Identity = “Originator”

 <orig@domain.com> *(COMMA PAssertedID-value)

Message delivered to application

P-Asserted-Identity = “Originator”

 <orig@domain.com> *(COMMA PAssertedID-value)

Body: Push message

SIP MESSAGE

Accept contact = +

g.oma.sip-push

Message sent to Push Sender Agent

AS

Application

Body: Push message

(7) 200 OK

(8) 200 OK

_1200866227.vsd
Push Receiver agent

Push Sender agent

SIP Push

_1186457555.vsd
Push Receiver Agent

SIP/IP Core Network

Push Sender Agent

Third-Party
REGISTER request

200 (OK)

REGISTER request

200 (OK)

