Doc#[image: image2.jpg] OMA-DM-2004-0024-Device-boot-LATE
Submitted to DM and SEC
27 Jan 2004
Doc# OMA-DM-2004-0024-Device-boot-LATE
Submitted to DM and SEC
27 Jan 2004

Input Contribution

	Title:
	OTA Installation of DM Capabilities
	 FORMCHECKBOX
 Public FORMCHECKBOX
 OMA Confidential

	To:
	OMA-Security WG, OMA-DM WG

	Source:
	Sharon Peleg, Red Bend
+972 3 915 3335
Sharon.Peleg@RedBend.com
www.redbend.com

	Attachments:
	n/a

	Replaces:
	n/a

1 Reason for Contribution

Despite the intensive standardization efforts being carried today to achieve accepted and validated Device Management mechanisms, it is likely to expect that a considerable amount of time will pass before all shipped handsets will be DM-enabled. Between now and then, all shipped devices which won't be DM-enabled are to be viewed as lost opportunities. A very conservative estimate should indicate that it is about more than 1 Billion devices.
Non DM-enabled devices will not be able to provide any of the emerging new services which will require device management, nor will they be able to add new features and services after being shipped. Losing these opportunities should affect all concerning parties – manufacturers, operators, ISVs and users. Operators and manufacturers will have also to cope with a heterogeneous market with both kinds of devices and the resulting on-going costs to replace the non DM-enabled ones.

This document suggests an interim solution – a relatively small change made to the device firmware which enables a post-shipping installation of DM capabilities, including firmware update. The basic assumption underlying this proposal is that the suggested solution is simple enough requiring short time for review and acceptance; otherwise it won't serve its purpose.

2 Summary of Contribution

Our key assumption has been that integrating full DM and OTA Firmware Update capabilities into new devices can take place only after DM protocols have been fully accepted and validated.

The proposed solution is a 2-step device initialization sequence which is security minded from the very beginning. Having an updatable firmware requires that it is proved to be trusted before it is executed. Having an updatable firmware requires also reliable boot sequence that can cope with corrupted boot code. The proposal adds an alternative to the boot – in fact, an alternative to its beginning which may take special actions, such as updating the boot itself, an action that can add an Update Agent for firmware updates. If a firmware Update Agent can be OTA installed (overcoming the issue of first download, see D2) than obviously other features can be, such as full DM/DL clients.
3 Detailed Proposal

3.1 Terms used

Throughout the rest of the document, few technical terms are used. For convenience, their definitions are grouped together below:
OTA Updatable
A part of the device firmware which the device can re-program by itself without using any external device.
OTA Protected
A part of the device firmware which the device can NOT re-program by itself. It may be re-programmable using external device or it can be a ROM.
Init
The very first piece of firmware to be executed following a device reset. As suggested by this document it should be OTA protected and its contents should be minimized.
Boot
The code traditionally used to initialize the system and make all the necessary preparations before the device OS could start its execution. It also may carry out special maintenance tasks. The Boot is completely separate from the OS and is considered stand-alone.
Boot Start
The point in Boot where execution control is transferred to immediately after leaving the execution of Init. Alternatively, depending on the context in this document, this term refers to the flash memory block where this point resides. This block is the first section of the updatable firmware being executed after a device reset.
Boot Extension
An alternative to Boot start where execution control is transferred after leaving Init. The Boot Extension is an option which Init needs to decide upon.
Update Agent
A dedicated stand-alone component, whose purpose is to perform updates to any part of the device firmware that may require updating, including performing an update to the whole updatable firmware in a single invocation

3.2 A flexible 2-step dynamic startup sequence
3.2.1 Rational for the architectural change
Before examining the proposed device architectural change, we would like to present the rational on which it is based on, in order to facilitate its review. We would like to establish that the suggested solution is:

Necessary:
Manufacturers will eventually have to implement it anyway as part of opening device firmware for updates.

Minimal:
It can not be simplified further without compromising reliability or security. The process is kept very simple and in fact there are no dependencies on any part of the updatable firmware except for:

· The structure of Boot Start and Boot Extension tha the validation & authentication code is expecting to handle.

· Methods of detecting and find an authentic Boot Start, which dictate certain rules of how and where to store it.
Generic:
The suggested mechanism can serve many purposes and is not designed arround a particular one.

Following are the observations and assumptions on the expected architecture and security features of future devices that will support updatable firmware:

O1. In order to maximize OTA firmware maintenance flexibility, manufacturers will try to maximize the OTA Updatable portions and minimize the non-updatable ones to the bare possible minimum. All such non-updatable portions will be OTA Protected.
O2. All OTA updatable firmware should be considered as potentially illegal till proved otherwise.

O3. Validating and authenticating an OTA updatable portions can be done in one operation, where all such portions are validated and authenticated before any is executed, or in steps, where each step takes care of a certain updatable portion.

O4. In order to achieve fully trusted firmware, if the firmware is being validated & authenticated in several steps, each step must be carried out in a trusted manner - all code and data that belong to that code & data belonging to that step must be established as trusted before it starts. This scheme of 'Chain of trust' originates at the first piece of executed code which must be OTA Protected.
O5. The Init code executed immediately following a device reset must be OTA protected for the following reasons:

· If a power failure would occur during Init code is being updated, Init might get corrupted, in which case there is no way to start the device.
· According to O4, the device must start executing an already validated code since the first piece of code executed at the point of start is not validated by another piece of code. If an update operation of Init was interrupted and as a result Init is corrupted in such way that the device could start but something would go wrong, there is no way to detect this situation.

3.2.2 Conclusions:

C1. Following O2, O3 and O4 at least the beginning of the updatable firmware ('Boot start') which is executed when control leaves Init, must be validated & authenticated prior to entering it using basic security functionality, such as calculation of digest values and signatures. If this functionality is not completely implemented by hardware and requires some code to support it, this code must be stored in an OTA protected (trusted) area of the firmware. This code is invoked from the protected Init, so it can be viewed as part of it.

C2. Boot start can be small, since it must contain only enough code to carry further validation of other firmware parts, if required at all. It can contain more operational code depending on its available room. A typical use of the Boot Start would be to hold the Update Installer.
C3. A reliable procedure for updating the Boot start, one that supports power failures, must be invoked before entering Boot Start, which of course is the reason why it can not be part of it. Following C2, if Boot start is small enough, its updating process does not require the presence of an Update Agent.

If an Update Agent is not present, the Boot extension can contain simple replacement update for the Boot Start. If Update Agent is present, an optimized firmware update could be used to update the Boot Start.

C4. The initial version of the device firmware can have a Boot start that does not contain an Update Agent. The first version of the Update Agent can be installed, as C3 suggest, via the Boot Extension.

C5. The minimized Init which should be OTA protected must would contain essential HW setup logic and basic security support code, fulfilling O1 and O4. It would not have to contain anything else.
3.3 Extending the startup sequence

According to O1, in order to allow maximum firmware flexibility, there may be cases where new functionality will have to be introduced to Boot without changing it. Such Boot Extension could practically contain anything. It could be a permanent extension which remains operative until some external event will cause it to expire, a temporal extension which expires when a certain condition is meat, or a transient one, which expires after a single execution. Also according to O1, Boot Extension expiration should be handled by the extension itself and can be achieved by modifying its contents, as a last operation before leaving it (executed from the RAM).

An extension can contain an attached payload of data & code for carrying out tasks such as modifying other areas of the firmware. One particular case of a transient Boot Extension is updating the Boot Start which when executed simply replaces the contents of Boot Start with its payload.

The Boot extension could be located at any place in the flash memory and have any length, as long as:

· Init can quickly find and read it
· The download application can store data in it

Boot Extension Buffer can be used by another component of the firmware when not needed for extension purposes. This is possible without any auxiliary data due to the validation of its contents – it is improbable that a random content would accidentally contain correct Boot Extension and will be wrongly used by Init.

3.3.1 Boot Extension structure

Again, in order to satisfy O1, handling the Boot Extension from Init should be as simple and basic as possible. It should contain only:
· Validation & authentication header which Init expects to find

· An entry point to which Init will pass execution.

Any other detail need not be pre-defined. In fact, these requirements apply also for the Boot Start.
3.3.2 Possible payload use cases

The Boot Extension is meant to be the most generic and reliable method for updating the Boot. In fact it could be used for several purposes besides the specific use case brought by this proposal. Its payload could be used for:
· Adding missing functionality, until it is not required any more

· Replacing a whole firmware block (such as the Boot Start)
· Values setting (one time, NOR flash): parameters, flags

· Values adding (NOR flash)
3.4 The modified Startup Sequence for Updatable Firmware

In the following section, the proposed change to device primal software, will allow the device to install firmware Update Agent after it has been shipped. The idea behind this sequence is that for performing a reliable and secure update to a small enough portion of the firmware there is a need for just a very small piece of code, which does not have to be updatable itself.

Following below, is a 6 steps startup sequence for initiating the device software:

Step 0. Init is executing as a result of a reset signal. At this point only essential HW setup and other minimal initializations are carried out, whatever initialization not absolutely necessary to perform steps 1-5, are can be executed later as part of Boot Start or other parts of the firmware and be subject for updates and maintenance.

Step 1. The Boot Extension buffer is found, validated and authenticated. A failure at this point means one of the followings:

· There is simply no available extension

· The buffer contains an 'expired' transient/temporary extension.

· The buffer contains an illegal extension. It is assumed that the authentication is strong enough so that even if the buffer can be written without any access restrictions, it is improbable for the buffer to contain random/intended data which constitutes a valid and authentic Boot Extension.

Step 2. If a valid extension is found, it is executed. If there is an issue of having the right Boot Extension to match the current contents of the Boot Start, the task of such matching should be left to the Boot Extension itself (it is trusted) and minimize Init according to O1. During its execution, it can replace the Boot Start as one of its uses cases. It is the responsibility of the Boot Extension to carry on with the rest of the startup sequence - Init need not have any calling interface with it.

Step 3. If there is no extension to execute (the 'normal' case) then Init has to execute Boot Start. According to O2, the Boot Start must not be trusted so it is validated & authenticated before control is passed to it.

Step 4. If Boot Start is valid and authentic it is simply executed like the extension without any API.

Step 5. Authentication failure at this point would mean that the firmware is corrupted or hacked and that the device can not and should not operate.
A pseudo code of this sequence could be expressed by the following statements:
if (Boot_Extension_exists() and Boot_Extension_is_authentic())
 jump to Boot Extension

 // no return
if (Boot_Start_is_authentic())
 jump to Boot_Start

 // no return
halt_device()
[image: image1.wmf]

OTA Protected

Firmware

OTA Updatable

Fir

mware

Step 2

Jump

If OK

Init

Boot Extension buffer

Boot start

Re

st of the firmware

Step 3

Init

Boot

Extension

b

uffer

Boot start

Validate &

Authenticate

Rest of the firmware

Step 4

Init

Boot Extension buffe

r

Boot start

Jump

 If OK

Rest of the firmware

Step 5

Halt

-

bad firmware

L

Init

X

Boot Extension buffer

Boot start

Rest of the firmware

Step 1

Boot start

Init

Locate, Match,

Validate and

Authenticate

Rest of the firmware

Boot

Extension

 buffer

Step

0

Boot start

Init

Rest of the firmware

Reset

X

X

X

?

OK

OK

?

?

?

HW setup

?

3.5 Scenario for OTA deployment of missing DM features

Following are the suggested steps to accomplish delivery of full DM capabilities to devices that missing one or both:

D1. Device is shipped to user, containing a modified startup sequence, as suggested by this document

D2. If OTA Firmware Update Agent component is missing, a special small file is downloaded to the device either as a special download case (no DM/DL clients yet) or through the DM mechanisms already in the device. This file is then stored in a special flash memory area which will make it a valid Boot Extension which can be later detected in a pre-designated manner by Init.
D3. At the next device reset, the device's startup sequence will install an Update Agent as a result of executing the Boot Extension. This Boot Extension will have as its payload the new contents for Boot Start which contains the Update Agent.
D4. Once the Update agent is installed, if DM/DL clients are not yet installed, another downloaded file or part of the same file that installed the Update Agent will contain a complete firmware update that when installed by the Update Agent, the whole device firmware will be upgraded to include full DM support.
This document does not suggest the proper means of achieving these download(s) in the case DM/DL clients are missing from the device. Obviously it calls for a special case delivery that may be chosen to be left out of the scope of the standards. Obviously, these initial download are to be much less managed than those achieved by full DM/DL clients.
There are probably several possibilities to accomplish this interim delivery, for example:

· Pre-loaded simple and small dedicated download application which is triggered by a pushed message with special contents will go and download a URL.

· The downloaded URL contains a mini-application: signed java applet or signed native executable application
· The mini application either contains the Boot Extension and has the capability to store it properly in its place, or, its execution will lead to another download, until the Boot Extension is finally delivered
4 Intellectual Property Rights Considerations

Red Bend is not aware of IPR involved in this document.
5 Recommendation

Both DM and Security should examine this document since it falls directly in both groups' charters. While Security group could examine the security issues handled by this proposal, DM group could look after the delivery of the initial downloads and whether this solution may reflect on the DM/DL protocols.

USE OF THIS DOCUMENT BY NON-OMA MEMBERS IS SUBJECT TO ALL OF THE TERMS AND CONDITIONS OF THE USE AGREEMENT (located at http://www.openmobilealliance.org/UseAgreement.html) AND IF YOU HAVE NOT AGREED TO THE TERMS OF THE USE AGREEMENT, YOU DO NOT HAVE THE RIGHT TO USE, COPY OR DISTRIBUTE THIS DOCUMENT.

THIS DOCUMENT IS PROVIDED ON AN "AS IS" "AS AVAILABLE" AND "WITH ALL FAULTS" BASIS.

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 1 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

© 2004 Open Mobile Alliance Ltd. All Rights Reserved.
Page 2 (of 7)
Used with the permission of the Open Mobile Alliance Ltd. under the terms as stated in this document.
[OMA-Template-InputContribution-20031003]

