Doc# OMA-COM-S-CAB-2011-0030R01-INP_INP0022_merge_update_comments.doc[image: image1.jpg]
Input Contribution

Doc# OMA-COM-S-CAB-2011-0030R01-INP_INP0022_merge_update_comments.doc
Input Contribution

Input Contribution

	Title:
	Comments on Merge-Update in INP0022
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	S-CAB WA

	Submission Date:
	22 Nov 2011

	Source:
	Tom Hiller, tom.hiller@alcatel-lucent.com

	Attachments:
	n/a
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	Replaces:
	 R00, see below

1 Reason for Contribution

R01: Recommendation section is revised according to S-CAB reflector discussions. This contribution is pre-agreed.
INP0022 has an R&A open at the time this contribution is being uploaded. This contribution provides comments regarding diff and merge-update, and the information model proposed in INP0022.
2 Summary of Contribution

Some S-CAB Users will require (demand) manual approval control for all updates to their contact cards. For this reason, the S-CAB Enabler must provide manual diff and merge-update control. S-CAB requirements have increased well beyond CAB 1.0 making the problem more involved in S-CAB than in CAB 1.0, including S-CAB as of 1Q2011. INP0022 provides an information update model for user controlled manual approval.

The author senses confusion as to what INP0022 is accomplishing, and what diff merge update alternatives actually exist for the S-CAB Enabler. To better respond to questions about INP0022, this contribution outlines and compares manual approval solutions assuming the S-CAB User, the S-CAB User Device, or the S-CAB Server are principally responsible for diff merge-update heavy lifting. INP0022 focuses on the S-CAB Server doing that heavy lifting. Other alternatives can be cited and considered, if desired.
Considerations regarding diff merge-update processing: avoiding the repetition of identical changes from different tracked instances to the user, not discarding updates when a base contact card against which an update exists has since been revised, and obviously, not revisiting already rejected updates.

The matter of “limited devices” is visited herein from a diff merge-update point of view.
3 Detailed Proposal

1. Requirements on S-CAB Enabler Solution Spaces
1.1 Background

1. It is essential to understand the Simplified CAB problem space in order to understand what must be accomplished by any Simplified CAB solution.

2. Simplified CAB has inherited all CAB 1.0 requirements. The Simplified CAB RD then adds many new requirements. The following summarize the problem space and what it implies for the solution space:
a. While Simplified CAB supports automatic merge-update change processing, it also mandates a user confirmation mode be supported. This applies for any and all possible kinds of updates from any and all possible input sources. Given data is arriving from other users, social networks, import, and other users can access and track such data, it is understandable users would want the “approve” or “reject” button. This is what merge-update change is all about.
b. It is desirable that updates be presented (available) to the user even if no longer completely aligned with the currently confirmed contact card, i.e., so users can make a decision whether and how to merge, or discard. And, a rejected change should not be presented a second time, at least not from the same tracking source.
c. Simplified CAB tracks changes into “tracking instances” which at least act like entire contact cards, one per source (e.g., a thread of changes from one 3rd Party external source). In Simplified CAB there can be many tracking instances, each with changes that need to be identified and merged into a confirmed contact card instance.
d. Simplified CAB supports diff and merge-update processing for open ended name spaces relative to tracked and confirmed instances for S-CAB User acceptance or rejection. The solution has to be fairly general purpose in nature.

e. In summary, Simplified CAB allows greater numbers and types of sources and kinds of data than exists in CAB 1.0.

3. Simplified CAB does not inherit a working XDM-based merge-update change model from CAB 1.0:

a. CAB 1.0 relies on DS/SyncML to handle update processing, e.g., of temporary contact cards.
b. CAB 1.0 defines Temporary Contact Card as “delta” XML entities, i.e., a delta against the current contact card. Yet CAB 1.0 defined no “XML delta”
, and so a Temporary Contact cannot provide a “delta”. And, the Temporary Contact Card points to the current contact card version, which may have changed relative to that “delta”, so the “delta” becomes invalid as soon as the confirmed contact card changes
.

c. Simplified CAB must provide an XDM-based diff and merge-update solution to handle Simplified CAB requirements. Or an agreement is needed to modify the S-CAB RD to reflect merge-update as formally outside the scope of the S-CAB Enabler.

1.2 Enabler Expectations and S-CAB Users

As outlined above, some S-CAB Users will insist on being able to press an “accept” or “reject” button for each and every update. S-CAB Users can be actively involved merge-update processing. It is important the S-CAB Enabler not impose too much burden on S-CAB Users, and that S-CAB be easy and usable.
1.3 Brief Summary of Active S-CAB Proposals
There are two different kinds of proposals under discussion in Simplified CAB at the moment

1. INP0020 focuses on an AB comprised of one contact card per XDM document, as compared to the current model of one AB document with contact cards as XML elements. It is not directly stating how manual user approved merge-update is processed, functions, etc. I generally understand updates in INP0020 are applied as they arrive to tracking contact card instances.
2. INP0022 exclusively focuses on the merge-update change information model for manually approved or rejected updates. By and large this occurs on an update-by-update basis, but some consolidation and aggregation into a single thread of changes that can be confirmed or rejected is possible with INP0022.

Single XDM Document per contact card versus single AB document is a matter of document structure. While merge-update change processing approaches interacts with AB document organization (and/or supporting AB XDM documents), it is important to know how merge-update changes processing works, such as which S-CAB Enabler entity (if any) performs which aspects of the diff merge-update processing, whether (and if so where and how) unconfirmed updates are stored, and so forth.
2. Contact Card Merge-Update Processing
As outlined above, it is a requirement that S-CAB Users can approve or reject updates to confirmed contact cards. The three relevant entities in Simplified CAB Enabler are the S-CAB User, the S-CAB Server, and the S-CAB User Device. Again, diff merge update means to visualize on the user device what has changed and where to put that change in the currently confirmed contact card. “Change” includes replace, add, and delete. An update should be presented (not lost) even if it is no longer aligned with some base instance against which it was created and exists.

1) The primary agent is the S-CAB User: This case is really an S-CAB User who does not use the S-CAB Enabler to perform the diff merge-update processing. An example could be an OMA network API that performs contact card the diff and merge update processing between tracking and confirmed instances. I will cover the case of a local application on the user device in the next major bullet.
(a) An OMA network API presents merge-update changes from some network API server to the user device client. That application determines and expresses merge-update changes (i.e., via a name space), and the user device client provides a visualization to the S-CAB User of those updates. The whole problem simply moved elsewhere. The infrastructure cost increases in the process because the S-CAB Enabler cannot be deployed without such an API network server.
(b) The case of an S-CAB User personally performing a visual diff merge of multiple tracked contact card instances against a confirmed contact card is not pursued here. This is because the possible number of tracked instances, the fact open ended name spaces are allowed, etc., render this approach prohibitive.
2) The primary agent is the S-CAB user device: An application resident on the S-CAB user device proposes where changes that reside in tracked contact cards should be merged into the currently confirmed contact card. To accomplish this, the S-CAB user device tracks (or downloads at the same time) tracking instances for a given contact, and runs a local XML-aware diff merge utility application. As the user approves changes, the utility causes the local XDMC to effect changes to the confirmed contact card.
(a) There are multiple tracking instances, one per each external source, one per each social network, perhaps one per import operation, one contact share source (or contact share), results of search results; in fact, the number is fairly open ended. A two- or three-way XML diff-merge tool would seem to require multiple passes when there are more than two tracking instances.
(b) Some tracking instance updates may be completely identical, e.g., a contact’s phone number changes, and is reflected into multiple tracking instances. Identical changes appearing in tracked instances would not be flagged via diff a second time if the first change is confirmed (the confirmed instance then has that change). However, if the user rejects such changes, they reappear again and again, unless the diff-merge utility maintains enough state while other tracked contact cards are merged en bloc with the confirmed one.
(c) The S-CAB User becomes more involved beyond simply pressing an “accept” or “reject” button whenever an update change in a tracked contact card overlaps a diverged area of the currently confirmed contact card; “diverging” means some confirmed base area no longer is well-aligned with the tracking instance. For example, a parent element was deleted in the currently confirmed instance whereas a child element of that parent has been updated (not deleted) in a tracked instance. The user needs to merge the parent element in the tracked instance back into the confirmed instance to accept a change to the child element in the tracked instance. XML documents are trees, and correctly working XML-aware diff merge tools are “XML-tree aware”; such tools provide well-formed changes, e.g., do not suggest the addition of a child element without the parent element.
Note: Once a confirmed contact card instance diverges from a tracked instance, it likely will not converge back to some tracking instance. This could imply more user involvement on an indefinite basis.
3) The primary agent is the S-CAB Server: The S-CAB Server identifies and stores changes against (and inside) the currently confirmed contact card implied by changes to tracked contact card instances. The tracked instances are updated on the fly as updates arrive. The S-CAB User approves those updates against the confirmed contact card.
(a) The confirmed contact card may have been revised since the point of merge-update change, rendering the update out-of-date relative to the currently confirmed contact card version. The S-CAB User device presents the update in the context of the previous confirmed version to which the update applies, so the user can merge or reject. To do that requires the S-CAB User Device momentary backtracks
, that is, renders the confirmed contact card to the version applicable to the update and applies the update.
(b) The S-CAB User becomes actively involved (beyond pressing an “accept” or “reject” button) when an update to a previously confirmed contact card version overlaps with changed data of the currently confirmed contact card. Note that here we are comparing changes within the confirmed contact card, albeit different versions. In the previous case we were comparing changes between a tracked instance and the confirmed contact card, which are different contact cards.
(c) This approach is single pass in the sense that all updates are created and exist against the confirmed contact card. It would be possible to prune or cull identical unapproved updates against the same confirmed version (impacting the same identical XML node in the same identical way). It might be reasonable to group and present identical updates to the same contact card even if apparently impacting different versions of the same confirmed contact card. For these kinds of reasons, a single pass approach appears to have better efficiency and efficacy for the S-CAB User.
4) Merge-update requests involving the S-CAB Server IWF trying to write invalid XML data should be regarded as a special corner case. Such changes probably need to be stored for user examination. Or perhaps yet some other approach should be devised for this special error case. On the other hand, when an S-CAB User device performs a write request with invalid data, the idea of XDM 2.2 is a possible conflict resolution hint being immediately returned to the S-CAB User (device).
5) The current S-CAB architecture models contact cards as XML elements in an AB XDM Document. The Ericsson proposal (INP001 / INP0020, and similar CRs) models a contact card as an XDM document, as well as proposes “XDM collection” optimizations.
INP0022 uses “momentary backtracking” to aid user visualization of diff merge-updates against the confirmed contact card when the confirmed base has been revised. While “momentary backtracking” can be accomplished with a single AB document, backtracking changes are inherently separate from other contact cards in single contact card modification history documents of INP0020.
3. Limited Devices and Diff Merge-Update
1) The S-CAB Server handles diff and merge-update processing heavy lifting, not user devices.

2) It is possible for an XCAP URI on an S-CAB user device to point to just the confirmed data of a contact card and not point to unconfirmed, pending “update” data. S-CAB architecture Option ‘A’, contribution INP178R01, is based on, and references, INP0039 and INP0040. “Updates” of contact cards data therein are in a list element separate from the rest of the confirmed contact card data.
4 Intellectual Property Rights

Members and their Affiliates (collectively, "Members") agree to use their reasonable endeavours to inform timely the Open Mobile Alliance of Essential IPR as they become aware that the Essential IPR is related to the prepared or published Specification. This obligation does not imply an obligation on Members to conduct IPR searches. This duty is contained in the Open Mobile Alliance application form to which each Member's attention is drawn. Members shall submit to the General Manager of Operations of OMA the IPR Statement and the IPR Licensing Declaration. These forms are available from OMA or online at the OMA website at www.openmobilealliance.org.

5 Recommendation

Group agreed with the concept proposal to have an “updated” object in the context of the update model described in INP 022 inside the S-PCC/S-AB contact card, independent of the data model carrying the contact card (whether one S-AB doc or separate contact docs). These “updated” objects in the contact card are in a sibling element relative to the “confirmed” data of the contact card that exists at the time of the creation of the “update” objects.

� A delta includes “add”, “replace”, and “delete”, at a minimum.

� A delta is expressed against a fixed base instance.

� “Momentary” means the previous version is created to apply the update against and visually present to the user. The previous version is not replacing the currently confirmed instance nor is a momentary instance stored in any XDM Server. Its existence is “momentary”.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY THE OPEN MOBILE ALLIANCE OR ANY OPEN MOBILE ALLIANCE MEMBER OR ITS AFFILIATES REGARDING ANY OF THE IPR’S REPRESENTED ON THE “OMA IPR DECLARATIONS” LIST, INCLUDING, BUT NOT LIMITED TO THE ACCURACY, COMPLETENESS, VALIDITY OR RELEVANCE OF THE INFORMATION OR WHETHER OR NOT SUCH RIGHTS ARE ESSENTIAL OR NON-ESSENTIAL.

THE OPEN MOBILE ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT, INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OF DOCUMENTS AND THE INFORMATION CONTAINED IN THE DOCUMENTS.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20110101-I]

© 2011 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 5)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20110101-I]

