Doc# OMA-COM-S-CAB-2011-0028-comments-on-INP0020-and-INP0022.doc[image: image1.jpg]
Input Contribution

Doc# OMA-COM-S-CAB-2011-0028-comments-on-INP0020-and-INP0022.doc
Input Contribution

Input Contribution

	Title:
	Comments to INP0020 and INP0022
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	S-CAB WA

	Submission Date:
	31 Oct 2011

	Source:
	Tom Hiller, tom.hiller@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	n/a

1 Reason for Contribution

This contribution offers comments on INP0020 and supplies R&A comments to the R&A of INP0020. At the same time it is commenting on INP0022 and that R&A, in essence. For ease the comments are kept together in one contribution.
2 Summary of Contribution

Provide general and detailed comments. Also requests further information.
3 Detailed Proposal

1. Background
1. S-CAB inherited CAB 1.0 requirements. The S-CAB RD then added additional requirements. In particular:

a. S-CAB now is required to support more or less arbitrary name spaces, although a reference namespace schema must be available. This means that update-merge-changes in arbitrary contact card data must be identified, stored as updates, and presented to the S-CAB User for confirmation or rejection.
b. The number of possible sources (and types) has increased since the start of 2011. This means there can be more running unconfirmed instances with changes to merge into the confirmed instance. Indeed, there are more compared to March 2011 timeframe.
c. In terms of finding, storing, presenting, etc., merge changes, there are more running instances to merge and the data structure itself is basically open ended. It is a more robust problem than exists in CAB 1.0.

2. Update-merge processing via user confirmation is a requirement in S-CAB for all possible kinds of updates from all possible input sources.
3. S-CAB did not inherit a functional update-merge-change model from CAB 1.0.
4. While INP0020 focuses on single AB document versus one contact card per document, INP0020 still impacts update-merge directions and decisions. Aspects of the S-CAB architecture such as the question of “XDM collection object” versus “single AB document” need to be examined in light of a definite update-merge model.
5. INP0022 exclusively focuses on the update-merge-change information model for the user confirmed mode of operation.
2. General comments

1) Limited devices and INP0020
(a) A similar story can be made for limited devices: they do not have to download non-textual contact card content, nor do they have to download every AB contact card. Also, a very limited user device in the context of the INP0020 would likewise selectively not download non-textual elements contained in contact cards, either.
(b) A similar story exists for the current S-CAB architecture: A limited device does not have to download (or sync) updates or unconfirmed instances onto itself.

(c) In INP0020, the total number of XDM documents scales up dramatically while the AB document size scales down. We await device vendors input on the topic.
(d) I doubt that INP0020 can be proved on the basis of low-end devices because fairly similar assumptions can be applied to the case of a “single AB document” as “AB folder” of XDM documents where each document is one contact card. And also, the current S-CAB architecture addresses questions about “basic XCAP” and limited devices raised in IN0020 (see bullet #5 below).

2) INP0020 simplification of INP001 as compared to the current S-CAB architecture:
(a) Request: I request an outline of the XDM enhancements required in INP0020. It can be optional versus mandatory.
(b) The XPATH expressions for a single XDM document contact card in INP0020 have fewer steps compared to paths for identical purposes with a single AB document (the current S-CAB architecture). A question is how many fewer steps? The decreased number of steps in the node selector is a tradeoff against the number of XDM documents, which is being increased from a handful to thousands. If each of those contact cards (confirmed and unconfirmed) are elements under the root, the decrease in number of XPATH steps with INP0020 is one or two.
(c) Viewed from the point of INP0022 itself, a per contact card modification history document is quite helpful. This is because sometimes INP0022 wants to momentarily backtrack to generate a previous version of the confirmed contact card against which is applied an update delta that needs to be confirmed or rejected. Intuitively, a per confirmed contact card modification history document is going to be easier to extract a previous state than a single monolithic modification history document. The resulting update (= the result of the delta applied to the backtracked confirmed instance) is offered to the S-CAB User for approval or rejection. Although the update will not exactly match the current contact card because the base has changed, S-CAB Users may be able to make informed decisions. Without such backtracking, updates bound to previous confirmed instance versions have to be discarded. Therefore, this approach rescues unconfirmed updates from oblivion when the confirmed card versions have changed.
3) I view the user controlled merging of unconfirmed updates into the confirmed (base) contact card to be the principal open problem in S-CAB. While the material of INP0020 is coupled to the update-merge-change directions and decisions, I view INP0020 as principally focussing on a different topic, namely:
i. Single AB document with contact cards as elements (CAB 1.0, 1.1, and S-CAB)
ii. Single AB folder with contact cards as individual XDM documents (INP0020)
Continuing:
(a) It is necessary to identify merge-changes implied in unconfirmed instances as compared to the confirmed instance.

(b) Question: In INP0020, which of the following handles update-merge-change identification for multiple, unconfirmed instances?:
i. The S-CAB User, who locates and determines the changes and data to be merged with no assistance from the CAB Enabler? How does it remember what data in the unconfirmed instances has already been merged, assuming the S-CAB User can do this?
ii. The S-CAB User Device, which locally identifies changes and data to be merged, and presents to the S-CAB User? If so, we would need to get input from device vendors. How does it remember what data in the unconfirmed instances has already been merged, assuming the device can locally do this?
iii. The S-CAB Server, which identifies the changes, stores the changes as XDM-based change updates in contact cards (XDMS), which are then sent to the user device, and which are then presented locally to the S-CAB User?
It seems clear that INP0020 is either (i) or (ii); please confirm. It should be also be clear that INP0022 is the third choice:
(c) The S-CAB Server determines possible update-merging-changes. Those proposed but yet unconfirmed updates need to be presented against the confirmed instance, not against the unconfirmed instances. Note that I understand the from INP 0020 that unconfirmed instances are updated as soon as XCAP-Diff based changes arrive; however, this is not related to the update-merge-change problem discussed here.
(d) Furthermore, INP proposes that if the confirmed instance against which an update was created changes, the update references the previous confirmed instance, and so that update is not automatically invalidated due to lack of a base instance. The update can be presented to the user although it is not completely aligned with the currently confirmed instance. The S-CAB User makes a decision from a user interface as to what to do.
(e) Aside: As explained in INP0022, these update-merge-changes are not related to XCAP-Diff used for data sync purposes with S-CAB user devices.
4) Access permissions rules use filters and are the basis of "CAB contact views":
(a) Request: I request input INP0020 assumes and agrees with this. S-CAB has carried this over from CAB 1.0, as does 1.1. Or if, not how does it work in INP0020?
5) On the October 15th S-CAB conference call, I outlined that the current S-CAB architecture works with "basic XCAP", which means a user device XDMC can read a confirmed contact card using an XCAP node selector pointing to a “confirmed” element without retrieving “update” matter:
(a) The S-CAB architecture e-vote is Option ‘A’. Contribution INP178R01 is based on INP0039 and INP0040. In INP0040, slide 18 summarizes a “confirmed” element and an “unconfirmed” element from earlier slides; the contact card in INP0040 held all instances, but distinct S-PCC contact card instances were split across individual XDM documents (re: OMA-COM-S-CAB-2011-0007R02). Nevertheless, the basic idea of “unconfirmed” element as a list of “updates” inside a contact card pervades almost every page of INP0040 and therefore INP178R01. There is no discussion or agreement to change that.
(b) With the foregoing in mind, an XCAP node selector can point to the actual “confirmed” element and retrieve it without referencing “updates”, the concern raised in Slide 9 and similar slides of INP0020 (see complete comments below).
(c) The information model of “updates” and how the user merges then is a main issue to be addressed. We have clarified that support for non automatic mode (= user confirmed update) is required for updates to both PCC and AB across the board for any kind of input event, e.g., import, external data sync, etc.
(d) The contact card elements can be searched by name, email address, etc., the “index” obtained, and just those contact cards uploaded, not the entire address book document.
(e) “Basic XCAP” is a new term. What does XCAP not include?

3. Slide-by-Slide Comments

Side 9 Optimized Use of XDM functions: XCAP GET, PUT and DELETE
· See bullet 5 in the “General Comment” section above.
Slide 10 Optimized Use of XDM functions: DIFF Read and DIFF Write
· Yes.
· Aside: For a single AB document, an XDCP Diff Write would be able to write multiple contact cards as a locked transaction. CAB group and organization contact cards can impact more than one contact card.
Slide 11 Optimized Use of XDM functions: Document Reference
· An address book consisting of these references is not under consideration albeit it’s an interesting idea; it is not part of today’s discussion.
· A filter associated with an XDM shared reference was originally (and currently) intended to help address issues with CAB “multiple persona”, as well as embedded XCAP references in the organization and group contact cards.

Slide 12 Optimized Use of XDM functions: Access Permissions
· See bullet 4 in “General Comments” above.

· XDM enhancements might be useful in this area. A filter of some kind is needed no matter what, as I understand from this contribution and the current S-CAB single AB document architecture.

Slide 13 Optimized Use of XDM functions: Request History
· Request History exists across the entire AB application usage, so the problems posed in INP0020 are very similar as for the current direction as INP0020.
Slide 14 Optimized Use of XDM functions: Search
· XDCP Diff read was meant to perform catch-up when a document change subscription has been lost so as to avoid a complete reload of the XDM document at the restart of the subscription.
· As far as searching for a list of names and contact cards with a single AB document and contact cards as elements, XQuery is a super set of XPATH, and it can traverse multiple documents or single documents.

Slide 15 Optimized Use of XDM functions: Subscribe for changes
· There has been dispute if the functionality in INP0020 is supported in XDM 2.1. Is there any other OMA Enabler that uses this?
· I agree a plus for single XDM document = contact card (INP0020) is that the ETag applies to the contact card itself. However, I do not think it changes the update and merge problem I outline above.

Slide 16 Optimized Use of XDM functions: Modification history
· Please refer to bullet 2 in General Comments regard modification history document and INP0022.

· Continuing, there is no particular reason to believe modification history of one contact (card) cannot be extracted from the modification history document of a single AB document, but it likely will not be as “natural” as for one contact card per XDM document approach in INP0020. By “natural” I mean the single AB document case may need additional “XML things” to make it obvious how to extract only those command edits affecting one confirmed contact card. In comparison, when modifications for one confirmed contact card only are in one document, there is little to think about. Again, I raise this because INP0022 wants to backtrack to a rescue updates that are tagged confirmed instances that have moved on to a new version.
· At the same time, because the INP0020 proposal scales the number of XDM documents by a few order of magnitudes, one may actually require XQuery, a mandate in effect, to union together the modification history of a desired subset of confirmed contact card XDM documents. And if the modification history of the unconfirmed instances is relevant in addition to the confirmed instances for some reason, it will be even a larger number.
Slide 17 Optimized Use of XDM functions: Restore
· With one contact card per XDM document, the restore of a single contact card is more straightforward than for a single AB document approach. I assume unconfirmed instances (= XDM documents in INP0020) would be restored to some relevant time point.
· INP0022 Slide 8 addresses the restoral of a contact card and the pending updates.
· I do not think there is any question that the restore of an entire address book is simpler with a single AB document. This is because it naturally restores all at once.
Slide 18 Optimized Use of XDM functions: XDM Document Directory
· This is an explanation as to how the INP0020 proposal works.
· A plus for single document = contact card in INP0020 is an ETag applies to the contact card. However, in the single AB document case we currently have, a “RevisionVersion” attribute per contact card element can be store the “version”, as outlined in INP0022.
· I do not see XDCP Diff as a problem to determining the update to be applied to the single AB document case.
Slide 19 Optimized Use of XDM functions: Forwarding
· This is an explanation of how the INP0020 proposal works.

· I requested an outline work required in XDM to support the proposal in bullet 4a “General Comments” above.

Slide 20: Some Scalability Aspects: Downloading the address book
· I agree the XDM User can have multiple XDM documents with an application.

· INP0020 is based on the user merging unconfirmed instances, i.e., whole contact cards, into the confirmed instance. There are no "deltas" per se in INP0020. Allegedly, there are deltas in CAB 1.0 (aka temporary contact cards).
· Defining "deltas" and how to merge them is a chief goal of INP0022. Storing them is also a goal of INP0040.
Slide 21 Some Scalability Aspects: Downloading the address book (no comment)

Slide 22: Some Scalability Aspects: Request History Information (no comment)

Slide 23: Some Scalability Aspects: Modification History Information
· I comment in Slide 16 also on modification history and INP0020.

· Regards size, the modification history document of a single AB document is not necessarily a problem if one either stores history beyond some (reasonable) point in time, or deletes the modification history before some time point. Thus the document should not be ridiculously large. The size of the modification history document has not been raised as an issue till now, I imagine because of these kinds of approach.
· The size of this history will also depend on the types of data being modified. And potentially a small limited device does not store the modification history. I agree that if the modification history is not on the device it is not taking up space on the device.
· Regards transmission of such history, the union of the history documents for INP0020 and the modification for a single AB case tend to approach one another (e.g., as some average density of bytes per unit time) because a comparison assumes identical edits to an identical contacts.

· As mentioned above, INP0020 increases the number of modification documents from one to the product of the number of contacts with the average number of “confirmed” and "unconfirmed" instances per contact.

Slide 24 Some Scalability Aspects: Access Permissions Document
· As requested above, we need to see the XDM functionality delta of this compared to XDM 2.1.
Slide 25: Some Spectrum Aspects
· Agreed: Write collisions will occur more frequently with a single AB multiple devices than with separate documents.

· However, there exist zero concerns about collisions from two devices simultaneously updating contact cards in a single AB document. In comparison this was an issue for the "Feature Handler"; S-CAB eliminates the Feature Handler.

Slide 26 Some Synchronization Aspects
· Updating a single AB document has never been presented as worrisome nor a concern. If so, it is a new concern.
· In the event of truly massive AB edits, the entire single AB document would need to be uploaded. In comparison, potentially speaking, some XDM documents as single contact cards in INP0020 not part of that massive but hypothetical edit and can be skipped. I believe this to be a corner case.
Slide 27 Some Synchronization Aspects
· This is a continuation of slide 26. I think the comment is applicable for truly massive edits of a large, established address book. I think it’s far from the center in terms of frequency of occurrence.
Slide 28 Some Device aspects
· I think a device would read the AB document, collect relevant metadata from the contact card elements and present the same to the user.
· The tradeoff is this is a new collection object, as I understand INP0020.
Slide 29: Some Device Aspects
· Disagree. See bullet 5d in “General Comments” above.
Slide 30: Some Device Aspects
· INP0020 and the single AB document are similar in regards this slide? In the single AB document case the XDMC uploads contact card elements whereas in INP0020 it uploads contact cards as entire documents. In both cases it chooses what to upload of each contact card.

· The XDCP Diff command is a way to do catch-up to avoid a subscription restart.

· I note that INP 001 et al (e.g., OMA-COM-XDM-2011-0050R01) modifies XDM 2.1 document change subscription, so it can “catch up” to the functionality of XDCP Diff Read, which already exists in XDM 2.1.
· Thus we need to visit XDM document change subscriptions for a collection, and the XDM document change subscription based on previous ETag.
Slide 31 Some Device Aspects
· Disagree. See bullet 5d in “General Comments” above.
Slide 32 Some Low-end Device Aspects
· Disagree. See bullet 5d in “General Comments” above.
Slide 33: Some Low-end Device Aspects
· Disagree. See bullet 5d in “General Comments” above.
Slide 34 Some Multi Devices Aspects
· See comment on Slide 25 above

Slide 35 Summary
· See comment on Slide 25 above
· In bullet 2c “General Comments” I request a list of enhancements for INP0020.
· Please refer to “General Comments” above
Slide 35 Recommendation
· Please refer to “General Comments” above

4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Review and discuss with INP0020, the R&A for INP0020, and INP0022. Also see underlined text for questions or requests for information.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 6)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20110101-I]

