Doc# OMA-MWG-CAB-2008-0095R02-INP_Additional_details_of_CAB_01_interface_in_Solution1[image: image1.jpg]"sOMaQa

Open Mobile Alliance

.doc
Input Contribution

Doc# OMA-MWG-CAB-2008-0095R02-INP_Additional_details_of_CAB_01_interface_in_Solution1.doc
Input Contribution

Input Contribution

	Title:
	Additional details of CAB-01 interface in Solution #1
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	MWG-CAB

	Submission Date:
	23 Sep 2008

	Source:
	Suresh Chitturi, Research in Motion
schitturi@rim.com

Raziq Yaqub, Toshiba

ryaqub@tari.toshiba.com
Darryl Champagne, Funambol

dgc@funambol.com
Alan Hameed, Fujitsu

alan.hameed@us.fujitsu.com
Howard Wang, Huawei

howard.wang@huawei.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution fulfils the action “CAB-2008-A018” to RIM on behalf of the supporting companies for Solution #1.
R01 – Changes in author list

R02 – additional description to Contact Search functionality
2 Summary of Contribution

This contribution provides further details on Solution #1, with emphasis on CAB-01 interface, which appeared to be an important “blocking” piece of solution #1.
3 Detailed Proposal

Introduction:

In Solution #1, as you know proposes to address all the data synchronization aspects (e.g. address book data, PCC) by relying on OMA DS for efficiency reasons. However, in the CAB RD, there is a set of very important functional requirements besides synchronization that cannot be handled by DS enabler alone and which include the following:
1) Contact Share – This functionality of the CAB Enabler allows the CAB User to share his/her contact information (i.e. either the PCC or Address Book data) with other users via a messaging scheme. The recipients of this information can be both CAB and non-CAB users

2) Interaction with Legacy Address Book Systems/ABs – The CAB Enabler allows interaction with legacy systems i.e. both native address books on the device and legacy network-based address book system(s). This allows the CAB User to import data to the Converged Address Book.

3) Contact Search – The CAB Enabler provides a mechanism to search for Contact information. It allows the CAB Users to search for the contact information from within the host CAB system, remote CAB system and/or external database(s) made available by the service provider such as Yellow pages. The contact information made available for search operation is subject to CAB user’s authorization rules and service provider’s policy

4) Contact Subscription – This feature allows a CAB User to subscribe to other CAB User’s contact information i.e. request to receive automatic updates of another CAB Users available Personal Contact Card information. The information from Contact Subscription may be processed further to combine with the information that the CAB User customizes about the associated contacts.
Overview of CAB-01 interface:

Solution #1 proposes to address these above functions with the definition of a CAB-01 interface between the CAB Client and CAB Server functional components.

Figure: Illustration of CAB-01 interface
The underlying protocol for this interface is standard HTTP protocol. The decision to re-use a standard HTTP protocol is based on the following example benefits:

· Widely supported and implemented by all mobile devices.

· Allows the re-use of standard HTTP authentication mechanisms (for e.g. HTTPS, DIGEST)

· Ease of deployment i.e. lower barrier to entry

· Integration with Web 2.0 and Mobile Widget platforms and services

· Supports “thin” mobile client paradigm

The primary role of this interface is to carry CAB user/device requests from the CAB Client to the CAB Server to address the above mentioned functions.

For details on the complete Solution #1 architecture proposal, please see OMA-MWG-CAB-2008-0061R01-CR_CAB_Architecture_Proposal.

In order to carry these requests from the user/device to the network entity over HTTP it is essential to define a payload format. In this proposal we recommend to use XML payload in order to be extensible and interoperable with other XML technologies. It is also essential to define an associated MIME type and a XML schema for the payload containing data corresponding to the requests.
Technical Details:
1) Contact Share:

The Contact Share requests from the CAB User are handled using the following payload over CAB-01 interface:
<ContactShare>

<--------------------------- data for contact share request goes here

</ContactShare>

<ContactShare> - is the root node of the Contact Share payload which carries the CAB User’s Contact Share request from the user device. This request is used to share either the user’s own Personal Contact Card or the information from the user’s address book with other users who may CAB or non-CAB users. The <ContactShare> element can both or either of the <PCC> or <ContactEntry> elements.
Here is an example of Contact Share request payload:

<ContactShare>

<PCC>
<User identifier= ”x@example.com”/>
<User identifier= ”y@example.com”/>

</PCC>

</ContactShare>

<ContactShare>

<ContactEntry firstname=”Joe” lastname= ”Smith” tel=”xxx-xxx-xxxx” email=”joe.smith@example.com”>

<User identifier= ”x@example.com”/>
<User identifier= ”y@example.com”/>

</ContactEntry>

</ContactShare>

<PCC> - is an element that indicates that the user would like to share his/her own personal contact card information to other users. It contains one of more <User> elements.

<User> - is an element within the <PCC> element that indicates the (other) user to which CAB user would like to share his PCC with. It contains an ‘identifier’ attribute which indicates the unique identifier of the recipient. The type of this attribute is ‘any URI’. It may be either an email address, SIP URI, AOR (Address of Record), or a list URI. The list URI is used to share the PCC data with a list or group of users at a single time.

<ContactEntry> - is an element that indicates that the user would like to share the information from the contact entry of his/her address book with other users. It contains the following attributes. Note the list here depends on the common set of data elements defined for a Contact Entry.

‘firstname’ – first name of the user data. The type is a ‘String’.

‘lastname’ – last name of the user data. The type is a ‘String’.

‘tel’ – telephone number of the user data. The type is a ‘anyURI’.

‘email’ – email address of the user data. The type is ‘anyURI’.

There can be one of more <ContactEntry> elements present under the <ContactShare> root element. The <ContactEntry> element contains one or more <User> elements similar to the <PCC> element.

The following figure, illustrates a demonstrative call-flow between a CAB Client, CAB Server and the Recipient for a Contact Share operation.

Figure: Message Flow for Contact Share

Step 1: The CAB user makes a PCC “Contact Share” request to one or more users (either CAB or non-CAB users). Based on the CAB user’s request, the CAB client formulates a HTTP POST request to the CAB server including the Contact Share XML payload as follows:
POST /example.share/ HTTP/1.1

Host: example.com

User-Agent: CAB-client/

Date: Fri, 19 Sep 2008 9:00:00 GMT

Content-Type: application/vnd.ContactShare+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ContactShare xmlns="urn:xml:CAB:share">

<PCC>

<User identifier= ”x@example.com”/>

<User identifier= ”y@example.com”/>

</PCC>

</ContactShare>

Step 2: Once the CAB Server receives this request it is processed and if successful a HTTP OK status is sent in the response back to the CAB Client.

Step 3: Subsequently, the CAB server (e.g. contact share function within the CAB Server) retrieves the PCC data from the PCC XDMS and delivers the PCC data of the user to the recipient as requested by the CAB User. If the recipient is a legacy user, the contact information is encoded in legacy format and sent via messaging scheme e.g. Email, SMS, MMS. Otherwise the contact information is delivered internally within the CAB system for e.g. stored directly in the address book of the recipient.

Step 4: The CAB User makes both a PCC and Contact Entry “Contact Share” request to one or more users of the network-based address book system. Based on the user request, the client formulates a HTTP POST request to the server including the Contact Share XML payload as follows:
POST /example.share/ HTTP/1.1

Host: example.com

User-Agent: CAB-Client/

Date: Fri, 19 Sep 2008 9:10:00 GMT

Content-Type: application/vnd.ContactShare+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ContactShare xmlns="urn:rim:xml:CAB:share">

<PCC>

<User identifier= ”x@example.com”/>

<User identifier= ”y@example.com”/>

</PCC>

<ContactEntry firstname=”Joe” lastname= ”Smith” tel=”tel:+1-201-555-0123” email=”joe.smith@example.com”>

<User identifier= ”x@example.com”/>

<User identifier= ”y@example.com”/>

</ContactEntry>

</ContactShare>

Step 5: Once the server receives this request it is processed and if successful a HTTP OK status is sent in the response back to the CAB Client.

Step 6: Subsequently, the CAB Server (e.g. contact share function within the Server) delivers the PCC data of the user (by retrieving the PCC data from the PCC XDMS) and the requested Contact Entry data to the recipient as requested by the CAB User. If the recipient is a legacy user, the contact information is encoded in legacy format and sent via messaging scheme e.g. Email, SMS, MMS. Otherwise the contact information is delivered internally within the CAB system for e.g. stored directly in the address book of the recipient.
2) Interaction with Legacy AB:

The requests for importing Legacy ABs from the CAB User are handled using the following payload over CAB-01 interface:
<ImportLegacyAB>

<--------------------------- data for importing legacy AB request goes here

</ImportLegacyAB>

<ImportLegacyAB> - is the root node of the import legacy AB request payload, which carries the CAB User’s request to import legacy address book data into the User’s Converged Address Book. In order to import it is required that the user specifies the domain or service ID of the address book and the necessary user credentials so the CAB Server can obtain the legacy address book on behalf of the user. This root element can contain one or more <Domain> elements.

<ImportLegacyAB>

<Domain> mail.example.com

<Credentials>

<Username>A@example.com</Username>

<Password>******</Password>

</Credentials>
 <DataSource id=”foo”/>
</Domain>

<Domain> mail.example1.com

<Credentials>

<Username>B@example1.com</Username>

<Password>******</Password>

</Credentials>
 <DataSource id=”the:quick:brown:fox”/>
</Domain>

</ImportLegacyAB>
<Domain> - is an element under the <ImportLegacyAB> which contains domain specific information such as domain name or service identifier of the legacy address book system for e.g. mail.example.com. It consists of one <Credentials> element. The data type of this element is ‘anyURI’.

<Credentials> - is an element within the <Domain> element that consists of the following elements corresponding to the user credentials.

<Username> - This element contains the username of the user to access legacy AB. The type of this element is ‘anyURI’.

<Password> - This element contains the password of the user to access legacy AB. The type of this element is “token”.

<DataSource> - This element contains the data source to import from. An attribute ‘id’ of type ‘anyURI’ identifies the data source to import.
The following figure, illustrates a demonstrative call-flow between a CAB Client, CAB Server and other entities an Import Legacy AB operation.

Figure: Message Flow for Interaction with Legacy AB
Step 1: The CAB user makes an “import legacy AB” request to legacy AB of interest. Based on the user’s request, the CAB Client formulates a HTTP POST request to the server including the ‘ImportLegacyAB’ XML payload as follows:
POST /example.import/ HTTP/1.1

Host: example.com

User-Agent: CAB-client/

Date: Fri, 19 Sep 2008 10:00:00 GMT

Content-Type: application/vnd.ImportLegacyAB+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ImportLegacyAB xmlns="urn:xml:CAB:import">

<Domain> mail.example.com

<Credentials>

<Username>A@example.com</Username>

<Password>******</Password>

</Credentials>

 <DataSource id=”foo”/>

</Domain>

</ImportLegacyAB>

Step 2: Once the CAB Server receives this request it is processed and if successful a HTTP OK status is sent in the response back to the client.
Step 3: Subsequently, the CAB Server (e.g. Interworking function with the CAB Server) on behalf of the CAB User requests 3rd party address book system for access of the CAB User’s legacy address book data, by supplying the necessary user credentials.
Step 4: The CAB Server retrieves/receives the legacy address book data of the CAB User from the 3rd party address book system.

Step 5: The CAB Server then stores the imported AB into the CAB User’s Converged Address Book, and resolving any conflicts.
Step 6: The data in the address book storage is, subsequently synchronized with the CAB User’s device(s). Synchronization is performed through a server-alerted sync wherein the DS Server sends a notification to user’s device to initiate synchronization.
3) Contact Search:

The Contact Search requests from the CAB User are handled using the following payload over CAB-01 interface:
<ContactSearch>

<---------------------------data for search request or response goes here
</ContactSearch>
<Contact Search> - is the root node of the Contact Search payload which is common to both the search request from the client to the server and the search response back from the server to the client.

Search Request:

The Contact Search request model allows the CAB Users to query the CAB Server using two methods:

1) Simple keywords - which is a very common technique used in the industry for e.g. popular web searches.
Here is an example of Contact Search request payload:

<ContactSearch>

 <Request id=”abc123” maxResults=”50”>

<Keyword ” caseSensitive=”yes”>example </Keyword>

</Request>

</ContactSearch>

2) Complex XQuery search based on specific criteria – This model allows the users to perform searches based on specific criteria or parameters. For e.g. search with a logical expression

<ContactSearch >

 <Request id=”a5678” maxResults=”10”>

<Query>

<------XQuery CDATA search request goes here

</Query>

</Request>

</ContactSearch>

<Request> - is a container element which contains the search request data in XML. The request element contains the <Keyword> element. The attribute id indicates the search request identifier. This may be used by the client to correlate search requests as the server will include the id-value in the corresponding result. This attribute is of type NCName. The optional attribute ‘maxResults’ may be included which indicates to the request interface the maximum number of results to be returned for the corresponding search request. This attribute is of type integer, and may have default values for e.g. “50” to limit the amount of data returned over the air.
<Keyword> - is an element that carries the actual search data i.e. the keyword to search from the network-address book system. The data type of this element is a ‘String’. This element contains an optional attribute ‘caseSensitive’ which indicates whether the search should be conducted in a case-sensitive manner or note. The type is an enumeration with the following enumerands {“yes”, “no”}. The default value is “no”.

<Query> - is an element that carries the search request data that is conforming to a W3C XQuery expression. This element is used to query the network-based address book system for complex queries with specific criteria.

Search Response:

The result or the response from the search request as described above would yield a list of possible results i.e. a list of contact information within the HTTP response body as follows:
Here is an example of Contact Search response payload:
<ContactSearch>

<Response id=”abc123”>

<Result userId=”x@example.com”>X</Result>

<Result userId=”y@example.com”>Y</Result>

</Response>

</ContactSearch>
<Response> - is a container element which contains the results from the search request from the server back to the client. This response element can contain one or more <Result> elements. It may also contain the id attribute which corresponds to the input search request (of type NCName).

<Result> - is an element that contains a single result based on the search request. For multiple results, a sequence of result elements is generated by the server. This element contains a ‘userId’ attribute which indicates a unique identifier for the contact in the result. The type is ‘anyURI’.

The following figure, illustrates a demonstrative call-flow between a CAB Client, CAB Server, and other entities for a Contact Search operation.

Figure: Message Flow for Contact Search

Step 1: The user makes a “Contact Search” request to the server to obtain the matching results of the contact information at the server. The contact information accessible at the server can include the PCC information of all the CAB users, CAB User’s own address book data, and any external directories that the service provider wishes to expose to the search request (for e.g. Yellow pages). Based on this request, the CAB Client makes an HTTP POST request to the CAB server including the Contact Search XML payload as follows:
POST /example.search/ HTTP/1.1

Host: example.com

User-Agent: CAB-client/

Date: Fri, 19 Sep 2008 8:00:00 GMT

Content-Type: application/vnd.ContactSearch+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ContactSearch xmlns="urn:xml:CAB:search">

<request id=”a1234” maxResults=”50”>

 <Keyword caseSensitive=”yes”>example</Keyword>

</request>

</ContactSearch>

POST /example.search/ HTTP/1.1

Host: example.com

User-Agent: Address Book-client/
Date: Thu, 11 Sep 2008 8:15:00 GMT

Accept-Encoding: gzip

Content-Type: application/vnd.ContactSearch+xml; charset="utf-8"
Content-Length: …

<?xml version="1.0" encoding="UTF-8"?>

<ContactSearch xmlns="urn:xml:NAB:search">

<request id=”a5678” maxResults=”10”>

 <Query>

 <![CDATA[

 xquery version “1.0”;

 declare default element namespace “urn:oma:xml:xdm:cab:pcc”

 for $u in collection(“org.openmobilealliance.cab.pcc/users/”)/cab/pcc

 where ($u/last-name=”Jones”) and ($u/address/country=”UK”)

 return <Result>{$u/@userId}{$u/display-name}</Result>

]]>

 </Query>

</request>

</ContactSearch>
Step 2: Upon receiving the HTTP POST request from the CAB Client the CAB Server parses the request data in XML, and performs the search operation against the applicable data sources and sends the response back to the client using a HTTP OK status including a search response data in XML that contains a list of results matching the search keyword request.

HTTP/1.1 200 OK

Server: CAB-Server
Date: Fri, 19 Sep 2008 8:00:05 GMT

Content-Type: application/vnd.ContactSearch+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ContactSearch xmlns="urn:xml:CAB:search">

<Response id=”a1234”>

<Result userId=”x@example.com”>X</Result>

<Result userId=”y@example.com”>Y</Result>

</Response>

</ContactSearch>

HTTP/1.1 200 OK

Server: NAB-serv/OMA2.0

Date: Thu, 11 Sep 2008 8:00:05 GMT

Content-Type: application/vnd.ContactSearch+xml; charset="utf-8"
Content-Length: (...)

<?xml version="1.0" encoding="UTF-8"?>
<search-set xmlns:pcc=”urn:oma:xml:xdm:cab:pcc”>
<ContactSearch xmlns="urn:xml:NAB:search">

<Response id=”a5678”>

<Result userId=”bjones@example.com”>

 <pcc:display-name>Bob “crazy-legs” Jones</pcc:display-name>

 </Result>

<Result userId=”mjones@foo.org”>

 <pcc:display-name>Mary Jones</pcc:display-name>

 </Result>

</Response>
</ContactSearch>
4) Contact Subscription:

The Contact Subscription requests from the CAB User are handled using the following payload over CAB-01 interface:
<ContactSubscription>

<--------------------- data for subscription request goes here.

</ ContactSubscription >

<ContactSubscription> - is the root node of the Contact Subscription payload which carries the CAB User’s subscription request. Its main function is to allow the CAB User to subscribe to other user’s Personal Contact Card. The request includes a list of users (i.e. one or more other users) that the user would like to subscribe to.

Here is an example of Contact Subscription request payload:
<ContactSubscription>

 <User identifier= ”x@example.com” duration=”86400”/>

 <User identifier= ”y@example.com” duration=”86400”/>

</ ContactSubscription >

<User> - is an element within the <ContactSubscription> element that carries subscription request for a user to be subscribed to. One of more <User> elements can be present. This element contains the following attributes:
‘Identifier’ – indicates a unique identification of the user to subscribe to, which may be a either an email address, SIP URI, AOR (Address of Record), or a list URI. The list URI is used to subscribe to list or group of users at a single time. The type for this attribute is ‘any URI’.

 ‘duration’ – indicates the maximum amount of time in seconds the subscription is valid from the time of the user request. The type is an ‘Integer’, and may have a default value.
The following figure, illustrates a demonstrative call-flow between a CAB Client, CAB Server and other entities for a Contact Subscription operation.

Figure: Message Flow for Contact Subscription

Step 1: The user makes a “Contact Subscription” request to one or more users of the network-based address book system. Based on the user request, the CAB Client formulates a HTTP POST request to the server including the Contact Subscription XML payload as follows:
POST /example.subscription/ HTTP/1.1

Host: example.com

User-Agent: CAB-client/

Date: Fri, 19 Sep 2008 8:00:00 GMT

Accept-Encoding: gzip

Content-Type: application/vnd.ContactSubscription+xml; charset="utf-8"

<?xml version="1.0" encoding="UTF-8"?>

<ContactSubscription xmlns="urn:xml:CAB:subscription">

<User identifier= ”x@example.com” duration=”86400”/>

<User identifier= ”y@example.com” duration=”86400”/>

</ContactSubscription>

Step 2: Once the server receives this request, it is processed and if successful an HTTP OK status is sent in response.

Step 3: In response to the Contact Subscription request the server (e.g. Contact Subscription function within the CAB Server) makes a SIP: SUBSCRIBE request to the subscribed user’s PCC located in the PCC XDMS. This is handled using the XDMC in the CAB Server.
Step 4: Upon subscribed user’s policies or authorization rules, the PCC information or its updates is pushed (via a SIP: NOTIFY) to the CAB Server.

Step 5: Based on this notification, the server process stores the updates to the subscribed user’s information in the CAB user’s address book data storage.

Step 6: Subsequently, the data in the address book storage is synchronized with the user’s device(s). Synchronization is performed through an OMA DS server-alerted sync wherein the DS server sends a notification to user’s device to initiate synchronization.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Based on the additional details provided in this document, we recommend the group to accept Solution #1 as the basis for developing CAB AD.

We would like to inform the group that the details presented in this document are conceptual and not a final proposed specification, and was prepared in the anticipation that any improvements can be addressed during the Technical Specification (TS) phase.

6. Synchronize updates with the CAB Client using the OMA DS server-alerted sync method

5. Store the updates in the CAB

CAB Client

CAB Server

CAB-01

4. SIP:NOTIFY

3. SIP:SUBSCRIBE

2. Search Results

 (200 OK)

Compose & format results from multiple search responses

Search Response(s) form various XDMS’s

Search Request to:�- Local PCC XDMS�- User’s own AB Book�- Remote PCC XDMS

1. Search Request

(HTTP POST)

XDMS Systems

External directories

CAB Server �(Contact Search Function)

CAB Client

Search Request to external directories

Search Response from external directories

Address Book Storage

PCC XDMS

2. 200 OK

1. Contact Subscription Request

(HTTP POST)

CAB Server

CAB Client

5. 200 OK

6. Delivers using a messaging scheme

3. Delivers using a messaging scheme

Recipient

4. Contact Share Request (PCC and Contact Entry)

 (HTTP POST)

2. 200 OK

1. Contact Share Request (PCC)

(HTTP POST)

CAB Server

CAB Client

6. Synchronize the imported data with the CAB client using the OMA DS using a server-alerted sync method

5. Store the imported address book data into the CAB

4. Receive user’s legacy address book data

2. 200 OK

3. Request access to user’s legacy address book.

1. Import Legacy AB Request

(HTTP POST)

CAB Client

CAB Server

3rd Party AB System

Address Book Storage

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

© 2008 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 13)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20080101-I]

